1
|
Azcona JA, Wacker AS, Lee CH, Fung EK, Jeitner TM, Manzo OL, Di Lorenzo A, Babich JW, Amor-Coarasa A, Kelly JM. 2-[ 18F]Fluoropropionic Acid PET Imaging of Doxorubicin-Induced Cardiotoxicity. Mol Imaging Biol 2025; 27:109-119. [PMID: 39810069 PMCID: PMC11805620 DOI: 10.1007/s11307-024-01978-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 10/21/2024] [Accepted: 12/10/2024] [Indexed: 01/16/2025]
Abstract
PURPOSE Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[18F]fluoropropionic acid ([18F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. PROCEDURES Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [18F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. RESULTS Significantly higher cardiac [18F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [18F]FPA in tissues other than the heart. Co-administration of [18F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. CONCLUSIONS [18F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
Collapse
Affiliation(s)
- Juan A Azcona
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Anja S Wacker
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Chul-Hee Lee
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Edward K Fung
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
| | - Thomas M Jeitner
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
| | - Onorina L Manzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - Annarita Di Lorenzo
- Department of Pathology and Laboratory Medicine, Weill Cornell Medicine, New York, NY, USA
- Cardiovascular Research Institute, Weill Cornell Medicine, New York, NY, USA
- Brain and Mind Research Institute, Weill Cornell Medicine, New York, NY, USA
| | - John W Babich
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - Alejandro Amor-Coarasa
- Department of Radiology, Albert Einstein College of Medicine of Yeshiva University, New York, NY, USA
- Ratio Therapeutics, Boston, MA, USA
| | - James M Kelly
- Department of Radiology, Weill Cornell Medicine, 413 E 69th Street, Room BB-1604, New York, NY, 10021, USA.
- Citigroup Biomedical Imaging Center, Weill Cornell Medicine, New York, NY, USA.
- Sandra and Edward Meyer Cancer Center, Weill Cornell Medicine, New York, NY, USA.
| |
Collapse
|
2
|
Azcona JA, Wacker AS, Lee CH, Fung EK, Jeitner TM, Manzo OL, Lorenzo AD, Babich JW, Amor-Coarasa A, Kelly JM. 2-[ 18F]Fluoropropionic Acid PET Imaging of Doxorubicin-induced Cardiotoxicity. RESEARCH SQUARE 2024:rs.3.rs-4876095. [PMID: 39483906 PMCID: PMC11527236 DOI: 10.21203/rs.3.rs-4876095/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/03/2024]
Abstract
Purpose Treatment of pediatric cancers with doxorubicin is a common and predictable cause of cardiomyopathy. Early diagnosis of treatment-induced cardiotoxicity and intervention are major determinants for the prevention of advanced disease. The onset of cardiomyopathies is often accompanied by profound changes in lipid metabolism, including an enhanced uptake of short-chain fatty acids (SCFA). Therefore, we explored the utility of 2-[18F]fluoropropionic acid ([18F]FPA), an SCFA analog, as an imaging biomarker of cardiac injury in mice exposed to doxorubicin. Procedures: Cardiotoxicity and cardiac dysfunction were induced in mice by an 8-dose regimen of doxorubicin (cumulative dose 24 mg/kg) administered over 14 days. The effects of doxorubicin exposure were assessed by measurement of heart weights, left ventricular ejection fractions, and blood cardiac troponin levels. Whole body and cardiac [18F]FPA uptakes were determined by PET and tissue gamma counting in the presence or absence of AZD3965, a pharmacological inhibitor of monocarboxylate transporter 1 (MCT1). Radiation absorbed doses were estimated using tissue time-activity concentrations. Results Significantly higher cardiac [18F]FPA uptake was observed in doxorubicin-treated animals. This uptake remained constant from 30 min to 120 min post-injection. Pharmacological inhibition of MCT1-mediated transport by AZD3965 selectively decreased the uptake of [18F]FPA in tissues other than the heart. Co-administration of [18F]FPA and AZD3965 enhanced the imaging contrast of the diseased heart while reducing overall exposure to radioactivity. Conclusions [18F]FPA, especially when co-administered with AZD3965, is a new tool for imaging changes in fatty acid metabolism occurring in response to doxorubicin-induced cardiomyopathy by PET.
Collapse
Affiliation(s)
- Juan A Azcona
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Anja S Wacker
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Chul-Hee Lee
- Weill Cornell Medical College: Weill Cornell Medicine
| | - Edward K Fung
- Weill Cornell Medical College: Weill Cornell Medicine
| | | | | | | | - John W Babich
- Weill Cornell Medical College: Weill Cornell Medicine
| | | | - James M Kelly
- Weill Cornell Medical College: Weill Cornell Medicine
| |
Collapse
|
3
|
Lyons SA, McClelland GB. Commentary: Tracing the fate of metabolic substrates during changes in whole-body energy expenditure in mice. Comp Biochem Physiol B Biochem Mol Biol 2024; 274:111008. [PMID: 39059702 DOI: 10.1016/j.cbpb.2024.111008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 07/20/2024] [Accepted: 07/22/2024] [Indexed: 07/28/2024]
Abstract
For small mammals, such as mice, cannulation procedures can be quite challenging, limiting research associated with tracing isotopically labelled substrates at the whole-animal level. When cannulation in mice is possible, assessment of substrate use is further limited to when mice are either under anesthesia or are at rest, as there are no studies directly quantifying substrate use during exercise in mice. The use of isotopic tracer techniques has greatly advanced our knowledge in understanding how metabolic substrates (carbohydrates, amino acids, and fatty acids) contribute to whole-body metabolism. However, research regarding tissue-specific fuel use contributions to whole-body energy expenditure in mice at varying metabolic intensities (i.e., exercise) is lacking, despite the popularity of using mice in a variety of metabolic models. In this commentary, we briefly discuss the methodologies, advantages, and disadvantages of using radiolabelled, positron emission, and stable isotopes with a specific focus on fatty acids. We highlight recent mouse studies that have used creative experimental designs employing the use of isotopic tracer techniques and we briefly discuss how these methodologies can be further pursued to deepen our understanding of substrate use during exercise. Lastly, we show findings of a recent study we performed using a radiolabelled fatty acid tracer (14C-bromopalmitic acid) to determine fatty acid uptake in 16 muscles, two brown and two white adipose tissue depots during submaximal exercise in deer mice.
Collapse
Affiliation(s)
- Sulayman A Lyons
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| | - Grant B McClelland
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada.
| |
Collapse
|
4
|
Latva-Rasku A, Rebelos E, Tuisku J, Aarnio R, Bhowmik A, Keskinen H, Laurila S, Lahesmaa-Hatting M, Pekkarinen L, Isackson H, Kirjavainen AK, Koffert J, Heurling K, Nummenmaa L, Ferrannini E, Oldgren J, Oscarsson J, Nuutila P. SGLT2 Inhibitor Dapagliflozin Increases Skeletal Muscle and Brain Fatty Acid Uptake in Individuals With Type 2 Diabetes: A Randomized Double-Blind Placebo-Controlled Positron Emission Tomography Study. Diabetes Care 2024; 47:1630-1637. [PMID: 38941156 DOI: 10.2337/dc24-0470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 06/10/2024] [Indexed: 06/30/2024]
Abstract
OBJECTIVE The aim of this study was to investigate the impact of the sodium-glucose cotransporter 2 (SGLT2) inhibitor dapagliflozin on tissue fatty acid (FA) uptake in the skeletal muscle, brain, small intestine, and subcutaneous and visceral adipose tissue of individuals with type 2 diabetes by using positron emission tomography (PET). RESEARCH DESIGN AND METHODS In a 6-week randomized double-blind placebo-controlled trial, 53 patients with type 2 diabetes treated with metformin received either 10 mg dapagliflozin or placebo daily. Tissue FA uptake was quantified at baseline and end of treatment with PET and the long-chain FA analog radiotracer 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid. Treatment effects were assessed using ANCOVA, and the results are reported as least square means and 95% CIs for the difference between groups. RESULTS A total of 38 patients (dapagliflozin n = 21; placebo n = 17) completed the study. After 6 weeks, skeletal muscle FA uptake was increased by dapagliflozin compared with placebo (1.0 [0.07, 2.0] μmol ⋅ 100 g-1 ⋅ min-1; P = 0.032), whereas uptake was not significantly changed in the small intestine or visceral or subcutaneous adipose tissue. Dapagliflozin treatment significantly increased whole-brain FA uptake (0.10 [0.02, 0.17] μmol ⋅ 100 g-1 ⋅ min-1; P = 0.01), an effect observed in both gray and white matter regions. CONCLUSIONS Six weeks of treatment with dapagliflozin increases skeletal muscle and brain FA uptake, partly driven by a rise in free FA availability. This finding is in accordance with previous indirect measurements showing enhanced FA metabolism in response to SGLT2 inhibition and extends the notion of a shift toward increased FA use to muscle and brain.
