1
|
Rizwan S, Ayubcha C, Al-Daoud O, Al-Atout M, Amiruddin R, Werner TJ, Alavi A. PET imaging of atherosclerosis: artificial intelligence applications and recent advancements. Nucl Med Commun 2025; 46:503-514. [PMID: 40143664 DOI: 10.1097/mnm.0000000000001973] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/28/2025]
Abstract
PET imaging has become a valuable tool for assessing atherosclerosis by targeting key processes such as inflammation and microcalcification. Among available tracers, 18F-sodium fluoride has demonstrated superior performance compared to 18F-fluorodeoxyglucose, particularly in detecting coronary artery disease. However, the role of other tracers remains underexplored, requiring further validation. Emerging technologies such as artificial intelligence show potential in enhancing diagnostic speed and accuracy. Furthermore, the integration of the Alavi-Carlsen Calcification Score offers a novel approach to evaluating global disease burden, presenting a more clinically applicable method for predicting outcomes. Techniques such as total-body PET provide faster and more comprehensive imaging of the entire vascular system with reduced radiation exposure, representing a significant advancement in early detection and intervention. The combination of molecular imaging and advanced computational tools may revolutionize the management of atherosclerosis, facilitating earlier identification of at-risk individuals and improving long-term cardiovascular outcomes.
Collapse
Affiliation(s)
- Shaheer Rizwan
- Robert Wood Johnson Medical School, New Brunswick, New Jersey
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, Massachusetts
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Omar Al-Daoud
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Mamdouh Al-Atout
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Raisa Amiruddin
- Children's Hospital of Philadelphia, University of Pennsylvania, Philadelphia, Pennsylvania
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania
| |
Collapse
|
2
|
Patil S, Patel N, Teichner E, Werner T, Høilund-Carlsen PF, Alavi A. Vertebral Artery Microcalcification Detected by 18F-NaF PET/CT. Clin Nucl Med 2025:00003072-990000000-01676. [PMID: 40280179 DOI: 10.1097/rlu.0000000000005831] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 02/07/2025] [Indexed: 04/29/2025]
Abstract
Intracranial atherosclerosis is a leading cause of stroke and cognitive dysfunction. Calcification of intracranial atherosclerotic plaques is commonly observed on noncontrast CT, yet structural imaging alone cannot visualize active microcalcifications characteristic of progressive atheroma. 18F-NaF is an emerging PET radiotracer of vascular microcalcification that may enable the detection of such pathophysiology. In this report, we present molecular microcalcification of the left vertebral artery incidentally found on 18F-NaF PET/CT of a 64-year-old man with risk factors for intracranial atherosclerosis.
Collapse
Affiliation(s)
- Shiv Patil
- Department of Radiology, University of Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Nirmal Patel
- Department of Radiology, University of Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | - Eric Teichner
- Department of Radiology, University of Pennsylvania
- Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA
| | | | | | - Abass Alavi
- Department of Radiology, University of Pennsylvania
| |
Collapse
|
3
|
Bhakta S, Chowdhury MM, Tarkin JM, Rudd JHF, Warburton EA, Evans NR. 18F-NaF uptake on vascular PET imaging in symptomatic versus asymptomatic atherosclerotic disease: A meta-analysis. Vasc Med 2025; 30:10-19. [PMID: 39415512 PMCID: PMC11804149 DOI: 10.1177/1358863x241287692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2024]
Abstract
INTRODUCTION 18F-sodium fluoride (NaF) positron-emission tomography (PET) is increasingly being used to measure microcalcification in atherosclerotic disease in vivo. Correlations have been drawn between sodium fluoride uptake and the presence of high-risk plaque features, as well as its association with clinical atherosclerotic sequelae. The aim of this study was to perform a meta-analysis of NaF uptake on PET imaging and its relation to symptomatic and asymptomatic disease. METHODS A systematic review was performed according to PRISMA guidelines, via searching the Ovid MEDLINE, Ovid Embase, Cochrane Library, PubMed, Scopus, and Web of Science Core Collection databases up to May 2024. The search strategy included the terms 'NaF', 'PET', and 'plaque', and all studies with data regarding the degree of microcalcification, as measured by 18F-NaF uptake in symptomatic and asymptomatic atherosclerotic plaques, were included. Analysis involved calculating mean differences between uptake values and comparison using a random-effects model. RESULTS A total of 16 articles, involving 423 participants, were included in the meta-analysis (10 carotid artery studies, five coronary artery studies, and one in peripheral vascular disease). Comparing 18F-NaF uptake in symptomatic versus asymptomatic atherosclerotic plaques, a mean difference of 0.43 (95% CI 0.29 to 0.57; p < 0.0001, I2 = 65%) was noted in studies comparing symptomatic and asymptomatic plaques in the same participant, with a significant difference in effect based on arterial territory studied (χ2 = 12.68, p = 0.0018). In studies of participants with and without symptomatic disease, there was no significant difference between symptomatic and asymptomatic plaques (mean difference 0.27, 95% CI -0.26 to 0.80, p = 0.28, I2 = 85%). CONCLUSIONS PET imaging using 18F-NaF can detect differences in microcalcification between symptomatic and asymptomatic atherosclerotic plaques within, but not between, individuals, and thus, is a marker of symptomatic disease. The standardization of 18F-NaF PET imaging protocols, and its future use as a risk stratification tool or outcome measure, requires further study. (PROSPERO Registration ID: CRD42023451363).
Collapse
Affiliation(s)
- Shiv Bhakta
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| | | | - Jason M Tarkin
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | - James HF Rudd
- Division of Cardiovascular Medicine, University of Cambridge, Cambridge, UK
| | | | - Nicholas R Evans
- Department of Clinical Neurosciences, University of Cambridge, Cambridge, UK
| |
Collapse
|
4
|
Patil S, Patel D, Kata R, Teichner E, Subtirelu R, Ayubcha C, Werner T, Alavi A. Molecular Imaging with PET in the Assessment of Vascular Dementia and Cerebrovascular Disease. PET Clin 2025; 20:121-131. [PMID: 39477719 DOI: 10.1016/j.cpet.2024.09.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2024]
Abstract
Vascular dementia (VaD) is a unique form of cognitive decline caused by impairment of blood flow to the brain. Atherosclerosis is strongly associated with VaD as plaque accumulation can lead to tissue hypoperfusion or stroke. VaD and atherosclerosis are both diagnosed relatively late in their disease courses, prompting the need for novel diagnostic approaches such as PET to visualize subclinical pathophysiologic changes. This review discusses the use of PET in the assessment of VaD and cerebrovascular disease, focusing on the application of [18F] fluorodeoxyglucose to study neurometabolism and [18F] sodium fluoride to quantify arterial calcification.
Collapse
Affiliation(s)
- Shiv Patil
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Darshil Patel
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Rithvik Kata
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Eric Teichner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA; Sidney Kimmel Medical College, Thomas Jefferson University, Philadelphia, PA, USA
| | - Robert Subtirelu
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Cyrus Ayubcha
- Harvard Medical School, Boston, MA, USA; Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, MA, USA
| | - Thomas Werner
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA
| | - Abass Alavi
- Department of Radiology, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Lindner JR, Morello M. In Vivo Cardiovascular Molecular Imaging: Contributions to Precision Medicine and Drug Development. Circulation 2024; 150:1885-1897. [PMID: 39621762 DOI: 10.1161/circulationaha.124.066522] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2024]
Abstract
Conventional forms of noninvasive cardiovascular imaging that evaluate morphology, function, flow, and metabolism play a vital role in individual treatment decisions, often based on guidelines. Innovations in molecular imaging have enhanced our ability to spatially quantify the expression of a wider array of disease-related proteins, genes, or cell types, or the activity of specific pathogenic pathways. These techniques, which usually rely on design of targeted imaging probes, have already been used extensively in cancer medicine and have now become part of cardiovascular care in conditions such as amyloidosis and sarcoidosis. The recognition that common cardiovascular conditions are caused by a substantial diversity of pathobiologic pathways and the diversity of therapies available for use have rekindled interest in expanding the role of molecular imaging of tissue phenotype to improve precision in diagnosis and therapeutic decision-making. The intent of this article is to raise awareness and understanding of approaches to molecular or cellular imaging of phenotype with targeted probes, and their potential to promote the principles of precision medicine. Also addressed are the diverse roles of molecular imaging to improve precision and efficiency of new drug development at the stages of candidate identification, preclinical testing, and clinical trials.
Collapse
Affiliation(s)
- Jonathan R Lindner
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| | - Matteo Morello
- Cardiovascular Division and Robert M. Berne Cardiovascular Research Center, University of Virginia, Charlottesville
| |
Collapse
|
6
|
Minopoulou I, Kleyer A, Yalcin-Mutlu M, Fagni F, Kemenes S, Schmidkonz C, Atzinger A, Pachowsky M, Engel K, Folle L, Roemer F, Waldner M, D'Agostino MA, Schett G, Simon D. Imaging in inflammatory arthritis: progress towards precision medicine. Nat Rev Rheumatol 2023; 19:650-665. [PMID: 37684361 DOI: 10.1038/s41584-023-01016-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/31/2023] [Indexed: 09/10/2023]
Abstract
Imaging techniques such as ultrasonography and MRI have gained ground in the diagnosis and management of inflammatory arthritis, as these imaging modalities allow a sensitive assessment of musculoskeletal inflammation and damage. However, these techniques cannot discriminate between disease subsets and are currently unable to deliver an accurate prediction of disease progression and therapeutic response in individual patients. This major shortcoming of today's technology hinders a targeted and personalized patient management approach. Technological advances in the areas of high-resolution imaging (for example, high-resolution peripheral quantitative computed tomography and ultra-high field MRI), functional and molecular-based imaging (such as chemical exchange saturation transfer MRI, positron emission tomography, fluorescence optical imaging, optoacoustic imaging and contrast-enhanced ultrasonography) and artificial intelligence-based data analysis could help to tackle these challenges. These new imaging approaches offer detailed anatomical delineation and an in vivo and non-invasive evaluation of the immunometabolic status of inflammatory reactions, thereby facilitating an in-depth characterization of inflammation. By means of these developments, the aim of earlier diagnosis, enhanced monitoring and, ultimately, a personalized treatment strategy looms closer.
