1
|
Shen DHY, Chan HP, Tsai FR, Chiu YL, Liang TJ, She Y, Liu AC, Yeh HY, Tsai KW, Li SC. MDM2 Knockdown Reduces the Oncogenic Activities and Enhances NIS Protein Abundance in Papillary Thyroid Cancer. Cancer Genomics Proteomics 2025; 22:444-457. [PMID: 40280721 PMCID: PMC12041878 DOI: 10.21873/cgp.20512] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Revised: 03/29/2025] [Accepted: 04/01/2025] [Indexed: 04/29/2025] Open
Abstract
BACKGROUND/AIM Despite the excellent prognosis post thyroidectomy and radioiodine therapy, papillary thyroid cancer (PTC) patients still undergo dismal outcomes, especially when tumors undergo de-differentiation and thus progress to radioiodine refractory status. Our knowledge on the pathogenesis mechanisms of PTC and NIS protein (responsible for iodine uptake) activity is still behind satisfaction. To increase our knowledge on these issues, we conducted this study. MATERIALS AND METHODS We analyzed microarray data to identify the genes differentially expressed between normal and tumor thyroid tissues. Next, pathway enrichment analysis was conducted to derive candidate genes and pathways involved in PTC oncogenesis and NIS activity. The expression of candidate genes was confirmed by an independent TCGA dataset. Then, we used siRNA to knockdown the MDM2 gene to examine the potential pathogenesis mechanisms of MDM2 and MDM2-P53-NIS axis in cells. Also, we examined whether oncogenic activities, including cell proliferation, colony formation, cell migration and cell invasion, were altered with MDM2 knockdown. Moreover, NIS protein intensity in cell membrane was also investigated. RESULTS Through analyzing microarray data, pathway enrichment and correlation analyses, we focused on MDM2 since it could be involved in the MDM2-P53-NIS axis. Knockdown of MDM2 significantly reduced the mRNA levels and protein abundance of MDM2. In addition, P53 protein was also elevated with MDM2 knockdown. With MDM2 knockdown, cell proliferation and colony formation were repressed. And, both cell migration and invasion abilities were interfered. Moreover, MDM2 knockdown also enhanced the intensity of membrane NIS protein. CONCLUSION MDM2 knockdown not only reduced the oncogenic activities of thyroid cancer but also enhanced the intensity of NIS protein responsible for iodine intake in thyroid gland. Therefore, MDM2 could serve as a prognosis indicator in thyroid cancer.
Collapse
Affiliation(s)
- Daniel Hueng-Yuan Shen
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
- Department of Nuclear Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan, R.O.C
- Department of Medical Imaging and Radiology, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan, R.O.C
| | - Hung-Ping Chan
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Fu-Ren Tsai
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Yu-Li Chiu
- Department of Nuclear Medicine, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Tsung-Jung Liang
- Division of General Surgery, Department of Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
- School of Medicine, National Yang Ming Chiao Tung University, Taipei, Taiwan, R.O.C
| | - Yunying She
- Department of Otolaryngology-Head and Neck Surgery, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - An-Chi Liu
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Hui-Ying Yeh
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C
| | - Kuo-Wang Tsai
- Department of Research, Taipei Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, New Taipei City, Taiwan, R.O.C.;
- Department of Nursing, Cardinal Tien Junior College of Healthcare and Management, Taipei, Taiwan, R.O.C
| | - Sung-Chou Li
- Department of Medical Education and Research, Kaohsiung Veterans General Hospital, Kaohsiung, Taiwan, R.O.C.;
- Center of General Education, Shu-Zen Junior College of Medicine and Management, Kaohsiung, Taiwan, R.O.C
| |
Collapse
|
2
|
Yan C, Zheng C, Luo J, Wu X, Meng X, Lv C, Shen S, Zhou M, Wang O. Comprehensive transcriptomic profiling reveals molecular characteristics and biomarkers associated with risk stratification in papillary thyroid carcinoma. J Pathol Clin Res 2025; 11:e70022. [PMID: 40001321 PMCID: PMC11860273 DOI: 10.1002/2056-4538.70022] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Revised: 01/09/2025] [Accepted: 02/07/2025] [Indexed: 02/27/2025]
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common endocrine malignancies, with varying levels of risk and clinical behavior. A better understanding of the molecular characteristics could improve molecular diagnosis and risk assessment. In this study, we performed whole transcriptomic sequencing on 113 PTC cases, including 70 high-risk and 43 low-risk Chinese patients. Comparative transcriptional profiling analysis revealed two functionally distinct patterns of gene dysregulation between the risk subtypes. Low-risk PTCs showed significant upregulation of immune-related genes and increased immune cell infiltration, whereas high-risk PTCs presented extensive alterations in gene expression and activation of oncogenic signaling pathways. Additionally, we developed a 31-gene transcriptomic signature (PTCrisk) for differentiating high-risk from low-risk PTCs, which was validated across both in-house and external multicenter cohorts. PTCrisk scores were positively correlated with key clinicopathological features, including tumor size, lymph node metastasis, TNM stage, and BRAF mutation status. Overall, our study provides further molecular insights into PTC risk stratification and may contribute to the development of personalized therapeutic strategies for PTC patients.
Collapse
Affiliation(s)
- Congcong Yan
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhouPR China
| | - Chen Zheng
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| | - Jiaxing Luo
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| | - Xue Wu
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| | - Xinyu Meng
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| | - Chaoyue Lv
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| | - Shurong Shen
- Department of Surgical OncologyWenzhou Central Hospital and Sixth People's Hospital of WenzhouWenzhouPR China
| | - Meng Zhou
- School of Biomedical EngineeringWenzhou Medical UniversityWenzhouPR China
| | - Ouchen Wang
- Department of Breast SurgeryThe First Affiliated Hospital of Wenzhou Medical UniversityWenzhouPR China
| |
Collapse
|
3
|
Zhang R, Chen Y, Xu S, Gu X, Ye H. Identification of GPX3 and JUN as Tumor Suppressors in Thyroid Cancer through Integrated WGCNA and Mendelian Randomization. J Cancer 2025; 16:1814-1831. [PMID: 40092686 PMCID: PMC11905407 DOI: 10.7150/jca.104687] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2024] [Accepted: 02/09/2025] [Indexed: 03/19/2025] Open
Abstract
Background: Thyroid cancer (TC) ranks among the most common malignancies globally, with an increasing incidence among younger populations. While papillary thyroid carcinoma (PTC) generally has a favorable prognosis, other forms of TC, such as anaplastic thyroid carcinoma (ATC), are associated with poor outcomes. Although specific mutations, such as BRAFV600E, have been identified in certain types of TC, the underlying mechanisms remain largely unclear. Therefore, there is a critical need to further explore therapeutic targets associated with malignant tumors to improve treatment outcomes. Method: We integrated eQTL data from European populations with RNA-Seq data from TC patients obtained from TCGA and multiple GEO databases. Through differential expression analysis, WGCNA, and Mendelian randomization (MR) analysis, we sought to identify potential gene therapy targets in TC. Additionally, we explored the biological behaviors of these targets using various cellular biology assays, such as MTT, colony formation, wound healing, and Transwell assays. Molecular biology techniques, including Western blot, were employed to investigate the underlying mechanisms. Result: Differential expression analysis across six GEO datasets identified 649 genes associated with TC. Subsequent WGCNA analysis of the GSE6339 dataset revealed 2,739 genes, and MR analysis further identified 189 genes. The intersection of these datasets highlighted four key genes: TIAM1, RAP1GAP, GPX3, and JUN. GO analysis linked these genes to "response to oxidative stress" and "regulation of GTPase activity". KEGG pathway analysis demonstrated significant enrichment in pathways including "Glutathione metabolism", "cAMP signaling pathway", "Rap1 signaling pathway", "Tight junction", and "Thyroid hormone synthesis". Further, single-gene GSEA analyses suggested distinct pathways through which each gene may influence TC progression. Immune profiling revealed marked differences in immune cell populations, notably CD8+ T cells, monocytic lineage cells, neutrophils, NK cells, and T cells, between normal and cancerous thyroid tissues. Notably, RAP1GAP, GPX3, and JUN were implicated in the regulation of Treg and follicular helper T cell functions. The differential expression of these genes was rigorously validated using TCGA dataset and six additional GEO datasets. While the tumor-suppressive roles of TIAM1 and RAP1GAP have been previously established, our findings reveal that the overexpression of GPX3 and JUN significantly impairs the proliferative and migratory capacities of TC cells, underscoring their potential as therapeutic targets. Conclusion: This study identifies GPX3 and JUN as critical tumor suppressor genes in TC, with their function closely linked to T regulatory cells and follicular helper T cells. The overexpression of GPX3 and JUN demonstrates significant tumor-suppressive activity, highlighting their potential as effective therapeutic targets in combating TC.
Collapse
Affiliation(s)
- Renjie Zhang
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Yutao Chen
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Sha Xu
- Department of Oncology, Guizhou Medical University Affiliated Cancer Hospital, Guiyang, China
| | - Xue Gu
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| | - Hui Ye
- Department of Thyroid Surgery, Affiliated Hospital of Guizhou Medical University, Guiyang, China
| |
Collapse
|
4
|
Lin B, Jiang X, Bhandari A, Chen Q, Pan Y. FAM20C Promotes Papillary Thyroid Cancer Proliferation and Metastasis via Epithelial-Mesenchymal Transition. Mol Carcinog 2025; 64:152-161. [PMID: 39436102 DOI: 10.1002/mc.23833] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 09/25/2024] [Accepted: 10/02/2024] [Indexed: 10/23/2024]
Abstract
Thyroid cancer (TC) is the prevailing malignancy that impacts the endocrine system, accounting for 1% of all recently diagnosed malignancies in humans. The incidence of TC has been continuously increasing, which can be attributed to advancements in clinical diagnostic technology. However, the mechanisms behind the development of TC are still not well understood. TC is classified into four pathological forms: medullary thyroid cancer, papillary thyroid cancer (PTC), follicular thyroid cancer, and poorly differentiated TC. PTC constitutes more than 80% of all TC cases globally. Current research indicates that complex genetic and cellular processes could be responsible for the growth and spread of TC. Next-generation sequencing (RNA-seq) of 79 PTC samples and their corresponding normal thyroid tissues was performed to investigate the molecular mechanisms of PTC. An analysis of RNA-seq data from a local cohort from The Cancer Genome Atlas (TCGA) revealed that, compared with normal tissues, PTC tissues presented elevated FAM20C expression levels. In vitro, the function of FAM20C was validated with small interfering RNA (siRNA). Gene set enrichment analysis (GSEA) revealed the pathways influenced by FAM20C. A western blot experiment was used to investigate protein expression levels associated with epithelial‒mesenchymal transition (EMT). In conclusion, by regulating EMT, FAM20C facilitates PTC cell proliferation and metastasis.
Collapse
Affiliation(s)
- Bangyi Lin
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | | | - Adheesh Bhandari
- Department of Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
- Department of General Surgery, Breast and Thyroid Unit, Primera Hospital, Kathmandu, Nepal
| | - Qi Chen
- Precision Medicine Center, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| | - Yin Pan
- Department of Surgical Oncology, Taizhou Central Hospital (Taizhou University Hospital), Taizhou, China
| |
Collapse
|
5
|
Abooshahab R, Zarkesh M, Sameni M, Akbarzadeh M, Skandari F, Hedayati M. Expression of TSPAN1 and its link to thyroid nodules: one step forward on the path to thyroid tumorigenesis biomarkers. BMC Cancer 2024; 24:1414. [PMID: 39548464 PMCID: PMC11568580 DOI: 10.1186/s12885-024-13176-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2024] [Accepted: 11/08/2024] [Indexed: 11/18/2024] Open
Abstract
BACKGROUND Thyroid cancer is ranked as the most common malignancy within the endocrine system and the seventh most prevalent cancer in women globally. Thyroid malignancies require evaluating biomarkers capable of distinguishing between them for accurate diagnosis. We examined both mRNA and protein levels of TSPAN1 in plasma and tissue samples from individuals with thyroid nodules to aid this endeavour. METHODS In this case-control study, TSPAN1 was assessed at both protein and mRNA levels in 90 subjects, including papillary thyroid cancer (PTC; N = 60), benign (N = 30), and healthy subjects (N = 26) using enzyme-linked immunosorbent assay (ELISA) and SYBR-Green Real-Time PCR, respectively. RESULTS TSPAN1 plasma levels were decreased in PTC and benign compared to healthy subjects (P = 0.002). TSPAN1 mRNA levels were also decremented in the tumoral compared to the paired normal tissues (P = 0.012); this drop was also observed in PTC patients compared to benign patients (P = 0.001). Further, TSPAN1 had an appropriate diagnostic value for detecting PTC patients from healthy plasma samples with a sensitivity of 76.7% and specificity of 65.4% at the cutoff value < 2.7 (ng/ml). CONCLUSION TSPAN1 levels are significantly reduced in patients with benign and PTC, demonstrating its potential value as a diagnostic biomarker. Additionally, the significant reduction in TSPAN1 mRNA expression within PTC tumor tissues may suggest its involvement in tumor progression and development. Further studies, including larger-scale validation studies and mechanistic investigations, are imperative to clarify the molecular mechanisms behind TSPAN1 and, ultimately, its clinical utility for treating thyroid disorders.
Collapse
MESH Headings
- Humans
- Tetraspanins/genetics
- Tetraspanins/metabolism
- Female
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Biomarkers, Tumor/blood
- Male
- Thyroid Neoplasms/genetics
- Thyroid Neoplasms/metabolism
- Thyroid Neoplasms/pathology
- Thyroid Neoplasms/diagnosis
- Thyroid Neoplasms/blood
- Thyroid Nodule/genetics
- Thyroid Nodule/metabolism
- Thyroid Nodule/pathology
- Case-Control Studies
- Middle Aged
- Adult
- RNA, Messenger/metabolism
- RNA, Messenger/genetics
- Thyroid Cancer, Papillary/genetics
- Thyroid Cancer, Papillary/metabolism
- Thyroid Cancer, Papillary/pathology
- Thyroid Cancer, Papillary/blood
- Thyroid Cancer, Papillary/diagnosis
- Carcinoma, Papillary/genetics
- Carcinoma, Papillary/metabolism
- Carcinoma, Papillary/pathology
Collapse
Affiliation(s)
- Raziyeh Abooshahab
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran
- Curtin Medical School, Curtin University, Bentley, 6102, Australia
| | - Maryam Zarkesh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| | - Marzieh Sameni
- Department of Medical Biotechnology, School of Advanced Technologies in Medicine, Shahid Beheshti University of Medical Sciences, Tehran, Iran
- Zhino-Gene Research Services Co, Tehran, Iran
| | - Mahdi Akbarzadeh
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran
| | - Fatemeh Skandari
- Department of Stem Cell and Regenerative Medicine Group, National Institute of Genetic Engineering and Biotechnology, Tehran, Iran
| | - Mehdi Hedayati
- Cellular and Molecular Endocrine Research Center, Research Institute for Endocrine Sciences, Shahid Beheshti University of Medical Sciences, PO Box: 19395-4763, Tehran, Iran.
| |
Collapse
|
6
|
Xie D, Huang L, Li C, Wu R, Zheng Z, Liu F, Cheng H. Identification of PANoptosis-related genes as prognostic indicators of thyroid cancer. Heliyon 2024; 10:e31707. [PMID: 38845990 PMCID: PMC11153176 DOI: 10.1016/j.heliyon.2024.e31707] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Revised: 04/24/2024] [Accepted: 05/21/2024] [Indexed: 06/09/2024] Open
Abstract
Background Thyroid cancer (THCA) has become a common malignancy in recent years, with the mortality rate steadily increasing. PANoptosis is a unique kind of programmed cell death (PCD), including pyroptosis, necroptosis, and apoptosis, and is involved in the proliferation and prognosis of numerous cancers. This paper demonstrated the connection between PANoptosis-related genes and THCA based on the analyses of Gene Expression Omnibus (GEO) and The Cancer Genome Atlas (TCGA) databases, which have not been evaluated yet. Methods We identified PANoptosis-related differentially expressed genes (PRDEGs) by multi-analyzing the TCGA-THCA and GEO datasets. To identify the significant PRDEGs, a prognostic model was constructed using least absolute shrinkage and selection operator regression (LASSO). The predictive values of the significant PRDEGs for THCA outcomes were determined using Cox regression analysis and nomograms. Gene enrichment analyses were performed. Finally, immunohistochemistry was carried out using the human protein atlas. Results A LASSO regression model based on nine PRDEGs was constructed, and the prognostic value of key PRDEGs was explored via risk score. Univariate and multivariate Cox regression were implemented to identify further three significant PRDEGs closely related to distant metastasis, lymph node metastasis, and tumor stage. Then, a nomogram was constructed, which presented high predictive accuracy for 5 years survival of THCA patients. Gene enrichment analyses in THCA were strongly associated with PCD pathways. CASP6 presented significantly differential expression during clinical T stage, N stage, and PFI events (P < 0.05 for all) and demonstrated the highest degree of diagnostic efficacy in PRDEGs (HR: 2.060, 95 % CI: 1.170-3.628, P < 0.05). Immunohistochemistry showed CASP6 was more abundant in THCA tumor tissue. Conclusion A potential prognostic role for PRDEGs in THCA was identified, providing a new direction for treatment. CASP6 may be a potential therapeutic target and a novel prognostic biomarker for THCA.
