1
|
The sodium iodide symporter (NIS) as theranostic gene: potential role in pre-clinical therapy of extra-thyroidal malignancies. Clin Transl Imaging 2023. [DOI: 10.1007/s40336-023-00540-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
2
|
Xiao Z, Puré E. Imaging of T-cell Responses in the Context of Cancer Immunotherapy. Cancer Immunol Res 2021; 9:490-502. [PMID: 33941536 DOI: 10.1158/2326-6066.cir-20-0678] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 11/18/2020] [Accepted: 02/18/2021] [Indexed: 12/16/2022]
Abstract
Immunotherapy, which promotes the induction of cytotoxic T lymphocytes and enhances their infiltration into and function within tumors, is a rapidly expanding and evolving approach to treating cancer. However, many of the critical denominators for inducing effective anticancer immune responses remain unknown. Efforts are underway to develop comprehensive ex vivo assessments of the immune landscape of patients prior to and during response to immunotherapy. An important complementary approach to these efforts involves the development of noninvasive imaging approaches to detect immune targets, assess delivery of immune-based therapeutics, and evaluate responses to immunotherapy. Herein, we review the merits and limitations of various noninvasive imaging modalities (MRI, PET, and single-photon emission tomography) and discuss candidate targets for cellular and molecular imaging for visualization of T-cell responses at various stages along the cancer-immunity cycle in the context of immunotherapy. We also discuss the potential use of these imaging strategies in monitoring treatment responses and predicting prognosis for patients treated with immunotherapy.
Collapse
Affiliation(s)
- Zebin Xiao
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Ellen Puré
- Department of Biomedical Sciences, University of Pennsylvania, Philadelphia, Pennsylvania.
| |
Collapse
|
3
|
Jacobs AH, Schelhaas S, Viel T, Waerzeggers Y, Winkeler A, Zinnhardt B, Gelovani J. Imaging of Gene and Cell-Based Therapies: Basis and Clinical Trials. Mol Imaging 2021. [DOI: 10.1016/b978-0-12-816386-3.00060-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
|
4
|
Wang J, Kong D, Zhu L, Wang S, Sun X. Human Bone Marrow Mesenchymal Stem Cells Modified Hybrid Baculovirus-Adeno-Associated Viral Vectors Targeting 131I Therapy of Hypopharyngeal Carcinoma. Hum Gene Ther 2020; 31:1300-1311. [PMID: 32940055 DOI: 10.1089/hum.2020.081] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Hypopharyngeal carcinoma is one of the most aggressive subtypes of squamous cell carcinoma of the head and neck. Although significant progress has been made in surgical techniques, radiotherapy, and chemotherapy, the prognosis is still poor. Mesenchymal stem cells (MSCs) have attracted substantial attention as tumor-targeted cellular carriers for cancer gene therapy. We have previously shown that recombinant baculovirus-adeno-associated vectors (BV-AAV) possessed high efficiency for multi-gene coexpression in human bone marrow MSCs (BMSCs) and BV-AAV-engineered BMSCs could effectively target hypopharyngeal cancer tissues in vivo. However, it was not clear whether BV-AAV-engineered BMSCs as cellular vehicles, mediating the expression of the sodium iodide symporter (NIS), would be effective in controlling the growth of hypopharyngeal carcinoma by radioiodine therapy. We constructed a hybrid BV-AAV containing the Luc-P2A-eGFP fusion or NIS sequence to modify BMSCs (BMSCs-Bac-Luc-P2A-eGFP or BMSCs-Bac-NIS). The 125I uptake of BMSCs-Bac-NIS was analyzed by an automatic gamma counter in vitro and micro-single-photon emission computed tomography (SPECT)/computed tomography (CT) imaging in vivo. The value of radioiodine therapy for hypopharyngeal carcinoma was evaluated by measuring tumor volume, glucose metabolism (via 2-deoxy-2-[18F] glucose [18F-FDG] positron emission tomography/CT), and proliferation of tumor cells. We demonstrated that 125I uptake of BMSCs-Bac-NIS persists over long-term in vitro (at least 8 h). Radioactive uptake could be detected by SPECT/CT 1 h after 125I injection in the BMSCs-Bac-NIS group, showing that this strategy allows for the tracking of real-time migration and transgene expression of BMSCs. Radioiodine therapy resulted in a significant reduction in tumor growth (386.93 ± 249.23 mm3 vs 816.56 ± 213.87 mm3 in controls), increased survival, and decreased SUVmax of 18F-FDG. The hybrid BV-AAV that can provide a variety of genes and regulatory elements, as a novel gene therapy strategy opens the prospect of NIS-mediated radionuclide therapy of hypopharyngeal carcinoma after MSC-mediated gene delivery.
Collapse
Affiliation(s)
- Jun Wang
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Dedi Kong
- Department of Otolaryngology, Eye and ENT Hospital, Fudan University, Shanghai, China
| | - Liying Zhu
- Departments of Nuclear Medicine, Rui Jin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Shili Wang
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingmei Sun
- Departments of Otolaryngology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
5
|
Ashmore-Harris C, Iafrate M, Saleem A, Fruhwirth GO. Non-invasive Reporter Gene Imaging of Cell Therapies, including T Cells and Stem Cells. Mol Ther 2020; 28:1392-1416. [PMID: 32243834 PMCID: PMC7264441 DOI: 10.1016/j.ymthe.2020.03.016] [Citation(s) in RCA: 48] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 02/15/2020] [Accepted: 03/18/2020] [Indexed: 12/14/2022] Open
Abstract
Cell therapies represent a rapidly emerging class of new therapeutics. They are intended and developed for the treatment of some of the most prevalent human diseases, including cancer, diabetes, and for regenerative medicine. Currently, they are largely developed without precise assessment of their in vivo distribution, efficacy, or survival either clinically or preclinically. However, it would be highly beneficial for both preclinical cell therapy development and subsequent clinical use to assess these parameters in situ to enable enhancements in efficacy, applicability, and safety. Molecular imaging can be exploited to track cells non-invasively on the whole-body level and can enable monitoring for prolonged periods in a manner compatible with rapidly expanding cell types. In this review, we explain how in vivo imaging can aid the development and clinical translation of cell-based therapeutics. We describe the underlying principles governing non-invasive in vivo long-term cell tracking in the preclinical and clinical settings, including available imaging technologies, reporter genes, and imaging agents as well as pitfalls related to experimental design. Our emphasis is on adoptively transferred T cell and stem cell therapies.