Collapse
Affiliation(s)
- Aino Latva-Rasku
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Eleni Rebelos
- Turku PET Centre, University of Turku, Turku, Finland
| | - Jouni Tuisku
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Achol Bhowmik
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Sanna Laurila
- Turku PET Centre, University of Turku, Turku, Finland
- Heart Center, Turku University Hospital, Turku, Finland
| | | | - Laura Pekkarinen
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | - Henrik Isackson
- Clinical Physiology and Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Integrative Physiology, Medical Cell Biology, Uppsala University Hospital, Uppsala, Sweden
| | - Anna K Kirjavainen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre, University of Turku, Turku, Finland
| | - Jukka Koffert
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Lauri Nummenmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Psychology, University of Turku, Turku, Finland
| | - Ele Ferrannini
- National Research Council Institute of Clinical Physiology, Pisa, Italy
| | - Jonas Oldgren
- Clinical Physiology and Cardiology, Department of Medical Sciences, Uppsala University, Uppsala, Sweden
- Uppsala Clinical Research Center, Uppsala University, Uppsala, Sweden
| | - Jan Oscarsson
- Late-Stage Development, Cardiovascular, Renal, and Metabolism, BioPharmaceuticals Research and Development, AstraZeneca, Gothenburg, Sweden
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
5
|
Aarnio R, Kirjavainen A, Rajander J, Forsback S, Kalliokoski K, Nuutila P, Milicevic Z, Coskun T, Haupt A, Laitinen I, Haaparanta-Solin M. New improved radiometabolite analysis method for [ 18F]FTHA from human plasma: a test-retest study with postprandial and fasting state. EJNMMI Res 2024; 14:53. [PMID: 38869780 DOI: 10.1186/s13550-024-01114-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2024] [Accepted: 05/28/2024] [Indexed: 06/14/2024] Open
Abstract
BACKGROUND Fatty acid uptake can be measured using PET and 14-(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). However, the relatively rapid rate of [18F]FTHA metabolism significantly affects kinetic modeling of tissue uptake. Thus, there is a need for accurate chromatographic methods to analyze the unmetabolized [18F]FTHA (parent fraction). Here we present a new radiometabolite analysis (RMA) method, with comparison to a previous method for parent fraction analysis, and its use in a test-retest clinical study under fasting and postprandial conditions. We developed a new thin-layer chromatography (TLC) RMA method for analysis of [18F]FTHA parent fraction and its radiometabolites from plasma, by testing stationary phases and eluent combinations. Next, we analyzed [18F]FTHA, its radiometabolites, and plasma radioactivity from subjects participating in a clinical study. A total of 17 obese or overweight participants were dosed with [18F]FTHA twice under fasting, and twice under postprandial conditions and plasma samples were obtained between 14 min (mean of first sample) and 72 min (mean of last sample) post-injection. Aliquots of 70 plasma samples were analyzed using both methods, enabling head-to-head comparisons. We performed test-retest and group comparisons of the parent fraction and plasma radioactivity. RESULTS The new TLC method separated seven [18F]FTHA radiometabolite peaks, while the previous method separated three. The new method revealed at least one radiometabolite that was not previously separable from [18F]FTHA. From the plasma samples, the mean parent fraction value was on average 7.2 percentage points lower with the new method, compared to the previous method. Repeated [18F]FTHA investigations on the same subject revealed reproducible plasma SUV and parent fractions, with different kinetics between the fasted and postprandial conditions. CONCLUSIONS The newly developed improved radio-TLC method for [18F]FTHA RMA enables accurate parent fraction correction, which is required to obtain quantitative data for modelling [18F]FTHA PET data. Our test-retest study of fasted and postprandial conditions showed robust reproducibility, and revealed clear differences in the [18F]FTHA metabolic rate under different study settings. TRIAL REGISTRATION EudraCT No: 2020-005211-48, 04Feb2021; and Clinical Trials registry NCT05132335, 29Oct2021, URL: https://classic. CLINICALTRIALS gov/ct2/show/NCT05132335 .
Collapse
Affiliation(s)
- Richard Aarnio
- MediCity Research Laboratory, University of Turku, Turku, Finland.
- Drug Research Doctoral Programme, University of Turku, Turku, Finland.
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland.
| | - Anna Kirjavainen
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Johan Rajander
- Accelerator Laboratory, Turku PET Centre, Åbo Akademi University, Turku, Finland
| | - Sarita Forsback
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Kari Kalliokoski
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| | | | | | - Axel Haupt
- Eli Lilly and Company, Indianapolis, IN, USA
| | | | - Merja Haaparanta-Solin
- MediCity Research Laboratory, University of Turku, Turku, Finland
- Turku PET Centre, University of Turku, Kiinamyllynkatu 4-8, Turku, FI-20520, Finland
| |
Collapse
|
6
|
Murakami Y, Fujita Y, Fushiki H. Synthesis and Preliminary Evaluation of an 18F-labeled Oleate Analog to Image Fatty Acid Beta-Oxidation in the Absence of Metabolic Defluorination. Mol Imaging Biol 2022; 25:495-502. [PMID: 36220956 DOI: 10.1007/s11307-022-01777-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2022] [Revised: 09/28/2022] [Accepted: 10/03/2022] [Indexed: 11/25/2022]
Abstract
PURPOSE Fatty acid oxidation (FAO) is a key parameter for evaluating cardiovascular, oncologic, neurologic, and other metabolic diseases. Several single-photon emission computed tomography and positron emission tomography (PET) tracers have been developed to measure FAO. Among these, 18-[18F]fluoro-4-thia-oleate ([18F]FTO), first developed by DeGrado et al., is well characterized. Here, we synthesized several analogs of [18F]FTO to improve the metabolic stability of the C-18F bond, and preliminarily evaluated their performance in monkey PET studies. PROCEDURES Several secondary 18F-fluorinated analogs, 17-[18F]fluoro-4-thia-oleate (17-[18F]FTO), 15-[18F]fluoro-4-thia-oleate (15-[18F]FTO), 12-[18F]fluoro-4-thia-oleate (12-[18F]FTO), 7-[18F]fluoro-4-thia-oleate, (7-[18F]FTO, [18F]AS3504073-00), and 6-[18F]fluoro-4-thia-oleate (6-[18F]FTO), were synthesized from tosylate or bromide precursors using similar procedures. Nucleophilic 18F fluorination on each precursor was performed using [18F]tetrabutylammonium fluoride/tetrabutylammonium hydrocarbonate, followed by hydrolysis of methylester. All synthesized 18F-labeled compounds were administered to cynomolgus monkeys, and PET measurements were performed. From the monkey PET studies, 7-[18F]FTO was selected as the best tracer and used to perform preliminary evaluations in mice. RESULTS All five compounds had sufficient quality and stability for animal experiments. In monkey PET studies, 12-, 7-, and 6-[18F]FTO showed greater accumulation in the heart than [18F]FTO, but not 17- and 15-[18F]FTO. Only 7-[18F]FTO did not show significant accumulation in the bone. The standardized uptake values (SUVs) for 12-[18F]FTO, 7-[18F]FTO, and 6-[18F]FTO were 9.77, 9.26, and 7.25 in the heart, and 3.17, n.d., and 1.96 in the bone 1 h after administration, respectively. In mouse distribution studies, SUVs 1 h after administration of 7-[18F]FTO and [18F]FTO were 10.4 and 10.0 in the heart, and 0.37 and 3.48 in the femur, respectively. Administration of etomoxir, a carnitine palmitoyltransferase inhibitor, reduced SUVs of 7-[18F]FTO and [18F]FTO in the heart by 91% and 87%, respectively. CONCLUSIONS We developed a novel PET tracer 7-[18F]FTO/[18F]AS3504073-00 for FAO imaging. 7-[18F]FTO had an excellent PET tracer profile, suggesting it may be a useful tracer for FAO imaging. Further evaluations of the tracer are ongoing.
Collapse
Affiliation(s)
| | - Yuji Fujita
- Astellas Pharma, Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan
| | - Hiroshi Fushiki
- Astellas Pharma, Inc, 21 Miyukigaoka, Tsukuba, Ibaraki, 305-8585, Japan.
| |
Collapse
|
7
|
Revunov E, Johnström P, Arakawa R, Malmquist J, Jucaite A, Defay T, Takano A, Schou M. First Radiolabeling of a Ganglioside with a Positron Emitting Radionuclide: In Vivo PET Demonstrates Low Exposure of Radiofluorinated GM1 in Non-human Primate Brain. ACS Chem Neurosci 2020; 11:1245-1249. [PMID: 32324990 DOI: 10.1021/acschemneuro.0c00161] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023] Open
Abstract
Gangliosides are biologically important glycolipids widely distributed in vertebrate cells. An important member of the ganglioside family is the monosialylganglioside GM1, which has been suggested as a potential therapeutic for Parkinson's disease. In the current study, a late-stage radiofluorination protocol was developed, in which fluorine-18 was introduced by substitution of a terminal tosyl group in the fatty acid backbone of GM1. The radiofluorination procedure was remarkably simple and furnished the radiofluorinated ganglioside, [18F]F-GM1, in sufficient quantity and quality without protection of the glycosyl moiety. A positron emission tomography measurement in cynomolgus monkey revealed high uptake of [18F]F-GM1 in heart, bone marrow, and lungs but low (<0.4% of injected dose) distribution to the brain. Thus, choosing administration route of GM1 for therapy of central nervous system disorders poses further challenges. The present study demonstrates the importance of application of positron emission tomography microdosing studies in guiding early clinical drug development.