Collapse
Affiliation(s)
- Ioanna Minopoulou
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Arnd Kleyer
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Melek Yalcin-Mutlu
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Filippo Fagni
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Stefan Kemenes
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Christian Schmidkonz
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Institute for Medical Engineering, University of Applied Sciences Amberg-Weiden, Weiden, Germany
| | - Armin Atzinger
- Department of Nuclear Medicine, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Milena Pachowsky
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | | | - Lukas Folle
- Pattern Recognition Lab, Friedrich-Alexander-University Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Frank Roemer
- Institute of Radiology, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Radiology, Boston University Chobanian & Avedisian School of Medicine, Boston, MA, USA
| | - Maximilian Waldner
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Department of Internal Medicine 1, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Maria-Antonietta D'Agostino
- Division of Rheumatology, Catholic University of the Sacred Heart, Fondazione Policlinico Universitario A. Gemelli IRCCS, Rome, Italy
- Université Paris-Saclay, UVSQ, Inserm U1173, Infection et Inflammation, Laboratory of Excellence Inflamex, Montigny-Le-Bretonneux, France
| | - Georg Schett
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany
| | - David Simon
- Department of Internal Medicine 3, Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
- Deutsches Zentrum Immuntherapie (DZI), Friedrich-Alexander-University Erlangen-Nürnberg (FAU) and Universitätsklinikum Erlangen, Erlangen, Germany.
| |
Collapse
|
7
|
Poznyak AV, Sukhorukov VN, Eremin II, Nadelyaeva II, Orekhov AN. Diagnostics of atherosclerosis: Overview of the existing methods. Front Cardiovasc Med 2023; 10:1134097. [PMID: 37229223 PMCID: PMC10203409 DOI: 10.3389/fcvm.2023.1134097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 04/11/2023] [Indexed: 05/27/2023] Open
Abstract
Atherosclerosis was and remains an extremely common and serious health problem. Since the elderly are most at risk of cardiovascular risk, and the average life expectancy is increasing, the spread of atherosclerosis and its consequences increases as well. One of the features of atherosclerosis is its asymptomaticity. This factor makes it difficult to make a timely diagnosis. This entails the lack of timely treatment and even prevention. To date, in the arsenal of physicians, there is only a limited set of methods to suspect and fully diagnose atherosclerosis. In this review, we have tried to briefly describe the most common and effective methods for diagnosing atherosclerosis.
Collapse
|
8
|
NaF-PET Imaging of Atherosclerosis Burden. J Imaging 2023; 9:jimaging9020031. [PMID: 36826950 PMCID: PMC9966512 DOI: 10.3390/jimaging9020031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/19/2023] [Accepted: 01/26/2023] [Indexed: 01/31/2023] Open
Abstract
The method of 18F-sodium fluoride (NaF) positron emission tomography/computed tomography (PET/CT) of atherosclerosis was introduced 12 years ago. This approach is particularly interesting because it demonstrates microcalcification as an incipient sign of atherosclerosis before the development of arterial wall macrocalcification detectable by CT. However, this method has not yet found its place in the clinical routine. The more exact association between NaF uptake and future arterial calcification is not fully understood, and it remains unclear to what extent NaF-PET may replace or significantly improve clinical cardiovascular risk scoring. The first 10 years of publications in the field were characterized by heterogeneity at multiple levels, and it is not clear how the method may contribute to triage and management of patients with atherosclerosis, including monitoring effects of anti-atherosclerosis intervention. The present review summarizes findings from the recent 2¾ years including the ability of NaF-PET imaging to assess disease progress and evaluate response to treatment. Despite valuable new information, pertinent questions remain unanswered, not least due to a pronounced lack of standardization within the field and of well-designed long-term studies illuminating the natural history of atherosclerosis and effects of intervention.
Collapse
|
9
|
Keeling G, Man F. Nuclear Imaging of Inflammation. PROGRESS IN INFLAMMATION RESEARCH 2023:23-90. [DOI: 10.1007/978-3-031-23661-7_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
10
|
Simonsen JA, Thøgersen KF, Hvidsten S, Gerke O, Høilund-Carlsen PF, Diederichsen LP. Treatment-naïve idiopathic inflammatory myopathy: disease evaluation by fluorodeoxyglucose versus pyrophosphate. THE EGYPTIAN JOURNAL OF RADIOLOGY AND NUCLEAR MEDICINE 2022. [DOI: 10.1186/s43055-022-00822-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Abstract
Background
Imaging of idiopathic inflammatory myopathies (IIMs) is challenging, and no pathognomonic signs exist. Different tracers have been tested for this purpose, mainly inflammation markers including technetium-99m-pyrophosphate (PYP). We aimed to examine the utility of fluorine-18-fluorodeoxyglucose (FDG) relative to PYP in idiopathic inflammatory myopathy (IIM).
Methods
Using visual grading and CT-guided muscular segmentation and standardized uptake values (SUVs), we assessed muscular tracer uptake qualitatively and quantitatively, comparing FDG uptake in eight patients with recent-onset IIM and 24 healthy control persons and FDG and PYP uptake in seven patients.
Results
Muscular FDG and PYP uptake was increased in all patients. However, uptake distribution and signal intensity differed considerably. FDG scans revealed clear involvement of certain muscle groups including core and swallowing muscles and, in addition, abnormality in diseased extra-muscular organs. PYP was mainly visible in bones, whereas muscular PYP uptake was generally discrete and primarily located in the extremities. Quantitatively, FDG uptake was significantly higher in patients than in controls; the volume-weighted SUVmean for all right-side muscles was 0.84 versus 0.60 g/ml (95% confidence interval (CI) for mean difference 0.14–0.34, p = 0.0001). FDG SUVmean values were up to four times higher than PYP mean values in upper limb muscles (95% CI for the mean ratio 2.37–3.77, p = 0.0004) and two–three times higher in lower limb muscles (95% CI for the mean ratio 2.28–2.71, p < 0.0001).
Conclusions
Muscular FDG uptake was higher in treatment-naïve IIM patients than in healthy controls and more distinct than PYP uptake in patients with a potential to reveal extra-muscular IIM involvement and malignancy. Thus, FDG appears to be superior to PYP in the diagnostic evaluation of IIM.
Collapse
|
11
|
Wen W, Gao M, Yun M, Meng J, Zhu Z, Yu W, Hacker M, Yu Y, Zhang X, Li X. Associations between coronary/aortic 18F-sodium fluoride uptake and pro-atherosclerosis factors in patients with multivessel coronary artery disease. J Nucl Cardiol 2022; 29:3352-3365. [PMID: 35415825 DOI: 10.1007/s12350-022-02958-x] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Accepted: 03/08/2022] [Indexed: 01/18/2023]
Abstract
BACKGROUND 18F-NaF PET/CT is a novel approach to detect and quantify microcalcification in atherosclerosis. We aimed to explore the underlying systematic vascular osteogenesis in the coronary artery and aorta in patients with multivessel coronary artery disease (CAD). METHODS Patients with multivessel CAD prospectively underwent 18F-NaF PET/CT. The coronary microcalcification activity (CMA) and aortic microcalcification activity (AMA) were calculated based on both the volume and intensity of 18F-NaF PET activity. Peri-coronary adipose tissue (PCAT) density was measured in adipose tissue surrounding the coronary arteries and the 18F-NaF tissue-to-blood ratio (TBR) was measured in the coronary arteries. RESULTS 100 patients with multivessel CAD were prospectively recruited. The CMA was significantly associated with the AMA (r = 0.70; P < .001). After multivariable adjustment, the CMA was associated with the AMA (Beta = 0.445 per SD increase; P < .001). The coronary TBR was also significantly associated with the PCAT density (r = 0.56; P < .001). The PCAT density was independently associated with the coronary TBR after adjusting confounding factors. CONCLUSIONS Coronary 18F-NaF uptake was significantly associated with the PCAT density. There was a significant relationship between the coronary and the aortic 18F-NaF uptake. It might indicate an underlying systematic vascular osteogenesis in patients with multivessel CAD.
Collapse
Affiliation(s)
- Wanwan Wen
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingxin Gao
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Mingkai Yun
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Jingjing Meng
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Ziwei Zhu
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Wenyuan Yu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Marcus Hacker
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| | - Yang Yu
- Department of Cardiac Surgery, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
| | - Xiaoli Zhang
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China.
| | - Xiang Li
- Department of Nuclear Medicine, Molecular Imaging Lab, Beijing Anzhen Hospital, Capital Medical University, Beijing, China
- Division of Nuclear Medicine, Department of Biomedical Imaging and Image-guided Therapy, Vienna General Hospital, Medical University of Vienna, Vienna, Austria
| |
Collapse
|
12
|
Mikail N, Rossi A, Bengs S, Haider A, Stähli BE, Portmann A, Imperiale A, Treyer V, Meisel A, Pazhenkottil AP, Messerli M, Regitz-Zagrosek V, Kaufmann PA, Buechel RR, Gebhard C. Imaging of heart disease in women: review and case presentation. Eur J Nucl Med Mol Imaging 2022; 50:130-159. [PMID: 35974185 PMCID: PMC9668806 DOI: 10.1007/s00259-022-05914-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2022] [Accepted: 07/12/2022] [Indexed: 11/04/2022]
Abstract
Cardiovascular diseases (CVD) remain the leading cause of mortality worldwide. Although major diagnostic and therapeutic advances have significantly improved the prognosis of patients with CVD in the past decades, these advances have less benefited women than age-matched men. Noninvasive cardiac imaging plays a key role in the diagnosis of CVD. Despite shared imaging features and strategies between both sexes, there are critical sex disparities that warrant careful consideration, related to the selection of the most suited imaging techniques, to technical limitations, and to specific diseases that are overrepresented in the female population. Taking these sex disparities into consideration holds promise to improve management and alleviate the burden of CVD in women. In this review, we summarize the specific features of cardiac imaging in four of the most common presentations of CVD in the female population including coronary artery disease, heart failure, pregnancy complications, and heart disease in oncology, thereby highlighting contemporary strengths and limitations. We further propose diagnostic algorithms tailored to women that might help in selecting the most appropriate imaging modality.