Collapse
Affiliation(s)
- Candice Ashmore-Harris
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Centre for Stem Cells and Regenerative Medicine, School of Basic and Medical Biosciences, King's College London, London SE1 9RT, UK
| | - Madeleine Iafrate
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK
| | - Adeel Saleem
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK; Peter Gorer Department of Immunobiology, School of Immunology and Microbial Sciences, King's College London, London SE1 9RT, UK; Department of Haematological Medicine, King's College Hospital, London SE5 9RS, UK
| | - Gilbert O Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, London SE1 7EH, UK.
| |
Collapse
|
6
|
Iafrate M, Fruhwirth GO. How Non-invasive in vivo Cell Tracking Supports the Development and Translation of Cancer Immunotherapies. Front Physiol 2020; 11:154. [PMID: 32327996 PMCID: PMC7152671 DOI: 10.3389/fphys.2020.00154] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/12/2020] [Indexed: 12/26/2022] Open
Abstract
Immunotherapy is a relatively new treatment regimen for cancer, and it is based on the modulation of the immune system to battle cancer. Immunotherapies can be classified as either molecular or cell-based immunotherapies, and both types have demonstrated promising results in a growing number of cancers. Indeed, several immunotherapies representing both classes are already approved for clinical use in oncology. While spectacular treatment successes have been reported, particularly for so-called immune checkpoint inhibitors and certain cell-based immunotherapies, they have also been accompanied by a variety of severe, sometimes life-threatening side effects. Furthermore, not all patients respond to immunotherapy. Hence, there is the need for more research to render these promising therapeutics more efficacious, more widely applicable, and safer to use. Whole-body in vivo imaging technologies that can interrogate cancers and/or immunotherapies are highly beneficial tools for immunotherapy development and translation to the clinic. In this review, we explain how in vivo imaging can aid the development of molecular and cell-based anti-cancer immunotherapies. We describe the principles of imaging host T-cells and adoptively transferred therapeutic T-cells as well as the value of traceable cancer cell models in immunotherapy development. Our emphasis is on in vivo cell tracking methodology, including important aspects and caveats specific to immunotherapies. We discuss a variety of associated experimental design aspects including parameters such as cell type, observation times/intervals, and detection sensitivity. The focus is on non-invasive 3D cell tracking on the whole-body level including aspects relevant for both preclinical experimentation and clinical translatability of the underlying methodologies.
Collapse
Affiliation(s)
| | - Gilbert O. Fruhwirth
- Imaging Therapy and Cancer Group, Department of Imaging Chemistry and Biology, School of Biomedical Engineering & Imaging Sciences, King’s College London, London, United Kingdom
| |
Collapse
|
7
|
Krekorian M, Fruhwirth GO, Srinivas M, Figdor CG, Heskamp S, Witney TH, Aarntzen EHJG. Imaging of T-cells and their responses during anti-cancer immunotherapy. Theranostics 2019; 9:7924-7947. [PMID: 31656546 PMCID: PMC6814447 DOI: 10.7150/thno.37924] [Citation(s) in RCA: 68] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 09/30/2019] [Indexed: 12/23/2022] Open
Abstract
Immunotherapy has proven to be an effective approach in a growing number of cancers. Despite durable clinical responses achieved with antibodies targeting immune checkpoint molecules, many patients do not respond. The common denominator for immunotherapies that have successfully been introduced in the clinic is their potential to induce or enhance infiltration of cytotoxic T-cells into the tumour. However, in clinical research the molecules, cells and processes involved in effective responses during immunotherapy remain largely obscure. Therefore, in vivo imaging technologies that interrogate T-cell responses in patients represent a powerful tool to boost further development of immunotherapy. This review comprises a comprehensive analysis of the in vivo imaging technologies that allow the characterisation of T-cell responses induced by anti-cancer immunotherapy, with emphasis on technologies that are clinically available or have high translational potential. Throughout we discuss their respective strengths and weaknesses, providing arguments for selecting the optimal imaging options for future research and patient management.
Collapse
Affiliation(s)
- Massis Krekorian
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Mangala Srinivas
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Carl G Figdor
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Radboud university medical center, Nijmegen, The Netherlands
| | - Sandra Heskamp
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| | - Timothy H Witney
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, Kings' College London, London, United Kingdom
| | - Erik H J G Aarntzen
- Department of Radiology and Nuclear Medicine, Radboud university medical center, Nijmegen, The Netherlands
| |
Collapse
|
8
|
Volpe A, Kurtys E, Fruhwirth GO. Cousins at work: How combining medical with optical imaging enhances in vivo cell tracking. Int J Biochem Cell Biol 2018; 102:40-50. [PMID: 29960079 PMCID: PMC6593261 DOI: 10.1016/j.biocel.2018.06.008] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2018] [Revised: 06/25/2018] [Accepted: 06/26/2018] [Indexed: 12/11/2022]
Abstract
Microscopy and medical imaging are related in their exploitation of electromagnetic waves, but were developed to satisfy differing needs, namely to observe small objects or to look inside subjects/objects, respectively. Together, these techniques can help elucidate complex biological processes and better understand health and disease. A current major challenge is to delineate mechanisms governing cell migration and tissue invasion in organismal development, the immune system and in human diseases such as cancer where the spatiotemporal tracking of small cell numbers in live animal models is extremely challenging. Multi-modal multi-scale in vivo cell tracking integrates medical and optical imaging. Fuelled by basic research in cancer biology and cell-based therapeutics, it has been enabled by technological advances providing enhanced resolution, sensitivity and multiplexing capabilities. Here, we review which imaging modalities have been successfully used for in vivo cell tracking and how this challenging task has benefitted from combining macroscopic with microscopic techniques.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Ewelina Kurtys
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London, SE1 7EH, London, UK.