Collapse
Affiliation(s)
- Evgeny Revunov
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Peter Johnström
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- AstraZeneca, PET Science Centre at Karolinska Institutet, Precision Medicine, Oncology R&D, AstraZeneca, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Ryosuke Arakawa
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Jonas Malmquist
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Aurelija Jucaite
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- AstraZeneca, PET Science Centre at Karolinska Institutet, Precision Medicine, Oncology R&D, AstraZeneca, Karolinska Institutet, 17176 Stockholm, Sweden
| | - Tom Defay
- Neuroscience, Biopharmaceuticals R&D, AstraZeneca, Boston, Massachusetts 02139, United States
| | - Akihiro Takano
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
| | - Magnus Schou
- Department of Clinical Neuroscience, Center for Psychiatry Research, Karolinska Institutet and Stockholm County Council, 17176 Stockholm, Sweden
- AstraZeneca, PET Science Centre at Karolinska Institutet, Precision Medicine, Oncology R&D, AstraZeneca, Karolinska Institutet, 17176 Stockholm, Sweden
| |
Collapse
|
8
|
Ermert J, Benešová M, Hugenberg V, Gupta V, Spahn I, Pietzsch HJ, Liolios C, Kopka K. Radiopharmaceutical Sciences. Clin Nucl Med 2020. [DOI: 10.1007/978-3-030-39457-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|
9
|
Pandey MK, Jacobson MS, Groth EK, Tran NG, Lowe VJ, DeGrado TR. Radiation induced oxidation of [ 18F]fluorothia fatty acids under cGMP manufacturing conditions. Nucl Med Biol 2019; 80-81:13-23. [PMID: 31759313 DOI: 10.1016/j.nucmedbio.2019.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 11/02/2019] [Accepted: 11/07/2019] [Indexed: 11/25/2022]
Abstract
OBJECTIVE The objectives of the present work were to optimize and validate the synthesis and stability of 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA) and 16-[18F]fluoro-4-thia-palmitic acid ([18F]FTP) under cGMP conditions for clinical applications. METHODS Benzyl-14-(R,S)-tosyloxy-6-thiaheptadecanoate and methyl 16-bromo-4-thia-palmitate were used as precursors for the synthesis of [18F]FTHA and [18F]FTP, respectively. For comparison, a fatty acid analog lacking a thia-substitution, 16-[18F]fluoro-palmitic acid ([18F]FP), was synthesized from the precursor methyl 16-bromo-palmitate. A standard nucleophilic reaction using cryptand (Kryptofix/K222, 8.1 mg), potassium carbonate (K2CO3, 4.0 mg) and 18F-fluoride were employed for the 18F-labeling and potassium hydroxide (0.8 M) was used for the post-labeling ester hydrolysis. The final products were purified via reverse phase semi-preparative HPLC and concentrated via trap and release on a C-18 plus solid phase extraction cartridge. The radiochemical purities of the [18F]fluorothia fatty acids and [18F]FP were examined over a period of 4 h post-synthesis using an analytical HPLC. All the syntheses were optimized in an automated TRACERlab FX-N Pro synthesizer. Liquid chromatography mass spectrometry (LCMS) and high resolution mass spectrometry (HRMS) was employed to study the identity and nature of side products formed during radiosynthesis and as a consequence of post-synthesis radiation induced oxidation. RESULTS Radiosyntheses of [18F]FTHA, [18F]FTP and [18F]FP were achieved in moderate (8-20% uncorrected) yields. However, it was observed that the HPLC-purified [18F]fluorothia fatty acids, [18F]FTHA and [18F]FTP at higher radioactivity concentrations (>1.11 GBq/mL, 30 mCi/mL) underwent formation of 18F-labeled side products over time but [18F]FP (lacking a sulfur heteroatom) remained stable up to 4 h post-synthesis. Various radiation protectors like ethanol and ascorbic acid were examined to minimize the formation of side products formed during [18F]FTHA and [18F]FTP synthesis but showed only limited to no effect. Analysis of the side products by LCMS showed formation of sulfoxides of both [18F]FTHA and [18F]FTP. The identity of the sulfoxide side product was further confirmed by synthesizing a non-radioactive reference standard of the sulfoxide analog of FTP and matching retention times on HPLC and molecular ion peaks on LC/HRMS. Radiation-induced oxidation of the sulfur heteroatom was mitigated by dilution of product with isotonic saline to reduce the radioactivity concentration to <0.518 GBq/mL (14 mCi/mL). CONCLUSIONS Successful automated synthesis of [18F]fluorothia fatty acids were carried out in cGMP facility for their routine production and clinical applications. Instability of [18F]fluorothia fatty acids were observed at radioactivity concentrations exceeding 1.11 GBq/mL (30 mCi/mL) but mitigated through dilution of the product to <0.518 GBq/mL (14 mCi/mL). The identities of the side products formed were established as the sulfoxides of the respective thia fatty acids caused by radiation-induced oxidation of the sulfur heteroatom.
Collapse
Affiliation(s)
- Mukesh K Pandey
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America.
| | - Mark S Jacobson
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America
| | - Emily K Groth
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America
| | - Natalie G Tran
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America
| | - Val J Lowe
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America
| | - Timothy R DeGrado
- Department of Radiology, Mayo Clinic, Rochester, MN 55906, United States of America.
| |
Collapse
|
10
|
Henderson F, Johnston HR, Badrock AP, Jones EA, Forster D, Nagaraju RT, Evangelou C, Kamarashev J, Green M, Fairclough M, Ramirez IBR, He S, Snaar-Jagalska BE, Hollywood K, Dunn WB, Spaink HP, Smith MP, Lorigan P, Claude E, Williams KJ, McMahon AW, Hurlstone A. Enhanced Fatty Acid Scavenging and Glycerophospholipid Metabolism Accompany Melanocyte Neoplasia Progression in Zebrafish. Cancer Res 2019; 79:2136-2151. [DOI: 10.1158/0008-5472.can-18-2409] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2018] [Revised: 01/23/2019] [Accepted: 03/04/2019] [Indexed: 11/16/2022]
|
11
|
DeGrado TR, Pandey MK, Belanger AP, Basuli F, Bansal A, Wang S. Noninvasive evaluation of fat-carbohydrate metabolic switching in heart and contracting skeletal muscle. Am J Physiol Endocrinol Metab 2019; 316:E251-E259. [PMID: 30512988 PMCID: PMC6397361 DOI: 10.1152/ajpendo.00323.2018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
The ability of heart and skeletal muscle (SM) to switch between fat and carbohydrate oxidation is of high interest in the study of metabolic diseases and exercise physiology. Positron emission tomography (PET) imaging with the glucose analog 2-[18F]fluoro-2-deoxy-glucose (18F-FDG) provides a noninvasive means to quantitate glucose metabolic rates. However, evaluation of fatty acid oxidation (FAO) rates by PET has been limited by the lack of a suitable FAO probe. We have developed a metabolically trapped oleate analog, ( Z)-18-[18F]fluoro-4-thia-octadec-9-enoate (18F-FTO), and investigated the feasibility of using 18F-FTO and 18F-FDG to measure FAO and glucose uptake, respectively, in heart and SM of rats in vivo. To enhance the metabolic rates in SM, the vastus lateralis (VL) muscle was electrically stimulated in fasted rats for 30 min before and 30 min following radiotracer injection. The responses of radiotracer uptake patterns to pharmacological inhibition of FAO were assessed by pretreatment of the rats with the carnitine palmitoyl-transferase-1 (CPT-1) inhibitor sodium 2-[5-(4-chlorophenyl)-pentyl]oxirane-2-carboxylate (POCA). Small-animal PET images and biodistribution data with 18F-FTO and 18F-FDG demonstrated profound metabolic switching for energy provision in the myocardium from exogenous fatty acids to glucose in control and CPT-1-inhibited rats, respectively. Uptake of both radiotracers was low in unstimulated SM. In stimulated VL muscle, 18F-FTO and 18F-FDG uptakes were increased 4.4- and 28-fold, respectively, and CPT-1 inhibition only affected 18F-FTO uptake (66% decrease). 18F-FTO is a FAO-dependent PET probe that may allow assessment of energy substrate metabolic switching in conjunction with 18F-FDG and other metabolic probes.
Collapse
Affiliation(s)
- Timothy R DeGrado
- Department of Radiology, Mayo Clinic , Rochester, Minnesota
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Mukesh K Pandey
- Department of Radiology, Mayo Clinic , Rochester, Minnesota
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | | | - Falguni Basuli
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Aditya Bansal
- Department of Radiology, Mayo Clinic , Rochester, Minnesota
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| | - Shuyan Wang
- Brigham and Women's Hospital, Harvard Medical School , Boston, Massachusetts
| |
Collapse
|
12
|
Dadson P, Hannukainen JC, Din MU, Lahesmaa M, Kalliokoski KK, Iozzo P, Pihlajamäki J, Karlsson HK, Parkkola R, Salminen P, Virtanen KA, Nuutila P. Brown adipose tissue lipid metabolism in morbid obesity: Effect of bariatric surgery-induced weight loss. Diabetes Obes Metab 2018; 20:1280-1288. [PMID: 29377423 DOI: 10.1111/dom.13233] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/26/2017] [Revised: 01/13/2018] [Accepted: 01/22/2018] [Indexed: 02/02/2023]
Abstract
OBJECTIVE We aimed to investigate the effect of bariatric surgery on lipid metabolism in supraclavicular brown adipose tissue in morbidly obese women. We hypothesized that lipid metabolism improves after surgery-induced weight loss. MATERIALS AND METHODS A total of 23 morbidly obese women (BMI, 42.1 ± 4.2 kg/m2 ; age, 43.8 ± 9.8 years) were assessed before and 6 months after bariatric surgery and 15 age- and sex-matched controls (22.6 ± 2.8 kg/m2 ) were assessed once. In the supraclavicular fat depot, fractional (FUR) and NEFA uptake rates were measured with 18 F-FTHA-PET. We assessed tissue morphology (triglyceride content) using computed tomography (CT)-radiodensity (in Hounsfield Units[HU]) and the proportion of fat with high density (sBAT [%]) in the entire supraclavicular fat depot. RESULTS The supraclavicular fractional uptake rate was lower in obese women compared to controls (0.0055 ± 0.0035 vs 0.0161 ± 0.0177 1/min, P = .001). Both FUR (to 0.0074 ± 0.0035 1/min, P = .01) and NEFA uptake rates (to 0.50 ± 0.50 μmol/100 g/min, P = .001) increased after surgery. Compared to controls, obese women had lower CT-radiodensity (-101.2 ± 10.1 vs -82.5 ± 5.8 HU, P < .001) and sBAT (43.4 ± 8.4% vs 64.5 ± 12.4%, P < .001). After surgery, CT-radiodensity increased (to -82.5 ± 9.6 HU, P < .001), signifying decreased triglyceride content and sBAT improved (to 58.0 ± 10.7%, P < .001), indicating an increased proportion of brown fat. The change in tissue morphology, reflected as increase in CT-radiodensity and sBAT (%), was associated with a decrease in adiposity indices and an increase in whole-body insulin sensitivity. CONCLUSIONS A decrease in triglyceride content, coupled with the increased proportion of brown adipose tissue in the supraclavicular fat depot, may play a role in the improvement of whole-body insulin sensitivity observed in morbidly obese women after surgery-induced weight loss.