Collapse
Affiliation(s)
- Diya Xie
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Liyong Huang
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Cheng Li
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Ruozhen Wu
- Department of Gastrointestinal Surgery, First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Zhigang Zheng
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Fengmin Liu
- Department of Endocrinology, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| | - Huayong Cheng
- Department of General Surgery, First General Hospital of Fuzhou Affiliated of Fujian Medical University, Fuzhou, Fujian Province, China
| |
Collapse
|
7
|
Janiak MK, Kamiński G. Thyroid Cancer in Regions Most Contaminated after the Chernobyl Disaster. J Biomed Phys Eng 2024; 14:299-308. [PMID: 39027710 PMCID: PMC11252555 DOI: 10.31661/jbpe.v0i0.2402-1722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2024] [Accepted: 03/13/2024] [Indexed: 07/20/2024]
Abstract
Exposure to ionizing radiation, especially during childhood, is a well-established risk factor for thyroid cancer. Following the 1986 Chernobyl nuclear power plant accident the total number of cases of thyroid cancer registered between 1991 and 2015 in males and females who were less than 18 years old exceeded 19,000 (in Belarus and Ukraine, and in the most contaminated oblasts of the Russian Federation). However, as indicated by the United Nations Scientific Committee on the Effects of Atomic Radiation the fraction of the incidence of thyroid cancer attributable to radiation exposure among the non-evacuated residents of the contaminated regions of Belarus, Ukraine and Russia is of the order of 0.25. Apparently, the increased registration of thyroid neoplasms in the parts of these countries is a classical 'screening effect', i.e., massive diagnostic examinations of the risk-aware populations performed with modern eqipment resulting in detection of many occult neoplasms (incidentalomas). Moreover, one type of thyroid cancer previously called 'encapsulated follicular variant of papillary thyroid carcinoma' is non-invasive and instead of 'carcinoma' should now be recognized as 'noninvasive follicular thyroid neoplasm with papillary-like nuclear features.' Other potential causes of overdiagnosing of thyroid tumors include increase of the spontaneous incidence rate of this disease with age, iodine deficiency among children from Belarus, Russia and Ukraine, and/or consumption by these children of drinking water containing high levels of nitrates that likely coincides with the carcinogenic effect of radiation on the thyroid gland.
Collapse
Affiliation(s)
- Marek K Janiak
- Professor Emeritus, Former Head of the Department of Radiobiology and Radiation Protection, Military Institute of Hygiene and Epidemiology, Warsaw, Poland
| | - Grzegorz Kamiński
- Head of the Department of Endocrinology and Radioisotope Therapy, Military Institute of Medicine, Warsaw, Poland
| |
Collapse
|
8
|
Fu Z, Lai Y, Wang Q, Lin F, Fang J. LRG1 predicts the prognosis and is associated with immune infiltration in thyroid cancer: a bioinformatics study. Endocr Connect 2024; 13:e230418. [PMID: 37991216 PMCID: PMC10762566 DOI: 10.1530/ec-23-0418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/15/2023] [Accepted: 11/22/2023] [Indexed: 11/23/2023]
Abstract
Background The diagnostic and prognostic value of the leucine-rich alpha-2-glycoprotein 1 (LRG1) gene in thyroid cancer remains unclear. Using the Cancer Genome Atlas (TCGA) database, we conducted a bioinformatics analysis to determine the role of LRG1 in thyroid cancer. Methods Data from 512 patients with thyroid cancer and 59 normal individuals were collected from TCGA database. The Kruskal-Wallis test and logistic analysis were used to examine the relationship between LRG1 expression and clinicopathologic characteristics. Cox regression and Kaplan-Meier analysis were used to determine the predictive value of LRG1 on clinical outcomes. Single-sample gene set enrichment analysis (ssGSEA) was used to reveal associations between LRG1 expression and immune infiltration levels in thyroid cancer. Results LRG1 was highly expressed in thyroid cancer (P < 0.001) and could effectively distinguish tumor tissue (area under the curve = 0.875) from normal tissue. Moreover, LRG1 was significantly correlated with pathological N stage (odds ratio (OR) = 2.411 (1.659-3.505), P < 0.001). Kaplan-Meier survival analysis revealed that patients with high LRG1 expression had better overall survival (hazard ratio (HR) = 0.30, P = 0.038). Cox regression analysis indicated that pathological M stage was a risk factor for progression-free interval (HR = 5.964 (2.010-17.694), P < 0.001). Using ssGSEA, we found that LRG1 expression was positively correlated with the number of T helper 1 cells (R = 0.435, P < 0.001), dendritic cells (R = 0.442, P < 0.001), and macrophages (R = 0.459, P < 0.001). Conclusion LRG1 may be an important biomarker for predicting the prognosis of thyroid cancer and represent a suitable target for immunotherapy associated with immune infiltration.
Collapse
Affiliation(s)
- Zherui Fu
- Department of Emergency, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Yi Lai
- Department of Emergency, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Qianfei Wang
- Department of Emergency, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Feng Lin
- Department of Orthopedics, The First People's Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| | - Jiaping Fang
- Department of Emergency, The First People’s Hospital of Xiaoshan District, Xiaoshan Affiliated Hospital of Wenzhou Medical University, Hangzhou, Zhejiang, China
| |
Collapse
|
9
|
Kori M, Temiz K, Gov E. Network medicine approaches for identification of novel prognostic systems biomarkers and drug candidates for papillary thyroid carcinoma. J Cell Mol Med 2023; 27:4171-4180. [PMID: 37859510 PMCID: PMC10746936 DOI: 10.1111/jcmm.18002] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Revised: 09/21/2023] [Accepted: 10/07/2023] [Indexed: 10/21/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is one of the most common endocrine carcinomas worldwide and the aetiology of this cancer is still not well understood. Therefore, it remains important to understand the disease mechanism and find prognostic biomarkers and/or drug candidates for PTC. Compared with approaches based on single-gene assessment, network medicine analysis offers great promise to address this need. Accordingly, in the present study, we performed differential co-expressed network analysis using five transcriptome datasets in patients with PTC and healthy controls. Following meta-analysis of the transcriptome datasets, we uncovered common differentially expressed genes (DEGs) for PTC and, using these genes as proxies, found a highly clustered differentially expressed co-expressed module: a 'PTC-module'. Using independent data, we demonstrated the high prognostic capacity of the PTC-module and designated this module as a prognostic systems biomarker. In addition, using the nodes of the PTC-module, we performed drug repurposing and text mining analyzes to identify novel drug candidates for the disease. We performed molecular docking simulations, and identified: 4-demethoxydaunorubicin hydrochloride, AS605240, BRD-A60245366, ER 27319 maleate, sinensetin, and TWS119 as novel drug candidates whose efficacy was also confirmed by in silico analyzes. Consequently, we have highlighted here the need for differential co-expression analysis to gain a systems-level understanding of a complex disease, and we provide candidate prognostic systems biomarker and novel drugs for PTC.
Collapse
Affiliation(s)
- Medi Kori
- Faculty of Health SciencesAcibadem Mehmet Ali Aydinlar UniversityİstanbulTürkiye
- Department of BioengineeringMarmara UniversityİstanbulTürkiye
| | - Kubra Temiz
- Department of BioengineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTürkiye
| | - Esra Gov
- Department of BioengineeringAdana Alparslan Turkes Science and Technology UniversityAdanaTürkiye
| |
Collapse
|
10
|
Liu Y, Tong X, Hu W, Chen D. HDAC11: A novel target for improved cancer therapy. Biomed Pharmacother 2023; 166:115418. [PMID: 37659201 DOI: 10.1016/j.biopha.2023.115418] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 08/30/2023] [Indexed: 09/04/2023] Open
Abstract
Histone deacetylase 11 (HDAC11) is a unique member of the histone deacetylase family that plays an important role in the regulation of gene expression and protein function. In recent years, research on the role of HDAC11 in tumors has attracted increasing attention. This review summarizes the current knowledge on the subcellular localization, structure, expression, and functions of HDAC11 in tumors, as well as the regulatory mechanisms involved in its network, including ncRNA and substrates. Moreover, we focus on the progress made in targeting HDAC11 to overcome tumor therapy resistance, and the development of HDAC11 inhibitors for cancer treatment. Collectively, this review provides comprehensive insights into the potential clinical implications of HDAC11 for cancer therapy.
Collapse
Affiliation(s)
- Yan Liu
- First Department of Oncology, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Xuechao Tong
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China
| | - Weina Hu
- Department of General Practice, The Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| | - Da Chen
- Department of Emergency, the Fourth Affiliated Hospital of China Medical University, Shenyang 110032, Liaoning, China.
| |
Collapse
|
11
|
LIU R, LI M, HU Z, SONG Z, CHEN J. [Research Advances of RAD51AP1 in Tumor Progression and Drug Resistance]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2023; 26:701-708. [PMID: 37985156 PMCID: PMC10600754 DOI: 10.3779/j.issn.1009-3419.2023.102.34] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 08/10/2023] [Indexed: 11/22/2023]
Abstract
The genomic instability may lead to an initiation of cancer in many organisms. Homologous recombination repair (HRR) is vital in maintaining cellular genomic stability. RAD51 associated protein 1 (RAD51AP1), which plays a crucial role in HRR and primarily participates in forming D-loop, was reported as an essential protein for maintaining cellular genomic stability. However, recent studies showed that RAD51AP1 was significantly overexpressed in various cancer types and correlated with poor prognosis. These results suggested that RAD51AP1 may play a significant pro-cancer effect in multiple cancers. The underlying mechanism is still unclear. Cancer stemness-maintaining effects of RAD51AP1 might be considered as the most reliable mechanism. Meanwhile, RAD51AP1 also promoted resistance to radiation therapy and chemotherapy in many cancers. Thus, researches focused on RAD51AP1, and its regulatory molecules may provide new targets for overcoming cancer progression and treatment resistance. Here, we reviewed the latest research on RAD51AP1 in cancers and summarized its differential expression and prognostic implications. In this review, we also outlined the potential mechanisms of its pro-cancer and drug resistance-promoting effects to provide several potential directions for further research.
.
Collapse
|
12
|
Gugnoni M, Lorenzini E, Faria do Valle I, Remondini D, Castellani G, Torricelli F, Sauta E, Donati B, Ragazzi M, Ghini F, Piana S, Ciarrocchi A, Manzotti G. Adding pieces to the puzzle of differentiated-to-anaplastic thyroid cancer evolution: the oncogene E2F7. Cell Death Dis 2023; 14:99. [PMID: 36765037 PMCID: PMC9918458 DOI: 10.1038/s41419-023-05603-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Revised: 01/13/2023] [Accepted: 01/17/2023] [Indexed: 02/12/2023]
Abstract
Anaplastic Thyroid Cancer (ATC) is the most aggressive and de-differentiated subtype of thyroid cancer. Many studies hypothesized that ATC derives from Differentiated Thyroid Carcinoma (DTC) through a de-differentiation process triggered by specific molecular events still largely unknown. E2F7 is an atypical member of the E2F family. Known as cell cycle inhibitor and keeper of genomic stability, in specific contexts its function is oncogenic, guiding cancer progression. We performed a meta-analysis on 279 gene expression profiles, from 8 Gene Expression Omnibus patient samples datasets, to explore the causal relationship between DTC and ATC. We defined 3 specific gene signatures describing the evolution from normal thyroid tissue to DTC and ATC and validated them in a cohort of human surgically resected ATCs collected in our Institution. We identified E2F7 as a key player in the DTC-ATC transition and showed in vitro that its down-regulation reduced ATC cells' aggressiveness features. RNA-seq and ChIP-seq profiling allowed the identification of the E2F7 specific gene program, which is mainly related to cell cycle progression and DNA repair ability. Overall, this study identified a signature describing DTC de-differentiation toward ATC subtype and unveiled an E2F7-dependent transcriptional program supporting this process.
Collapse
Affiliation(s)
- Mila Gugnoni
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Eugenia Lorenzini
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | | | - Daniel Remondini
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Gastone Castellani
- Department of Physics and Astronomy, University of Bologna, Bologna, Italy
| | - Federica Torricelli
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Elisabetta Sauta
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
- Department of Electrical, Computer and Biomedical Engineering, University of Pavia, Pavia, Italy
| | - Benedetta Donati
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Moira Ragazzi
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Francesco Ghini
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Simonetta Piana
- Pathology Unit, Department of Oncology and Advanced Technologies, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy
| | - Alessia Ciarrocchi
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| | - Gloria Manzotti
- Laboratory of Translational Research, Azienda USL - IRCCS di Reggio Emilia, Reggio Emilia, Italy.
| |
Collapse
|
13
|
Tounsi-Guettiti H, Traina H, Ayed IB, Jemii NB, Boubaker S, Alrageeg M, Alqawi O. BRAF V600E and Novel Somatic Mutations in Thyroid Cancer of Libyan Patients. Asian Pac J Cancer Prev 2022; 23:4029-4037. [PMID: 36579983 PMCID: PMC9971446 DOI: 10.31557/apjcp.2022.23.12.4029] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2022] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Thyroid cancer (TC) is a common endocrine malignancy that frequently harbours the oncogenic V600E BRAF mutation. This mutation has received considerable attention in recent years for its potential utility in the risk stratification and management of TC. This study aims to investigate BRAF mutational status in thyroid cancer of Libyan patients and their association with clinicopathological factors. METHODS 44 thyroid tissue samples were analysed for mutations in exon 15 of the BRAF gene by performing polymerase chain reaction and Sanger sequencing. The results of BRAF mutation screening were correlated to clinical and pathological characteristics of the studied thyroid cancer patients. Statistical analyses were performed using SPSS. RESULTS The BRAF exon 15 mutations were detected in 19 (43.2%) of the thyroid cancer cases. The V600E was the most frequent one found in 15/44 (34.1%) cases. We also detected 6 other variants in 7 patients (15.9%), the S616F, the W619R and the T599S. Three mutations were associated with V600E, the L584I, the D587Y and the synonymous L597L. None of these mutations were reported previously in thyroid cancers. No statistical association was found between BRAF mutations and clinicopathological factors except with papillary thyroid cancer type (p= 0,032). CONCLUSIONS Novel BRAF mutations and V600E were frequently detected in thyroid cancer of Libyan patients; this suggests a potential role of these novel mutations in carcinogenesis and in anti-EGFR therapy resistance.