Collapse
Affiliation(s)
- Nidaa Mikail
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alexia Rossi
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Susan Bengs
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Achi Haider
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
- Division of Nuclear Medicine and Molecular Imaging, Department of Radiology, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Barbara E Stähli
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Angela Portmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Alessio Imperiale
- Nuclear Medicine and Molecular Imaging - Institut de Cancérologie de Strasbourg Europe (ICANS), University of Strasbourg, Strasbourg, France
- Molecular Imaging - DRHIM, IPHC, UMR 7178, CNRS/Unistra, Strasbourg, France
| | - Valerie Treyer
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Alexander Meisel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland
| | - Aju P Pazhenkottil
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
- Department of Cardiology, University Heart Center, University Hospital Zurich, Zurich, Switzerland
| | - Michael Messerli
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Vera Regitz-Zagrosek
- Charité, Universitätsmedizin, Berlin, Berlin, Germany
- University of Zurich, Zurich, Switzerland
| | - Philipp A Kaufmann
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Ronny R Buechel
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland
| | - Cathérine Gebhard
- Department of Nuclear Medicine, University Hospital Zurich, Raemistrasse 100, 8091, Zurich, Switzerland.
- Center for Molecular Cardiology, University of Zurich, Schlieren, Switzerland.
- Division of Cardiology, Department of Internal Medicine II, Medical University of Vienna, Vienna, Austria.
| |
Collapse
|
13
|
Piri R, Edenbrandt L, Larsson M, Enqvist O, Skovrup S, Iversen KK, Saboury B, Alavi A, Gerke O, Høilund-Carlsen PF. "Global" cardiac atherosclerotic burden assessed by artificial intelligence-based versus manual segmentation in 18F-sodium fluoride PET/CT scans: Head-to-head comparison. J Nucl Cardiol 2022; 29:2531-2539. [PMID: 34386861 DOI: 10.1007/s12350-021-02758-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Accepted: 07/13/2021] [Indexed: 01/06/2023]
Abstract
BACKGROUND Artificial intelligence (AI) is known to provide effective means to accelerate and facilitate clinical and research processes. So in this study it was aimed to compare a AI-based method for cardiac segmentation in positron emission tomography/computed tomography (PET/CT) scans with manual segmentation to assess global cardiac atherosclerosis burden. METHODS A trained convolutional neural network (CNN) was used for cardiac segmentation in 18F-sodium fluoride PET/CT scans of 29 healthy volunteers and 20 angina pectoris patients and compared with manual segmentation. Parameters for segmented volume (Vol) and mean, maximal, and total standardized uptake values (SUVmean, SUVmax, SUVtotal) were analyzed by Bland-Altman Limits of Agreement. Repeatability with AI-based assessment of the same scans is 100%. Repeatability (same conditions, same operator) and reproducibility (same conditions, two different operators) of manual segmentation was examined by re-segmentation in 25 randomly selected scans. RESULTS Mean (± SD) values with manual vs. CNN-based segmentation were Vol 617.65 ± 154.99 mL vs 625.26 ± 153.55 mL (P = .21), SUVmean 0.69 ± 0.15 vs 0.69 ± 0.15 (P = .26), SUVmax 2.68 ± 0.86 vs 2.77 ± 1.05 (P = .34), and SUVtotal 425.51 ± 138.93 vs 427.91 ± 132.68 (P = .62). Limits of agreement were - 89.42 to 74.2, - 0.02 to 0.02, - 1.52 to 1.32, and - 68.02 to 63.21, respectively. Manual segmentation lasted typically 30 minutes vs about one minute with the CNN-based approach. The maximal deviation at manual re-segmentation was for the four parameters 0% to 0.5% with the same and 0% to 1% with different operators. CONCLUSION The CNN-based method was faster and provided values for Vol, SUVmean, SUVmax, and SUVtotal comparable to the manually obtained ones. This AI-based segmentation approach appears to offer a more reproducible and much faster substitute for slow and cumbersome manual segmentation of the heart.
Collapse
Affiliation(s)
- Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | | | - Olof Enqvist
- Eigenvision AB, Malmö, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Sofie Skovrup
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark
| | - Kasper Karmark Iversen
- Department of Cardiology, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Emergency Medicine, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Babak Saboury
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health (NIH), Bethesda, MD, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense C, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
14
|
Raynor WY, Borja AJ, Zhang V, Kothekar E, Lau HC, Ng SJ, Seraj SM, Rojulpote C, Taghvaei R, Jin KY, Werner TJ, Høilund-Carlsen PF, Alavi A, Revheim ME. Assessing Coronary Artery and Aortic Calcification in Patients with Prostate Cancer Using 18F-Sodium Fluoride PET/Computed Tomography. PET Clin 2022; 17:653-659. [DOI: 10.1016/j.cpet.2022.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
15
|
Atherosclerosis Burdens in Diabetes Mellitus: Assessment by PET Imaging. Int J Mol Sci 2022; 23:ijms231810268. [PMID: 36142181 PMCID: PMC9499611 DOI: 10.3390/ijms231810268] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/03/2022] [Indexed: 01/14/2023] Open
Abstract
Arteriosclerosis and its sequelae are the most common cause of death in diabetic patients and one of the reasons why diabetes has entered the top 10 causes of death worldwide, fatalities having doubled since 2000. The literature in the field claims almost unanimously that arteriosclerosis is more frequent or develops more rapidly in diabetic than non-diabetic subjects, and that the disease is caused by arterial inflammation, the control of which should therefore be the goal of therapeutic efforts. These views are mostly based on indirect methodologies, including studies of artery wall thickness or stiffness, or on conventional CT-based imaging used to demonstrate tissue changes occurring late in the disease process. In contrast, imaging with positron emission tomography and computed tomography (PET/CT) applying the tracers 18F-fluorodeoxyglucose (FDG) or 18F-sodium fluoride (NaF) mirrors arterial wall inflammation and microcalcification, respectively, early in the course of the disease, potentially enabling in vivo insight into molecular processes. The present review provides an overview of the literature from the more than 20 and 10 years, respectively, that these two tracers have been used for the study of atherosclerosis, with emphasis on what new information they have provided in relation to diabetes and which questions remain insufficiently elucidated.
Collapse
|
16
|
Kosciuszek ND, Kalta D, Singh M, Savinova OV. Vitamin K antagonists and cardiovascular calcification: A systematic review and meta-analysis. Front Cardiovasc Med 2022; 9:938567. [PMID: 36061545 PMCID: PMC9437425 DOI: 10.3389/fcvm.2022.938567] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Accepted: 07/22/2022] [Indexed: 12/02/2022] Open
Abstract
Background Many patients treated with Vitamin K antagonists (VKA) for anticoagulation have concomitant vascular or valvular calcification. This meta-analysis aimed to evaluate a hypothesis that vascular and valvular calcification is a side-effect of VKA treatment. Methods We conducted a systematic literature search to identify studies that reported vascular or valvular calcification in patients treated with VKA. The associations between VKA use and calcification were analyzed with random-effects inverse variance models and reported as odds ratios (OR) and 95% confidence intervals (95% CI). In addition, univariate meta-regression analyses were utilized to identify any effect moderators. Results Thirty-five studies were included (45,757 patients; 6,251 VKA users). The median follow-up was 2.3 years [interquartile range (IQR) of 1.2–4.0]; age 66.2 ± 3.6 years (mean ± SD); the majority of participants were males [77% (IQR: 72–95%)]. VKA use was associated with an increased OR for coronary artery calcification [1.21 (1.08, 1.36), p = 0.001], moderated by the duration of treatment [meta-regression coefficient B of 0.08 (0.03, 0.13), p = 0.0005]. Extra-coronary calcification affecting the aorta, carotid artery, breast artery, and arteries of lower extremities, was also increased in VKA treated patients [1.86 (1.43, 2.42), p < 0.00001] and moderated by the author-reported statistical adjustments of the effect estimates [B: −0.63 (−1.19, −0.08), p = 0.016]. The effect of VKA on the aortic valve calcification was significant [3.07 (1.90, 4.96), p < 0.00001]; however, these studies suffered from a high risk of publication bias. Conclusion Vascular and valvular calcification are potential side effects of VKA. The clinical significance of these side effects on cardiovascular outcomes deserves further investigation.