Collapse
Affiliation(s)
- Prince Dadson
- Turku PET Centre, University of Turku, Turku, Finland
| | | | - Mueez U Din
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Minna Lahesmaa
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | | | | | - Jussi Pihlajamäki
- Institute of Public Health and Clinical Nutrition, Department of Clinical Nutrition and Obesity Center, Kuopio University Hospital, Kuopio, Finland
| | | | - Riitta Parkkola
- Department of Radiology, Medical Imaging Center, Turku University Hospital, University of Turku and Turku University Hospital, Turku, Finland
| | - Paulina Salminen
- Division of Digestive Surgery and Urology, Department of Acute and Digestive Surgery, Turku University Hospital, Turku, Finland
| | - Kirsi A Virtanen
- Turku PET Centre, University of Turku, Turku, Finland
- Turku PET Centre, Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku, Turku, Finland
- CNR Institute of Clinical Physiology, Pisa, Italy
- Department of Endocrinology, Turku University Hospital, Turku, Finland
| |
Collapse
|
13
|
Savisto N, Viljanen T, Kokkomäki E, Bergman J, Solin O. Automated production of [18
F]FTHA according to GMP. J Labelled Comp Radiopharm 2018; 61:84-93. [DOI: 10.1002/jlcr.3589] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2017] [Revised: 09/29/2017] [Accepted: 11/17/2017] [Indexed: 12/28/2022]
Affiliation(s)
- Nina Savisto
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre; University of Turku; Turku Finland
| | - Tapio Viljanen
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre; University of Turku; Turku Finland
| | - Esa Kokkomäki
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre; University of Turku; Turku Finland
| | - Jörgen Bergman
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre; University of Turku; Turku Finland
| | - Olof Solin
- Radiopharmaceutical Chemistry Laboratory, Turku PET Centre; University of Turku; Turku Finland
- Department of Chemistry; University of Turku; Turku Finland
- Accelerator Laboratory; Åbo Akademi University; Turku Finland
| |
Collapse
|
14
|
Drozd K, Ahmadi A, Deng Y, Jiang B, Petryk J, Thorn S, Stewart D, Beanlands R, deKemp RA, DaSilva JN, Mielniczuk LM. Effects of an endothelin receptor antagonist, Macitentan, on right ventricular substrate utilization and function in a Sugen 5416/hypoxia rat model of severe pulmonary arterial hypertension. J Nucl Cardiol 2017; 24:1979-1989. [PMID: 27688036 DOI: 10.1007/s12350-016-0663-4] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Revised: 07/25/2016] [Indexed: 10/20/2022]
Abstract
BACKGROUND Altered myocardial energy metabolism has been linked to worsening of RV function in pulmonary arterial hypertension (PAH). The aim of this study was to evaluate RV glucose and fatty acid metabolism in vivo in a rat model of PAH using positron emission tomography (PET) and investigate the effects of Macitentan on RV substrate utilization. METHODS PAH was induced in male Sprague-Dawley rats by a single subcutaneous injection of Sugen 5416 (20 mg/kg) followed by 3 weeks of hypoxia (10% oxygen). At week 5 post-injection, the PAH rats were randomized to Macitentan (30 mg/kg daily) treatment or no treatment. Substrate utilization was serially assessed 5 and 8 weeks post-injection with 2-[18F]fluoro-2-deoxyglucose (FDG) and 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid (FTHA) PET for glucose and fatty acid metabolism respectively and correlated with in vivo functional measurements. RESULTS PAH induction resulted in a 2.5-fold increase in RV FDG uptake (standardized uptake value (SUV) of normal control: 1.6 ± 0.4, week 5: 4.1 ± 1.9, week 8: 4.0 ± 1.6, P < 0.05 for all groups vs. control). RV FTHA showed twofold increased uptake at week 5 (SUV control: 1.50 ± 0.39, week 5: 3.06 ± 1.10, P = 0.03). Macitentan significantly decreased RV FDG uptake at 8 weeks (SUV: 2.5 ± 0.9, P = 0.04), associated with improved RV ejection fraction and reduced RV systolic pressure, while FTHA uptake was maintained. CONCLUSION PAH is associated with metabolic changes in the RV, characterized by a marked increase in FDG and FTHA uptake. Macitentan treatment reduced PAH severity and was associated with a decrease in RV FDG uptake and improved RV function.
Collapse
Affiliation(s)
- Katarzyna Drozd
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Ali Ahmadi
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Yupu Deng
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Baohua Jiang
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Julia Petryk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Stephanie Thorn
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Duncan Stewart
- Ottawa Hospital Research Institute, 1053 Carling Ave, Ottawa, ON, Canada
| | - Rob Beanlands
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada
| | - Robert A deKemp
- Department of Cardiac Imaging, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Jean N DaSilva
- Department of Radiology, Radio-Oncology and Nuclear Medicine, University of Montreal, Montreal, QC, Canada
- University of Montreal Hospital Research Centre (CRCHUM), Montreal, QC, Canada
| | - Lisa M Mielniczuk
- Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, 40 Ruskin St., Ottawa, ON, K1Y 4W7, Canada.
| |
Collapse
|
15
|
Croteau E, Renaud JM, Richard MA, Ruddy TD, Bénard F, deKemp RA. PET Metabolic Biomarkers for Cancer. BIOMARKERS IN CANCER 2016; 8:61-9. [PMID: 27679534 PMCID: PMC5030827 DOI: 10.4137/bic.s27483] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Revised: 05/08/2016] [Accepted: 05/19/2016] [Indexed: 02/06/2023]
Abstract
The body's main fuel sources are fats, carbohydrates (glucose), proteins, and ketone bodies. It is well known that an important hallmark of cancer cells is the overconsumption of glucose. Positron emission tomography (PET) imaging using the glucose analog (18)F-fluorodeoxyglucose ((18)F-FDG) has been a powerful cancer diagnostic tool for many decades. Apart from surgery, chemotherapy and radiotherapy represent the two main domains for cancer therapy, targeting tumor proliferation, cell division, and DNA replication-all processes that require a large amount of energy. Currently, in vivo clinical imaging of metabolism is performed almost exclusively using PET radiotracers that assess oxygen consumption and mechanisms of energy substrate consumption. This paper reviews the utility of PET imaging biomarkers for the detection of cancer proliferation, vascularization, metabolism, treatment response, and follow-up after radiation therapy, chemotherapy, and chemotherapy-related side effects.
Collapse
Affiliation(s)
- Etienne Croteau
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada; Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Jennifer M Renaud
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - Marie Anne Richard
- Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Terrence D Ruddy
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| | - François Bénard
- Division of Nuclear Medicine, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Robert A deKemp
- National Cardiac PET Centre, Division of Cardiology, Department of Medicine, University of Ottawa Heart Institute, Ottawa, ON, Canada
| |
Collapse
|
16
|
Heiskanen MA, Leskinen T, Heinonen IHA, Löyttyniemi E, Eskelinen JJ, Virtanen K, Hannukainen JC, Kalliokoski KK. Right ventricular metabolic adaptations to high-intensity interval and moderate-intensity continuous training in healthy middle-aged men. Am J Physiol Heart Circ Physiol 2016; 311:H667-75. [PMID: 27448554 DOI: 10.1152/ajpheart.00399.2016] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/02/2016] [Accepted: 07/21/2016] [Indexed: 01/18/2023]
Abstract
Despite the recent studies on structural and functional adaptations of the right ventricle (RV) to exercise training, adaptations of its metabolism remain unknown. We investigated the effects of short-term, high-intensity interval training (HIIT) and moderate-intensity continuous training (MICT) on RV glucose and fat metabolism. Twenty-eight untrained, healthy 40-55 yr-old-men were randomized into HIIT (n = 14) and MICT (n = 14) groups. Subjects performed six supervised cycle ergometer training sessions within 2 wk (HIIT session: 4-6 × 30 s all-out cycling/4-min recovery; MICT session: 40-60 min at 60% peak O2 uptake). Primary outcomes were insulin-stimulated RV glucose uptake (RVGU) and fasted state RV free fatty acid uptake (RVFFAU) measured by positron emission tomography. Secondary outcomes were changes in RV structure and function, determined by cardiac magnetic resonance. RVGU decreased after training (-22% HIIT, -12% MICT, P = 0.002 for training effect), but RVFFAU was not affected by the training (P = 0.74). RV end-diastolic and end-systolic volumes, respectively, increased +5 and +7% for HIIT and +4 and +8% for MICT (P = 0.002 and 0.005 for training effects, respectively), but ejection fraction mildly decreased (-2% HIIT, -4% MICT, P = 0.034 for training effect). RV mass and stroke volume remained unaltered. None of the observed changes differed between the training groups (P > 0.12 for group × training interaction). Only 2 wk of physical training in previously sedentary subjects induce changes in RV glucose metabolism, volumes, and ejection fraction, which precede exercise-induced hypertrophy of RV.