Collapse
Affiliation(s)
- Haifa Tounsi-Guettiti
- Department of Pathology-Oncogenetic Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia. ,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.,For Correspondence:
| | - Hanan Traina
- Department of Life Sciences, Academy of Graduate Studies, Misurata, Libya.
| | - Ines Ben Ayed
- Department of Pathology-Oncogenetic Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia.
| | - Nadia Ben Jemii
- Department of Pathology-Oncogenetic Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia.
| | - Samir Boubaker
- Department of Pathology-Oncogenetic Unit, Institut Pasteur de Tunis, 1002 Tunis, Tunisia. ,Faculty of Medicine of Tunis, University Tunis El Manar, Tunis, Tunisia.
| | - Musa Alrageeg
- Department of Surgical Oncology, Misurata Cancer Centre, Libya.
| | - Omar Alqawi
- Biotechnology Research Centre and Misurata Cancer Centre, Misurata, Libya.
| |
Collapse
|
14
|
Wang L, Yao B, Yang J, Tian Z, He J. Construction of a novel cuproptosis-related gene signature for predicting prognosis and estimating tumor immune microenvironment status in papillary thyroid carcinoma. BMC Cancer 2022; 22:1131. [PMID: 36333684 PMCID: PMC9635208 DOI: 10.1186/s12885-022-10175-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Accepted: 10/10/2022] [Indexed: 11/06/2022] Open
Abstract
BACKGROUND Cuproptosis, a new form of programmed cell death, has been recently reported to be closely related to tumor progression. However, the significance of cuproptosis-related genes (CRGs) in papillary thyroid carcinoma (PTC) is still unclear. Therefore, this study aimed to investigate the role of the CRG signature in prognosis prediction and immunotherapeutic effect estimation in patients with PTC. METHODS RNA-seq data and the corresponding clinical information of patients with PTC were obtained from the Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) databases. Comprehensive analyses, namely, consensus clustering, immune analyses, functional enrichment, least absolute shrinkage and selection operator-multivariate Cox regression, and nomogram analysis, were performed to identify new molecular subgroups, determine the tumor immune microenvironment (TIME) status of the identified subgroups, and construct a clinical model. Independent verification cohort data and quantitative real-time polymerase chain reaction (qPCR) was performed to validate the expression of specific prognosis-related and differentially expressed CRGs (P-DECRGs). RESULTS In the TCGA database, 476 patients with PTC who had complete clinical and follow-up information were included. Among 135 CRGs, 21 were identified as P-DECRGs. Two molecular subgroups with significantly different disease-free survival and TIME statuses were identified based on these 21 P-DECRGs. The differentially expressed genes between the two subgroups were mainly associated with immune regulation. The risk model and nomogram were constructed based on four specific P-DECRGs and validated as accurate prognostic predictions and TIME status estimation for PTC by TCGA and GEO verification cohorts. Finally, the qPCR results of 20 PTC and paracancerous thyroid tissues validated those in the TCGA database. CONCLUSIONS Four specific P-DECRGs in PTC were identified, and a clinical model based on them was established, which may be helpful for individualized immunotherapeutic strategies and prognostic prediction in patients with PTC.
Collapse
Affiliation(s)
- Lidong Wang
- grid.412467.20000 0004 1806 3501Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province China
| | - Baiyu Yao
- grid.412467.20000 0004 1806 3501Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province China
| | - Jiapeng Yang
- grid.412467.20000 0004 1806 3501Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province China
| | - Zhong Tian
- grid.412467.20000 0004 1806 3501Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province China
| | - Jingni He
- Department of General Surgery, Shengjing Hospital of China Medical University, Shenyang, Liaoning Province, China.
| |
Collapse
|
15
|
Shih ML, Lawal B, Cheng SY, Olugbodi JO, Babalghith AO, Ho CL, Cavalu S, Batiha GES, Albogami S, Alotaibi SS, Lee JC, Wu ATH. Large-scale transcriptomic analysis of coding and non-coding pathological biomarkers, associated with the tumor immune microenvironment of thyroid cancer and potential target therapy exploration. Front Cell Dev Biol 2022; 10:923503. [PMID: 35990603 PMCID: PMC9384576 DOI: 10.3389/fcell.2022.923503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2022] [Accepted: 06/30/2022] [Indexed: 12/11/2022] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most prevalent endocrine malignancy with a steadily increasing global incidence in recent decades. The pathogenesis of PTC is poorly understood, and the present diagnostic protocols are deficient. Thus, identifying novel prognostic biomarkers to improve our understanding of the mechanisms of pathogenesis, diagnosis, and designing therapeutic strategies for PTC is crucial. In this study, we integrated 27 PTC transcriptomic datasets and identified overlapping differentially expressed genes (DEGs) and differentially expressed microRNAs, collectively known as thyroid tumor-enriched proteins (TTEPs), and TTEmiRs, respectively. Our integrated bioinformatics analysis revealed that TTEPs were associated with tumor stages, poor surgical outcomes, distant metastasis, and worse prognoses in PTC cohorts. In addition, TTEPs were found to be associated with tumor immune infiltrating cells and immunosuppressive phenotypes of PTC. Enrichment analysis suggested the association of TTEPs with epithelial-to-mesenchymal transition (EMT), cell-matrix remodeling, and transcriptional dysregulation, while the TTEmiRs (miR-146b-5p and miR-21-5p) were associated with the modulation of the immune response, EMT, migration, cellular proliferation, and stemness. Molecular docking simulations were performed to evaluate binding affinities between TTEPs and antrocinnamomin, antcin, and antrocin, the bioactive compounds from one of the most reputable Taiwan indigenous medicinal plants (Antrodia camphorata). Our results revealed that antcin exhibited higher binding efficacies toward FN1, ETV5, and NRCAM, whereas antrocin demonstrated the least. Among the targets, fibronectin (FN1) demonstrated high ligandability potential for the compounds whereas NRCAM demonstrated the least. Collectively, our results hinted at the potential of antcin for targeting TTEPs. In conclusion, this comprehensive bioinformatics analysis strongly suggested that TTEPs and TTEmiRs could be used as potential diagnostic biomarker signatures and be exploited as potential targets for therapeutics development.
Collapse
Affiliation(s)
- Ming-Lang Shih
- Division of General Surgery, Department of Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Bashir Lawal
- PhD Program for Cancer Molecular Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University and Academia Sinica, Taipei, Taiwan
- Graduate Institute for Cancer Biology and Drug Discovery, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
| | - Sheng-Yao Cheng
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | | | - Ahmad O Babalghith
- Medical Genetics Department, Faculty of Medicine, Umm al-Qura Univeristy, Mecca, Saudi Arabia
| | - Ching-Liang Ho
- Division of Hematology and Oncology Medicine, Department of Internal Medicine, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Simona Cavalu
- Faculty of Medicine and Pharmacy, University of Oradea, Oradea, Romania
| | - Gaber El-Saber Batiha
- Department of Pharmacology and Therapeutics, Faculty of Veterinary Medicine, Damanhour University, Damanhour, Egypt
| | - Sarah Albogami
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Saqer S. Alotaibi
- Department of Biotechnology, College of Science, Taif University, Taif, Saudi Arabia
| | - Jih-Chin Lee
- Department of Otolaryngology-Head and Neck Surgery, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan
| | - Alexander T. H. Wu
- The PhD Program of Translational Medicine, College of Medical Science and Technology, Taipei Medical University, Taipei, Taiwan
- Clinical Research Center, Taipei Medical University Hospital, Taipei Medical University, Taipei, Taiwan
- TMU Research Center of Cancer Translational Medicine, Taipei Medical University, Taipei, Taiwan
- Graduate Institute of Medical Sciences, National Defense Medical Center, Taipei, Taiwan
| |
Collapse
|
16
|
Li R, Wu X, Zhao P, Xue K, Li J. A pan-cancer analysis identifies HDAC11 as an immunological and prognostic biomarker. FASEB J 2022; 36:e22326. [PMID: 35657209 DOI: 10.1096/fj.202101742rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Revised: 04/06/2022] [Accepted: 04/11/2022] [Indexed: 11/11/2022]
Abstract
Histone deacetylase 11 (HDAC11) is aberrantly expressed in many types of cancer, and such abnormalities are associated with tumor immunity and heterogeneous clinical outcomes. Here, we explore the prognostic value and immunological function of HDAC11 across 33 cancer types. We observe HDAC11 is aberrantly expressed in 25 cancer types and positively or negatively associated with prognosis in different cancers. HDAC11 played a protective prognostic role in KIRP, KIRC, LGG, PCPG, READ, and UVM, which was contrary to the conventional opinion that HDAC11 was an oncogenic gene. Moreover, HDAC11 is negatively associated with tumor immune components, most immune checkpoint genes, and key cytokine expression. HDAC11 is correlated with tumor mutational burden in 11 cancer types and with microsatellite instability in 9 cancer types, suggesting HDAC11 may affect a patient's response to immune checkpoint inhibitor (ICI) therapy. In addition, HDAC11 is negatively correlated with the drug sensitivity of oxaliplatin, carmustine, ifosfamide, imexon, lomustine, and BN-2629, indicating the potential synergy between HDAC11 inhibitors and these anti-tumor drugs. In vitro assays indicate that HDAC11 inhibitor SIS17 combined with oxaliplatin shows a synergistic cytotoxic role in K562 cells while SIS17 has an antagonistic effect on the cytotoxic role of oxaliplatin in 769P cells. HDAC11 is also associated with hallmark pathways, including epithelial mesenchymal transition, IL-6/JAK/STAT3, and allograft rejection pathways. Overall, we provide clues regarding the key role of HDAC11 in multiple cancers.
Collapse
Affiliation(s)
- Ran Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xiaolu Wu
- Department of Child Health Care, Women's Hospital of Nanjing Medical University (Nanjing Maternity and Child Health Care Hospital), Nanjing, China
| | - Ping Zhao
- Department of Biology, University of North Alabama, Florence, Alabama, USA
| | - Kai Xue
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine at Shanghai, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
17
|
Identification and Validation of a Prognostic Signature for Thyroid Cancer Based on Ferroptosis-Related Genes. Genes (Basel) 2022; 13:genes13060997. [PMID: 35741758 PMCID: PMC9222385 DOI: 10.3390/genes13060997] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2022] [Revised: 05/16/2022] [Accepted: 05/28/2022] [Indexed: 12/04/2022] Open
Abstract
Background: Thyroid cancer is the most common endocrine malignancy. Most PTC patients have a good prognosis; however, there are 5–20% of PTC patients with extra-thyroidal invasion, vascular invasion, or distant metastasis who have relatively poor prognoses. The aim of this study is to find new and feasible molecular pathological markers and therapeutic targets for early identification and appropriate management. Methods: The GEO and TCGA databases were used to gather gene expression data and clinical outcomes. Based on gene expression and clinical parameters, we developed a ferroptosis-related gene-based prognostic model and a nomogram. CCK-8, wound-healing, and transwell assays were conducted to explore the proliferation, migration, and invasion abilities of thyroid cancer cells. Results: We found 75 genes associated with ferroptosis that were differentially expressed between normal thyroid tissue and thyroid cancer tissues. The prognostic values of the 75 ferroptosis-related gene expressions were evaluated using the TCGA-THCA dataset, and five (AKR1C3, BID, FBXW7, GPX4, and MAP3K5) of them were of significance. Following that, we chose AKR1C3 as the subject for further investigation. By combining gene expression and clinical parameters, we developed a ferroptosis-related gene-based prognostic model with an area under the curve (AUC) of 0.816, and the nomogram also achieved good predictive efficacy for the three-year survival rate of thyroid cancer patients. Knocking down AKR1C3 enhances thyroid cancer cell proliferation, invasion, and migration abilities. Conclusions: A ferroptosis-related gene-based prognostic model was constructed that provided unique insights into THCA prognosis prediction. In addition, AKR1C3 was found to be a progression promoter in thyroid cancer cell lines.
Collapse
|
18
|
Calcaterra V, Mameli C, Rossi V, Massini G, Gambino M, Baldassarre P, Zuccotti G. The Iodine Rush: Over- or Under-Iodination Risk in the Prophylactic Use of Iodine for Thyroid Blocking in the Event of a Nuclear Disaster. Front Endocrinol (Lausanne) 2022; 13:901620. [PMID: 35692388 PMCID: PMC9178126 DOI: 10.3389/fendo.2022.901620] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/22/2022] [Accepted: 04/22/2022] [Indexed: 11/13/2022] Open
Abstract
Iodine is an essential element for the production of thyroid hormones (THs). Both deficient and excess iodine intakes may precipitate in adverse thyroidal events. Radioactive iodine (RI) is a common byproduct of nuclear fission processes. During nuclear emergencies RI may be released in a plume, or cloud, contaminating the environment. If inhaled or ingested, it may lead to internal radiation exposure and the uptake of RI mainly by the thyroid gland that absorbs stable iodine (SI) and RI in the same way. A dose of radiation delivered to the thyroid gland is a main risk factor for the thyroid cancer development. The SI prophylaxis helps prevent childhood thyroid cancer. The thyroid gland saturation with prophylactic SI ingestion, reduces the internal exposure of the thyroid by blocking the uptake of RI and inhibiting iodide organification. However, negative impact of inadequate SI intake must be considered. We provide an overview on the recommended iodine intake and the impact of SI and RI on thyroid in children and adolescents, discussing the benefits and adverse effects of the prophylactic SI for thyroid blocking during a nuclear accident. The use of SI for protection against RI may be recommended in cases of radiological or nuclear emergencies, moreover the administration of iodine for prophylactic purposes should be cautious. Benefits and risks should also be considered according to age. Adverse effects from iodine administration cannot be excluded. Precise indications are mandatory to use the iodine for thyroid blocking. Due to this natural adaption mechanism it's possible to tolerate large doses of iodine without clinical effects, however, a prolonged assumption of the iodine when not needed can be dangerous and may precipitate in severe thyroidal and non-thyroidal negative effects.
Collapse
Affiliation(s)
- Valeria Calcaterra
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Pediatric and Adolescent Unit, Department of Internal Medicine, University of Pavia, Pavia, Italy
- *Correspondence: Valeria Calcaterra,
| | - Chiara Mameli
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| | - Virginia Rossi
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Giulia Massini
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Mirko Gambino
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Paola Baldassarre
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
| | - Gianvincenzo Zuccotti
- Pediatric Department, “Vittore Buzzi” Children’s Hospital, Milan, Italy
- Department of Biomedical and Clinical Sciences “L. Sacco”, University of Milan, Milan, Italy
| |
Collapse
|
19
|
Xu S, Cheng X, Wu J, Wang Y, Wang X, Wu L, Yu H, Bao J, Zhang L. Capsaicin restores sodium iodine symporter-mediated radioiodine uptake through bypassing canonical TSH‒TSHR pathway in anaplastic thyroid carcinoma cells. J Mol Cell Biol 2021; 13:791-807. [PMID: 34751390 PMCID: PMC8782610 DOI: 10.1093/jmcb/mjab072] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2021] [Accepted: 09/21/2021] [Indexed: 11/14/2022] Open
Abstract
Anaplastic thyroid cancer (ATC) is a rare but highly lethal disease. ATCs are resistant to standard therapies and are extremely difficult to manage. The stepwise cell dedifferentiation results in the impairment of the iodine-metabolizing machinery and the infeasibility of radioiodine treatment in ATC. Hence, re-inducing iodine-metabolizing gene expression to restore radioiodine avidity is considered as a promising strategy to fight against ATC. In the present study, capsaicin (CAP), a natural potent transient receptor potential vanilloid type 1 (TRPV1) agonist, was discovered to re-induce ATC cell differentiation and to increase the expression of thyroid transcription factors (TTFs including TTF-1, TTF-2, and PAX8) and iodine-metabolizing proteins, including thyroid stimulating hormone receptor (TSHR), thyroid peroxidase, and sodium iodine symporter (NIS), in two ATC cell lines, 8505C and FRO. Strikingly, CAP treatment promoted NIS glycosylation and its membrane trafficking, resulting in a significant enhancement of radioiodine uptake of ATC cells in vitro. Mechanistically, CAP activated TRPV1 channel and subsequently triggered Ca2+ influx, cyclic adenosine monophosphate (cAMP) generation, and cAMP responsive element binding protein (CREB) signal activation. Next, CREB recognized and bound to the promoter of SLC5A5 to facilitate its transcription. Moreover, the TRPV1 antagonist CPZ, the calcium chelator BAPTA, and the PKA inhibitor H-89 effectively alleviated the re-differentiation exerted by CAP, demonstrating that CAP might improve radioiodine avidity through the activation of the TRPV1‒Ca2+/cAMP/PKA/CREB signaling pathway. In addition, our study indicated that CAP might trigger a novel cascade to re-differentiate ATC cells and provide unprecedented opportunities for radioiodine therapy in ATC, bypassing canonical TSH‒TSHR pathway.