| |
Collapse
|
9
|
Volpe A, Man F, Lim L, Khoshnevisan A, Blower J, Blower PJ, Fruhwirth GO. Radionuclide-fluorescence Reporter Gene Imaging to Track Tumor Progression in Rodent Tumor Models. J Vis Exp 2018:57088. [PMID: 29608157 PMCID: PMC5931757 DOI: 10.3791/57088] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022] Open
Abstract
Metastasis is responsible for most cancer deaths. Despite extensive research, the mechanistic understanding of the complex processes governing metastasis remains incomplete. In vivo models are paramount for metastasis research, but require refinement. Tracking spontaneous metastasis by non-invasive in vivo imaging is now possible, but remains challenging as it requires long-time observation and high sensitivity. We describe a longitudinal combined radionuclide and fluorescence whole-body in vivo imaging approach for tracking tumor progression and spontaneous metastasis. This reporter gene methodology employs the sodium iodide symporter (NIS) fused to a fluorescent protein (FP). Cancer cells are engineered to stably express NIS-FP followed by selection based on fluorescence-activated cell sorting. Corresponding tumor models are established in mice. NIS-FP expressing cancer cells are tracked non-invasively in vivo at the whole-body level by positron emission tomography (PET) using the NIS radiotracer [18F]BF4-. PET is currently the most sensitive in vivo imaging technology available at this scale and enables reliable and absolute quantification. Current methods either rely on large cohorts of animals that are euthanized for metastasis assessment at varying time points, or rely on barely quantifiable 2D imaging. The advantages of the described method are: (i) highly sensitive non-invasive in vivo 3D PET imaging and quantification, (ii) automated PET tracer production, (iii) a significant reduction in required animal numbers due to repeat imaging options, (iv) the acquisition of paired data from subsequent imaging sessions providing better statistical data, and (v) the intrinsic option for ex vivo confirmation of cancer cells in tissues by fluorescence microscopy or cytometry. In this protocol, we describe all steps required for routine NIS-FP-afforded non-invasive in vivo cancer cell tracking using PET/CT and ex vivo confirmation of in vivo results. This protocol has applications beyond cancer research whenever in vivo localization, expansion and long-time monitoring of a cell population is of interest.
Collapse
Affiliation(s)
- Alessia Volpe
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Francis Man
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Lindsay Lim
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Alex Khoshnevisan
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Julia Blower
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Philip J Blower
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London
| | - Gilbert O Fruhwirth
- Department of Imaging Chemistry and Biology, School of Biomedical Engineering and Imaging Sciences, King's College London;
| |
Collapse
|
10
|
Diocou S, Volpe A, Jauregui-Osoro M, Boudjemeline M, Chuamsaamarkkee K, Man F, Blower PJ, Ng T, Mullen GED, Fruhwirth GO. [ 18F]tetrafluoroborate-PET/CT enables sensitive tumor and metastasis in vivo imaging in a sodium iodide symporter-expressing tumor model. Sci Rep 2017; 7:946. [PMID: 28424464 PMCID: PMC5430436 DOI: 10.1038/s41598-017-01044-4] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2017] [Accepted: 03/22/2017] [Indexed: 12/22/2022] Open
Abstract
Cancer cell metastasis is responsible for most cancer deaths. Non-invasive in vivo cancer cell tracking in spontaneously metastasizing tumor models still poses a challenge requiring highest sensitivity and excellent contrast. The goal of this study was to evaluate if the recently introduced PET radiotracer [18F]tetrafluoroborate ([18F]BF4-) is useful for sensitive and specific metastasis detection in an orthotopic xenograft breast cancer model expressing the human sodium iodide symporter (NIS) as a reporter. In vivo imaging was complemented by ex vivo fluorescence microscopy and γ-counting of harvested tissues. Radionuclide imaging with [18F]BF4- (PET/CT) was compared to the conventional tracer [123I]iodide (sequential SPECT/CT). We found that [18F]BF4- was superior due to better pharmacokinetics, i.e. faster tumor uptake and faster and more complete clearance from circulation. [18F]BF4--PET was also highly specific as in all detected tissues cancer cell presence was confirmed microscopically. Undetected comparable tissues were similarly found to be free of metastasis. Metastasis detection by routine metabolic imaging with [18F]FDG-PET failed due to low standard uptake values and low contrast caused by adjacent metabolically active organs in this model. [18F]BF4--PET combined with NIS expressing disease models is particularly useful whenever preclinical in vivo cell tracking is of interest.
Collapse
Affiliation(s)
- S Diocou
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - A Volpe
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - M Jauregui-Osoro
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - M Boudjemeline
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - K Chuamsaamarkkee
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - F Man
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - P J Blower
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK
| | - T Ng
- King's College London, The Richard Dimbleby Department of Cancer Research, Randall Division of Molecular Biophysics and Cancer Division, Guy's Campus, London, SE1 1UL, UK
- UCL, Cancer Institute, Paul O'Gorman Building, London, WC1E 6BT, UK
| | - G E D Mullen
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK.
| | - G O Fruhwirth
- King's College London, Imaging Chemistry and Biology, Division of Imaging Sciences and Biomedical Engineering, 4th Floor Lambeth Wing, St. Thomas' Hospital, London, SE1 7EH, UK.