Collapse
Affiliation(s)
| | | | - Ilkka H A Heinonen
- Turku PET Centre, University of Turku, Turku, Finland; School of Sport Science, Exercise and Health, University Of Western Australia, Crawley, Western Australia, Australia; and
| | | | | | | | | | | |
Collapse
|
17
|
Heiskanen MA, Leskinen T, Eskelinen JJ, Heinonen IHA, Löyttyniemi E, Virtanen K, Pärkkä JP, Hannukainen JC, Kalliokoski KK. Different Predictors of Right and Left Ventricular Metabolism in Healthy Middle-Aged Men. Front Physiol 2015; 6:389. [PMID: 26733882 PMCID: PMC4685066 DOI: 10.3389/fphys.2015.00389] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2015] [Accepted: 11/30/2015] [Indexed: 11/13/2022] Open
Abstract
Dysfunction of the right ventricle (RV) plays a crucial role in the outcome of various cardiovascular diseases. Previous studies on RV metabolism are sparse although evidence implies it may differ from left ventricular (LV) metabolism. Therefore, the aims of this study were (1) to determine predictors of RV glucose uptake (GU) and free fatty acid uptake (FFAU) and (2) to compare them to predictors of LV metabolism in healthy middle-aged men. Altogether 28 healthy, sedentary, middle-aged (40-55 years) men were studied. Insulin-stimulated GU and fasting FFAU were measured by positron emission tomography and RV and LV structural and functional parameters by cardiac magnetic resonance. Several parameters related to whole-body health were also measured. Predictors of RV and LV metabolism were determined by pairwise correlation analysis, lasso regression models, and variable clustering using heatmap. RVGU was most strongly predicted by age and moderately by RV ejection fraction (EF). The strongest determinants of RVFFAU were exercise capacity (peak oxygen uptake), resting heart rate, LVEF, and whole-body insulin-stimulated glucose uptake rate. When considering LV metabolism, age and RVEF were associated also with LVGU. In addition, LVGU was strongly, and negatively, influenced by whole-body insulin-stimulated glucose uptake rate. LVFFAU was predicted only by LVEF. This study shows that while RV and LV metabolism have shared characteristics, they also have unique properties. Age of the subject should be taken into account when measuring myocardial glucose utilization. Ejection fraction is related to myocardial metabolism, and even so that RVEF may be more closely related to GU of both ventricles and LVEF to FFAU of both ventricles, a finding supporting the ventricular interdependence. However, only RV fatty acid utilization associates with exercise capacity so that better physical fitness in a relatively sedentary population is related with decreased RV fat metabolism. To conclude, this study highlights the need for further study designed specifically on less-known RV, as the results on LV metabolism and physiology may not be directly applicable to the RV.
Collapse
Affiliation(s)
| | | | | | - Ilkka H A Heinonen
- Turku PET Centre, University of TurkuTurku, Finland; School of Sport Science, Exercise and Health, University of Western AustraliaCrawley, WA, Australia
| | | | | | | | | | | |
Collapse
|
18
|
Li Y, Huang T, Zhang X, Zhong M, Walker NN, He J, Berr SS, Keller SR, Kundu BK. Determination of Fatty Acid Metabolism with Dynamic [
11
C]Palmitate Positron Emission Tomography of Mouse Heart In Vivo. Mol Imaging 2015. [DOI: 10.2310/7290.2015.00024] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Affiliation(s)
- Yinlin Li
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Tao Huang
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Xinyue Zhang
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Min Zhong
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Natalie N. Walker
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Jiang He
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Stuart S. Berr
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Susanna R. Keller
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| | - Bijoy K. Kundu
- From the Department of Radiology and Medical Imaging, University of Virginia, Charlottesville, VA; Division of Endocrinology and Metabolism, Department of Medicine, University of Virginia, Charlottesville, VA; Cardiovascular Research Center, University of Virginia, Charlottesville, VA; and School of Mechatronic Engineering, Beijing Institute of Technology, Beijing, China
| |
Collapse
|
19
|
Croteau E, Tremblay S, Gascon S, Dumulon-Perreault V, Labbé SM, Rousseau JA, Cunnane SC, Carpentier AC, Bénard F, Lecomte R. [(11)C]-Acetoacetate PET imaging: a potential early marker for cardiac heart failure. Nucl Med Biol 2014; 41:863-70. [PMID: 25195015 DOI: 10.1016/j.nucmedbio.2014.08.006] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2014] [Accepted: 08/04/2014] [Indexed: 10/24/2022]
Abstract
UNLABELLED The ketone body acetoacetate could be used as an alternate nutrient for the heart, and it also has the potential to improve cardiac function in an ischemic-reperfusion model or reduce the mitochondrial production of oxidative stress involved in cardiotoxicity. In this study, [(11)C]-acetoacetate was investigated as an early marker of intracellular damage in heart failure. METHODS A rat cardiotoxicity heart failure model was induced by doxorubicin, Dox(+). [(14)C]-Acetoacetate, a non-positron (β-) emitting radiotracer, was used to characterize the arterial blood input function and myocardial mitochondrial uptake. Afterward, [(11)C]-acetoacetate (β+) myocardial PET images were obtained for kinetic analysis and heart function assessment in control Dox(-) (n=15) and treated Dox(+) (n=6) rats. The uptake rate (K1) and myocardial clearance rate (k2or kmono) were extracted. RESULTS [(14)C]-Acetoacetate in the blood was increased in Dox(+), from 2 min post-injection until the last withdrawal point when the heart was harvested, as well as the uptake in the heart and myocardial mitochondria (unpaired t-test, p <0.05). PET kinetic analysis of [(11)C]-acetoacetate showed that rate constants K1, k2 and kmono were decreased in Dox(+) (p <0.05) combined with a reduction of 24% of the left ventricular ejection fraction (p <0.001). CONCLUSION Radioactive acetoacetate ex vivo analysis [(14)C], and in vivo kinetic [(11)C] studies provided evidence that [(11)C]-acetoacetate can assess heart failure Dox(+). Contrary to myocardial flow reserve (rest-stress protocol), [(11)C]-acetoacetate can be used to assess reduced kinetic rate constants without requirement of hyperemic stress response. The proposed [(11)C]-acetoacetate cardiac radiotracer in the investigation of heart disease is novel and paves the way to a potential role for [(11)C]-acetoacetate in cardiac pathophysiology.
Collapse
Affiliation(s)
- Etienne Croteau
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada.
| | - Sébastien Tremblay
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Suzanne Gascon
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Véronique Dumulon-Perreault
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Sébastien M Labbé
- Department of Medicine, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - Jacques A Rousseau
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| | - Stephen C Cunnane
- Research Center on Aging, Université de Sherbrooke, Sherbrooke, QC, Canada; Department of Medicine, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - André C Carpentier
- Department of Medicine, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | - François Bénard
- Division of Nuclear Medicine, Department of Radiology, University of British Columbia, Vancouver, BC, Canada
| | - Roger Lecomte
- Sherbrooke Molecular Imaging Center of CRCHUS, Department of Nuclear Medicine and Radiobiology, Université de Sherbrooke, Sherbrooke, QC, Canada
| |
Collapse
|
20
|
Labbé SM, Grenier-Larouche T, Croteau E, Normand-Lauzière F, Frisch F, Ouellet R, Guérin B, Turcotte EE, Carpentier AC. Organ-specific dietary fatty acid uptake in humans using positron emission tomography coupled to computed tomography. Am J Physiol Endocrinol Metab 2011; 300:E445-53. [PMID: 21098737 DOI: 10.1152/ajpendo.00579.2010] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
A noninvasive method to determine postprandial fatty acid tissue partition may elucidate the link between excess dietary fat and type 2 diabetes. We hypothesized that the positron-emitting fatty acid analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid ((18)FTHA) administered orally during a meal would be incorporated into chylomicron triglycerides, allowing determination of interorgan dietary fatty acid uptake. We administered (18)FTHA orally at the beginning of a standard liquid meal ingested in nine healthy men. There was no significant (18)FTHA uptake in the portal vein and the liver during the 1st hour. Whole body PET/CT acquisition revealed early appearance of (18)FTHA in the distal thoracic duct, reaching a peak at time 240 min. (18)FTHA mean standard uptake value increased progressively in the liver, heart, quadriceps, and subcutaneous and visceral adipose tissues between time 60 and 240 min. Most circulating (18)F activity between time 0 and 360 min was recovered into chylomicron triglycerides. Using Triton WR-1339 treatment in rats that received (18)FTHA by gavage, we confirmed that >90% of this tracer reached the circulation as triglycerides. This novel noninvasive method to determine tissue dietary fatty acid distribution in humans should prove useful in the study of the mechanisms leading to lipotoxicity.
Collapse
Affiliation(s)
- Sébastien M Labbé
- Division of Endocrinology, Centre Hospitalier Universitaire de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Tu Z, Li S, Sharp TL, Herrero P, Dence CS, Gropler RJ, Mach RH. Synthesis and evaluation of 15-(4-(2-[¹⁸F]Fluoroethoxy)phenyl)pentadecanoic acid: a potential PET tracer for studying myocardial fatty acid metabolism. Bioconjug Chem 2010; 21:2313-9. [PMID: 21070001 DOI: 10.1021/bc100343h] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
15-(4-(2-[¹⁸F]fluoroethoxy)phenyl)pentadecanoic acid ([¹⁸F]7) was synthesized as a PET probe for assessing myocardial fatty acid metabolism. The radiosynthesis of [¹⁸F]7 was accomplished using a two-step reaction, starting with the corresponding tosylate ester, methyl 15-(4-(2-(tosyloxy)ethoxy)phenyl)pentadecanoate (5), and gave the radiolabeled fatty acid, [¹⁸F]7 in a radiolabeling yield of 55-60% and a specific activity of >2000 Ci/mmol (decay corrected to EOB). The biological evaluation of [¹⁸F]7 in rats displayed high uptake in heart (1.94%ID/g at 5 min), which was higher than the uptake (%ID/g) in blood, lung, muscle, pancreas, and brain. MicroPET studies of [¹⁸F]7 in Sprague-Dawley rats demonstrated excellent images of the myocardium when compared with [¹¹C]palmitate images in the same animal. Moreover, the tracer kinetics of [¹⁸F]7 paralleled those seen with [¹¹C]palmitate, with an early peak followed by biphasic washout. When compared to [¹¹C]palmitate, [¹⁸F]7 exhibited a slower early clearance (0.17 ± 0.01 vs 0.30 ± 0.02, P < 0.0001) and a significantly higher late clearance (0.0030 ± 0.0005 vs 0.0006 ± 0.00013, P < 0.01). These initial studies suggest that [¹⁸F]7 could be a potentially useful clinical PET tracer to assess abnormal myocardial fatty acid metabolism.