Collapse
Affiliation(s)
- Shichen Xu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Xian Cheng
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jing Wu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Yunping Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Xiaowen Wang
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Liying Wu
- School of Food Science and Technology, Jiangnan University, Wuxi, 214122 China
| | - Huixin Yu
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Jiandong Bao
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China
| | - Li Zhang
- NHC Key Laboratory of Nuclear Medicine, Jiangsu Key Laboratory of Molecular Nuclear Medicine, Jiangsu Institute of Nuclear Medicine, Wuxi, 214063 China.,Department of Radiopharmaceuticals, School of Pharmacy, Nanjing Medical University, Nanjing, 211166 China.,School of Life Science and Technology, Southeast University, Nanjing, 210096 China
| |
Collapse
|
20
|
Secreted Factors by Anaplastic Thyroid Cancer Cells Induce Tumor-Promoting M2-like Macrophage Polarization through a TIM3-Dependent Mechanism. Cancers (Basel) 2021; 13:cancers13194821. [PMID: 34638305 PMCID: PMC8507981 DOI: 10.3390/cancers13194821] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 02/08/2023] Open
Abstract
Simple Summary Among the different types of thyroid cancer, anaplastic thyroid cancer (ATC) is one of the most aggressive tumors. Characterized for its undifferentiated cells, it spreads quickly to distant organs and does not respond well to standardized therapy. Therefore, there is a critical need to identify new targets that can be translated into therapeutic approaches. ATCs are heavily infiltrated by Tumor-Associated Macrophages (TAMs), and its infiltration density is associated with decreased survival. However, the functional role of TAMs in ATC is still unclear. Our results provide valuable insights into the processes in which soluble factors produced by ATC cells induce M2-like polarization of human monocytes through T cell immunoglobulin and mucin-domain containing protein-3 (TIM3). TIM3 in TAMs should now be further evaluated as a possible potential novel target for treating ATC. Abstract Anaplastic thyroid cancer (ATC) is a highly aggressive type of thyroid cancer (TC). Currently, no effective target treatments are available that can improve overall survival, with ATC representing a major clinical challenge because of its remarkable lethality. Tumor-associated macrophages (TAMs) are the most evident cells in ATCs, and their high density is correlated with a poor prognosis. However, the mechanisms of how TAMs promote ATC progression remain poorly characterized. Here, we demonstrated that the treatment of human monocytes (THP-1 cells) with ATC cell-derived conditioned media (CM) promoted macrophage polarization, showing high levels of M2 markers. Furthermore, we found that STAT3 was activated, and this was correlated with an increased expression and secretion of the inflammatory cytokine interleukin-6. Remarkably, the M2-like macrophages obtained revealed tumor-promoting activity. A cytokine array analysis demonstrated that M2-like macrophage-derived CM contained high levels of TIM3, which is an important immune regulatory molecule. Consistently, TIM3 expression was up-regulated in THP-1 cells cultured with ATC cell-derived CM. Moreover, TIM3 blockade significantly reversed the polarization of THP-1 cells induced by ATC cell-secreted soluble factors. We validated the clinical significance of the TIM3 in human TC by analyzing public datasets and found that the expression of TIM3 and its ligand galectin 9 was significantly higher in human TC tissue samples than in normal thyroid tissues. Taken together, our findings identified a new mechanism by which TIM3 induces tumor-promoting M2-like macrophage polarization in TC. Furthermore, TIM3 interference might be a potential tool for treatment of patients with ATC.
Collapse
|
21
|
Park KS, Kim SH, Oh JH, Kim SY. Highly accurate diagnosis of papillary thyroid carcinomas based on personalized pathways coupled with machine learning. Brief Bioinform 2021; 22:bbaa336. [PMID: 33341874 PMCID: PMC8599295 DOI: 10.1093/bib/bbaa336] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 10/25/2020] [Accepted: 10/26/2020] [Indexed: 01/27/2023] Open
Abstract
Thyroid nodules are neoplasms commonly found among adults, with papillary thyroid carcinoma (PTC) being the most prevalent malignancy. However, current diagnostic methods often subject patients to unnecessary surgical burden. In this study, we developed and validated an automated, highly accurate multi-study-derived diagnostic model for PTCs using personalized biological pathways coupled with a sophisticated machine learning algorithm. Surprisingly, the algorithm achieved near-perfect performance in discriminating PTCs from non-tumoral thyroid samples with an overall cross-study-validated area under the receiver operating characteristic curve (AUROC) of 0.999 (95% confidence interval [CI]: 0.995-1) and a Brier score of 0.013 on three independent development cohorts. In addition, the algorithm showed excellent generalizability and transferability on two large-scale external blind PTC cohorts consisting of The Cancer Genome Atlas (TCGA), which is the largest genomic PTC cohort studied to date, and the post-Chernobyl cohort, which includes PTCs reported after exposure to radiation from the Chernobyl accident. When applied to the TCGA cohort, the model yielded an AUROC of 0.969 (95% CI: 0.950-0.987) and a Brier score of 0.109. On the post-Chernobyl cohort, it yielded an AUROC of 0.962 (95% CI: 0.918-1) and a Brier score of 0.073. This algorithm also is robust against other various types of clinical scenarios, discriminating malignant from benign lesions as well as clinically aggressive thyroid cancer with poor prognosis from indolent ones. Furthermore, we discovered novel pathway alterations and prognostic signatures for PTC, which can provide directions for follow-up studies.
Collapse
Affiliation(s)
| | | | - Jung Hun Oh
- Department of Medical Physics at Memorial Sloan Kettering Cancer Center, USA
| | | |
Collapse
|
22
|
Lee SA, Choi JH, Cho SJ, Chang JW, Maeng YH. The clinical usefulness of chemokine C-X-C Motif Ligand 12 as a diagnostic marker for Papillary Thyroid Carcinoma. INDIAN J PATHOL MICR 2021; 63:544-550. [PMID: 33154303 DOI: 10.4103/ijpm.ijpm_722_19] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) is the most common type of thyroid cancer worldwide. It is essential to develop methods for the accurate diagnosis of PTC to avoid unnecessary surgery. The chemokine C-X-C motif ligand 12 (CXCL12) is associated with various cancers. We aimed to investigate the efficacy of CXCL12 in the diagnosis of PTC in fine-needle aspiration (FNA) specimens. Methods We prospectively collected samples from 58 patients who were scheduled for surgical treatment of PTC from 2013 to 2015. Tissue samples of 31 people with benign thyroid conditions were used as controls. Immunocytochemical and immunohistochemical staining for CXCL12 was performed on FNAs and corresponding tissue specimens. B-type Raf kinase (BRAF) V600E mutant protein expression and gene mutation were also analyzed to compare the clinical usefulness. Results : The mean age of the patients was 49.1 ± 1.4 years and 88.1% were women. Positive CXCL12 staining was observed in 6.5% of benign and in 98.3% of PTC samples; positive BRAF V600E mutant protein expression was found in 19.4% of benign and 93.1% of PTC samples. For the diagnosis of PTC for CXCL12 staining of FNA specimens, the calculated values were 93.1% sensitivity, 90.3% specificity, 94.7% positive predictive value, 87.5% negative predictive value, and 89.1% accuracy. CXCL12 had 100% sensitivity and specificity for the 12 cases of atypia of undetermined significance (AUS) diagnosed in FNA specimens. Conclusions CXCL12 may be a useful diagnostic tool for PTC, especially when the FNA specimen is classified as AUS.
Collapse
Affiliation(s)
- Sang Ah Lee
- Department of Internal Medicine, Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| | - Jae Hyuck Choi
- Department of Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| | - Suk Ju Cho
- Department of Anethesiology, Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| | - Jee Won Chang
- Department of Thoracic and Cardiovascular Surgery, Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| | - Young Hee Maeng
- Department of Pathology Jeju National University Hospital, Jeju National University School of Medicine, Jeju City, Republic of Korea
| |
Collapse
|
23
|
Rogounovitch TI, Mankovskaya SV, Fridman MV, Leonova TA, Kondratovitch VA, Konoplya NE, Yamashita S, Mitsutake N, Saenko VA. Major Oncogenic Drivers and Their Clinicopathological Correlations in Sporadic Childhood Papillary Thyroid Carcinoma in Belarus. Cancers (Basel) 2021; 13:3374. [PMID: 34282777 PMCID: PMC8268670 DOI: 10.3390/cancers13133374] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/02/2021] [Accepted: 07/02/2021] [Indexed: 11/16/2022] Open
Abstract
Childhood papillary thyroid carcinoma (PTC) diagnosed after the Chernobyl accident in Belarus displayed a high frequency of gene rearrangements and low frequency of point mutations. Since 2001, only sporadic thyroid cancer occurs in children aged up to 14 years but its molecular characteristics have not been reported. Here, we determine the major oncogenic events in PTC from non-exposed Belarusian children and assess their clinicopathological correlations. Among the 34 tumors, 23 (67.6%) harbored one of the mutually exclusive oncogenes: 5 (14.7%) BRAFV600E, 4 (11.8%) RET/PTC1, 6 (17.6%) RET/PTC3, 2 (5.9%) rare fusion genes, and 6 (17.6%) ETV6ex4/NTRK3. No mutations in codons 12, 13, and 61 of K-, N- and H-RAS, BRAFK601E, or ETV6ex5/NTRK3 or AKAP9/BRAF were detected. Fusion genes were significantly more frequent than BRAFV600E (p = 0.002). Clinicopathologically, RET/PTC3 was associated with solid growth pattern and higher tumor aggressiveness, BRAFV600E and RET/PTC1 with classic papillary morphology and mild clinical phenotype, and ETV6ex4/NTRK3 with follicular-patterned PTC and reduced aggressiveness. The spectrum of driver mutations in sporadic childhood PTC in Belarus largely parallels that in Chernobyl PTC, yet the frequencies of some oncogenes may likely differ from those in the early-onset Chernobyl PTC; clinicopathological features correlate with the oncogene type.
Collapse
Affiliation(s)
- Tatiana I. Rogounovitch
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
| | - Svetlana V. Mankovskaya
- Institute of Physiology of the National Academy of Sciences of Belarus, 220072 Minsk, Belarus;
| | - Mikhail V. Fridman
- Republican Centre for Thyroid Tumors, Department of Pathology, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | - Tatiana A. Leonova
- Counseling-Diagnostic Department of Thyroid Diseases, Minsk City Clinical Oncologic Dispensary, 220013 Minsk, Belarus;
| | | | - Natalya E. Konoplya
- N.N.Alexandrov National Cancer Centre of Belarus, Department of Chemotherapy, 223040 Minsk, Belarus;
| | - Shunichi Yamashita
- Radiation Medical Science Center, Fukushima Medical University, Fukushima 960-1295, Japan;
- Center for Advanced Radiation Emergency Medicine, National Institutes for Quantum and Radiological Science and Technology, Chiba 263-8555, Japan
| | - Norisato Mitsutake
- Department of Radiation Medical Sciences, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan; (T.I.R.); (N.M.)
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| | - Vladimir A. Saenko
- Department of Radiation Molecular Epidemiology, Atomic Bomb Disease Institute, Nagasaki University, Nagasaki 852-8523, Japan
| |
Collapse
|
24
|
Jin Y, Liu B, Younis MH, Huang G, Liu J, Cai W, Wei W. Next-Generation Molecular Imaging of Thyroid Cancer. Cancers (Basel) 2021; 13:3188. [PMID: 34202358 PMCID: PMC8268517 DOI: 10.3390/cancers13133188] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/20/2021] [Accepted: 06/22/2021] [Indexed: 12/15/2022] Open
Abstract
An essential aspect of thyroid cancer (TC) management is personalized and precision medicine. Functional imaging of TC with radioiodine and [18F]FDG has been frequently used in disease evaluation for several decades now. Recently, advances in molecular imaging have led to the development of novel tracers based on aptamer, peptide, antibody, nanobody, antibody fragment, and nanoparticle platforms. The emerging targets-including HER2, CD54, SHP2, CD33, and more-are promising targets for clinical translation soon. The significance of these tracers may be realized by outlining the way they support the management of TC. The provided examples focus on where preclinical investigations can be translated. Furthermore, advances in the molecular imaging of TC may inspire the development of novel therapeutic or theranostic tracers. In this review, we summarize TC-targeting probes which include transporter-based and immuno-based imaging moieties. We summarize the most recent evidence in this field and outline how these emerging strategies may potentially optimize clinical practice.
Collapse
Affiliation(s)
- Yuchen Jin
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
- Department of Nuclear Medicine, Shanghai Sixth People’s Hospital Affiliated to Shanghai Jiao Tong University, Shanghai 200233, China
- Human Oncology and Pathogenesis Program, Memorial Sloan-Kettering Cancer Center, New York, NY 10065, USA
| | - Beibei Liu
- Institute of Diagnostic and Interventional Radiology, Shanghai Sixth People’s Hospital Affiliatede to Shanghai Jiao Tong University, Shanghai 200233, China;
| | - Muhsin H. Younis
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
| | - Gang Huang
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Jianjun Liu
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| | - Weibo Cai
- Departments of Radiology and Medical Physics, University of Wisconsin–Madison, Madison, WI 53705-2275, USA;
- Carbone Cancer Center, University of Wisconsin, Madison, WI 53705, USA
| | - Weijun Wei
- Department of Nuclear Medicine, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, 1630 Dongfang Rd., Shanghai 200127, China; (Y.J.); (G.H.); (J.L.)
| |
Collapse
|
25
|
Guo R, Ning Y, Ma Y, Lin Q, Shen N, Shi P. Long non-coding RNA HOTAIR/microRNA-761 sponge regulates PPME1 and further influences cell biological functions in thyroid carcinoma. Laryngoscope Investig Otolaryngol 2021; 6:438-445. [PMID: 34195365 PMCID: PMC8223458 DOI: 10.1002/lio2.593] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 05/14/2021] [Accepted: 05/17/2021] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Most well-differentiated thyroid carcinomas display good therapeutic outcomes, but there are still some patients who are not sensitive to the general treatments lose their treatment opportunities. Thus, it is important to understand the molecular mechanisms that cause thyroid carcinoma, so as to find effective diagnostic and therapeutic targets. AIM OF THE STUDY To explore the role of homeobox transcript antisense RNA (HOTAIR) in thyroid carcinoma through protein phosphatase methylesterase 1 (PPME1) by sponging microRNA 761 (miR-761). METHODS The regulation network amongst HOTAIR, miR-761 and PPME1 was predicted by online sources. RT-PCR was conducted to evaluate the expression of HOTAIR and miR-761 in tumor tissues. Clinical data was collected and analyzed by Chi-square test. Cell apoptosis and proliferation was evaluated using three types of cancer cells (HTh-7, CAL-62, BCPAP) after treated with si-HOTAIR and miR-761inhibitor. The binding site among HOTAIR, miR-761 and PPME1 was verified by dual luciferase reporter assay. PPME1 expression was measured after HOTAIR and miR-761 were suppressed by western blot. Survival time was measured in nude mice using log-rank test. RESULTS HOTAIR was expressed to a significantly greater extent than miR-761 in thyroid tumor tissues (P < .001). miR-761 and PPME1 were negatively correlated (coef = -1.91, P < .001). HOTAIR competitively binds to miR-761 and miR-761 directly targets PPME1. HOTAIR was highly correlated with TNM (χ 2 = 5.797, P = .016), tumor size (χ 2 = 7.955, P = .005) and lymphatic metastasis (χ 2 = 6.0, P = .014). HOTAIR promoted cell proliferation and inhibited cell apoptosis, whereas miR-761 did not. HOTAIR elevated and miR-761 suppressed PPME1 expression. HOTAIR expression appears to affect the survival time in vivo. CONCLUSION HOTAIR regulated thyroid cancer cells by binding to miR-761 through PPME1.