| |
Collapse
|
11
|
Li W, Tan J, Wang P, Li N, Zhang F. The glial fibrillary acidic protein promoter directs sodium/iodide symporter gene expression for radioiodine therapy of malignant glioma. Oncol Lett 2012; 5:669-674. [PMID: 23420532 PMCID: PMC3573145 DOI: 10.3892/ol.2012.1055] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2012] [Accepted: 11/23/2012] [Indexed: 11/06/2022] Open
Abstract
Radioiodine is a routine therapy for differentiated thyroid cancers. Non-thyroid cancers may be treated with radio-iodine following transfection with the human sodium/iodide symporter (hNIS) gene. The glial fibrillary acidic protein (GFAP) promoter is an effective tumor-specific promoter for gene expression and thus may be useful in targeted gene therapy of malignant glioma. The present study used GFAP promoter-modulated expression of the hNIS gene in an experimental model of radioiodine-based treatment for malignant glioma. Cells were transfected using a recombination adeno-virus and evaluated in cells by studying the transfected transgene expression through western blot analysis, (125)I uptake and efflux, clonogenicity following (131)I treatment and radioiodine therapy using a U87 xenograft nude mouse model. Following transfection with the hNIS gene, the cells showed 95-70-fold higher (125)I uptake compared with the control cells transfected with Ad-cytomegalovirus (CMV)-enhanced green fluorescent protein (EGFP). The western blotting revealed bands of ∼70, 49 and 43 kDa, consistent with the hNIS, GFAP and β-actin proteins. The clonogenic assay indicated that, following exposure to 500 μCi of (131)I-iodide for 12 h, >90% of cells transfected with the hNIS gene were killed. Ad-GFAP-hNIS-transfected and 2 mCi (131)I-injected U87 xenograft nude mice survived the longest of the three groups. The hNIS-expressing tumor tissue accumulated (99m)TcO(4) rapidly within 30 min of it being intraperitoneally injected. The experiments demonstrated that effective (131)I therapy was achieved in the malignant glioma cell lines following the induction of tumor-specific iodide uptake activity by GFAP promoter-directed hNIS gene expression in vitro and in vivo. (131)I therapy retarded Ad-GFAP-hNIS transfected-tumor growth following injection with (131)I in U87 xenograft-bearing nude mice.
Collapse
Affiliation(s)
- Wei Li
- Department of Nuclear Medicine, Tianjin Medical University General Hospital, Tianjin, P.R. China
| | | | | | | | | |
Collapse
|
12
|
Mu D, Huang R, Li S, Ma X, Lou C, Kuang A. Combining transfer of TTF-1 and Pax-8 gene: a potential strategy to promote radioiodine therapy of thyroid carcinoma. Cancer Gene Ther 2012; 19:402-11. [PMID: 22498723 DOI: 10.1038/cgt.2012.13] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Cotransfer of thyroid-specific transcription factor (TTF)-1 and Pax-8 gene to tumor cells, resulting in the re-expression of iodide metabolism-associated proteins, such as sodium iodide symporter (NIS), thyroglobulin (Tg), thyroperoxidase (TPO), offers the possibility of radioiodine therapy to non-iodide-concentrating tumor because the expression of iodide metabolism-associated proteins in thyroid are mediated by the thyroid transcription factor TTF-1 and Pax-8. The human TTF-1 and Pax-8 gene were transducted into the human thyroid carcinoma (K1 and F133) cells by the recombinant adenovirus, AdTTF-1 and AdPax-8. Re-expression of NIS mRNA and protein, but not TPO and Tg mRNA and protein, was detected in AdTTF-1-infected F133 cells, following with increasing radioiodine uptake (6.1-7.4 times), scarcely iodide organification and rapid iodide efflux (t(1/2) ≈ 8-min in vitro, t(1/2) ≈ 4.7-h in vivo). On contrast, all of the re-expression of NIS, TPO and Tg mRNA and proteins were detected in F133 cells coinfected with AdTTF-1 and AdPax-8. AdTTF-1- and AdPax-8-coinfected K1 and F133 cells could effectively accumulate radioiodine (6.6-7.5 times) and obviously retarded radioiodine retention (t(1/2) ≈ 25-30-min in vitro, t(1/2) ≈ 12-h in vivo) (P<0.05). Accordingly, the effect of radioiodine therapy of TTF-1 and Pax-8 cotransducted K1 and F133 cells (21-25% survival rate in vitro) was better than that of TTF-1-transducted cells (40% survival rate in vitro) (P<0.05). These results indicate that single TTF-1 gene transfer may have limited efficacy of radioiodine therapy because of rapid radioiodine efflux. The cotransduction of TTF-1 and Pax-8 gene, with resulting NIS-mediated radioiodine accumulation and TPO and Tg-mediated radioiodine organification and intracellular retention, may lead to effective radioiodine therapy of thyroid carcinoma.
Collapse
Affiliation(s)
- D Mu
- Department of Nuclear Medicine, Sir Run Run Shaw Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | | | | | | | | | | |
Collapse
|
13
|
Richard-Fiardo P, Franken PR, Lamit A, Marsault R, Guglielmi J, Cambien B, Graslin F, Lindenthal S, Darcourt J, Pourcher T, Vassaux G. Normalisation to blood activity is required for the accurate quantification of Na/I symporter ectopic expression by SPECT/CT in individual subjects. PLoS One 2012; 7:e34086. [PMID: 22470517 PMCID: PMC3309932 DOI: 10.1371/journal.pone.0034086] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2011] [Accepted: 02/21/2012] [Indexed: 12/21/2022] Open
Abstract
The utilisation of the Na/I symporter (NIS) and associated radiotracers as a reporter system for imaging gene expression is now reaching the clinical setting in cancer gene therapy applications. However, a formal assessment of the methodology in terms of normalisation of the data still remains to be performed, particularly in the context of the assessment of activities in individual subjects in longitudinal studies. In this context, we administered to mice a recombinant, replication-incompetent adenovirus encoding rat NIS, or a human colorectal carcinoma cell line (HT29) encoding mouse NIS. We used (99m)Tc pertechnetate as a radiotracer for SPECT/CT imaging to determine the pattern of ectopic NIS expression in longitudinal kinetic studies. Some animals of the cohort were culled and NIS expression was measured by quantitative RT-PCR and immunohistochemistry. The radioactive content of some liver biopsies was also measured ex vivo. Our results show that in longitudinal studies involving datasets taken from individual mice, the presentation of non-normalised data (activity expressed as %ID/g or %ID/cc) leads to 'noisy', and sometimes incoherent, results. This variability is due to the fact that the blood pertechnetate concentration can vary up to three-fold from day to day. Normalisation of these data with blood activities corrects for these inconsistencies. We advocate that, blood pertechnetate activity should be determined and used to normalise the activity measured in the organ/region of interest that expresses NIS ectopically. Considering that NIS imaging has already reached the clinical setting in the context of cancer gene therapy, this normalisation may be essential in order to obtain accurate and predictive information in future longitudinal clinical studies in biotherapy.