Collapse
Affiliation(s)
- Zhude Tu
- Division of Radiological Sciences, Washington University School of Medicine, St. Louis, Missouri 63110, USA
| | | | | | | | | | | | | |
Collapse
|
22
|
Karmi A, Iozzo P, Viljanen A, Hirvonen J, Fielding BA, Virtanen K, Oikonen V, Kemppainen J, Viljanen T, Guiducci L, Haaparanta-Solin M, Någren K, Solin O, Nuutila P. Increased brain fatty acid uptake in metabolic syndrome. Diabetes 2010; 59:2171-7. [PMID: 20566663 PMCID: PMC2927939 DOI: 10.2337/db09-0138] [Citation(s) in RCA: 161] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
OBJECTIVE To test whether brain fatty acid uptake is enhanced in obese subjects with metabolic syndrome (MS) and whether weight reduction modifies it. RESEARCH DESIGN AND METHODS We measured brain fatty acid uptake in a group of 23 patients with MS and 7 age-matched healthy control subjects during fasting conditions using positron emission tomography (PET) with [(11)C]-palmitate and [(18)F]fluoro-6-thia-heptadecanoic acid ([(18)F]-FTHA). Sixteen MS subjects were restudied after 6 weeks of very low calorie diet intervention. RESULTS At baseline, brain global fatty acid uptake derived from [(18)F]-FTHA was 50% higher in patients with MS compared with control subjects. The mean percentage increment was 130% in the white matter, 47% in the gray matter, and uniform across brain regions. In the MS group, the nonoxidized fraction measured using [(11)C]-palmitate was 86% higher. Brain fatty acid uptake measured with [(18)F]-FTHA-PET was associated with age, fasting serum insulin, and homeostasis model assessment (HOMA) index. Both total and nonoxidized fractions of fatty acid uptake were associated with BMI. Rapid weight reduction decreased brain fatty acid uptake by 17%. CONCLUSIONS To our knowledge, this is the first study on humans to observe enhanced brain fatty acid uptake in patients with MS. Both fatty acid uptake and accumulation appear to be increased in MS patients and reversed by weight reduction.
Collapse
Affiliation(s)
- Anna Karmi
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Patricia Iozzo
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- PET Centre, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | - Antti Viljanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jussi Hirvonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Barbara A. Fielding
- Oxford Centre for Diabetes, Endocrinology, and Metabolism, University of Oxford, Churchill Hospital, Oxford, U.K
| | - Kirsi Virtanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Vesa Oikonen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Jukka Kemppainen
- Department of Clinical Physiology and Nuclear Medicine, University of Turku and Turku University Hospital, Turku, Finland
| | - Tapio Viljanen
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Letizia Guiducci
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- PET Centre, Institute of Clinical Physiology, National Research Council, Pisa, Italy
| | | | - Kjell Någren
- Department of Clinical Physiology and Nuclear Medicine, PET and Cyclotron Unit, Rigshospitalet, Copenhagen University, Copenhagen, Denmark
| | - Olof Solin
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
| | - Pirjo Nuutila
- Turku PET Centre, University of Turku and Turku University Hospital, Turku, Finland
- Department of Medicine, University of Turku and Turku University Hospital, Turku, Finland
- Corresponding author: Pirjo Nuutila,
| |
Collapse
|
23
|
DeGrado TR, Bhattacharyya F, Pandey MK, Belanger AP, Wang S. Synthesis and preliminary evaluation of 18-(18)F-fluoro-4-thia-oleate as a PET probe of fatty acid oxidation. J Nucl Med 2010; 51:1310-7. [PMID: 20660391 DOI: 10.2967/jnumed.109.074245] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
UNLABELLED Fatty acid oxidation (FAO) is a major energy-providing process with important implications in cardiovascular, oncologic, neurologic, and metabolic diseases. A novel 4-thia oleate analog, 18-(18)F-fluoro-4-thia-oleate ((18)F-FTO), was evaluated in relationship to the previously developed palmitate analog 16-(18)F-fluoro-4-thia-palmitate ((18)F-FTP) as an FAO probe. METHODS (18)F-FTO was synthesized from a corresponding bromoester. Biodistribution and metabolite analysis studies were performed in rats. Preliminary small-animal PET studies were performed with (18)F-FTO and (18)F-FTP in rats. RESULTS A practical synthesis of (18)F-FTO was developed, providing a radiotracer of high radiochemical purity (>99%). In fasted rats, myocardial uptake of (18)F-FTO (0.70 +/- 0.30% dose kg [body mass]/g [tissue mass]) was similar to that of (18)F-FTP at 30 min after injection. At 2 h, myocardial uptake of (18)F-FTO was maintained, whereas (18)F-FTP uptake in the heart was 82% reduced. Similar to (18)F-FTP, (18)F-FTO uptake by the heart was approximately 80% reduced at 30 min by pretreatment of rats with the CPT-I inhibitor etomoxir. Folch-type extraction analyses showed 70-90% protein-bound fractions in the heart, liver, and skeletal muscle, consistent with efficient trafficking of (18)F-FTO to the mitochondrion with subsequent metabolism to protein-bound species. Preliminary small-animal PET studies showed rapid blood clearance and avid extraction of (18)F-FTO and of (18)F-FTP into the heart and liver. Images of (18)F-FTO accumulation in the rat myocardium were clearly superior to those of (18)F-FTP. CONCLUSION (18)F-FTO is shown to be a promising metabolically trapped FAO probe that warrants further evaluation.
Collapse
Affiliation(s)
- Timothy R DeGrado
- Department of Radiology, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
| | | | | | | | | |
Collapse
|
24
|
Ménard SL, Croteau E, Sarrhini O, Gélinas R, Brassard P, Ouellet R, Bentourkia M, van Lier JE, Des Rosiers C, Lecomte R, Carpentier AC. Abnormal in vivo myocardial energy substrate uptake in diet-induced type 2 diabetic cardiomyopathy in rats. Am J Physiol Endocrinol Metab 2010; 298:E1049-57. [PMID: 20159856 DOI: 10.1152/ajpendo.00560.2009] [Citation(s) in RCA: 77] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
The purpose of this study was to determine in vivo myocardial energy metabolism and function in a nutritional model of type 2 diabetes. Wistar rats rendered insulin-resistant and mildly hyperglycemic, hyperinsulinemic, and hypertriglyceridemic with a high-fructose/high-fat diet over a 6-wk period with injection of a small dose of streptozotocin (HFHFS) and control rats were studied using micro-PET (microPET) without or with a euglycemic hyperinsulinemic clamp. During glucose clamp, myocardial metabolic rate of glucose measured with [(18)F]fluorodeoxyglucose ([(18)F]FDG) was reduced by approximately 81% (P < 0.05), whereas myocardial plasma nonesterified fatty acid (NEFA) uptake as determined by [(18)F]fluorothia-6-heptadecanoic acid ([(18)F]FTHA) was not significantly changed in HFHFS vs. control rats. Myocardial oxidative metabolism as assessed by [(11)C]acetate and myocardial perfusion index as assessed by [(13)N]ammonia were similar in both groups, whereas left ventricular ejection fraction as assessed by microPET was reduced by 26% in HFHFS rats (P < 0.05). Without glucose clamp, NEFA uptake was approximately 40% lower in HFHFS rats (P < 0.05). However, myocardial uptake of [(18)F]FTHA administered by gastric gavage was significantly higher in HFHFS rats (P < 0.05). These abnormalities were associated with reduced Glut4 mRNA expression and increased Cd36 mRNA expression and mitochondrial carnitine palmitoyltransferase 1 activity (P < 0.05). HFHFS rats display type 2 diabetes complicated by left ventricular contractile dysfunction with profound reduction in myocardial glucose utilization, activation of fatty acid metabolic pathways, and preserved myocardial oxidative metabolism, suggesting reduced myocardial metabolic efficiency. In this model, increased myocardial fatty acid exposure likely occurs from circulating triglyceride, but not from circulating plasma NEFA.
Collapse
Affiliation(s)
- Sébastien L Ménard
- Division of Endocrinology, Department of Medicine, University de Sherbrooke, Sherbrooke, QC, Canada
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Hannukainen JC, Kalliokoski KK, Borra RJM, Viljanen APM, Janatuinen T, Kujala UM, Kaprio J, Heinonen OJ, Viljanen T, Haaparanta M, Iozzo P, Parkkola R, Nuutila P. Higher free fatty acid uptake in visceral than in abdominal subcutaneous fat tissue in men. Obesity (Silver Spring) 2010; 18:261-5. [PMID: 19696757 DOI: 10.1038/oby.2009.267] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
Visceral adipose tissue has been shown to have high lipolytic activity. The aim of this study was to examine whether free fatty acid (FFA) uptake into visceral adipose tissue is enhanced compared to abdominal subcutaneous tissue in vivo. Abdominal adipose tissue FFA uptake was measured using positron emission tomography (PET) and [(18)F]-labeled 6-thia-hepta-decanoic acid ([(18)F]FTHA) and fat masses using magnetic resonance imaging (MRI) in 18 healthy young adult males. We found that FFA uptake was 30% higher in visceral compared to subcutaneous adipose tissue (0.0025 +/- 0.0018 vs. 0.0020 +/- 0.0016 micromol/g/min, P = 0.005). Visceral and subcutaneous adipose tissue FFA uptakes were strongly associated with each other (P < 0.001). When tissue FFA uptake per gram of fat was multiplied by the total tissue mass, total FFA uptake was almost 1.5 times higher in abdominal subcutaneous than in visceral adipose tissue. In conclusion, we observed enhanced FFA uptake in visceral compared to abdominal subcutaneous adipose tissue and, simultaneously, these metabolic rates were strongly associated with each other. The higher total tissue FFA uptake in subcutaneous than in visceral adipose tissue indicates that although visceral fat is active in extracting FFA, its overall contribution to systemic metabolism is limited in healthy lean males. Our results indicate that subcutaneous, rather than visceral fat storage plays a more direct role in systemic FFA availability. The recognized relationship between abdominal visceral fat mass and metabolic complications may be explained by direct effects of visceral fat on the liver.