Collapse
Affiliation(s)
- Runsheng Guo
- Department of General SurgeryJiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Yong Ning
- Department of General SurgeryJiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Ye Ma
- Department of General SurgeryJiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Qianhuang Lin
- Department of General SurgeryJiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| | - Na Shen
- Department of Otolaryngology, Zhongshan HospitalFudan UniversityShanghaiChina
| | - Peidong Shi
- Department of General SurgeryJiading District Central Hospital Affiliated to Shanghai University of Medicine & Health SciencesShanghaiChina
| |
Collapse
|
26
|
Geng H, Guo M, Xu W, Zang X, Wu T, Teng F, Wang Y, Liu X, Wang X, Sun Q, Liang J. SHCBP1 Promotes Papillary Thyroid Carcinoma Carcinogenesis and Progression Through Promoting Formation of Integrin and Collagen and Maintaining Cell Stemness. Front Endocrinol (Lausanne) 2021; 11:613879. [PMID: 33716952 PMCID: PMC7953042 DOI: 10.3389/fendo.2020.613879] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Accepted: 12/31/2020] [Indexed: 01/08/2023] Open
Abstract
Papillary thyroid carcinoma (PTC) is the most common thyroid cancer with a rapidly increasing incidence globally. Bioinformatics analyses suggested that SHCBP1 (SHC SH2 Domain-Binding Protein 1) was significantly up-regulated in PTC tumor tissues, which was further confirmed by immunohistochemical staining and qPCR analyses in Xuzhou cohort. Moreover, the results indicated that the mRNA level of SHCBP1 was negatively associated with patients' disease-free survival rate, and further analysis reveals that patients with high SHCBP1 expression tend to have more lymph node metastasis. Afterward, MTT, colony formation, cell-cycle assay, FACS apoptosis assay, invasion, migration, as well as scratch assay were performed to study the phenotypes change of PTC cells after knocking down SHCBP1. The in vivo subcutaneous tumor model was developed to study the proliferation ability of PTC cells after SHCBP1 knockdown. We show that knock down of SHCBP1 significantly inhibits PTC cell proliferation, cell cycle, invasion and migration in vivo and in vitro. Western blot and qRT-PCR showed that knockdown of SHCBP1 could significantly reduce MYC, KLF4, CD44, ITGA6, ITGB1, ITGB5, and COL4A2 expression at both RNA and protein levels, which indicated that SHCBP1 might be involved in PTC carcinogenesis and progression through targeting formation of integrin and collagen and cell stemness pathways, and can be a potential diagnosis biomarker and therapeutic target for PTC.
Collapse
Affiliation(s)
- Houfa Geng
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Mengzhe Guo
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
| | - Wei Xu
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xiu Zang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Tingting Wu
- Jiangsu Key Laboratory of New Drug Research and Clinical Pharmacy, Xuzhou Medical University, Xuzhou, China
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Fei Teng
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Yu Wang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xuekui Liu
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Xiuli Wang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
| | - Qiang Sun
- Cancer Institute, Xuzhou Medical University, Xuzhou, China
| | - Jun Liang
- Department of Endocrinology, Affiliated Hospital of Medical College of Southeast University and Xuzhou Central Hospital, Xuzhou, China
- Xuzhou Clinical School, Xuzhou Medical University, Xuzhou, China
- Xuzhou Clinical School, Nanjing Medical University, Xuzhou, China
- Xuzhou Institute of Medical Science, Postgraduate Workstation of Soochow University, Xuzhou, China
| |
Collapse
|
27
|
Han Y, Huang L, Zhou F. A dynamic recursive feature elimination framework (dRFE) to further refine a set of OMIC biomarkers. Bioinformatics 2021; 37:2183-2189. [PMID: 33515240 DOI: 10.1093/bioinformatics/btab055] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2020] [Revised: 12/23/2020] [Accepted: 01/25/2021] [Indexed: 11/14/2022] Open
Abstract
MOTIVATION A feature selection algorithm may select the subset of features with the best associations with the class labels. The recursive feature elimination (RFE) is a heuristic feature screening framework and has been widely used to select the biological OMIC biomarkers. This study proposed a dynamic recursive feature elimination (dRFE) framework with more flexible feature elimination operations. The proposed dRFE was comprehensively compared with 11 existing feature selection algorithms and five classifiers on the eight difficult transcriptome datasets from a previous study, the ten newly collected transcriptome datasets and the five methylome datasets. RESULTS The experimental data suggested that the regular RFE framework did not perform well, and dRFE outperformed the existing feature selection algorithms in most cases. The dRFE-detected features achieved Acc=1.0000 for the two methylome datasets GSE53045 and GSE66695. The best prediction accuracies of the dRFE-detected features were 0.9259, 0.9424, and 0.8601 for the other three methylome datasets GSE74845, GSE103186, and GSE80970, respectively. Four transcriptome datasets received Acc=1.0000 using the dRFE-detected features, and the prediction accuracies for the other six newly collected transcriptome datasets were between 0.6301 and 0.9917. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Yuanyuan Han
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Lan Huang
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| | - Fengfeng Zhou
- College of Computer Science and Technology, and Key Laboratory of Symbolic Computation and Knowledge Engineering of Ministry of Education, Jilin University, Changchun, Jilin, China, 130012
| |
Collapse
|
28
|
Yang Z, Wei X, Pan Y, Xu J, Si Y, Min Z, Yu B. A new risk factor indicator for papillary thyroid cancer based on immune infiltration. Cell Death Dis 2021; 12:51. [PMID: 33414407 PMCID: PMC7791058 DOI: 10.1038/s41419-020-03294-z] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 11/24/2020] [Accepted: 11/27/2020] [Indexed: 12/12/2022]
Abstract
Increasing evidence has indicated a close association between immune infiltration in cancer and clinical outcomes. However, related research in thyroid cancer is still deficient. Our research comprehensively investigated the immune infiltration of thyroid cancer. Data derived from TCGA and GEO databases were analyzed by the CIBERSORT, ESTIMATE, and EPIC algorithms. The CIBERSORT algorithm calculates the proportions of 22 types of immune cells. ESTIMATE algorithm calculates a stromal score to represent all stromal cells in cancer. The EPIC algorithm calculates the proportions of cancer-associated fibroblasts (CAFs) and endothelial cells (ECs), which are the main components of stromal cells. We analyzed the correlation of immune infiltration with clinical characteristics and outcomes of patients. We determined that the infiltration of CD8+ T cells improved the survival of thyroid cancer patients. Overexpression of immune checkpoints was closely related to the development of thyroid cancer. In general, stromal cells were associated with the progression of thyroid cancer. Interestingly, CAFs and ECs had opposite roles in this process. In addition, the BRAFV600E mutation was related to the upregulation of immune checkpoints and CAFs and the downregulation of CD8+ T cells and ECs. Finally, we constructed an immune risk score model to predict the prognosis and development of thyroid cancer. Our research demonstrated a comprehensive panorama of immune infiltration in thyroid cancer, which may provide potential value for immunotherapy.
Collapse
Affiliation(s)
- Zhou Yang
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China
| | - Xiyi Wei
- First Clinical Medical College of Nanjing Medical University, 210009, Nanjing, Jiangsu, China
| | - Yitong Pan
- Department of Bioinformatics, School of Biomedical Engineering and Informatics, Nanjing Medical University, 211116, Nanjing, Jiangsu, China
| | - Jingyuan Xu
- Department of Gastroenterology, The Second Affiliated Hospital of Xi'an Jiaotong University, 710004, Xi'an, China
| | - Yan Si
- First Clinical Medical College of Nanjing Medical University, 210009, Nanjing, Jiangsu, China.
| | - Zhijun Min
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China.
| | - Bo Yu
- Department of General Surgery, Shanghai Key Laboratory of Vascular Lesions Regulation and Remodeling, Shanghai Pudong Hospital, Fudan University Pudong Medical Center, 201399, Shanghai, China. .,Department of Vascular Surgery, Huashan Hospital, Fudan University, 200040, Shanghai, China.
| |
Collapse
|
29
|
Dong X, Song J, Hu J, Zheng C, Zhang X, Liu H. T-Box Transcription Factor 22 Is an Immune Microenvironment-Related Biomarker Associated With the BRAF V600E Mutation in Papillary Thyroid Carcinoma. Front Cell Dev Biol 2020; 8:590898. [PMID: 33392186 PMCID: PMC7773934 DOI: 10.3389/fcell.2020.590898] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Accepted: 11/24/2020] [Indexed: 01/21/2023] Open
Abstract
Papillary thyroid cancer (PTC) is the most common malignant disease in endocrine systems. T-box transcription factor 22 (TBX22) is a phylogenetically conserved family member that has not been widely characterized in cancers. In this study, we explored the potential clinical significance and biological functions of TBX22 in PTC. Comprehensive analyses of TBX22 were based on the public databases and our local qRT-PCR cohort. We observed that TBX22 was significantly downregulated in PTC compared with normal tissues. TBX22 was associated with several clinicopathological factors in PTC. Low TBX22 expression correlated with BRAF V600E and TERT mutation. Functional enrichment analysis revealed that cancer-related pathways and immune progress were closely associated with TBX22 in PTC. In TBX22-low PTC, high immune infiltration levels with increased CD8+ T cells, natural killer, M1 macrophages, and T-regulatory cells were observed. TBX22 was negatively correlated with the activity of different steps of the anticancer immunity cycle. Functionally, overexpression of TBX22 inhibited the proliferation, invasion, and migration in PTC cells, while knocking down of TBX22 showed the opposite effects. The present findings disclose that TBX22, as an immune microenvironment-related biomarker, could be an important tumor suppresser gene and might inform the management of PTC patients better.
Collapse
Affiliation(s)
- Xubin Dong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jingjing Song
- Department of Children's Health Care, The Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical University, Wenzhou, China
| | - Jing Hu
- Department of Gastrointestinal Surgery, People's Hospital of Yueqing, Wenzhou, China
| | - Cheng Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Xiaohua Zhang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Haiguang Liu
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| |
Collapse
|
30
|
Zhao H, Gao Y, Chen Q, Li J, Ren M, Zhao X, Yue W. RAD51AP1 promotes progression of ovarian cancer via TGF-β/Smad signalling pathway. J Cell Mol Med 2020; 25:1927-1938. [PMID: 33314567 PMCID: PMC7882964 DOI: 10.1111/jcmm.15877] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 08/13/2020] [Accepted: 08/26/2020] [Indexed: 01/12/2023] Open
Abstract
Ovarian cancer (OC) is one of the leading causes of female deaths. However, the molecular pathogenesis of OC has still remained elusive. This study aimed to explore the potential genes associated with the progression of OC. In the current study, 3 data sets of OC were downloaded from the GEO database to identify hub gene. Somatic mutation data obtained from TCGA were used to analyse the mutation. Immune cells were used to estimate effect of the hub gene to the tumour microenvironment. RNA‐seq and clinical data of OC patients retrieved from TCGA were used to investigate the diagnostic and prognostic values of hub gene. A series of in vitro assays were performed to indicate the function of hub gene and its possible mechanisms in OC. As a result, RAD51AP1 was found as a hub gene, which expression higher was mainly associated with poor survival in OC patients. Up‐regulation of RAD51AP1 was closely associated with mutations. RAD51AP1 up‐regulation accompanied by accumulated Th2 cells, but reduced CD4 + T cells and CD8 + T cells. Nomogram demonstrated RAD51AP1 increased the accuracy of the model. Down‐regulation of RAD51AP1 suppressed proliferation, migration and invasion capabilities of OC cells in vitro. Additionally, scatter plots showed that RAD51AP1 was positively correlated with genes in TGF‐β/Smad pathway. The above‐mentioned results were validated by RT‐qPCR and Western blotting. In conclusion, up‐regulation of RAD51AP1 was closely associated with mutations in OC. RAD51AP1 might represent an indicator for predicting OS of OC patients. Besides, RAD51AP1 might accelerate progression of OC by TGF‐β/Smad signalling pathway.
Collapse
Affiliation(s)
- Hongyu Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Yan Gao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Qi Chen
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Jie Li
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Meng Ren
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Xiaoting Zhao
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| | - Wentao Yue
- Central Laboratory, Beijing Obstetrics and Gynecology Hospital Capital Medical University, Capital Medical University, Beijing, China
| |
Collapse
|
31
|
Colombo C, Minna E, Gargiuli C, Muzza M, Dugo M, De Cecco L, Pogliaghi G, Tosi D, Bulfamante G, Greco A, Fugazzola L, Borrello MG. The molecular and gene/miRNA expression profiles of radioiodine resistant papillary thyroid cancer. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2020; 39:245. [PMID: 33198784 PMCID: PMC7667839 DOI: 10.1186/s13046-020-01757-x] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/17/2020] [Accepted: 10/30/2020] [Indexed: 12/13/2022]
Abstract
Background Papillary thyroid cancer (PTC) is the most frequent endocrine tumor. Radioiodine (RAI) treatment is highly effective in these tumors, but up to 60% of metastatic cases become RAI-refractory. Scanty data are available on either the molecular pattern of radioiodine refractory papillary thyroid cancers (PTC) or the mechanisms responsible for RAI resistance. Methods We analyzed the molecular profile and gene/miRNA expression in primary PTCs, synchronous and RAI-refractory lymph node metastases (LNMs) in correlation to RAI avidity or refractoriness. We classified patients as RAI+/D+ (RAI uptake/disease persistence), RAI−/D+ (absent RAI uptake/disease persistence), and RAI+/D- (RAI uptake/disease remission), and analyzed the molecular and gene/miRNA profiles, and the expression of thyroid differentiation (TD) related genes. Results A different molecular profile according to the RAI class was observed: BRAFV600E cases were more frequent in RAI−/D+ (P = 0.032), and fusion genes in RAI+/D+ cases. RAI+/D- patients were less frequently pTERT mutations positive, and more frequently wild type for the tested mutations/fusions. Expression profiles clearly distinguished PTC from normal thyroid. On the other hand, in refractory cases (RAI+/D+ and RAI−/D+) no distinctive PTC expression patterns were associated with either tissue type, or RAI uptake, but with the driving lesion and BRAF−/RAS-like subtype. Primary tumors and RAI-refractory LNMs with BRAFV600E mutation display transcriptome similarity suggesting that RAI minimally affects the expression profiles of RAI-refractory metastases. Molecular profiles associated with the expression of TPO, SLC26A4 and TD genes, that were found more downregulated in BRAFV600E than in gene fusions tumors. Conclusions The present data indicate a different molecular profile in RAI-avid and RAI-refractory metastatic PTCs. Moreover, BRAFV600E tumors displayed reduced differentiation and intrinsic RAI refractoriness, while PTCs with fusion oncogenes are RAI-avid but persistent, suggesting different oncogene-driven mechanisms leading to RAI refractoriness. Supplementary Information The online version contains supplementary material available at 10.1186/s13046-020-01757-x.