Collapse
Affiliation(s)
- Peggy Richard-Fiardo
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
| | - Philippe R. Franken
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Audrey Lamit
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Robert Marsault
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Julien Guglielmi
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Béatrice Cambien
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Fanny Graslin
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Sabine Lindenthal
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Jacques Darcourt
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Thierry Pourcher
- Centre Antoine Lacassagne, Nice, France
- Faculté de Médecine, Université de Nice Sophia-Antipolis, Nice, France
- Laboratoire TIRO, UMRE 4320, iBEB, DSV, Commissariat à l'Energie Atomique, Nice, France
| | - Georges Vassaux
- INSERM U948, Biothérapies Hépatiques, CHU Hôtel Dieu, Nantes, France
- CHU de Nantes, Institut des Maladies de l'Appareil Digestif, Nantes, France
- * E-mail:
| |
Collapse
|
14
|
Haberkorn U, Markert A, Mier W, Askoxylakis V, Altmann A. Molecular imaging of tumor metabolism and apoptosis. Oncogene 2011; 30:4141-51. [DOI: 10.1038/onc.2011.169] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
|
15
|
Yin HY, Zhou X, Wu HF, Li B, Zhang YF. Baculovirus vector-mediated transfer of NIS gene into colon tumor cells for radionuclide therapy. World J Gastroenterol 2010; 16:5367-74. [PMID: 21072902 PMCID: PMC2980688 DOI: 10.3748/wjg.v16.i42.5367] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the feasibility of radionuclide therapy of colon tumor cells by baculovirus vector-mediated transfer of the sodium/iodide symporter (NIS) gene.
METHODS: A recombinant baculovirus plasmid carrying the NIS gene was constructed, and the viruses (Bac-NIS) were prepared using the Bac-to-Bac system. The infection efficiency in the colon cancer cell line SW1116 of a green fluorescent protein (GFP) expressing baculovirus (Bac-GFP) at different multiplicities of infection (MOI) with various concentrations of sodium butyrate was determined by flow cytometry. An in vitro cytotoxicity assay was also conducted after infection of SW1116 cells with Bac-NIS. Iodine uptake of Bac-NIS infected SW1116 cells and inhibition of this uptake by sodium perchlorate was examined, and the effect of Bac-NIS-mediated 131I in killing tumor cells was evaluated by cell colony formation tests.
RESULTS: Infection and transgene expression in SW1116 with Bac-GFP were significantly enhanced by sodium butyrate, as up to 72% of SW1116 cells were infected with the virus at MOI of 400 and sodium butyrate at 0.5 mmol/L. No obvious cytotoxicity was observed under these conditions. Infection of SW1116 with Bac-NIS allowed uptake of 131I in these tumor cells, which could be inhibited by sodium perchlorate. The viability of SW1116 cells infected with Bac-NIS was significantly lower than with Bac-GFP, suggesting that NIS gene-mediated 131I uptake could specifically kill tumor cells.
CONCLUSION: Baculovirus vector-mediated NIS gene therapy is a potential approach for treatment of colon cancer.
Collapse
|
16
|
Hingorani M, Spitzweg C, Vassaux G, Newbold K, Melcher A, Pandha H, Vile R, Harrington K. The biology of the sodium iodide symporter and its potential for targeted gene delivery. Curr Cancer Drug Targets 2010; 10:242-67. [PMID: 20201784 DOI: 10.2174/156800910791054194] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2009] [Accepted: 02/16/2010] [Indexed: 12/12/2022]
Abstract
The sodium iodide symporter (NIS) is responsible for thyroidal, salivary, gastric, intestinal and mammary iodide uptake. It was first cloned from the rat in 1996 and shortly thereafter from human and mouse tissue. In the intervening years, we have learned a great deal about the biology of NIS. Detailed knowledge of its genomic structure, transcriptional and post-transcriptional regulation and pharmacological modulation has underpinned the selection of NIS as an exciting approach for targeted gene delivery. A number of in vitro and in vivo studies have demonstrated the potential of using NIS gene therapy as a means of delivering highly conformal radiation doses selectively to tumours. This strategy is particularly attractive because it can be used with both diagnostic (99mTc, 125I, 124I)) and therapeutic (131I, 186Re, 188Re, 211At) radioisotopes and it lends itself to incorporation with standard treatment modalities, such as radiotherapy or chemoradiotherapy. In this article, we review the biology of NIS and discuss its development for gene therapy.
Collapse
Affiliation(s)
- Mohan Hingorani
- The Institute of Cancer Research, 237 Fulham Road, London SW36JB, UK
| | | | | | | | | | | | | | | |
Collapse
|
17
|
Waerzeggers Y, Monfared P, Viel T, Winkeler A, Voges J, Jacobs AH. Methods to monitor gene therapy with molecular imaging. Methods 2009; 48:146-60. [PMID: 19318125 DOI: 10.1016/j.ymeth.2009.03.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2008] [Accepted: 03/11/2009] [Indexed: 01/08/2023] Open
Abstract
Recent progress in scientific and clinical research has made gene therapy a promising option for efficient and targeted treatment of several inherited and acquired disorders. One of the most critical issues for ensuring success of gene-based therapies is the development of technologies for non-invasive monitoring of the distribution and kinetics of vector-mediated gene expression. In recent years many molecular imaging techniques for safe, repeated and high-resolution in vivo imaging of gene expression have been developed and successfully used in animals and humans. In this review molecular imaging techniques for monitoring of gene therapy are described and specific use of these methods in the different steps of a gene therapy protocol from gene delivery to assessment of therapy response is illustrated. Linking molecular imaging (MI) to gene therapy will eventually help to improve the efficacy and safety of current gene therapy protocols for human application and support future individualized patient treatment.