Collapse
Affiliation(s)
- Nina D. Kosciuszek
- New York Institute of Technology, College of Osteopathic Medicine, Academic Medicine Scholar Program, OldWestbury, NY, United States
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Daniel Kalta
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Mohnish Singh
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
| | - Olga V. Savinova
- Department of Biomedical Sciences, New York Institute of Technology College of Osteopathic Medicine, Old Westbury, NY, United States
- *Correspondence: Olga V. Savinova
| |
Collapse
|
17
|
Ng ACT, van Rosendael AR, Bax JJ. Automated artificial intelligence quantification of aortic atherosclerotic calcifications by 18F-sodium fluoride PET/CT. J Nucl Cardiol 2022; 29:2011-2012. [PMID: 34291373 DOI: 10.1007/s12350-021-02700-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 06/07/2021] [Indexed: 11/29/2022]
Affiliation(s)
- Arnold C T Ng
- Department of Cardiology, Princess Alexandra Hospital, Woolloongabba, QLD, Australia
- Faculty of Medicine, South Western Sydney Clinical School, The University of New South Wales, Kensington, Australia
| | | | - Jeroen J Bax
- Department of Cardiology, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
18
|
Fiz F, Piccardo A, Morbelli S, Bottoni G, Piana M, Cabria M, Bagnasco M, Sambuceti G. Longitudinal analysis of atherosclerotic plaques evolution: an 18F-NaF PET/CT study. J Nucl Cardiol 2022; 29:1713-1723. [PMID: 33630243 DOI: 10.1007/s12350-021-02556-3] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 01/18/2021] [Indexed: 10/22/2022]
Abstract
PURPOSE 18F-NaF-PET/CT can detect mineral metabolism within atherosclerotic plaques. To ascertain whether their 18F-NaF uptake purports progression, this index was compared with subsequent morphologic evolution. METHODS 71 patients underwent two consecutive 18F-NaF-PET/CTs (PET1/PET2). In PET1, non-calcified 18F-NaF hot spots were identified in the abdominal aorta. Their mean/max HU was compared with those of a non-calcified control region (CR) and with corresponding areas in PET2. A target-to-background ratio (TBR), mean density (HU), and calcium score (CS) were calculated on calcified atherosclerotic plaques in PET1 and compared with those in PET2. A VOI including the entire abdominal aorta was drawn; mean TBR and total CS were calculated on PET1 and compared with those PET2. RESULTS Hot spots in PET1 (N = 179) had a greater HU than CR (48 ± 8 vs 37 ± 9, P < .01). Mean hot spots HU increased to 59 ± 12 in PET2 (P < .001). New calcifications appeared at the hot spots site in 73 cases (41%). Baseline atherosclerotic plaque's (N = 375) TBR was proportional to percent HU and CS increase (P < .01 for both). Aortic CS increased (P < .001); the whole-aorta TBR in PET1 correlated with the CS increase between the baseline and the second PET/CT (R = .63, P < .01). CONCLUSIONS 18F-NaF-PET/CT depicts the early stages of plaques development and tracks their evolution over time.
Collapse
Affiliation(s)
- Francesco Fiz
- Nuclear Medicine Unit, IRCCS Humanitas Research Hospital, Via Manzoni, 56, Rozzano, 20089, Milan, Italy.
| | - Arnoldo Piccardo
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Silvia Morbelli
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| | - Gianluca Bottoni
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Michele Piana
- Department of Mathematics, University of Genoa, Via Dodecaneso, 35, 16146, Genoa, Italy
| | - Manlio Cabria
- Nuclear Medicine Unit, E. O. Ospedali Galliera, Mura delle Cappuccine, 14, 16128, Genoa, Italy
| | - Marcello Bagnasco
- Department of Internal Medicine and Medical specialties, University of Genoa, Viale Benedetto XV, 10, 16132, Genoa, Italy
| | - Gianmario Sambuceti
- IRCCS Ospedale Policlinico San Martino, Largo Rosanna Benzi, 10, 16132, Genoa, Italy
- Nuclear Medicine Unit, Department of Health Sciences, University of Genoa, Via Antonio Pastore, 1, 16132, Genoa, Italy
| |
Collapse
|
19
|
Piri R, Edenbrandt L, Larsson M, Enqvist O, Nøddeskou-Fink AH, Gerke O, Høilund-Carlsen PF. Aortic wall segmentation in 18F-sodium fluoride PET/CT scans: Head-to-head comparison of artificial intelligence-based versus manual segmentation. J Nucl Cardiol 2022; 29:2001-2010. [PMID: 33982202 DOI: 10.1007/s12350-021-02649-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 01/03/2023]
Abstract
BACKGROUND We aimed to establish and test an automated AI-based method for rapid segmentation of the aortic wall in positron emission tomography/computed tomography (PET/CT) scans. METHODS For segmentation of the wall in three sections: the arch, thoracic, and abdominal aorta, we developed a tool based on a convolutional neural network (CNN), available on the Research Consortium for Medical Image Analysis (RECOMIA) platform, capable of segmenting 100 different labels in CT images. It was tested on 18F-sodium fluoride PET/CT scans of 49 subjects (29 healthy controls and 20 angina pectoris patients) and compared to data obtained by manual segmentation. The following derived parameters were compared using Bland-Altman Limits of Agreement: segmented volume, and maximal, mean, and total standardized uptake values (SUVmax, SUVmean, SUVtotal). The repeatability of the manual method was examined in 25 randomly selected scans. RESULTS CNN-derived values for volume, SUVmax, and SUVtotal were all slightly, i.e., 13-17%, lower than the corresponding manually obtained ones, whereas SUVmean values for the three aortic sections were virtually identical for the two methods. Manual segmentation lasted typically 1-2 hours per scan compared to about one minute with the CNN-based approach. The maximal deviation at repeat manual segmentation was 6%. CONCLUSIONS The automated CNN-based approach was much faster and provided parameters that were about 15% lower than the manually obtained values, except for SUVmean values, which were comparable. AI-based segmentation of the aorta already now appears as a trustworthy and fast alternative to slow and cumbersome manual segmentation.
Collapse
Affiliation(s)
- Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, Gothenburg, Sweden
| | | | - Olof Enqvist
- Eigenvision AB, Malmö, Sweden
- Department of Electrical Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | | | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
20
|
Alavi A, Werner TJ, Høilund-Carlsen PF, Revheim ME. Can Target-to-Background Ratio Measurement Lead to Detection and Accurate Quantification of Atherosclerosis With FDG PET? Likely Not. Clin Nucl Med 2022; 47:532-536. [PMID: 35384906 PMCID: PMC9071036 DOI: 10.1097/rlu.0000000000004131] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 01/19/2022] [Indexed: 12/02/2022]
Abstract
ABSTRACT The introduction of FDG in 1976 started a new discipline and enhanced the role of molecular imaging in medicine. While the initial intent with this tracer was to determine brain function in a variety of neuropsychiatric disorders, over time, this powerful approach has made a major impact on managing many other diseases and disorders. During the past 2 decades, FDG PET has been used to detect inflammatory lesions in the atherosclerotic plaques and in other settings. However, the suboptimal spatial resolution of PET limits its ability to visualize plaques that are very small in size. Furthermore, this tracer remains in the blood for an extended period and therefore provides suboptimal results. Target-to-background ratio (TBR) has been suggested to correct for this source of error. Unfortunately, TBR values vary substantially, depending on the timing of image acquisition. Delayed imaging at later time points (3-4 hours) may obviate the need for TBR measurement, but it is impractical with conventional PET instruments. Recently, 18F-sodium fluoride (NaF) has been used for detection and quantification of molecular calcification in the plaques. This tracer is highly specific for calcification and is rapidly cleared from the circulation. In addition, global atherosclerotic burden as measured by NaF PET can be determined accurately either in the heart or major arteries throughout the body. Therefore, the role of FDG PET-based TBR measurement for detection and quantification of atherosclerotic plaques is questionable at this time.
Collapse
Affiliation(s)
- Abass Alavi
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Thomas J. Werner
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Poul Flemming. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital
- Institute of Clinical Medicine, University of Oslo, Oslo, Norway
| |
Collapse
|
21
|
Høilund-Carlsen PF, Revheim ME, Alavi A. Alzheimer’s Disease at a Crossroad: Time to Part from Amyloid to More Promising Aspects— Atherosclerosis for a Start. J Alzheimers Dis 2022; 88:455-458. [DOI: 10.3233/jad-220190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Three decades with the amyloid hypothesis, nearly two with amyloid-PET imaging, and one with testing of anti-amyloid therapy have not yielded benefits to patients with Alzheimer’s disease (AD). It is time to focus on more promising options, e.g., infection, low dose radiation, and atherosclerosis. The relevance of the latter in managing AD has fluctuated from being significant to insignificant. Current methodologies for detecting cerebral atherosclerosis reflect advanced changes in only major arteries. In contrast, 18F-sodium fluoride PET imaging assessing early-stage cerebral atherosclerosis regionally or in the entire vascular bed may provide new insight in this age-related process in dementia.
Collapse
Affiliation(s)
- Poul F. Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Norway
- Institute of Clinical Medicine, University of Oslo, Norway
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
22
|
Kersting D, Settelmeier S, Mavroeidi IA, Herrmann K, Seifert R, Rischpler C. Shining Damaged Hearts: Immunotherapy-Related Cardiotoxicity in the Spotlight of Nuclear Cardiology. Int J Mol Sci 2022; 23:3802. [PMID: 35409161 PMCID: PMC8998973 DOI: 10.3390/ijms23073802] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2022] [Revised: 03/20/2022] [Accepted: 03/25/2022] [Indexed: 11/30/2022] Open
Abstract
The emerging use of immunotherapies in cancer treatment increases the risk of immunotherapy-related cardiotoxicity. In contrast to conventional chemotherapy, these novel therapies have expanded the forms and presentations of cardiovascular damage to a broad spectrum from asymptomatic changes to fulminant short- and long-term complications in terms of cardiomyopathy, arrythmia, and vascular disease. In cancer patients and, particularly, cancer patients undergoing (immune-)therapy, cardio-oncological monitoring is a complex interplay between pretherapeutic risk assessment, identification of impending cardiotoxicity, and post-therapeutic surveillance. For these purposes, the cardio-oncologist can revert to a broad spectrum of nuclear cardiological diagnostic workup. The most promising commonly used nuclear medicine imaging techniques in relation to immunotherapy will be discussed in this review article with a special focus on the continuous development of highly specific molecular markers and steadily improving methods of image generation. The review closes with an outlook on possible new developments of molecular imaging and advanced image evaluation techniques in this exciting and increasingly growing field of immunotherapy-related cardiotoxicity.