Collapse
Affiliation(s)
- Carla Colombo
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy.,Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Emanuela Minna
- Department of Research, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Chiara Gargiuli
- Department of Applied Research and Technology Development, Platform of Integrated Biology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marina Muzza
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Matteo Dugo
- Department of Applied Research and Technology Development, Platform of Integrated Biology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Loris De Cecco
- Department of Applied Research and Technology Development, Platform of Integrated Biology, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Gabriele Pogliaghi
- Laboratory of Endocrine and Metabolic Research, IRCCS Istituto Auxologico Italiano, Milan, Italy
| | - Delfina Tosi
- Department of Health Sciences, Division of Human Pathology, Università degli Studi di Milano, Milan, Italy
| | - Gaetano Bulfamante
- Department of Health Sciences, Division of Human Pathology, Università degli Studi di Milano, Milan, Italy
| | - Angela Greco
- Department of Research, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Laura Fugazzola
- Department of Pathophysiology and Transplantation, Università degli Studi di Milano, Milan, Italy. .,Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy.
| | - Maria Grazia Borrello
- Department of Research, Molecular Mechanisms Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy.
| |
Collapse
|
32
|
Lin L, Wen J, Lin B, Bhandari A, Zheng D, Kong L, Wang Y, Wang O, Chen Y. Immortalization up-regulated protein promotes tumorigenesis and inhibits apoptosis of papillary thyroid cancer. J Cell Mol Med 2020; 24:14059-14072. [PMID: 33094920 PMCID: PMC7754061 DOI: 10.1111/jcmm.16018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 09/14/2020] [Accepted: 09/29/2020] [Indexed: 11/28/2022] Open
Abstract
The incidence of thyroid cancer is increasing in recent years worldwide, but the underlying mechanisms await further exploration. We utilized the bioinformatic analysis to discover that Immortalization up‐regulated protein (IMUP) could be a potential oncogene in the papillary thyroid cancer (PTC). We verified this finding in several databases and locally validated cohorts. Clinicopathological features analyses showed that high expression of IMUP is positively related to malignant clinicopathological features in PTC. Braf‐like PTC patients with higher IMUP expression had shorter disease‐free survival. The biological function of IMUP in PTC cell lines (KTC‐1 and TPC‐1) was investigated using small interfering RNA. Our results showed that silencing IMUP suppresses proliferation, migration and invasion while inducing apoptosis in PTC cell lines. Changes of the expression of apoptosis‐related molecules were identified by real‐time quantitative polymerase chain reaction and Western blotting. We also found that YAP1 and TAZ, the critical effectors in the Hippo pathway, were down‐regulated when the IMUP is silenced. Rescue experiments showed that overexpression of YAP1 reverses the tumour inhibitory effect caused by IMUP knockdown. Our study demonstrated that IMUP has an oncogenic function in PTC and might be a new target gene in the treatment of PTC.
Collapse
Affiliation(s)
- Lizhi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Jialiang Wen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Bangyi Lin
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Adheesh Bhandari
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Danni Zheng
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Lingguo Kong
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yinghao Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Ouchen Wang
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| | - Yizuo Chen
- Department of Thyroid and Breast Surgery, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, PR China
| |
Collapse
|
33
|
Peng Y, Zhang HW, Cao WH, Mao Y, Cheng RC. Exploration of the Potential Biomarkers of Papillary Thyroid Cancer (PTC) Based on RT 2 Profiler PCR Arrays and Bioinformatics Analysis. Cancer Manag Res 2020; 12:9235-9246. [PMID: 33061614 PMCID: PMC7532047 DOI: 10.2147/cmar.s266473] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2020] [Accepted: 08/24/2020] [Indexed: 12/28/2022] Open
Abstract
Background Papillary thyroid carcinoma (PTC) has increased rapidly over recent years, and radiation, hormone effects, gene mutations, and others were viewed as closely related. However, the molecular mechanisms of PTC have not been cleared. Therefore, we intended to screen more accurate key genes and pathways of PTC by combining RT2 profiler PCR arrays and bioinformatics methods in this study. Materials and Methods RT2 profiler PCR arrays were firstly analyzed to identify differential expression genes (DEGs) in PTC. RT-qPCR were performed to verify the most significant differential expression genes. The TCGA database was used to further verify for expanded data. Enrichment analysis of Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) was analyzed. To construct the protein–protein interaction (PPI) network, we used STRING and Cytoscape to make module analysis of these DEGs. Results Sixteen differentially expressed genes were presented in RT2 profiler PCR arrays, including 13 down-regulated DEGs (DEGs) and three up-regulated DEGs (DEGs), while 13 stable DEGs were eventually verified. A total of 155 DEGs were presented in the TCGA database, including 82 up-regulated DEGs (DEGs) and 73 down-regulated DEGs (dDEGs). A total of 29 important genes were extracted after integrating these two results, GO and KEGG analyses were used to observe the possible mechanisms of action of these DEGs. The PPI network was constructed to observe hub genes. Prognostic analysis further demonstrated the involvement of these genes in the biological processes of PTC. Conclusion This study identified some potential molecular targets and signal pathways, which might help us raise our awareness of the mechanisms of PTC.
Collapse
Affiliation(s)
- Ying Peng
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Han-Wen Zhang
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Wei-Han Cao
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Ying Mao
- Kunming Medical University of Yunnan Province, Kunming, Yunnan 650500, People's Republic of China.,Thyroid Disease Diagnosis and Treatment Center, Second Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| | - Ruo-Chuan Cheng
- Thyroid Disease Diagnosis and Treatment Center, First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan 650032, People's Republic of China
| |
Collapse
|
34
|
Muzza M. The clonal origin of multifocal papillary thyroid cancer: intrathyroidal spread or independent tumors? Minerva Endocrinol (Torino) 2020; 46:35-44. [PMID: 33045819 DOI: 10.23736/s2724-6507.20.03302-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Multifocality is a common finding in papillary thyroid cancer but the molecular pathogenesis, prognosis and management of multifocal papillary thyroid cancer are debated. The clonal origin of multifocal papillary thyroid cancer represents a controversial aspect, as two opposite viewpoints have been proposed: independent origin or intraglandular spread. Different approaches have been used for inferring the clonality of multifocal papillary thyroid cancer, including X-chromosome inactivation, mutational analysis, determination of loss of heterozygosity and, more recently, next-generation sequencing. Next-generation sequencing, able to provide information on genetic heterogeneity and phylogenetic evolution in multifocal tumors, represents the most reliable approach. While most evidences indicated an independent origin of multifocal papillary thyroid cancer, a minority of studies suggested that multifocal papillary thyroid tumors might be monoclonally derived. This discrepancy may reflect technical limitations; nevertheless, studies based on next-generation sequencing indicated that both independent and clonal origins are possible. The co-existence of multiple tumors implies a high degree of genetic heterogeneity, which may influence the best and targeted therapeutic strategy. On the other hand, intrathyroidal dissemination may indicate metastatic potential of the dominant tumor, thereby prompting more aggressive treatments. In conclusion, data available in the literature indicated that multifocal papillary thyroid cancer may derived from both intraglandular spread and independent tumor foci. The understanding of the clonal origin of multifocal papillary thyroid tumors might represent an important issue in patient treatment.
Collapse
Affiliation(s)
- Marina Muzza
- Division of Endocrine and Metabolic Diseases, IRCCS Istituto Auxologico Italiano, Milan, Italy -
| |
Collapse
|
35
|
Pan Z, Li L, Qian Y, Ge X, Hu X, Zhang Y, Ge M, Huang P. The differences of regulatory networks between papillary and anaplastic thyroid carcinoma: an integrative transcriptomics study. Cancer Biol Ther 2020; 21:853-862. [PMID: 32887540 DOI: 10.1080/15384047.2020.1803009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Unlike papillary thyroid cancer (PTC), anaplastic thyroid carcinoma (ATC) is extremely aggressive and rapidly lethal without effective therapies. However, the differences of master regulators and regulatory networks between PTC and ATC remain unclear. Methods: Three representative datasets comprising 32 ATC, 69 PTC, and 78 normal thyroid tissue samples were combined to form a large dataset. Differentially expressed genes (DEGs) were identified and enriched by limma package and gene set enrichment analysis, respectively. Subsequently, protein-protein interaction network and transcription factors (TFs) regulatory network were constructed to identify gene modules and master regulators. Further, master regulators were validated by RT-PCR and western blot. Finally, Kaplan-Meier plotter was applied to evaluate their prognostic values. Results: A total of 560 DEGs were identified as ATC-specific malignant signature. The regulatory network analysis showed that nine master regulators were significantly correlated with three gene modules and potentially regulated the expression of DEGs in three gene modules, respectively. Furthermore, CREB3L1, FOSL2, E2F1 and CAT were significantly associated with overall survival of thyroid cancer patients. FOXM1, FOSL2, MYBL2, AVEN and E2F1 were unfavorable factors of recurrence-free survival (RFS), while CAT was a favorable factor of RFS. RT-PCR and western blot confirmed that six TFs were obviously up-regulated in ATC tissues/cell line as compared with PTC and normal thyroid tissues/cell lines, respectively. In addition, 19 ATC-specific kinases were identified to illustrate the potential post-translational modification. Conclusions: Our findings provide a comprehensive insight into malignant mechanism of ATC, which may indicate their value in the future investigation of ATC.
Collapse
Affiliation(s)
- Zongfu Pan
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Lu Li
- Department of Pharmacy, The First Affiliated Hospital, College of Medicine, Zhejiang University , Hangzhou, China
| | - Yangyang Qian
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Xinyang Ge
- Student Council Blood Drive Committee, Heartland Christian School , Columbiana, OH, USA
| | - Xiaoping Hu
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Yiwen Zhang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| | - Minghua Ge
- Department of Head and Neck Surgery, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China.,Key Laboratory of Head & Neck Cancer Translational Research of Zhejiang Province, Zhejiang Cancer Hospital , Hangzhou, China
| | - Ping Huang
- Department of Pharmacy, Zhejiang Provincial People's Hospital, People's Hospital of Hangzhou Medical College , Hangzhou, China
| |
Collapse
|
36
|
Liu SS, Wu F, Jin YM, Chang WQ, Xu TM. HDAC11: a rising star in epigenetics. Biomed Pharmacother 2020; 131:110607. [PMID: 32841898 DOI: 10.1016/j.biopha.2020.110607] [Citation(s) in RCA: 71] [Impact Index Per Article: 14.2] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 07/31/2020] [Accepted: 08/02/2020] [Indexed: 02/08/2023] Open
Abstract
Epigenetic mechanisms, such as acetylation, methylation, and succinylation, play pivotal roles in the regulation of multiple normal biological processes, including neuron regulation, hematopoiesis, bone cell maturation, and metabolism. In addition, epigenetic mechanisms are closely associated with the pathological processes of various diseases, such as metabolic diseases, autoimmune diseases and cancers. Epigenetic changes may precede genetic mutation, so research on epigenetic changes and regulation may be important for the early detection and diagnosis of disease. Histone deacetylase11 (HDAC11) is the newest member of the histone deacetylase (HDAC) family and the only class IV histone deacetylase. HDAC11 has different expression levels and biological functions in different systems of the human body and is among the top 1 to 4% of genes overexpressed in cancers, such as breast cancer, hepatocellular carcinoma and renal pelvis urothelial carcinoma. This article analyzes the role and mechanism of HDAC11 in disease, especially in tumorigenesis, in an attempt to provide new ideas for clinical and basic research.
Collapse
Affiliation(s)
- Shan-Shan Liu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Fei Wu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Yue-Mei Jin
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| | - Wei-Qin Chang
- Department of Surgery, The Second Hospital of Jilin University, 218 Ziqiang Road, Changchun, 130041, Jilin Province, China.
| | - Tian-Min Xu
- Department of Obstetrics and Gynecology, The Second Hospital of Jilin University, Changchun, 130041, Jilin Province, China.
| |
Collapse
|
37
|
Li XJ, Wen R, Wen DY, Lin P, Pan DH, Zhang LJ, He Y, Shi L, Qin YY, Lai YH, Lai JN, Yang JL, Lai QQ, Wang J, Ma J, Yang H, Pang YY. Downregulation of miR‑193a‑3p via targeting cyclin D1 in thyroid cancer. Mol Med Rep 2020; 22:2199-2218. [PMID: 32705210 PMCID: PMC7411362 DOI: 10.3892/mmr.2020.11310] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2019] [Accepted: 04/09/2020] [Indexed: 01/07/2023] Open
Abstract
Thyroid cancer (TC) is a frequently occurring malignant tumor with a rising steadily incidence. microRNA (miRNA/miR)‑193a‑3p is an miRNA that is associated with tumors, playing a crucial role in the genesis and progression of various cancers. However, the expression levels of miR‑193a‑3p and its molecular mechanisms in TC remain to be elucidated. The present study aimed to probe the expression of miR‑193a‑3p and its clinical significance in TC, including its underlying molecular mechanisms. Microarray and RNA sequencing data gathered from three major databases, specifically Gene Expression Omnibus (GEO), ArrayExpress and The Cancer Genome Atlas (TCGA) databases, and the relevant data from the literature were used to examine miR‑193a‑3p expression. Meta‑analysis was also conducted to evaluate the association between clinicopathological parameters and miR‑193a‑3p in 510 TC and 59 normal samples from the TCGA database. miRWalk 3.0, and the TCGA and GEO databases were used to predict the candidate target genes of miR‑193a‑3p. Gene Ontology, Kyoto Encyclopedia of Genes and Genomes and protein‑protein interaction network enrichment analyses were conducted by using the predicted candidate target genes to investigate the underlying carcinogenic mechanisms. A dual luciferase assay was performed to validate the targeting regulatory association between the most important hub gene cyclin D1 (CCND1) and miR‑193a‑3p. miR‑193a‑3p expression was considerably downregulated in TC compared with in the non‑cancer controls (P<0.001). The area under the curve of the summary receiver operating characteristic was 0.80. Downregulation of miR‑193a‑3p was also significantly associated with age, sex and metastasis (P=0.020, 0.044 and 0.048, respectively). Bioinformatics analysis indicated that a low miR‑193a‑3p expression may augment CCND1 expression to affect the biological processes of TC. In addition, CCND1, as a straightforward target, was validated through a dual luciferase assay. miR‑193a‑3p and CCND1 may serve as prognostic biomarkers of TC. Finally, miR‑193a‑3p may possess a crucial role in the genesis and progression of TC by altering the CCND1 expression.