Collapse
Affiliation(s)
- Yannic Waerzeggers
- Laboratory for Gene Therapy and Molecular Imaging, Max Planck Institute for Neurological Research and Faculty of Medicine, University of Cologne, Gleuelerstrasse 50, Cologne 50931, Germany
| | | | | | | | | | | |
Collapse
|
18
|
Abstract
Assessment of gene function following the completion of human genome sequencing may be done using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules which require a thorough understanding of physiology, biochemistry and pharmacology. The experimental approaches will involve many new technologies, including in-vivo imaging with SPECT and PET. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in-vivo reporter genes, such as genes encoding enzymes, receptors, antigens or transporters. Visualization of in-vivo reporter gene expression can be done using radiolabeled substrates, antibodies or ligands. Combinations of specific promoters and in-vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and the activation of signal transduction pathways may be visualized noninvasively. The role of radiolabeled antisense molecules for the analysis of mRNA content has to be investigated. However, possible applications are therapeutic interventions using triplex oligonucleotides with therapeutic isotopes, which can be brought near to specific DNA sequences to induce DNA strand breaks at selected loci. After the identification of new genes, functional information is required to investigate the role of these genes in living organisms. This can be done by analysis of gene expression, protein-protein interaction or the biodistribution of new molecules and may result in new diagnostic and therapeutic procedures, which include visualization of and interference with gene transcription, and the development of new biomolecules to be used for diagnosis and treatment. Furthermore, the characterization of tumor cell-specific properties allows the design of new treatment modalities, such as gene therapy, which circumvent resistance mechanisms towards conventional chemotherapeutic drugs.
Collapse
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University of Heidelberg, Im Neuenheimer Feld 400, 69120 Heidelberg, Germany.
| |
Collapse
|
19
|
Haberkorn U. Modulation of tracer accumulation in malignant tumors: gene expression, gene transfer, and phage display. Curr Top Dev Biol 2008; 70:145-69. [PMID: 16338341 DOI: 10.1016/s0070-2153(05)70007-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Assessment of gene function following the completion of human genome sequencing may be done using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or new designed biomolecules which requires a thorough understanding of physiology, biochemistry and pharmacology. The experimental approaches will involve many new technologies including in vivo imaging with SPECT and PET. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers or using in vivo reporter genes such as genes encoding enzymes, receptors, antigens or transporters. Visualization of in vivo reporter gene expression can be done using radiolabeled substrates, antibodies or ligands. Combinations of specific promoters and in vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and activation of signal transduction pathways may be visualized non-invasively. The role of radiolabeled antisense molecules for the analysis of mRNA content has to be investigated. However, possible applications are therapeutic intervention using triplex oligonucleotides with therapeutic isotopes which can be brought near to specific DNA sequences to induce DNA strand breaks at selected loci. Imaging of labeled siRNA's makes sense if these are used for therapeutic purposes in order to assess the delivery of these new drugs to their target tissue. Finally, new biomolecules will be developed by bioengineering methods which may be used for isotope-based diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University of Heidelberg Clinical Cooperation Unit Nuclear Medicine German Cancer Research Center, Heidelberg, Germany
| |
Collapse
|
20
|
Willhauck MJ, Samani BRS, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Meyer GJ, Knapp WH, Göke B, Morris JC, Spitzweg C. The potential of 211Astatine for NIS-mediated radionuclide therapy in prostate cancer. Eur J Nucl Med Mol Imaging 2008; 35:1272-81. [PMID: 18404268 DOI: 10.1007/s00259-008-0775-4] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2007] [Accepted: 03/02/2008] [Indexed: 10/22/2022]
Abstract
PURPOSE We reported recently the induction of selective iodide uptake in prostate cancer cells (LNCaP) by prostate-specific antigen (PSA) promoter-directed sodium iodide symporter (NIS) expression that allowed a significant therapeutic effect of (131)I. In the current study, we studied the potential of the high-energy alpha-emitter (211)At, also transported by NIS, as an alternative radionuclide after NIS gene transfer in tumors with limited therapeutic efficacy of (131)I due to rapid iodide efflux. METHODS We investigated uptake and therapeutic efficacy of (211)At in LNCaP cells stably expressing NIS under the control of the PSA promoter (NP-1) in vitro and in vivo. RESULTS NP-1 cells concentrated (211)At in a perchlorate-sensitive manner, which allowed a dramatic therapeutic effect in vitro. After intraperitoneal injection of (211)At (1 MBq), NP-1 tumors accumulated approximately 16% ID/g (211)At (effective half-life 4.6 h), which resulted in a tumor-absorbed dose of 1,580+/-345 mGy/MBq and a significant tumor volume reduction of up to 82+/-19%, while control tumors continued their growth exponentially. CONCLUSIONS A significant therapeutic effect of (211)At has been demonstrated in prostate cancer after PSA promoter-directed NIS gene transfer in vitro and in vivo suggesting a potential role for (211)At as an attractive alternative radioisotope for NIS-targeted radionuclide therapy, in particular in smaller tumors with limited radionuclide retention time.