Collapse
|
26
|
Effect of caloric restriction on myocardial fatty acid uptake, left ventricular mass, and cardiac work in obese adults. Am J Cardiol 2009; 103:1721-6. [PMID: 19539082 DOI: 10.1016/j.amjcard.2009.02.025] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/13/2009] [Revised: 02/10/2009] [Accepted: 02/10/2009] [Indexed: 10/20/2022]
Abstract
Obesity is associated with increased fatty acid uptake in the myocardium, and this may have deleterious effects on cardiac function. The aim of this study was to evaluate how weight loss influences myocardial metabolism and cardiac work in obese adults. Thirty-four obese (mean body mass index 33.7 +/- 0.7 kg/m(2)) but otherwise healthy subjects consumed a very low calorie diet for 6 weeks. Cardiac substrate metabolism and work were measured before and after the diet. Myocardial fatty acid uptake was measured in 18 subjects using fluorine-18-fluoro-6-thia-heptadecanoic acid and positron emission tomography, and myocardial glucose uptake was measured in 16 subjects using fluorine-18-2-fluoro-2-deoxyglucose. Myocardial structure and cardiac function were measured using magnetic resonance imaging. Consumption of the very low calorie diet decreased weight (-11.2 +/- 0.6 kg, p <0.0001). Myocardial fatty acid uptake decreased from 4.2 +/- 0.4 to 2.9 +/- 0.2 micromol/100 g/min (p <0.0001). Myocardial mass decreased by 7% (p <0.005), and cardiac work decreased by 26% (p <0.0001). Whole-body insulin sensitivity increased by 33% (p <0.01), but insulin-stimulated myocardial glucose uptake remained unchanged (p = 0.90). Myocardial triglyceride content decreased by 31% (n = 8, p = 0.076). In conclusion, weight reduction decreases myocardial fatty acid uptake in parallel with myocardial mass and cardiac work. These results show that the increased fatty acid uptake found in the hearts of obese patients can be reversed by weight loss.
Collapse
|
27
|
Mechanism of reduced myocardial glucose utilization during acute hypertriglyceridemia in rats. Mol Imaging Biol 2008; 11:6-14. [PMID: 18769973 DOI: 10.1007/s11307-008-0171-2] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2008] [Revised: 05/21/2008] [Accepted: 05/23/2008] [Indexed: 10/21/2022]
Abstract
PURPOSE The purpose of the research is to study the effect of acute inhibition of intravascular lipolysis on myocardial substrate selection during hypertriglyceridemia using in vivo radiotracer analysis and positron emission tomography. PROCEDURES We induced acute hypertriglyceridemia in vivo using an intravenous infusion of Intralipid 20% (IL) without and with acute inhibition of fatty acid delivery from circulating triglycerides with injection of Triton WR-1339 (TRI) during a euglycemic-hyperinsulinemic clamp in Wistar rats. We determined the effect of TRI on myocardial uptake of circulating triglycerides and free fatty acids using intravenous injection of [(3)H]-triolein and [(14)C]-bromopalmitate, respectively. Myocardial blood flow, oxidative metabolism, and metabolic rate of glucose (MMRG) were determined using micro-positron emission tomography (microPET) with [(13)N]-ammonia, [(11)C]-acetate, and 2-deoxy-2-[F-18]fluoro-D: -glucose (FDG). RESULTS TRI reduced myocardial incorporation of [(3)H]-triolein but not [(14)C]-bromopalmitate showing that it selectively reduces myocardial fatty acid delivery from circulating triglycerides but not from free fatty acids. IL reduced myocardial blood flow and MMRG by 37% and 56%, respectively, but did not affect myocardial oxidative metabolism. TRI did not abolish the effect of IL on myocardial blood flow and MMRG. CONCLUSIONS Hypertriglyceridemia acutely reduces myocardial blood flow and MMRG in rats, but this effect is not explained by increased myocardial fatty acid delivery through intravascular triglyceride lipolysis.
Collapse
|
28
|
Tuunanen H, Ukkonen H, Knuuti J. Myocardial fatty acid metabolism and cardiac performance in heart failure. Curr Cardiol Rep 2008; 10:142-8. [PMID: 18417015 DOI: 10.1007/s11886-008-0024-2] [Citation(s) in RCA: 27] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/05/2023]
Abstract
It is well established that cardiac metabolism is abnormal in heart failure (HF). Experimental studies suggest that in severe HF, cardiac metabolism reverts to a more fetal-like substrate use characterized by enhanced glucose and downregulated free fatty acid (FFA) metabolism. Correspondingly, in humans, when FFA levels are similar, myocardial glucose metabolism is increased, and FFA metabolism is decreased. However, depression of left ventricular function and insulin resistance induces a shift back to greater FFA uptake and oxidation by increasing circulating FFA availability. Myocardial insulin resistance may further impair myocardial glucose uptake and lead to an energy depletion state. Experimental and preliminary clinical studies suggest that metabolic modulators enhancing myocardial glucose oxidation may improve cardiac function in patients with chronic HF. However, it has been found that acute FFA deprivation is harmful to the cardiac performance. Optimizing myocardial energy metabolism may serve as an additional approach for managing HF, but further studies are warranted.
Collapse
Affiliation(s)
- Helena Tuunanen
- Turku PET Centre, Turku University Central Hospital, PO Box 52, FIN-20521 Turku, Finland
| | | | | |
Collapse
|
29
|
Kudo T. Metabolic imaging using PET. Eur J Nucl Med Mol Imaging 2007; 34 Suppl 1:S49-61. [PMID: 17486339 DOI: 10.1007/s00259-007-0440-3] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2006] [Accepted: 03/19/2007] [Indexed: 10/23/2022]
Abstract
INTRODUCTION There is growing evidence that myocardial metabolism plays a key role not only in ischaemic heart disease but also in a variety of diseases which involve myocardium globally, such as heart failure and diabetes mellitus. Understanding myocardial metabolism in such diseases helps to elucidate the pathophysiology and assists in making therapeutic decisions. MEASUREMENT As well as providing information on regional changes, PET can deliver quantitative information about both regional and global changes in metabolism. This capability of quantitative measurement is one of the major advantages of PET along with physiological positron tracers, especially relevant in evaluating diseases which involve the whole myocardium. DISCUSSION This review discusses major PET tracers for metabolic imaging and their clinical applications and contributions to research regarding ischaemic heart disease and other diseases such as heart failure and diabetic heart disease. Future applications of positron metabolic tracers for the detection of vulnerable plaque are also highlighted briefly.
Collapse
Affiliation(s)
- Takashi Kudo
- Biomedical Imaging Research Center, University of Fukui, 23-3 Matsuoka-Shimoaizuki, Eiheiji-cho, Fukui, 910-1193, Japan.
| |
Collapse
|
30
|
Hannukainen JC, Nuutila P, Kaprio J, Heinonen OJ, Kujala UM, Janatuinen T, Rönnemaa T, Kapanen J, Haaparanta-Solin M, Viljanen T, Knuuti J, Kalliokoski KK. Relationship between local perfusion and FFA uptake in human skeletal muscle—no effect of increased physical activity and aerobic fitness. J Appl Physiol (1985) 2006; 101:1303-11. [PMID: 16825528 DOI: 10.1152/japplphysiol.00012.2006] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
We investigated heredity-independent effects of increased physical activity and aerobic fitness on skeletal muscle free fatty acid (FFA) uptake, perfusion, and their heterogeneity at rest and during exercise. Also, the relationship between local skeletal muscle FFA uptake and perfusion was studied. Nine young adult male monozygotic twin pairs with significant difference in physical activity [229 min (SD 156) average time spent for conditioning exercise per week in more and 98 min (SD 71) in less active twins, P = 0.013] and aerobic fitness [18% (SD 10) difference in maximum O2 uptake] between brothers were studied using positron emission tomography. Submaximal knee-extension exercise increased perfusion, FFA uptake, and oxygen uptake in quadriceps femoris muscles 6–10 times compared with resting values ( P < 0.001). More active twins tended to utilize more oxygen, while no differences were found in muscle perfusion or FFA uptake between groups. Mean perfusion and FFA uptake correlated strongly at a whole muscle level, both at rest ( r = 0.97, P = 0.03 in more and r = 0.98, P = 0.02 in less active twins) and during exercise ( r = 0.99, P = 0.01 and r = 0.94, P = 0.06), but at the voxel level (87 mm3) correlation was only moderate during exercise [ r = 0.73 (SD 0.08) vs. r = 0.74 (SD 0.10), P = 0.92] and weak at rest [ r = 0.28 (SD 0.13) vs. r = 0.33 (SD 0.21), P = 0.58]. Exercise decreased both perfusion and FFA uptake heterogeneity within the muscles ( P < 0.001) similarly in both groups. In conclusion, long-term history of moderately increased physical activity tends to enhance muscle oxidative metabolism, but it does not have any significant influence on the FFA uptake or perfusion rates or their heterogeneity in skeletal muscle. Submaximal knee-extension exercise decreases heterogeneity of muscle FFA uptake and perfusion and improves matching between local muscle perfusion and FFA uptake. Thus it seems that the genetic influence is more important to determine the heterogeneity of perfusion and FFA uptake in skeletal muscle than exercise training.