Collapse
Affiliation(s)
- Xiao-Jiao Li
- Department of Positron Emission Tomography‑Computed Tomography (PET‑CT), First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Dong-Yue Wen
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Peng Lin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Deng-Hua Pan
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Li-Jie Zhang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu He
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin Shi
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Yong-Ying Qin
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yun-Hui Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jing-Ni Lai
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Jun-Lin Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Qin-Qiao Lai
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Wang
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Jun Ma
- Department of Pathology, Second Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530007, P.R. China
| | - Hong Yang
- Ultrasonics Division of Radiology Department, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Yu-Yan Pang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
38
|
Kaiser JC, Misumi M, Furukawa K. Biologically-based modeling of radiation risk and biomarker prevalence for papillary thyroid cancer in Japanese a-bomb survivors 1958-2005. Int J Radiat Biol 2020; 97:19-30. [PMID: 32573332 DOI: 10.1080/09553002.2020.1784488] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
PURPOSE Thyroid cancer of papillary histology (PTC) is the dominant type in radio-epidemiological cohorts established after nuclear accidents or warfare. Studies on post-Chernobyl PTC and on thyroid cancer in the life span study (LSS) of Japanese a-bomb survivors consistently revealed high radiation risk after exposure during childhood and adolescence. For post-Chernobyl risk assessment overexpression of the CLIP2 gene was proposed as molecular biomarker to separate radiogenic from sporadic PTC. Based on such binary marker a biologically-based risk model of PTC carcinogenesis has been developed for observational Chernobyl data. The model featured two independent molecular pathways of disease development, of which one was associated with radiation exposure. To gain credibility the concept for a mechanistic risk model must be based on general biological features which transcend findings in a single cohort. The purpose of the present study is therefore to demonstrate portability of the model concept by application to PTC incidence data in the LSS. By exploiting the molecular two-path concept we improve the determination of the probability of radiation causing cancer (POC). MATERIALS AND METHODS The current analysis uses thyroid cancer incidence data of the LSS with thyroid cancer diagnoses and papillary histology (n = 292) from the follow-up period between 1958 and 2005. Risk analysis was performed with both descriptive and biologically-based models. RESULTS Judged by goodness-of-fit all applied models described the data almost equally well. They yielded similar risk estimates in cohorts post-Chernobyl and LSS. The preferred mechanistic model was selected by biological plausibility. It reflected important features of an imperfect radiation marker which are not easily addressed by descriptive models. Precise model predictions of marker prevalence in strata of epidemiological covariables can be tested by molecular measurements. Application of the radiation-related molecular pathway from our preferred model in retrospective risk assessment decreases the threshold dose for 50% POC from 0.33 (95% confidence interval (CI) 0.18; 0.64) Gy to 0.04 (95% CI 0.01; 0.19) Gy for females and from 0.43 (95% CI 0.17; 1.84) Gy to 0.19 (95% CI 0.05; 1.00) Gy for males. These improvements are still not sufficient to separate radiation-induced from sporadic PTC cases at very low doses <0.015 Gy typical for the Fukushima accident. CONCLUSIONS Successful application of our preferred mechanistic model to LSS incidence data confirms and improves the biological two-path concept of radiation-induced PTC. Model predictions suggest further molecular validation studies to consolidate the basis of biologically-based risk estimation.
Collapse
Affiliation(s)
- Jan Christian Kaiser
- Helmholtz Zentrum München, Institute of Radiation Medicine, Oberschleißheim, Germany
| | - Munechika Misumi
- Department of Statistics, Radiation Effects Research Foundation, Hiroshima, Japan
| | | |
Collapse
|
39
|
Lian M, Cao H, Baranova A, Kural KC, Hou L, He S, Shao Q, Fang J. Aging-associated genes TNFRSF12A and CHI3L1 contribute to thyroid cancer: An evidence for the involvement of hypoxia as a driver. Oncol Lett 2020; 19:3634-3642. [PMID: 32391089 PMCID: PMC7204633 DOI: 10.3892/ol.2020.11530] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2019] [Accepted: 08/16/2019] [Indexed: 12/25/2022] Open
Abstract
The prevalence of thyroid cancer (TC) is high in the elderly. The present study was based on the hypothesis that genes, which have increased activity with aging, may play a role in the development of TC. A large-scale literature-based data analysis was conducted to explore the genes that are implicated in both TC and aging. Subsequently, a mega-analysis of 16 RNA expression datasets (1,222 samples: 439 healthy controls, and 783 patients with TC) was conducted to test a set of genes associated with aging but not TC. To uncover a possible link between these genes and TC, a functional pathway analysis was conducted, and the results were validated by analysis of gene co-expression. A multiple linear regression (MLR) model was employed to study the possible influence of sample size, population region and study age on the gene expression levels in TC. A total of 262 and 816 genes were identified to have increased activity with aging and TC, respectively; with a significant overlap of 63 genes (P<3.82×10−35). The mega-analysis revealed two aging-associated genes (CHI3L1 and TNFRSF12A) to be significantly associated with TC (P<2.05×10−8), and identified the association with multiple hypoxia-driven pathways through functional pathway analysis, also confirmed by the co-expression analysis. The MLR analysis identified population region as a significant factor contributing to the expression levels of CHI3L1 and TNFRSF12A in TC samples (P<3.24×10−4). The determination of genes that promote aging was warranted due to their possible involvement in TC. The present study suggests CHI3L1 and TNFRSF12A as novel common risk genes associated with both aging and TC.
Collapse
Affiliation(s)
- Meng Lian
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Hongbao Cao
- Department of Psychiatry, First Hospital/First Clinical Medical College of Shanxi Medical University, Taiyuan, Shanxi 030001, P.R. China.,Department of Genomics Research, R&D Solutions, Elsevier Inc., Rockville, MD 20852, USA.,School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Ancha Baranova
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA.,Research Centre for Medical Genetics, Moscow 115478, Russia
| | - Kamil Can Kural
- School of Systems Biology, George Mason University, Fairfax, VA 22030, USA
| | - Lizhen Hou
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Shizhi He
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| | - Qing Shao
- Department of Breast and Thyroid Surgery, Jiangyin People's Hospital, Jiangyin, Jiangsu 214400, P.R. China
| | - Jugao Fang
- Department of Otorhinolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing 100730, P.R. China
| |
Collapse
|
40
|
Salimi S, Harati-Sadegh M, Eskandari M, Heidari Z. The effects of the genetic polymorphisms of antioxidant enzymes on susceptibility to papillary thyroid carcinoma. IUBMB Life 2020; 72:1045-1053. [PMID: 32031754 DOI: 10.1002/iub.2246] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 12/14/2022]
Abstract
Several lines of evidences have indicated that inflammation play an important role in the carcinogenesis. During the inflammatory processes, free radical species are produced from oxidative stress. In normal conditions, enzymatic and nonenzymatic antioxidants remove these products. Manganese superoxide dismutase (MnSOD), glutathione peroxidase-1 (GPx-1), and catalase (CAT) are three important enzymes. Therefore, this study aimed to evaluate the effects of MnSOD (SOD2), GPX-1, and CAT genetic polymorphisms on papillary thyroid carcinoma (PTC) susceptibility. A total of 134 patients with PTC and 151 healthy controls were recruited to participate in this study. All samples were genotyped for SOD2 rs4880, GPX1 1050450, and CAT rs7943316 polymorphisms by polymerase chain reaction-restriction fragment length polymorphism method. The frequencies of the rs1050450, rs4880, and rs7943316 alleles and genotypes were not different between PTC patients and controls. However, the TC genotype of SOD2 rs4880 polymorphism was significantly higher in males compared to that in females in PTC patients (odds ratio [OR], 3.9 [95% CI, 1.5-11], p = .007). The rs4880 polymorphism was also associated with higher stages (III-IV) of PTC in dominant model. No significant correlation was found between GPX1-rs1050450 and CAT-rs7943316 polymorphisms and demographic, clinical, and pathological features of the disease. The SOD2 rs4880CT genotype was more frequent in males with PTC and patients with higher stages (III-IV) of disease (OR, 2.9 [95% CI, 1.1-7.7], p = .04). However, no significant association was found between GPX1-rs1050450 and CAT-rs7943316 variants and PTC or its demographic, clinical, and pathological features.
Collapse
Affiliation(s)
- Saeedeh Salimi
- Department of Clinical Biochemistry, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran.,Cellular and Molecular Research Center, Resistant Tuberculosis Institute, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Mahdiyeh Harati-Sadegh
- Genetic of Non-Communicable Disease Research Center, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Moein Eskandari
- Department of Laboratory Sciences, School of Paramedical Sciences, Zahedan University of Medical Sciences, Zahedan, Iran
| | - Zahra Heidari
- Department of Endocrinology, School of Medicine, Zahedan University of Medical Sciences, Zahedan, Iran
| |
Collapse
|
41
|
Qin YY, Huang SN, Chen G, Pang YY, Li XJ, Xing WW, Wei DM, He Y, Rong MH, Tang XZ. Clinicopathological value and underlying molecular mechanism of annexin A2 in 992 cases of thyroid carcinoma. Comput Biol Chem 2020; 86:107258. [PMID: 32304977 DOI: 10.1016/j.compbiolchem.2020.107258] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2019] [Revised: 12/30/2019] [Accepted: 03/23/2020] [Indexed: 12/15/2022]
Abstract
BACKGROUND Thyroid carcinoma (THCA) is one of the most frequent endocrine cancers and has increasing morbidity. Annexin A2 (ANXA2) has been found to be highly expressed in various cancers; however, its expression level and potential mechanism in THCA remain unknown. This study investigated the clinicopathological value and primary molecular machinery of ANXA2 in THCA. MATERIAL AND METHODS Public RNA-sequencing and microarray data were obtained and analyzed with ANXA2 expression in THCA and corresponding non-cancerous thyroid tissue. A Pearson correlation coefficient calculation was used for the acquisition of ANXA2 coexpressed genes, while edgR, limma, and Robust Rank Aggregation were employed for differentially expressed gene (DEG) in THCA. The probable mechanism of ANXA2 in THCA was predicted by gene ontology and pathway enrichment. A dual-luciferase reporter assay was employed to confirm the targeting relationships between ANXA2 and its predicted microRNA (miRNA). RESULTS Expression of ANXA2 was significantly upregulated in THCA tissues with a summarized standardized mean difference of 1.09 (P < 0.0001) based on 992 THCA cases and 589 cases of normal thyroid tissue. Expression of ANXA2 was related to pathologic stage. Subsequently, 1442 genes were obtained when overlapping 4542 ANXA2 coexpressed genes with 2248 DEGs in THCA; these genes were mostly enriched in pathways of extracellular matrix-receptor interaction, cell adhesion molecules, and complement and coagulation cascades. MiR-23b-3p was confirmed to target ANXA2 by dual-luciferase reporter assay. CONCLUSIONS Upregulated expression of ANXA2 may promote the malignant biological behavior of THCA by affecting the involving pathways or being targeted by miR-23b-3p.
Collapse
Affiliation(s)
- Yong-Ying Qin
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Su-Ning Huang
- Department of Radiotherapy, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Gang Chen
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yu-Yan Pang
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Xiao-Jiao Li
- Department of PET/CT, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Wen-Wen Xing
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Dan-Ming Wei
- Department of Pathology, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Yun He
- Department of Ultrasound, The First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, PR China
| | - Min-Hua Rong
- Department of Research, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| | - Xiao-Zhun Tang
- Department of Head and Neck Tumor Surgery, Guangxi Medical University Cancer Hospital, 71 Hedi Road, Nanning, Guangxi Zhuang Autonomous Region, PR China.
| |
Collapse
|
42
|
Kyrilli A, Gacquer D, Detours V, Lefort A, Libert F, Twyffels L, Van Den Eeckhaute L, Strickaert A, Maenhaut C, De Deken X, Dumont JE, Miot F, Corvilain B. Dissecting the Role of Thyrotropin in the DNA Damage Response in Human Thyrocytes after 131I, γ Radiation and H2O2. J Clin Endocrinol Metab 2020; 105:5614560. [PMID: 31701151 DOI: 10.1210/clinem/dgz185] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/23/2019] [Revised: 10/15/2019] [Accepted: 11/05/2019] [Indexed: 12/16/2022]
Abstract
BACKGROUND The early molecular events in human thyrocytes after 131I exposure have not yet been unravelled. Therefore, we investigated the role of TSH in the 131I-induced DNA damage response and gene expression in primary cultured human thyrocytes. METHODS Following exposure of thyrocytes, in the presence or absence of TSH, to 131I (β radiation), γ radiation (3 Gy), and hydrogen peroxide (H2O2), we assessed DNA damage, proliferation, and cell-cycle status. We conducted RNA sequencing to profile gene expression after each type of exposure and evaluated the influence of TSH on each transcriptomic response. RESULTS Overall, the thyrocyte responses following exposure to β or γ radiation and to H2O2 were similar. However, TSH increased 131I-induced DNA damage, an effect partially diminished after iodide uptake inhibition. Specifically, TSH increased the number of DNA double-strand breaks in nonexposed thyrocytes and thus predisposed them to greater damage following 131I exposure. This effect most likely occurred via Gα q cascade and a rise in intracellular reactive oxygen species (ROS) levels. β and γ radiation prolonged thyroid cell-cycle arrest to a similar extent without sign of apoptosis. The gene expression profiles of thyrocytes exposed to β/γ radiation or H2O2 were overlapping. Modulations in genes involved in inflammatory response, apoptosis, and proliferation were observed. TSH increased the number and intensity of modulation of differentially expressed genes after 131I exposure. CONCLUSIONS TSH specifically increased 131I-induced DNA damage probably via a rise in ROS levels and produced a more prominent transcriptomic response after exposure to 131I.
Collapse
Affiliation(s)
- Aglaia Kyrilli
- Division of Endocrinology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - David Gacquer
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Vincent Detours
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Anne Lefort
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Frédéric Libert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Laure Twyffels
- Center for Microscopy and Molecular Imaging (CMMI), Gosselies Biopark, ULB, Gosselies, Belgium
| | - Laura Van Den Eeckhaute
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Aurélie Strickaert
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Carine Maenhaut
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Xavier De Deken
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Jacques Emile Dumont
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Françoise Miot
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| | - Bernard Corvilain
- Division of Endocrinology, Erasme Hospital, Université Libre de Bruxelles (ULB), Brussels, Belgium
- Institut de Recherche Interdisciplinaire en Biologie Humaine et Moleculaire (IRIBHM), School of Medicine, ULB, Brussels, Belgium
| |
Collapse
|
43
|
Jing QB, Tong HX, Tang WJ, Tian SD. Clinical Significance and Potential Regulatory Mechanisms of Serum Response Factor in 1118 Cases of Thyroid Cancer Based on Gene Chip and RNA-Sequencing Data. Med Sci Monit 2020; 26:e919302. [PMID: 31967986 PMCID: PMC6995247 DOI: 10.12659/msm.919302] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Background Thyroid cancer (TC) is one of the most prevalent endocrine malignancies and there may be many unclarified molecular events and gene types involved in TC. The objective of this study was to assess the clinical implications and potential mechanisms of serum response factor (SRF) in TC. Material/Methods RNA-sequencing and gene chip data with TC expression were collected from The Cancer Genome Atlas/Genotype-Tissue Expression, Gene Expression Omnibus, ArrayExpress, Sequence Read Archive, and Oncomine. SRF expression of all TC and adjacent non-cancerous tissue were calculated using the t test, STATA, and Meta-DiSc. The related pathways of the potential SRF target genes and target miRNAs were explored. Dual-luciferase reporter assay was performed to validate the association between SRF and its putative miRNA. Results One RNA-sequencing and 15 gene chips were collected, and the pooled standardized mean difference of SRF was −1.00. Furthermore, the area under the curve of sROC of SRF in TC was 0.8251, indicating a dramatic decreased expression of SRF in TC tissues based on 1118 cases. The intersection of differentially expressed genes in TC, SRF co-expressed genes, and SRF potential target genes achieved from Cistrome Cancer led to 169 overlapped genes. miR-330-5p was predicted to target SRF, which was further confirmed by dual-luciferase reporter assay. Conclusions The reduction of SRF appears to play a crucial role in the origin of TC. These properties are accomplished by the target genes of SRF, as a transcription factor, or by the axes with the associated miRNAs.