Collapse
Affiliation(s)
- Michael J Willhauck
- Department of Internal Medicine II, Ludwig-Maximilians-University, Munich, Germany
| | | | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Willhauck MJ, Sharif Samani BR, Gildehaus FJ, Wolf I, Senekowitsch-Schmidtke R, Stark HJ, Göke B, Morris JC, Spitzweg C. Application of 188rhenium as an alternative radionuclide for treatment of prostate cancer after tumor-specific sodium iodide symporter gene expression. J Clin Endocrinol Metab 2007; 92:4451-8. [PMID: 17698909 DOI: 10.1210/jc.2007-0402] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
CONTEXT We reported recently the induction of iodide accumulation in prostate cancer cells (LNCaP) by prostate-specific antigen promoter-directed sodium iodide symporter (NIS) expression that allowed a significant therapeutic effect of (131)iodine ((131)I). These data demonstrated the potential of the NIS gene as a novel therapeutic gene, although in some extrathyroidal tumors, therapeutic efficacy may be limited by rapid iodide efflux due to a lack of iodide organification. OBJECTIVE In the current study, we therefore studied the potential of (188)rhenium ((188)Re), as an alternative radionuclide, also transported by NIS, with a shorter half-life and higher energy beta-particles than (131)I. RESULTS NIS-transfected LNCaP cells (NP-1) concentrated 8% of the total applied activity of (188)Re as compared with 16% of (125)I, which was sufficient for a therapeutic effect in an in vitro clonogenic assay. gamma-Camera imaging of NP-1 cell xenografts in nude mice revealed accumulation of 8-16% injected dose (ID)/g (188)Re (biological half-life 12.9 h), which resulted in a 4.7-fold increased tumor absorbed dose (450 mGy/MBq) for (188)Re as compared with (131)I. After application of 55.5 MBq (131)I or (188)Re, smaller tumors showed a similar average volume reduction of 86%, whereas in larger tumors volume reduction was significantly increased from 73% after (131)I treatment to 85% after application of (188)Re. CONCLUSION Although in smaller prostate cancer xenografts both radionuclides seemed to be equally effective after prostate-specific antigen promoter-mediated NIS gene delivery, a superior therapeutic effect has been demonstrated for (188)Re in larger tumors.
Collapse
Affiliation(s)
- Michael J Willhauck
- Department of Internal Medicine II, Ludwig-Maximilians-University, 81377 Munich, Germany.
| | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Schipper ML, Riese CGU, Seitz S, Weber A, Béhé M, Schurrat T, Schramm N, Keil B, Alfke H, Behr TM. Efficacy of 99mTc pertechnetate and 131I radioisotope therapy in sodium/iodide symporter (NIS)-expressing neuroendocrine tumors in vivo. Eur J Nucl Med Mol Imaging 2006; 34:638-650. [PMID: 17160413 DOI: 10.1007/s00259-006-0254-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2006] [Accepted: 07/21/2006] [Indexed: 10/23/2022]
Abstract
PURPOSE There is growing interest in the human sodium/iodide symporter (NIS) gene both as a molecular imaging reporter gene and as a therapeutic gene. Here, we show the feasibility of radioisotope therapy of neuroendocrine tumors. As a separate application of NIS gene transfer, we image NIS-expressing tumors with pinhole SPECT in living subjects. METHODS Biodistribution studies and in vivo therapy experiments were performed in nude mice carrying stably NIS-expressing neuroendocrine tumor xenografts following i.v. injection of (131)I and (99m)Tc pertechnetate. To show the usefulness of NIS as an imaging reporter gene, (99m)Tc pertechnetate uptake was imaged in vivo using a clinical gamma camera in combination with a custom-made single pinhole collimator, followed by SPECT/small animal MRI data coregistration. RESULTS NIS-expressing neuroendocrine tumors strongly accumulated (131)I and (99m)Tc pertechnetate, as did thyroid, stomach, and salivary gland. The volume of NIS-expressing neuroendocrine tumors decreased significantly after therapeutic administration of (131)I or (99m)Tc pertechnetate, whereas control tumors continued to grow. NIS-mediated uptake of (99m)Tc pertechnetate could be imaged in vivo at high resolution with a clinical gamma camera equipped with a custom-made single pinhole collimator. High-resolution functional and morphologic information could be combined in a single three-dimensional data set by coregistration of SPECT and small animal MRI data. Lastly, we demonstrated a therapeutic effect of (99m)Tc pertechnetate on NIS-expressing neuroendocrine tumors in cell culture and, for the first time, in vivo, thought to be due to emitted Auger and conversion electrons. CONCLUSIONS NIS-expressing neuroendocrine tumors efficiently concentrate radioisotopes, allowing for in vivo high-resolution small animal SPECT imaging as well as rendering possible successful radioisotope therapy of neuroendocrine tumors.
Collapse
Affiliation(s)
- Meike L Schipper
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany.
- Molecular Imaging Program at Stanford (MIPS) and Department of Radiology, Stanford University, E 150 Clark Center, 318 Campus Drive, Stanford, CA, 94305-5427, USA.