Collapse
|
31
|
Hannukainen JC, Nuutila P, Borra R, Ronald B, Kaprio J, Kujala UM, Janatuinen T, Heinonen OJ, Kapanen J, Viljanen T, Haaparanta M, Rönnemaa T, Parkkola R, Knuuti J, Kalliokoski KK. Increased physical activity decreases hepatic free fatty acid uptake: a study in human monozygotic twins. J Physiol 2006; 578:347-58. [PMID: 17053033 PMCID: PMC2075122 DOI: 10.1113/jphysiol.2006.121368] [Citation(s) in RCA: 42] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
Exercise is considered to be beneficial for free fatty acid (FFA) metabolism, although reports of the effects of increased physical activity on FFA uptake and oxidation in different tissues in vivo in humans have been inconsistent. To investigate the heredity-independent effects of physical activity and fitness on FFA uptake in skeletal muscle, the myocardium, and liver we used positron emission tomography (PET) in nine healthy young male monozygotic twin pairs discordant for physical activity and fitness. The cotwins with higher physical activity constituting the more active group had a similar body mass index but less body fat and 18 +/- 10% higher (P < 0.001) compared to the less active brothers with lower physical activity. Low-intensity knee-extension exercise increased skeletal muscle FFA and oxygen uptake six to 10 times compared to resting values but no differences were observed between the groups at rest or during exercise. At rest the more active group had lower hepatic FFA uptake compared to the less active group (5.5 +/- 4.3 versus 9.0 +/- 6.1 micromol (100 ml)(-1) min(-1), P = 0.04). Hepatic FFA uptake associated significantly with body fat percentage (P = 0.05). Myocardial FFA uptake was similar between the groups. In conclusion, in the absence of the confounding effects of genetic factors, moderately increased physical activity and aerobic fitness decrease body adiposity even in normal-weighted healthy young adult men. Further, increased physical activity together with decreased intra-abdominal adiposity seems to decrease hepatic FFA uptake but has no effects on skeletal muscle or myocardial FFA uptake.
Collapse
|
32
|
Ci X, Frisch F, Lavoie F, Germain P, Lecomte R, van Lier JE, Bénard F, Carpentier AC. The Effect of Insulin on the Intracellular Distribution of 14(R,S)-[18F]Fluoro-6-thia-heptadecanoic Acid in Rats. Mol Imaging Biol 2006; 8:237-44. [PMID: 16791750 DOI: 10.1007/s11307-006-0042-7] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
PURPOSE The aim of this study was to determine the effect of hyperinsulinemia on myocardial and hepatic distribution and metabolism of 14(R,S)-[18F]fluoro-6-thia-heptadecanoic acid ([18F]FTHA). PROCEDURES Mitochondrial retention and intracellular lipid incorporation of [18F]FTHA were compared to that of [14C]-2-bromopalmitate or [14C]palmitate during hyperinsulinemic clamp vs. saline infusion in male Wistar rats. RESULTS Mitochondrial 18F activity was increased in the heart (1.7 +/- 0.4 vs. 0.5 +/- 0.1% ID/g, P < 0.05), whereas it was reduced in the liver (1.1 +/- 0.3 vs. 1.8 +/- 0.4% ID/g, P < 0.05) during insulin vs. saline infusion, respectively. Mitochondrial [14C]-2-bromopalmitate activity was affected by insulin in a similar way in both tissues. The fractional esterification of [18F]FTHA into triglycerides was impaired compared to [14C]palmitate in both tissues, and [18F]FTHA was insensitive to the shift of esterification of fatty acids into complex lipids in response to insulin. CONCLUSIONS [18F]FTHA is sensitive to insulin-induced modifications of free fatty acid oxidative metabolism in rats but is insensitive to changes in nonoxidative fatty acid metabolism.
Collapse
Affiliation(s)
- Xiuli Ci
- Department of Medicine, Division of Endocrinology, Centre hospitalier universitaire de Sherbrooke, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | | | | | |
Collapse
|
33
|
Bergmann R, Pietzsch J. Small animal positron emission tomography in food sciences. Amino Acids 2005; 29:355-76. [PMID: 16142524 DOI: 10.1007/s00726-005-0237-2] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2005] [Accepted: 07/13/2005] [Indexed: 02/07/2023]
Abstract
Positron emission tomography (PET) is a 3-dimensional imaging technique that has undergone tremendous developments during the last decade. Non-invasive tracing of molecular pathways in vivo is the key capability of PET. It has become an important tool in the diagnosis of human diseases as well as in biomedical and pharmaceutical research. In contrast to other imaging modalities, radiotracer concentrations can be determined quantitatively. By application of appropriate tracer kinetic models, the rate constants of numerous different biological processes can be determined. Rapid progress in PET radiochemistry has significantly increased the number of biologically important molecules labelled with PET nuclides to target a broader range of physiologic, metabolic, and molecular pathways. Progress in PET physics and technology strongly contributed to better scanners and image processing. In this context, dedicated high resolution scanners for dynamic PET studies in small laboratory animals are now available. These developments represent the driving force for the expansion of PET methodology into new areas of life sciences including food sciences. Small animal PET has a high potential to depict physiologic processes like absorption, distribution, metabolism, elimination and interactions of biologically significant substances, including nutrients, 'nutriceuticals', functional food ingredients, and foodborne toxicants. Based on present data, potential applications of small animal PET in food sciences are discussed.
Collapse
Affiliation(s)
- R Bergmann
- Positron Emission Tomography Center, Institute of Bioinorganic and Radiopharmaceutical Chemistry, Research Center Rossendorf, Dresden, Germany.
| | | |
Collapse
|
34
|
Iozzo P, Takala T, Oikonen V, Bergman J, Grönroos T, Ferrannini E, Nuutila P, Knuuti J. Effect of training status on regional disposal of circulating free fatty acids in the liver and skeletal muscle during physiological hyperinsulinemia. Diabetes Care 2004; 27:2172-7. [PMID: 15333480 DOI: 10.2337/diacare.27.9.2172] [Citation(s) in RCA: 17] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
Abstract
OBJECTIVE Fat metabolism is increasingly implicated in the pathogenesis of type 2 diabetes. Endurance training has been shown to prevent hepatic steatosis and to alter skeletal muscle fat metabolism, and regional free fatty acid (FFA) uptake adaptations were suggested as a mechanism. Thus, we tested whether endurance training modifies the uptake of plasma FFAs occurring in the liver and in skeletal muscle during anabolic, i.e., hyperinsulinemic, conditions. RESEARCH DESIGN AND METHODS Trained and untrained healthy male subjects underwent positron emission tomography scanning of the liver and thigh regions, with the FFA analog 14(R,S)-[(18)F]fluoro-6-thia-heptadecanoic acid, during euglycemic hyperinsulinemia. Tracer influx rate constants in skeletal muscle (MK(i)) and liver (LK(i)) were multiplied by plasma FFA levels to obtain FFA uptake for skeletal muscle (MFU) and liver (LFU), respectively. RESULTS Athletes showed increased Vo(2max) (P < 0.0001), insulin-mediated glucose disposal (M value, 61 +/- 4 vs. 46 +/- 3 micromol. min(-1). kg(-1), P = 0.01), and plasma lactate levels during the clamp and lower percentage of body fat mass (P = 0.002). MK(i) was 25% higher in athletes than in sedentary men (P = 0.03). In all subjects, MK(i) and MFU were positively correlated with the M value (r = 0.56, P = 0.02, and r = 0.51, P = 0.03, respectively) and with plasma lactate levels (r = 0.63, P = 0.006, and r = 0.63, P = 0.005, respectively). LK(i) was significantly reduced by 20% in the athletes (P = 0.04). By multiple regression, LFU was inversely correlated with the two fitness categories (P = 0.008), and it was lower in athletes. Linear fitting of liver data showed time consistency, indicating no release of FFAs as a mechanism for the reduced liver retention in athletes. CONCLUSIONS We conclude that endurance training promotes insulin-mediated glucose and FFA disposal in skeletal muscle, while lowering hepatic FFA uptake. Such changes may result in a divergent pattern of fat accumulation in the two organs.
Collapse
Affiliation(s)
- Patricia Iozzo
- Institute of Clinical Physiology, National Research Council (CNR), Via Moruzzi 1, 56100 Pisa, Italy.
| | | | | | | | | | | | | | | |
Collapse
|
35
|
|
36
|
Iozzo P, Turpeinen AK, Takala T, Oikonen V, Solin O, Ferrannini E, Nuutila P, Knuuti J. Liver uptake of free fatty acids in vivo in humans as determined with 14( R, S)-[18F]fluoro-6-thia-heptadecanoic acid and PET. Eur J Nucl Med Mol Imaging 2003; 30:1160-4. [PMID: 12811532 DOI: 10.1007/s00259-003-1215-0] [Citation(s) in RCA: 20] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2003] [Accepted: 04/10/2003] [Indexed: 11/25/2022]
Abstract
Increased delivery of circulating free fatty acids (FFA) to the liver has been implicated in the pathogenesis and progression of diabetes. The liver is inaccessible for direct measurement in humans in vivo. We measured liver FFA uptake with positron emission tomography (PET) and 14( R, S)-[(18)F]fluoro-6-thia-heptadecanoic acid ([(18)F]FTHA) in healthy men. We evaluated the use of graphical analysis and linear fit to describe uptake data over time, and compared the use of metabolite-corrected vs uncorrected input functions. Rapid accumulation of tracer in the liver was observed with time, leading to progressively higher tissue to blood radioactivity ratios. Using metabolite-corrected input function curves, linear fit to the data ( r value) exceeded 0.99 in all subjects, during each fitting time frame. Values of liver FFA influx rate constant and uptake were 0.34+/-0.01 ml min(-1) ml(-1) and 0.20+/-0.02 micro mol min(-1) ml(-1), respectively, and were minimally affected by the choice of the fitting interval. Expressed per unit mass, liver FFA uptake was ~50 times higher than that reported in skeletal muscle; in the whole organ, FFA uptake was twice as high as in skeletal muscles. The use of metabolite-uncorrected input functions significantly worsened the spread of data around the fitted line and led to a remarkable underestimation of liver FFA uptake at all time intervals. In conclusion, our data provide non-invasive quantification of hepatic FFA uptake in humans, showing the liver to handle a high FFA flux. [(18)F]FTHA-PET appears a valuable tool for the investigation of hepatic FFA turnover in humans.
Collapse
Affiliation(s)
- Patricia Iozzo
- Turku PET Centre, Department of Nuclear Medicine and Medicine, University of Turku, Turku, Finland.
| | | | | | | | | | | | | | | |
Collapse
|