Collapse
Affiliation(s)
- David Kersting
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Stephan Settelmeier
- Department of Cardiology and Vascular Medicine, University Hospital Essen, West German Heart and Vascular Center, University of Duisburg-Essen, 45147 Essen, Germany;
| | - Ilektra-Antonia Mavroeidi
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
- Clinic for Internal Medicine (Tumor Research), University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany
| | - Ken Herrmann
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Robert Seifert
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| | - Christoph Rischpler
- Department of Nuclear Medicine, University Hospital Essen, West German Cancer Center (WTZ), University of Duisburg-Essen, 45147 Essen, Germany; (K.H.); (R.S.); (C.R.)
- German Cancer Consortium (DKTK, Partner Site Essen/Düsseldorf), 45147 Essen, Germany;
| |
Collapse
|
23
|
Abstract
Abstract
Purpose
As atherosclerosis is a prominent cause of morbidity and mortality, early detection of atherosclerotic plaques is vital to prevent complications. Imaging plays a significant role in this goal. Molecular imaging and structural imaging detect different phases of atherosclerotic progression. In this review, we explain the relation between these types of imaging with the physiopathology of plaques, along with their advantages and disadvantages. We also discuss in detail the most commonly used positron emission tomography (PET) radiotracers for atherosclerosis imaging.
Method
A comprehensive search was conducted to extract articles related to imaging of atherosclerosis in PubMed, Google Scholar, and Web of Science. The obtained papers were reviewed regarding precise relation with our topic. Among the search keywords utilized were "atherosclerosis imaging", "atherosclerosis structural imaging", "atherosclerosis CT scan" "positron emission tomography", "PET imaging", "18F-NaF", "18F-FDG", and "atherosclerosis calcification."
Result
Although structural imaging such as computed tomography (CT) offers essential information regarding plaque structure and morphologic features, these modalities can only detect macroscopic alterations that occur later in the disease’s progression, when the changes are frequently irreversible. Molecular imaging modalities like PET, on the other hand, have the advantage of detecting microscopic changes and allow us to treat these plaques before irreversible changes occur. The two most commonly used tracers in PET imaging of atherosclerosis are 18F-sodium fluoride (18F-NaF) and 18F-fluorodeoxyglucose (18F-FDG). While there are limitations in the use of 18F-FDG for the detection of atherosclerosis in coronary arteries due to physiological uptake in myocardium and high luminal blood pool activity of 18F-FDG, 18F-NaF PET is less affected and can be utilized to analyze the coronary arteries in addition to the peripheral vasculature.
Conclusion
Molecular imaging with PET/CT has become a useful tool in the early detection of atherosclerosis. 18F-NaF PET/CT shows promise in the early global assessment of atherosclerosis, but further prospective studies are needed to confirm its role in this area.
Collapse
|
24
|
Parel PM, Berg AR, Hong CG, Florida EM, O'Hagan R, Sorokin AV, Mehta NN. Updates in the Impact of Chronic Systemic Inflammation on Vascular Inflammation by Positron Emission Tomography (PET). Curr Cardiol Rep 2022; 24:317-326. [PMID: 35171444 DOI: 10.1007/s11886-022-01651-2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 12/17/2021] [Indexed: 12/13/2022]
Abstract
PURPOSE OF REVIEW In this review, we focus on the clinical and epidemiological studies pertaining to systemic and vascular inflammation by positron emission tomography (PET) in patients with chronic inflammatory conditions such as rheumatoid arthritis (RA), systemic lupus erythematosus (SLE), human immunodeficiency virus (HIV), and psoriasis to highlight the importance of chronic systemic inflammation on vascular inflammation by PET in these disease states. RECENT FINDINGS Recent clinical and translation advancements have demonstrated the durable relationship between chronic systemic inflammation and cardiovascular disease (CVD). In chronic inflammatory states, this relationship is robustly evident in the form of increased vascular inflammation, yet traditional risk estimates often underestimate the subclinical cardiovascular risk conferred by chronic inflammation. PET has emerged as a novel, non-invasive imaging modality capable of both quantifying the degree of systemic and vascular inflammation and detecting residual inflammation prior to cardiovascular events. We begin by demonstrating the role of inflammation in the pathogenesis of atherosclerosis, discussing how PET has been utilized to measure systemic and vascular inflammation and their effect on subclinical atherosclerosis, and finally reviewing recent applications of PET in constructing improved risk stratification for patients at high risk for stroke and CVD.
Collapse
Affiliation(s)
- Philip M Parel
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander R Berg
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Christin G Hong
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Elizabeth M Florida
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Ross O'Hagan
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Alexander V Sorokin
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA
| | - Nehal N Mehta
- Inflammation and Cardiometabolic Diseases, Clinical Research Center, National Heart, Lung, and Blood Institute, National Institutes of Health, 10 Center Drive, Bethesda, MD, USA.
| |
Collapse
|
25
|
Raggi P. The importance of standards in medicine. J Nucl Cardiol 2022; 29:136-137. [PMID: 32720058 DOI: 10.1007/s12350-020-02288-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Accepted: 07/09/2020] [Indexed: 10/23/2022]
Affiliation(s)
- Paolo Raggi
- Division of Cardiology, University of Alberta, 5A9-014, 11220 83rd Avenue NW, Edmonton, AB, T6G 2B7, Canada.
| |
Collapse
|
26
|
Alavi A, Saboury B, Nardo L, Zhang V, Wang M, Li H, Raynor WY, Werner TJ, Høilund-Carlsen PF, Revheim ME. Potential and Most Relevant Applications of Total Body PET/CT Imaging. Clin Nucl Med 2022; 47:43-55. [PMID: 34874348 DOI: 10.1097/rlu.0000000000003962] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
ABSTRACT The introduction of total body (TB) PET/CT instruments over the past 2 years has initiated a new and exciting era in medical imaging. These instruments have substantially higher sensitivity (up to 68 times) than conventional modalities and therefore allow imaging the entire body over a short period. However, we need to further refine the imaging protocols of this instrument for different indications. Total body PET will allow accurate assessment of the extent of disease, particularly, including the entire axial and appendicular skeleton. Furthermore, delayed imaging with this instrument may enhance the sensitivity of PET for some types of cancer. Also, this modality may improve the detection of venous thrombosis, a common complication of cancer and chemotherapy, in the extremities and help prevent pulmonary embolism. Total body PET allows assessment of atherosclerotic plaques throughout the body as a systematic disease. Similarly, patients with widespread musculoskeletal disorders including both oncologic and nononcologic entities, such as degenerative joint disease, rheumatoid arthritis, and osteoporosis, may benefit from the use of TB-PET. Finally, quantitative global disease assessment provided by this approach will be superior to conventional measurements, which do not reflect overall disease activity. In conclusion, TB-PET imaging may have a revolutionary impact on day-to-day practice of medicine and may become the leading imaging modality in the future.
Collapse
Affiliation(s)
- Abass Alavi
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | | - Lorenzo Nardo
- Department of Radiology, University of California, Davis, Sacramento, CA
| | - Vincent Zhang
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Meiyun Wang
- Department of Radiology, Henan Provincial People's Hospital, Henan, China
| | - Hongdi Li
- United Imaging Healthcare, Houston, TX
| | - William Y Raynor
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | - Thomas J Werner
- From the Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA
| | | | | |
Collapse
|
27
|
Raynor WY, Borja AJ, Rojulpote C, Høilund-Carlsen PF, Alavi A. 18F-sodium fluoride: An emerging tracer to assess active vascular microcalcification. J Nucl Cardiol 2021; 28:2706-2711. [PMID: 32390112 DOI: 10.1007/s12350-020-02138-9] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Accepted: 04/07/2020] [Indexed: 12/21/2022]
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA.
- Drexel University College of Medicine, Philadelphia, PA, USA.
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Perelman School of Medicine at the University of Pennsylvania, Philadelphia, PA, USA
| | - Chaitanya Rojulpote
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
- Department of Internal Medicine, The Wright Center for Graduate Medical Education, Scranton, PA, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, Faculty of Health Sciences, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA, 19104, USA
| |
Collapse
|
28
|
Raynor WY, Park PSU, Borja AJ, Sun Y, Werner TJ, Ng SJ, Lau HC, Høilund-Carlsen PF, Alavi A, Revheim ME. PET-Based Imaging with 18F-FDG and 18F-NaF to Assess Inflammation and Microcalcification in Atherosclerosis and Other Vascular and Thrombotic Disorders. Diagnostics (Basel) 2021; 11:diagnostics11122234. [PMID: 34943473 PMCID: PMC8700072 DOI: 10.3390/diagnostics11122234] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/19/2021] [Accepted: 11/23/2021] [Indexed: 01/13/2023] Open
Abstract
Positron emission tomography (PET) imaging with 18F-fluorodeoxyglucose (FDG) represents a method of detecting and characterizing arterial wall inflammation, with potential applications in the early assessment of vascular disorders such as atherosclerosis. By portraying early-stage molecular changes, FDG-PET findings have previously been shown to correlate with atherosclerosis progression. In addition, recent studies have suggested that microcalcification revealed by 18F-sodium fluoride (NaF) may be more sensitive at detecting atherogenic changes compared to FDG-PET. In this review, we summarize the roles of FDG and NaF in the assessment of atherosclerosis and discuss the role of global assessment in quantification of the vascular disease burden. Furthermore, we will review the emerging applications of FDG-PET in various vascular disorders, including pulmonary embolism, as well as inflammatory and infectious vascular diseases.