| | - Christoph G U Riese
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Stephan Seitz
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Alexander Weber
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Martin Béhé
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Tino Schurrat
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| | - Nils Schramm
- Department of Electronics, Forschungszentrum Jülich, Jülich, Germany
| | - Boris Keil
- Department of Radiology, Philipps University Marburg, Marburg, Germany
| | - Heiko Alfke
- Department of Radiology, Philipps University Marburg, Marburg, Germany
| | - Thomas M Behr
- Department of Nuclear Medicine, Philipps University Marburg, Marburg, Germany
| |
Collapse
|
23
|
Faivre J, Clerc J, Gérolami R, Hervé J, Longuet M, Liu B, Roux J, Moal F, Perricaudet M, Bréchot C. Long-term radioiodine retention and regression of liver cancer after sodium iodide symporter gene transfer in wistar rats. Cancer Res 2004; 64:8045-51. [PMID: 15520214 DOI: 10.1158/0008-5472.can-04-0893] [Citation(s) in RCA: 48] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Radioiodine therapy of nonthyroid cancers after sodium iodide symporter (NIS) gene delivery has been proposed as a potential application of gene therapy. However, it seems to be precluded by the rapid efflux of taken up iodine from most transduced xenografted tumors. We present an in vivo kinetic study of NIS-related hepatic iodine uptake in an aggressive model of hepatocarcinoma induced by diethylnitrosamine in immunocompetent Wistar rats. We followed the whole-body iodine distribution by repeated imaging of live animals. We constructed a rat NIS (rNIS) adenoviral vector, Ad-CMV-rNIS, using the cytomegalovirus (CMV) as a promoter. Injected in the portal vein in 5 healthy and 25 hepatocarcinoma-bearing rats and liver tumors in 9 hepatocarcinoma-bearing rats, Ad-CMV-rNIS drove expression of a functional NIS protein by hepatocytes and allowed marked (from 20 to 30% of the injected dose) and sustained (>11 days) iodine uptake. This contrasts with the massive iodine efflux found in vitro in human hepatic tumor cell lines. In vivo specific inhibition of NIS by sodium perchlorate led to a rapid iodine efflux from the liver, indicating that the sustained uptake was not attributable to an active retention mechanism but to permanent recycling of the effluent radioiodine via the high hepatic blood flow. Radioiodine therapy after Ad-CMV-rNIS administration achieved a strong inhibition of tumor growth, the complete regression of small nodules, and prolonged survival of hepatocarcinoma-bearing rats. This demonstrates for the first time the efficacy of NIS-based radiotherapy in a relevant preclinical model of nonthyroid human carcinogenesis.
Collapse
Affiliation(s)
- Jamila Faivre
- Department of Liver Cancer and Molecular Virology, Institut National de la Santé et de la Recherche Médicale Unit 370, Paris V University, CHU Necker, Paris, France.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Haberkorn U, Altmann A, Mier W, Eisenhut M. Impact of functional genomics and proteomics on radionuclide imaging. Semin Nucl Med 2004; 34:4-22. [PMID: 14735455 DOI: 10.1053/j.semnuclmed.2003.09.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/11/2022]
Abstract
The assessment of gene function following the completion of human genome sequencing may be performed using radionuclide imaging procedures. These procedures are needed for the evaluation of genetically manipulated animals or newly designed biomolecules, which requires a thorough understanding of physiology, biochemistry, and pharmacology. The experimental approaches will involve many new technologies, including in vivo imaging with single photon emission computed tomography and positron emission tomography. Nuclear medicine procedures may be applied for the determination of gene function and regulation using established and new tracers, or using in vivo reporter genes, such as genes encoding enzymes, receptors, antigens, or transporters. Visualization of in vivo reporter gene expression can be performed using radiolabeled substrates, antibodies, or ligands. Combinations of specific promoters and in vivo reporter genes may deliver information about the regulation of the corresponding genes. Furthermore, protein-protein interactions and activation of signal transduction pathways may be visualized noninvasively. The role of radiolabeled antisense molecules for the analysis of messenger ribonucleic acid (RNA) content has to be investigated. However, possible applications are therapeutic intervention using triplex oligonucleotides with therapeutic isotopes, which can be brought near to specific deoxyribonucleic acid sequences to induce deoxyribonucleic acid strand breaks at selected loci. Imaging of labeled siRNA makes sense if these are used for therapeutic purposes to assess the delivery of these new drugs to their target tissue. Pharmacogenomics will identify new surrogate markers for therapy monitoring, which may represent potential new tracers for imaging. Drug distribution studies for new therapeutic biomolecules are needed at least during preclinical stages of drug development. New treatment modalities, such as gene therapy with suicide genes, will need procedures for therapy planning and monitoring. Finally, new biomolecules will be developed by bioengineering methods, which may be used for the isotope-based diagnosis and treatment of disease.
Collapse
Affiliation(s)
- Uwe Haberkorn
- Department of Nuclear Medicine, University of Heidelberg, Germany.
| | | | | | | |
Collapse
|
25
|
Abstract
The Na(+)/I(-) symporter (NIS) is the plasma membrane glycoprotein that mediates the active uptake of I(-) in the thyroid, ie, the crucial first step in thyroid hormone biosynthesis. NIS also mediates I(-) uptake in other tissues, such as salivary glands, gastric mucosa, and lactating (but not nonlactating) mammary gland. The ability of thyroid cancer cells to actively transport I(-) via NIS provides a unique and effective delivery system to detect and target these cells for destruction with therapeutic doses of radioiodide. Breast cancer is the only malignancy other than thyroid cancer to have been shown to functionally express NIS endogenously. The considerable potential diagnostic and therapeutic use of radioiodide in breast cancer is currently being assessed. On the other hand, exogenous NIS gene transfer has successfully been carried out into a variety of other cell lines and tumors, including A375 human melanoma tumors, and SiHa cervix cancer, human glioma, and hepatoma cell lines. Most notably, significant radioiodine therapy results have been obtained in the NIS-transfected human prostatic adenocarcinoma cell line LNCaP and in NIS-transfected myeloma cells, both of which exhibited prolonged retention of radio iodide even in the absence of I(-) organification. The therapeutic potential of alternative NIS-transported radioisotopes with different decay properties and a shorter, physical half-life than 131I(-), such as beta-emitter 188Rhenium (188ReO(4)-) and alpha-emitter 211Astatine (211At(-)), has been evaluated. In conclusion, it is clear that the remarkable progress made in the last few years in the molecular characterization of NIS has created new opportunities for the development of diagnostic and therapeutic applications for NIS in nuclear medicine.
Collapse
Affiliation(s)
- Ekaterina Dadachova
- Department of Nuclear Medicine, Albert Einstein College of Medicine, Bronx, NY 10461, USA
| | | |
Collapse
|
26
|
Haberkorn U. Future directions in molecular imaging. ERNST SCHERING RESEARCH FOUNDATION WORKSHOP 2004:111-34. [PMID: 15248519 DOI: 10.1007/978-3-662-07310-0_6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/30/2023]
|