Collapse
Affiliation(s)
- Qiang-Bin Jing
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Hai-Xiao Tong
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Wei-Jian Tang
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| | - Shao-Dong Tian
- Center of Medical Oncology, The First People's Hospital of Huaihua, Huaihua, Hunan, China (mainland)
| |
Collapse
|
44
|
Molnár C, Bádon ES, Mokánszki A, Mónus A, Beke L, Győry F, Nagy E, Méhes G. High Genetic Diversity and No Evidence of Clonal Relation in Synchronous Thyroid Carcinomas Associated with Hashimoto's Thyroiditis: A Next-Generation Sequencing Analysis. Diagnostics (Basel) 2020; 10:diagnostics10010048. [PMID: 31963551 PMCID: PMC7167801 DOI: 10.3390/diagnostics10010048] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2019] [Revised: 01/09/2020] [Accepted: 01/16/2020] [Indexed: 12/17/2022] Open
Abstract
The close association between pre-existing Hashimoto’s thyroiditis and thyroid cancer is well established. The simultaneous occurrence of multiple neoplastic foci within the same organ suggests a common genotoxic effect potentially contributing to carcinogenesis, the nature of which is still not clear. Next-generation sequencing (NGS) provides a potent tool to demonstrate and compare the mutational profile of the independent neoplastic foci. Our collection of 47 cases with thyroid carcinoma and Hashimoto’s thyroiditis included 14 with at least two tumorous foci. Detailed histological analysis highlighted differences in histomorphology, immunoprofile, and biological characteristics. Further, a 67-gene NGS panel was applied to demonstrate the mutational diversity of the synchronic tumors. Significant differences could be detected with a wide spectrum of pathogenic gene variants involved (ranging between 5 and 18, cutoff >5.0 variant allele frequencies (VAF)). Identical gene variants represented in both synchronous tumors of the same thyroid gland were found in only two cases (BRAF and JAK3 genes). An additional set of major driver mutations was identified at variable allele frequencies in a highly individual setup suggesting a clear clonal independence. The different BRAF statuses in coincident thyroid carcinoma foci within the same organ outline a special challenge for molecular follow-up and therapeutic decision-making.
Collapse
Affiliation(s)
- Csaba Molnár
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
| | - Emese Sarolta Bádon
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
| | - Attila Mokánszki
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
| | - Anikó Mónus
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
| | - Lívia Beke
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
| | - Ferenc Győry
- Department of Surgery, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Endre Nagy
- Division of Endocrinology, Department of Internal Medicine, University of Debrecen, H-4032 Debrecen, Hungary;
| | - Gábor Méhes
- Department of Pathology, Faculty of Medicine, University of Debrecen, H-4032 Debrecen, Hungary; (C.M.); (E.S.B.); (A.M.); (A.M.); (L.B.)
- Correspondence:
| |
Collapse
|
45
|
Minna E, Brich S, Todoerti K, Pilotti S, Collini P, Bonaldi E, Romeo P, De Cecco L, Dugo M, Perrone F, Busico A, Vingiani A, Bersani I, Anichini A, Mortarini R, Neri A, Pruneri G, Greco A, Borrello MG. Cancer Associated Fibroblasts and Senescent Thyroid Cells in the Invasive Front of Thyroid Carcinoma. Cancers (Basel) 2020; 12:cancers12010112. [PMID: 31906302 PMCID: PMC7016563 DOI: 10.3390/cancers12010112] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2019] [Accepted: 12/27/2019] [Indexed: 02/07/2023] Open
Abstract
Thyroid carcinoma (TC) comprises several histotypes with different aggressiveness, from well (papillary carcinoma, PTC) to less differentiated forms (poorly differentiated and anaplastic thyroid carcinoma, PDTC and ATC, respectively). Previous reports have suggested a functional role for cancer-associated fibroblasts (CAFs) or senescent TC cells in the progression of PTC. In this study, we investigated the presence of CAFs and senescent cells in proprietary human TCs including PTC, PDTC, and ATC. Screening for the driving lesions BRAFV600E and N/H/KRAS mutations, and gene fusions was also performed to correlate results with tumor genotype. In samples with unidentified drivers, transcriptomic profiles were used to establish a BRAF- or RAS-like molecular subtype based on a gene signature derived from The Cancer Genome Atlas. By using immunohistochemistry, we found co-occurrence of stromal CAFs and senescent TC cells at the tumor invasive front, where deposition of collagen (COL1A1) and expression of lysyl oxidase (LOX) enzyme were also detected, in association with features of local invasion. Concurrent high expression of CAFs and of the senescent TC cells markers, COL1A1 and LOX was confirmed in different TC histotypes in proprietary and public gene sets derived from Gene Expression Omnibus (GEO) repository, and especially in BRAF mutated or BRAF-like tumors. In this study, we show that CAFs and senescent TC cells co-occur in various histotypes of BRAF-driven thyroid tumors and localize at the tumor invasive front.
Collapse
Affiliation(s)
- Emanuela Minna
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (E.M.); (M.G.B.); Tel.: +39-02-2390-3223 (M.G.B.)
| | - Silvia Brich
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Katia Todoerti
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
| | - Silvana Pilotti
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Paola Collini
- Soft Tissue and Bone Pathology, Histopathology and Pediatric Pathology Unit, Department of Diagnostic Pathology and Laboratory Medicine, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Elisa Bonaldi
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Paola Romeo
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Loris De Cecco
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Matteo Dugo
- Platform of Integrated Biology, Department of Applied Research and Technology Development, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Federica Perrone
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Adele Busico
- Laboratory of Molecular Pathology, Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Vingiani
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- School of Medicine, Università degli Studi di Milano, 20122 Milan, Italy
| | - Ilaria Bersani
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Andrea Anichini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Roberta Mortarini
- Human Tumors Immunobiology Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Antonino Neri
- Hematology, Fondazione Cà Granda IRCCS Policlinico, 20122 Milan, Italy
- Department of Oncology and Hemato-oncology, University of Milan, 20122 Milan, Italy
| | - Giancarlo Pruneri
- Department of Pathology, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Angela Greco
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
| | - Maria Grazia Borrello
- Molecular Mechanisms Unit, Department of Research, Fondazione IRCCS Istituto Nazionale dei Tumori, 20133 Milan, Italy
- Correspondence: (E.M.); (M.G.B.); Tel.: +39-02-2390-3223 (M.G.B.)
| |
Collapse
|
46
|
Zheng HP, Huang ZG, He RQ, Lu HP, Dang YW, Lin P, Wen DY, Qin YY, Luo B, Li XJ, Mo WJ, Yang H, He Y, Chen G. Integrated assessment of CDK1 upregulation in thyroid cancer. Am J Transl Res 2019; 11:7233-7254. [PMID: 31934275 PMCID: PMC6943461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Accepted: 12/05/2019] [Indexed: 06/10/2023]
Abstract
Cyclin-dependent kinase 1 (CDK1) has a unique role in cell cycle regulation, as it is crucial for cell cycle progression and cell division. The aim of the present study was to use a combination of various detection methods to examine the expression and clinical significance of CDK1 in thyroid cancer (THCA). We used in-house tissue microarrays, immunohistochemistry, public RNA-sequencing, gene microarrays, and meta-analyses to conduct a comprehensive analysis of the role of CDK1 in the occurrence and development of THCA. CDK1 protein expression was notably higher in THCA tissues than in non-cancer tissues as evidenced by the in-house tissue microarrays. The expression of CDK1 protein was also significantly higher in pathologic T3-T4 than in T1-T2 samples. The pooled standardized mean difference (SMD) for CDK1 was 0.71 (95% CI, 0.46-0.95) including a total of 931 THCA and 585 non-cancerous thyroid tissue samples. An aggregation of the immunohistochemistry results and the RNA-sequencing/microarray findings gave a pooled SMD for CDK1 expression of 2.13 (95% CI, 1.30-2.96). The final area under curve (AUC) for the summarized receiver operating characteristic (sROC) was 0.7941 using all 1102 cases of THCA and 672 cases of controls. KEGG analysis with the co-expressed genes of CDK1 in THCA demonstrated the top enriched pathways to be the cell cycle, thyroid hormone synthesis, autoimmune thyroid disease, etc. In summary, we reveal the overexpression of CDK1 in THCA based on multiple detection methods that combine independent cohorts. However, further studies are required to elucidate the molecular mechanisms of CDK1 that promotes the biological aggressiveness of THCA cells.
Collapse
Affiliation(s)
- Hai-Ping Zheng
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Zhi-Guang Huang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Rong-Quan He
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hui-Ping Lu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yi-Wu Dang
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Peng Lin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Dong-Yue Wen
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yong-Ying Qin
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Bin Luo
- Department of Medical Oncology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Xiao-Jiao Li
- Department of Positron Emission Tomography Computed Tomography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Wei-Jia Mo
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Hong Yang
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Yun He
- Department of Ultrasonography, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| | - Gang Chen
- Department of Pathology, First Affiliated Hospital of Guangxi Medical UniversityNanning 530021, Guangxi Zhuang Autonomous Region, China
| |
Collapse
|
47
|
Wei W, Jiang D, Rosenkrans ZT, Barnhart TE, Engle JW, Luo Q, Cai W. HER2-targeted multimodal imaging of anaplastic thyroid cancer. Am J Cancer Res 2019; 9:2413-2427. [PMID: 31815043 PMCID: PMC6895447] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 10/12/2019] [Indexed: 06/10/2023] Open
Abstract
Clinical management of anaplastic thyroid cancer (ATC) is very challenging due to its dedifferentiation and aggressiveness. We aim to develop HER2-targeted multimodal imaging approaches and assess the diagnostic efficacies of these molecular imaging probes in preclinical ATC models. Flow cytometry was used to detect HER2 expression status in thyroid cancer cell lines. We then developed a HER2-specific immunoPET imaging probe 89Zr-Df-pertuzumab by radiolabeling a HER-2 specific monoclonal antibody (mAb) pertuzumab with 89Zr (t1/2=78.4 h) and a fluorescent imaging probe IRDye 800CW-pertuzumab. The diagnostic efficacies of the probes were assessed in subcutaneous and orthotopic ATC models, followed by ex vivo biodistribution profile and immunofluorescence staining studies. HER2 was highly expressed on the surface of all the four primary thyroid cancer cell lines examined, which included two ATC cell lines (i.e., 8505C and THJ-16T). PET imaging with 89Zr-Df-pertuzumab clearly visualized all the subcutaneous ATCs with a peak tumor uptake of 20.23±6.44 %ID/g (n=3), whereas the highest tumor uptake of the nonspecific probe 89Zr-Df-IgG in subcutaneous ATC models was 6.30±0.95 %ID/g (n=3). More importantly, 89Zr-Df-pertuzumab PET imaging strategy readily delineated all the orthotopic ATCs with a peak tumor uptake of 24.93±8.53 %ID/g (n=3). We also suggested that Cerenkov luminescence imaging (CLI) using 89Zr-Df-pertuzumab and fluorescence imaging using IRDye 800CW-pertuzumab are useful tools for image-guided removal of ATCs. We demonstrate that HER2 is a promising biomarker for ATC, and multimodal imaging using 89Zr-Df-pertuzumab and IRDye 800CW-pertuzumab is useful for identifying HER2-postive ATCs.
Collapse
Affiliation(s)
- Weijun Wei
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital600 Yishan Road, Shanghai 200233, China
- Department of Radiology, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
| | - Dawei Jiang
- Department of Radiology, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
| | - Zachary T Rosenkrans
- School of Pharmacy, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
| | - Todd E Barnhart
- Department of Medical Physics, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
| | - Jonathan W Engle
- Department of Medical Physics, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
| | - Quanyong Luo
- Department of Nuclear Medicine, Shanghai Jiao Tong University Affiliated Sixth People’s Hospital600 Yishan Road, Shanghai 200233, China
| | - Weibo Cai
- School of Pharmacy, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
- Department of Radiology, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
- Department of Medical Physics, University of Wisconsin-MadisonMadison, Wisconsin 53705, United States
- University of Wisconsin Carbone Cancer CenterMadison, Wisconsin 53705, United States
| |
Collapse
|
48
|
Radiation-Induced Thyroid Cancers: Overview of Molecular Signatures. Cancers (Basel) 2019; 11:cancers11091290. [PMID: 31480712 PMCID: PMC6770066 DOI: 10.3390/cancers11091290] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2019] [Revised: 08/29/2019] [Accepted: 08/30/2019] [Indexed: 11/25/2022] Open
Abstract
Enormous amounts of childhood thyroid cancers, mostly childhood papillary thyroid carcinomas (PTCs), after the Chernobyl nuclear power plant accident have revealed a mutual relationship between the radiation exposure and thyroid cancer development. While the internal exposure to radioactive 131I is involved in the childhood thyroid cancers after the Chernobyl accident, people exposed to the external radiation, such as atomic-bomb (A-bomb) survivors, and the patients who received radiation therapy, have also been epidemiologically demonstrated to develop thyroid cancers. In order to elucidate the mechanisms of radiation-induced carcinogenesis, studies have aimed at defining the molecular changes associated with the thyroid cancer development. Here, we overview the literatures towards the identification of oncogenic alterations, particularly gene rearrangements, and discuss the existence of radiation signatures associated with radiation-induced thyroid cancers.
Collapse
|
49
|
Wu M, Yuan H, Li X, Liao Q, Liu Z. Identification of a Five-Gene Signature and Establishment of a Prognostic Nomogram to Predict Progression-Free Interval of Papillary Thyroid Carcinoma. Front Endocrinol (Lausanne) 2019; 10:790. [PMID: 31803141 PMCID: PMC6872544 DOI: 10.3389/fendo.2019.00790] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Accepted: 10/30/2019] [Indexed: 12/12/2022] Open
Abstract
Background: The incidence of papillary thyroid carcinoma (PTC) is high and increasing worldwide. Although prognosis is relatively good, it is important to select the minority of patients with poorer prognosis to avoid side effects associated with unnecessary over-treatment in low-risk patients; this requires accurate prognostic predictions. Materials and Methods: Six PTC expression datasets were obtained from the gene expression omnibus (GEO) database. Level 3 mRNA expression and clinicopathological data were obtained from The Cancer Genome Atlas Thyroid Cancer (TCGA-THCA) database. Through integrated analysis of these datasets, highly reliable differentially-expressed genes (DEGs) between tumor and normal tissue were identified and lasso Cox regression was applied to identify DEGs related to the progression-free interval (PFI) and to establish a prognostic gene signature. The performance of a five-gene signature was evaluated based on a Kaplan-Meier curve, receiver operating characteristic (ROC), and Harrell's concordance index (C-index). Multivariate Cox regression analysis was used to identify factors associated with PTC prognosis. Finally, a prognostic nomogram was established based on the TCGA-THCA dataset. Results: A novel five-gene signature was established to predict the PTC PFI, which included PLP2, LYVE1, FABP4, TGFBR3, and FXYD6, and the ROC curve and C-index showed good performance in both training and validation datasets. This could classify patients into high- and low-risk groups with distinct PFIs and differentiate PTC tumors from normal tissue. Univariate Cox regression revealed that this signature was an independent prognostic factor for PTC. The established nomogram, incorporating the prognostic gene signature and clinical parameters, was able to predict the PFI with high efficiency. The gene signature-based nomogram was superior to the American Thyroid Association (ATA) risk stratification to predict PTC PFI. Conclusions: Our study identified a five-gene signature and established a prognostic nomogram, which were reliable in predicting the PFI of PTC; this could be beneficial for individualized treatment and medical decision making.
Collapse
|
50
|
Thomas G. RADIATION AND THYROID CANCER-AN OVERVIEW. RADIATION PROTECTION DOSIMETRY 2018; 182:53-57. [PMID: 30165692 DOI: 10.1093/rpd/ncy146] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2018] [Indexed: 06/08/2023]
Abstract
It has long been known that the thyroid is a radiosensitive organ. It is the only organ in the body to both take up and bind iodine, and therefore exposure to radioiodine in fallout from nuclear power plants poses an increased danger to the thyroid. Studies following the Chernobyl accident have shown that children are most at risk from the development of thyroid cancer following exposure to radioactive iodine in fallout. This article reviews what we know so far about the type of thyroid cancer induced by radiation, its molecular biology and clinical outcome.
Collapse
Affiliation(s)
- Geraldine Thomas
- Department of Surgery and Cancer, Imperial College London, Charing Cross Hospital, Fulham Palace Road, London, UK
| |
Collapse
|