Collapse
Affiliation(s)
- William Y. Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Peter Sang Uk Park
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Austin J. Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Yusha Sun
- Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA;
| | - Thomas J. Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Sze Jia Ng
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Hui Chong Lau
- Department of Medicine, Crozer-Chester Medical Center, Upland, PA 19013, USA; (S.J.N.); (H.C.L.)
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark;
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; (W.Y.R.); (P.S.U.P.); (A.J.B.); (T.J.W.); (A.A.)
- Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, 0372 Oslo, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, 0315 Oslo, Norway
- Correspondence: or
| |
Collapse
|
29
|
Alavi A, Werner TJ, Raynor W, Høilund-Carlsen PF, Revheim ME. Critical review of PET imaging for detection and characterization of the atherosclerotic plaques with emphasis on limitations of FDG-PET compared to NaF-PET in this setting. AMERICAN JOURNAL OF NUCLEAR MEDICINE AND MOLECULAR IMAGING 2021; 11:337-351. [PMID: 34754605 PMCID: PMC8569336] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/12/2021] [Indexed: 06/13/2023]
Abstract
Applications of various positron emission tomography (PET) tracers for assessing atherosclerosis have been evolving over the years. 18F-fluorodeoxyglucose (FDG)-PET was introduced in 2001 as a probe for this purpose. During the past decade, numerous papers have described a major role for sodium 18F-fluoride (NaF) as another tracer for assessing this vascular disease. We have reviewed the existing data about the merits of both techniques for assessing atherosclerosis. We have to emphasize that our team has been actively involved in conducting research with both tracers over many years. In this review, we have relied upon the data from the CAMONA study which has become a gold standard for defining the role of PET imaging in atherosclerosis. This study was one of the largest of any in recent years and has allowed comprehensive comparison between these two tracers in detecting and quantifying atherosclerosis. Based on what we have learned from this major undertaking, we believe the role of FDG-PET will be limited in assessing atherosclerosis in clinical work-up. This is relevant to both major and coronary arteries. In contrast to NaF-PET, the role of FDG-PET in assessing coronary artery atherosclerosis is almost non-existent. Based on the existing data in this domain, NaF-PET is an ideal imaging modality for both research and clinical assessment of atherosclerosis. The aim of this review is to describe the pros and cons of both approaches based on the existing data in the literature.
Collapse
Affiliation(s)
- Abass Alavi
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - William Raynor
- Department of Radiology, Hospital of The University of PennsylvaniaPhiladelphia 19104, PA, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University HospitalOdense 5000, Denmark
- Department of Clinical Research, University of Southern DenmarkOdense, Denmark
| | - Mona-Elisabeth Revheim
- Division of Radiology and Nuclear Medicine, Oslo University HospitalOslo 0424, Norway
- Institute of Clinical Medicine, Faculty of Medicine, University of OsloOslo 0424, Norway
| |
Collapse
|
30
|
Imaging Inflammation in Patients and Animals: Focus on PET Imaging the Vulnerable Plaque. Cells 2021; 10:cells10102573. [PMID: 34685553 PMCID: PMC8533866 DOI: 10.3390/cells10102573] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2021] [Revised: 09/18/2021] [Accepted: 09/23/2021] [Indexed: 02/07/2023] Open
Abstract
Acute coronary syndrome (ACS) describes a range of conditions associated with the rupture of high-risk or vulnerable plaque. Vulnerable atherosclerotic plaque is associated with many changes in its microenvironment which could potentially cause rapid plaque progression. Present-day PET imaging presents a plethora of radiopharmaceuticals designed to image different characteristics throughout plaque progression. Improved knowledge of atherosclerotic disease pathways has facilitated a growing number of pathophysiological targets for more innovative radiotracer design aimed at identifying at-risk vulnerable plaque and earlier intervention opportunity. This paper reviews the efficacy of PET imaging radiotracers 18F-FDG, 18F-NaF, 68Ga-DOTATATE, 64Cu-DOTATATE and 68Ga-pentixafor in plaque characterisation and risk assessment, as well as the translational potential of novel radiotracers in animal studies. Finally, we discuss our murine PET imaging experience and the challenges encountered.
Collapse
|
31
|
Saboury B, Edenbrandt L, Piri R, Gerke O, Werner T, Arbab-Zadeh A, Alavi A, Høilund-Carlsen PF. Alavi-Carlsen Calcification Score (ACCS): A Simple Measure of Global Cardiac Atherosclerosis Burden. Diagnostics (Basel) 2021; 11:1421. [PMID: 34441355 PMCID: PMC8391812 DOI: 10.3390/diagnostics11081421] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2021] [Revised: 07/30/2021] [Accepted: 08/04/2021] [Indexed: 11/21/2022] Open
Abstract
Multislice cardiac CT characterizes late stage macrocalcification in epicardial arteries as opposed to PET/CT, which mirrors early phase arterial wall changes in epicardial and transmural coronary arteries. With regard to tracer, there has been a shift from using mainly 18F-fluorodeoxyglucose (FDG), indicating inflammation, to applying predominantly 18F-sodium fluoride (NaF) due to its high affinity for arterial wall microcalcification and more consistent association with cardiovascular risk factors. To make NaF-PET/CT an indispensable adjunct to clinical assessment of cardiac atherosclerosis, the Alavi-Carlsen Calcification Score (ACCS) has been proposed. It constitutes a global assessment of cardiac atherosclerosis burden in the individual patient, supported by an artificial intelligence (AI)-based approach for fast observer-independent segmentation. Common measures for characterizing epicardial coronary atherosclerosis by NaF-PET/CT as the maximum standardized uptake value (SUV) or target-to-background ratio are more versatile, error prone, and less reproducible than the ACCS, which equals the average cardiac SUV. The AI-based approach ensures a quick and easy delineation of the entire heart in 3D to obtain the ACCS expressing ongoing global cardiac atherosclerosis, even before it gives rise to CT-detectable coronary calcification. The quantification of global cardiac atherosclerotic burden by the ACCS is suited for management triage and monitoring of disease progression with and without intervention.
Collapse
Affiliation(s)
- Babak Saboury
- Clinical Center, Department of Radiology and Imaging Sciences, National Institutes of Health, Bethesda, MD 20892, USA;
- Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD 21250, USA
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Lars Edenbrandt
- Department of Molecular and Clinical Medicine, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, 41345 Gothenburg, Sweden;
- Department of Clinical Physiology, Sahlgrenska University Hospital, Region Västra Götaland, 41345 Gothenburg, Sweden
| | - Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| | - Tom Werner
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Armin Arbab-Zadeh
- Division of Cardiology, Department of Medicine, Johns Hopkins University School of Medicine, Baltimore, MD 21287, USA;
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, PA 19104, USA;
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, 5000 Odense C, Denmark; (R.P.); (O.G.)
- Department of Clinical Research, University of Southern Denmark, 5000 Odense C, Denmark
| |
Collapse
|
32
|
Potential of PET/CT in assessing dementias with emphasis on cerebrovascular disorders. Eur J Nucl Med Mol Imaging 2021; 47:2493-2498. [PMID: 31982989 DOI: 10.1007/s00259-020-04697-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
33
|
Piri R, Lici G, Riyahimanesh P, Gerke O, Alavi A, Høilund-Carlsen PF. Two-year change in 18F-sodium fluoride uptake in major arteries of healthy subjects and angina pectoris patients. Int J Cardiovasc Imaging 2021; 37:3115-3126. [PMID: 33950330 DOI: 10.1007/s10554-021-02263-7] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/11/2021] [Accepted: 04/28/2021] [Indexed: 12/24/2022]
Abstract
To examine 2-year changes in carotid and aortic 18F-sodium fluoride (NaF) uptake in both healthy controls and angina pectoris patients. Twenty-nine healthy subjects and 20 angina pectoris patients underwent 90-min NaF-PET/CT twice 2 years apart. The carotids and three sections of the aorta (arch, thoracic, abdominal) were manually segmented. NaF uptake was expressed as the mean and total standardized uptake values without and with partial volume correction (SUVmean, SUVtotal and pvcSUVmean, pvcSUVtotal). Insignificant tendencies were higher NaF uptake in angina patients at both time points with less uptake in healthy subjects and higher uptake in angina patients after 2 years. Thus, aortic pvcSUVmean of angina patients was 1.14 ± 0.35 and 1.29 ± 0.71 at baseline and after 2 years vs. 0.99 ± 0.31 and 0.95 ± 0.28 in healthy subjects. A similar pattern was observed for the carotid pvcSUVmean. NaF uptake at baseline could not predict a change in CT-calcification after 2 years. NaF uptake in all parts of the aorta correlated positively with age. There was an insignificant, but consistent, tendency for slightly higher arterial NaF uptake in the angina group indicating more ongoing microcalcification at both time points in patients than healthy subjects. The 2-year changes were in both groups very small suggesting that the atherosclerotic process is slow, albeit with a tendency of slight decreases among healthy controls and slight increases in angina patients despite statin therapy in half of these.
Collapse
Affiliation(s)
- Reza Piri
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark.
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark.
| | - Gauher Lici
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Pooriya Riyahimanesh
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| | - Abass Alavi
- Division of Nuclear Medicine, Department of Radiology, Hospital of the University of Pennsylvania, Philadelphia, USA
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University Hospital, Odense, Denmark
- Department of Clinical Research, University of Southern Denmark, Odense, Denmark
| |
Collapse
|
34
|
Canet-Soulas E, Bessueille L, Mechtouff L, Magne D. The Elusive Origin of Atherosclerotic Plaque Calcification. Front Cell Dev Biol 2021; 9:622736. [PMID: 33768090 PMCID: PMC7985066 DOI: 10.3389/fcell.2021.622736] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/08/2021] [Indexed: 12/14/2022] Open
Abstract
It has been known for decades or even centuries that arteries calcify as they age. Vascular calcification probably affects all adults, since virtually all have atherosclerotic plaques: an accumulation of lipids, inflammatory cells, necrotic debris, and calcium phosphate crystals. A high vascular calcium score is associated with a high cardiovascular mortality risk, and relatively recent data suggest that even microcalcifications that form in early plaques may destabilize plaques and trigger a cardiovascular event. If the cellular and molecular mechanisms of plaque calcification have been relatively well characterized in mice, human plaques appear to calcify through different mechanisms that remain obscure. In this context, we will first review articles reporting the location and features of early calcifications in human plaques and then review the articles that explored the mechanisms though which human and mouse plaques calcify.
Collapse
Affiliation(s)
- Emmanuelle Canet-Soulas
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laurence Bessueille
- ICBMS, CNRS, INSA Lyon, CPE, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| | - Laura Mechtouff
- CarMeN Laboratory, INSERM, INRA, INSA Lyon, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France.,Stroke Department, Hospices Civils de Lyon, Lyon, France
| | - David Magne
- ICBMS, CNRS, INSA Lyon, CPE, University of Lyon, Université Claude Bernard Lyon 1, Lyon, France
| |
Collapse
|
35
|
Raynor WY, Borja AJ, Hancin EC, Werner TJ, Alavi A, Revheim ME. Novel Musculoskeletal and Orthopedic Applications of 18F-Sodium Fluoride PET. PET Clin 2021; 16:295-311. [PMID: 33589389 DOI: 10.1016/j.cpet.2020.12.006] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PET imaging with 18F-sodium fluoride (NaF), combined with computed tomography or magnetic resonance, is a sensitive method of assessing bone turnover. Although NaF-PET is gaining popularity in detecting prostate cancer metastases to bone marrow, osseous changes represent secondary effects of cancer cell growth. PET tracers more appropriate for assessing prostate cancer metastases directly portray malignant activity and include 18F-fluciclovine and prostatic specific membrane antigen ligands. Recent studies investigating NaF-PET suggest utility in the assessment of benign musculoskeletal disorders. Emerging applications in assessing traumatic injuries, joint disease, back pain, orthopedic complications, and metabolic bone disease are discussed.
Collapse
Affiliation(s)
- William Y Raynor
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Drexel University College of Medicine, 2900 West Queen Lane, Philadelphia, PA 19129, USA
| | - Austin J Borja
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Perelman School of Medicine at the University of Pennsylvania, 3400 Civic Center Boulevard, Philadelphia, PA 19104, USA
| | - Emily C Hancin
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Lewis Katz School of Medicine at Temple University, 3500 North Broad Street, Philadelphia, PA 19140, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA
| | - Mona-Elisabeth Revheim
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, USA; Division of Radiology and Nuclear Medicine, Oslo University Hospital, Sognsvannsveien 20, Oslo 0372, Norway; Institute of Clinical Medicine, Faculty of Medicine, University of Oslo, Problemveien 7, Oslo 0315, Norway.
| |
Collapse
|
36
|
Tshomba Y, Baccellieri D, Carta N, Cilli G, Ardita V, Apruzzi L, Loschi D, Kahlberg A, Bertoglio L, Castellano R, Simonini E, Andreotti F, Chiesa R. Doppler Ultrasound Monitoring of Echogenicity in Asymptomatic Subcritical Carotid Stenosis and Assessment of Response to Oral Supplementation of Vitamin K2 (PLAK2 Randomized Controlled Trial). Diagnostics (Basel) 2021; 11:229. [PMID: 33546354 PMCID: PMC7913481 DOI: 10.3390/diagnostics11020229] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/25/2021] [Accepted: 01/27/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Plaque composition may predict the evolution of carotid artery stenosis rather than its sole extent. The grey scale median (GSM) value is a reproducible and standardized value to report plaque echogenicity as an indirect measure of its composition. We monitored plaque composition in asymptomatic subcritical carotid stenosis and evaluated the effect of an oral modulating calcification factor (vitamin K2). METHODS Carotid plaque composition was assessed by GSM value. Monitoring the effects of standard therapy (acetylsalicylic acid and low-medium dosage statin) (acetylsalicylic acid (ASA) arm) or standard therapy plus vitamins K2 oral supplementation (ASA + K2 arm) over a 12 months period was conducted using an ultrasound scan in a prospective, open-label, randomized controlled trial (PLAK2). RESULTS Sixty patients on low-medium dosage statin therapy were enrolled and randomized (30 per arm) to either ASA + K2 or ASA alone. Thirty-seven patients (61.6%) showed at 12 months a stable plaque with a mean increase in the GSM value in respect to the baseline of 2.6% with no differences between the two study arms (p = 0.66). Fifteen patients (25%) showed an 8% GSM value reduction respect the baseline with no differences between the two study arms (p = 0.99). At multivariable analysis, the adjusted mean (95% confidence interval) GSM change per month from baseline was greater in the ASA + K2 arm (-0.55 points, p = 0.048) compared to ASA alone (-0.18 points, p = 0.529). CONCLUSIONS Carotid plaque composition monitoring through GSM value represents a laborious procedure. Although its use may not be applied to everyday practice, a specific application consists in evaluating the effect of pharmacological therapy on plaque composition. This 12 months randomized trial showed that the majority of subcritical asymptomatic carotid plaque on treatment with low-medium dosage statin presented a stable or increased echogenicity. Although vitamin K2 beyond standard therapy did not determine a significant change in plaque composition, for those who presented with GSM reduction it did enhance a GSM monthly decline.
Collapse
Affiliation(s)
- Yamume Tshomba
- Department of Vascular Surgery, Fondazione Policlinico Universitario Gemelli IRCCS, Roma-Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Domenico Baccellieri
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Niccolò Carta
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Giuseppe Cilli
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Vincenzo Ardita
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Luca Apruzzi
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Diletta Loschi
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Andrea Kahlberg
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Luca Bertoglio
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Renata Castellano
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Elisa Simonini
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| | - Felicita Andreotti
- Department of Cardiovascular Sciences, Fondazione Policlinico Universitario Gemelli IRCCS, Roma-Università Cattolica del Sacro Cuore, 00168 Rome, Italy;
| | - Roberto Chiesa
- Department of Vascular Surgery, IRCCS Ospedale San Raffaele, Via Olgettina, 60, 20132 Milan, Italy; (N.C.); (G.C.); (V.A.); (L.A.); (D.L.); (A.K.); (L.B.); (R.C.); (E.S.); (R.C.)
| |
Collapse
|
37
|
Montanaro M, Scimeca M, Anemona L, Servadei F, Giacobbi E, Bonfiglio R, Bonanno E, Urbano N, Ippoliti A, Santeusanio G, Schillaci O, Mauriello A. The Paradox Effect of Calcification in Carotid Atherosclerosis: Microcalcification is Correlated with Plaque Instability. Int J Mol Sci 2021; 22:395. [PMID: 33401449 PMCID: PMC7796057 DOI: 10.3390/ijms22010395] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2020] [Revised: 12/28/2020] [Accepted: 12/28/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND this study aims to investigate the possible association among the histopathologic features of carotid plaque instability, the presence of micro- or macrocalcifications, the expression of in situ inflammatory biomarkers, and the occurrence of the major risk factors in this process in a large series of carotid plaques. METHODS a total of 687 carotid plaques from symptomatic and asymptomatic patients were collected. Histological evaluation was performed to classify the calcium deposits in micro or macrocalcifications according to their morphological features (location and size). Immunohistochemistry was performed to study the expression of the main inflammatory biomarkers. RESULTS results here reported demonstrated that calcifications are very frequent in carotid plaques, with a significant difference between the presence of micro- and macrocalcifications. Specifically, microcalcifications were significantly associated to high inflamed unstable plaques. Paradoxically, macrocalcifications seem to stabilize the plaque and are associated to a M2 macrophage polarization instead. DISCUSSION the characterization of mechanisms involved in the formation of carotid calcifications can lay the foundation for developing new strategies for the management of patients affected by carotid atherosclerosis. Data of this study could provide key elements for an exhaustive evaluation of carotid plaque calcifications allowing to establish the risk of associated clinical events.
Collapse
Affiliation(s)
- Manuela Montanaro
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Manuel Scimeca
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| | - Lucia Anemona
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Francesca Servadei
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Erica Giacobbi
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Rita Bonfiglio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
- Fondazione Umberto Veronesi (FUV), Piazza Velasca 5, 20122 Milano, Italy
| | - Elena Bonanno
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Nicoletta Urbano
- Nuclear Medicine Unit, Department of Oncohaematology, Policlinico “Tor Vergata”, viale oxford 81, 00133 Rome, Italy;
| | - Arnaldo Ippoliti
- Vascular Surgery, Department of Biomedicine and Prevention, Policlinico “Tor Vergata”, viale oxford 81, 00133 Rome, Italy;
| | - Giuseppe Santeusanio
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
| | - Orazio Schillaci
- Department of Biomedicine and Prevention, University of Rome “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy;
- IRCCS Neuromed, 86077 Pozzilli, Italy
| | - Alessandro Mauriello
- Department of Experimental Medicine, University “Tor Vergata”, Via Montpellier 1, 00133 Rome, Italy; (M.M.); (M.S.); (L.A.); (F.S.); (E.G.); (R.B.); (E.B.); (G.S.)
- Saint Camillus International University of Health Sciences, Via di Sant’Alessandro 8, 00131 Rome, Italy
| |
Collapse
|
38
|
Atherosclerosis Imaging with 18F-Sodium Fluoride PET. Diagnostics (Basel) 2020; 10:diagnostics10100852. [PMID: 33092250 PMCID: PMC7590213 DOI: 10.3390/diagnostics10100852] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Revised: 10/08/2020] [Accepted: 10/15/2020] [Indexed: 12/21/2022] Open
Abstract
The evidence on atherosclerosis imaging with 18F-sodium-fluoride (NaF) positron emission tomography (PET) is hotly debated because of the different patient characteristics, methodology, vascular beds, etc. in reported studies. This review is a continuation of a previous review on this topic, which covered the period 2010-2018. The purpose was to examine whether some of the most important questions that the previous review had left open had been elucidated by the most recent literature. Using principles of a systematic review, we ended analyzing 25 articles dealing with the carotids, coronary arteries, aorta, femoral, intracranial, renal, and penile arteries. The knowledge thus far can be summarized as follows: by targeting active arterial microcalcification, NaF uptake is considered a marker of early stage atherosclerosis, is age-dependent, and consistently associated with cardiovascular risk. Longitudinal studies on NaF uptake, conducted in the abdominal aorta only, showed unchanged uptake in postmenopausal women for nearly four years and varying uptake in prostate cancer patients over 1.5 years, despite constant or increasing calcium volume detected by computed tomography (CT). Thus, uncertainty remains about the transition from active arterial wall calcification marked by increased NaF uptake to less active or consolidated calcification detected by CT. The question of whether early-phase atherosclerosis and calcification can be modified remains also unanswered due to lack of intervention studies.
Collapse
|
39
|
Saboury B, Morris MA, Nikpanah M, Werner TJ, Jones EC, Alavi A. Reinventing Molecular Imaging with Total-Body PET, Part II: Clinical Applications. PET Clin 2020; 15:463-475. [PMID: 32888545 PMCID: PMC7462547 DOI: 10.1016/j.cpet.2020.06.013] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Abstract
Total-body PET scans will initiate a new era for the PET clinic. The benefits of 40-fold effective sensitivity improvement provide new capabilities to image with lower radiation dose, perform delayed imaging, and achieve improved temporal resolution. These technical features are detailed in the first of this 2-part series. In this part, the clinical impacts of the novel features of total-body PET scans are further explored. Applications of total-body PET scans focus on the real-time interrogation of systemic disease manifestations in a variety of practical clinical contexts. Total-body PET scans make clinical systems biology imaging a reality.
Collapse
Affiliation(s)
- Babak Saboury
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA; Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA
| | - Michael A Morris
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA; Department of Computer Science and Electrical Engineering, University of Maryland, Baltimore County, Baltimore, MD, USA
| | - Moozhan Nikpanah
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Thomas J Werner
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA
| | - Elizabeth C Jones
- Department of Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, USA
| | - Abass Alavi
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce St, Philadelphia, PA 19104, USA.
| |
Collapse
|
40
|
Patil S, Rojulpote C, Gonuguntla K, Karambelkar P, Bhattaru A, Raynor WY, Borja AJ, Vuthaluru K, Zhang V, Werner TJ, Gerke O, Høilund-Carlsen PF, Alavi A. Association of triglyceride to high density lipoprotein ratio with global cardiac microcalcification to evaluate subclinical coronary atherosclerosis in non-diabetic individuals. AMERICAN JOURNAL OF CARDIOVASCULAR DISEASE 2020; 10:241-246. [PMID: 32923106 PMCID: PMC7486520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Accepted: 07/03/2020] [Indexed: 06/11/2023]
Abstract
OBJECTIVE Triglycerides (TG) to high density lipoprotein (HDL) ratio has been proposed as a marker of insulin resistance and atherosclerosis. We hypothesize that TG/HDL ratio correlates positively with global cardiac microcalcification as assessed by NaF-PET/CT as a surrogate marker for coronary atherosclerosis in healthy non-diabetic individuals. METHOD We identified 68 healthy, non-diabetic individuals (age 41.7 ± 13.5 years; 35/33 female/male) from the CAMONA trial. All underwent PET/CT imaging 90 minutes after NaF injection (2.2 Mbq/Kg). Global cardiac average SUVmean (aSUVmean) was calculated by a trained physician for each individual. Fasting plasma lipid profile (total cholesterol (TC), low-density lipoprotein (LDL), HDL, and TG) and fasting plasma glucose were recorded. TG/HDL ratio was calculated for every individual. Univariate and multivariate linear regression models were used to assess the association between TG/HDL ratio and global cardiac aSUVmean. RESULT On univariate analysis, there was a positive linear association of TG/HDL ratio and global cardiac aSUVmean (r=0.244, B=0.047, P=0.045). On multivariate analysis adjusted for age, gender, systolic blood pressure, diastolic blood pressure, smoking status, total cholesterol, low-density lipoprotein, and fasting plasma glucose, TG/HDL ratio was found to be independently associated with global cardiac aSUVmean (B=0.060, 95% CI: 0.007-0.114, P=0.027). CONCLUSION There was a positive correlation between TG/HDL ratio with global cardiac microcalcification assessed by NaF-PET/CT imaging.
Collapse
Affiliation(s)
- Shivaraj Patil
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
- Department of Internal Medicine, University of ConnecticutFarmington, United States
| | - Chaitanya Rojulpote
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
- Department of Internal Medicine, The Wright Center for Graduate Medical EducationScranton, United States
| | - Karthik Gonuguntla
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
- Department of Internal Medicine, University of ConnecticutFarmington, United States
| | - Pranav Karambelkar
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
- Department of Internal Medicine, The Wright Center for Graduate Medical EducationScranton, United States
| | - Abhijit Bhattaru
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - William Y Raynor
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - Austin J Borja
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - Kiranmayi Vuthaluru
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - Vincent Zhang
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - Thomas J Werner
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| | - Oke Gerke
- Department of Nuclear Medicine, Odense University HospitalOdense, Denmark
- Department of Clinical Research, University of Southern DenmarkOdense, Denmark
| | - Poul Flemming Høilund-Carlsen
- Department of Nuclear Medicine, Odense University HospitalOdense, Denmark
- Department of Clinical Research, University of Southern DenmarkOdense, Denmark
| | - Abass Alavi
- Department of Radiology, University of PennsylvaniaPhiladelphia, United States
| |
Collapse
|
41
|
Beneficial Effects of Melatonin on Apolipoprotein-E Knockout Mice by Morphological and 18F-FDG PET/CT Assessments. Int J Mol Sci 2020; 21:ijms21082920. [PMID: 32331251 PMCID: PMC7216051 DOI: 10.3390/ijms21082920] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2020] [Revised: 04/16/2020] [Accepted: 04/21/2020] [Indexed: 12/11/2022] Open
Abstract
Atherosclerosis represents one of the main risk factors for the development of cardiovascular diseases. Their etiologies have been studied in recent years in order to better define therapeutic targets for intervention and to identify diagnostic methods. Two different subtypes of macrophages, M1 and M2, have been described in physiological conditions. They can also be found in the atherosclerotic process, where they both have opposite roles in disease progression. Perivascular brown adipose tissue is also involved in inflammation and endothelial damage. In this work, we provide insights into the protective role of melatonin in the atherosclerotic process by morphological and 18F-FDG-PET/CT analyses. In particular, we examined the effects of melatonin on pathways that are linked to atherosclerosis development. We showed that melatonin, by suppressing M1 activity, reduced inflammation and directed macrophage polarization toward the M2 macrophage subtype. Moreover, melatonin preserved the activity of perivascular brown adipose tissue. In addition, 18F-FDG uptake is very high in mice treated with melatonin, confirming that other factors may alter 18F-FDG distribution. In conclusion, we showed that melatonin affects inflammatory pathways that have been linked to atherosclerosis, assessed the relationships of the 18F-FDG PET/CT parameters with macrophage markers and the production of their cytokines, which that have been defined by morphological evaluations.
Collapse
|
42
|
Fukushima K, Nakano S, Matsunari I. Cardiac Amyloidosis: Current Diagnostic Strategies Using Multimodality Imaging. ANNALS OF NUCLEAR CARDIOLOGY 2020; 6:67-73. [PMID: 37123486 PMCID: PMC10133936 DOI: 10.17996/anc.20-00130] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2020] [Revised: 07/27/2020] [Accepted: 07/27/2020] [Indexed: 05/02/2023]
Abstract
Amyloidosis is a systemic disorder in which abnormal amyloid proteins deposit in body organs, leading to organ dysfunction and death. Cardiac amyloid deposition, causing a sort of restrictive cardiomyopathy and associated with increased risk of mortality. Most cases of cardiac amyloidosis are of either light chain or transthyretin type. Early and accurate diagnosis of cardiac amyloidosis may improve outcomes. However, diagnosis requires systematic approach including electrocardiography and biomarkers when encountered suspicious candidate. Diagnosis by multimodality noninvasive imaging have been substantially studied and established for differentiation from subtypes. Recent advance in the treatment of amyloidosis offers therapeutic monitoring and prognosis.
Collapse
Affiliation(s)
- Kenji Fukushima
- Department of Nuclear Medicine, Heart Center, Saitama Medical University International Medical Center, Saitama, Japan
- Department of Cardiology, Heart Center, Saitama Medical University International Medical Center, Saitama, Japan
- Reprint requests and correspondence: Kenji Fukushima, MD, PhD, Department of Nuclear Medicine, Heart Center, Saitama Medical University International Medical Center, 1397-1 Yamane, Hidaka, Saitama, 350–1298, Japan / E-mail:
| | - Shintaro Nakano
- Department of Cardiology, Heart Center, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ichiro Matsunari
- Department of Nuclear Medicine, Saitama Medical University, Saitama, Japan
| |
Collapse
|