1
|
Wen J, Xuan B, Liu Y, Wang L, He L, Meng X, Zhou T, Wang Y. NLRP3 inflammasome-induced pyroptosis in digestive system tumors. Front Immunol 2023; 14:1074606. [PMID: 37081882 PMCID: PMC10110858 DOI: 10.3389/fimmu.2023.1074606] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Accepted: 03/03/2023] [Indexed: 04/07/2023] Open
Abstract
Programmed cell death (PCD) refers to cell death in a manner that depends on specific genes encoding signals or activities. PCD includes apoptosis, pyroptosis, autophagy and necrosis (programmed necrosis). Among these mechanisms, pyroptosis is mediated by the gasdermin family and is accompanied by inflammatory and immune responses. When pathogens or other danger signals are detected, cytokine action and inflammasomes (cytoplasmic multiprotein complexes) lead to pyroptosis. The relationship between pyroptosis and cancer is complex and the effect of pyroptosis on cancer varies in different tissue and genetic backgrounds. On the one hand, pyroptosis can inhibit tumorigenesis and progression; on the other hand, pyroptosis, as a pro-inflammatory death, can promote tumor growth by creating a microenvironment suitable for tumor cell growth. Indeed, the NLRP3 inflammasome is known to mediate pyroptosis in digestive system tumors, such as gastric cancer, pancreatic ductal adenocarcinoma, gallbladder cancer, oral squamous cell carcinoma, esophageal squamous cell carcinoma, in which a pyroptosis-induced cellular inflammatory response inhibits tumor development. The same process occurs in hepatocellular carcinoma and some colorectal cancers. The current review summarizes mechanisms and pathways of pyroptosis, outlining the involvement of NLRP3 inflammasome-mediated pyroptosis in digestive system tumors.
Collapse
Affiliation(s)
- Jiexia Wen
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Bin Xuan
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yang Liu
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Liwei Wang
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Li He
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Xiangcai Meng
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Tao Zhou
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| | - Yimin Wang
- Department of Central Laboratory, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
- Department of General Surgery, The First Hospital of Qinhuangdao, Hebei Medical University, Qinhuangdao, Hebei, China
| |
Collapse
|
2
|
Siegler JJ, Correia MP, Hofman T, Prager I, Birgin E, Rahbari NN, Watzl C, Stojanovic A, Cerwenka A. Human ILC3 Exert TRAIL-Mediated Cytotoxicity Towards Cancer Cells. Front Immunol 2022; 13:742571. [PMID: 35300331 PMCID: PMC8921484 DOI: 10.3389/fimmu.2022.742571] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2021] [Accepted: 02/02/2022] [Indexed: 12/29/2022] Open
Abstract
Group 3 helper Innate Lymphoid Cells (ILC3s) are cytokine-producing lymphocytes that respond to stress signals released during disturbed tissue homeostasis and infection. Upon activation, ILC3s secrete IL-22 and IL-17, and orchestrate immune responses against extracellular pathogens. Their role in cancer remains poorly explored. To determine their anti-cancer effector potential, we co-cultured cytokine-activated human ILC3s with cancer cells of different origins. ILC3s were able to directly respond to tumor cells, resulting in enhanced IFN-γ production. Upon tumor cell encounter, ILC3s maintained expression of the transcription factor RORγt, indicating that ILC3s preserved their identity. ILC3s were able to directly kill both hepatocellular carcinoma and melanoma tumor cells expressing cell-death receptor TRAILR2, through the activation of Caspase-8 in target cells. Moreover, liver-derived cytokine-activated ILC3s also expressed TRAIL and were able to eliminate hepatoblastoma cells. Together, our data reveal that ILC3s can participate in anti-tumor immune response through direct recognition of tumor cells resulting in IFN-γ release and TRAIL-dependent cytotoxicity. Thus, ILC3s might be ancillary players of anti-tumor immunity in tissues, acting as primary responders against transformed or metastasizing cells, which might be further exploited for therapies against cancer.
Collapse
Affiliation(s)
- Jana-Julia Siegler
- Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Margareta P Correia
- Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Cancer Biology and Epigenetics Group, Research Center of IPO Porto (CI-IPOP)/RISE@CI-IPOP (Health Research Network), Portuguese Oncology Institute of Porto (IPO Porto)/Porto Comprehensive Cancer Center (Porto.CCC), Porto, Portugal
| | - Tomáš Hofman
- Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Isabel Prager
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Emrullah Birgin
- Department of Surgery, University Clinics Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Nuh N Rahbari
- Department of Surgery, University Clinics Mannheim, Medical Faculty Mannheim, Heidelberg University, Mannheim, Germany
| | - Carsten Watzl
- Department for Immunology, Leibniz Research Centre for Working Environment and Human Factors at TU Dortmund (IfADo), Dortmund, Germany
| | - Ana Stojanovic
- Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| | - Adelheid Cerwenka
- Department of Immunobiochemistry, Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,Mannheim Institute for Innate Immunoscience (MI3), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany.,European Center for Angioscience (ECAS), Medical Faculty Mannheim, University of Heidelberg, Mannheim, Germany
| |
Collapse
|
3
|
Uong TNT, Yoon MS, Lee KH, Hyun H, Nam TK, Min JJ, Nguyen HPQ, Kim SK. Live cell imaging of highly activated natural killer cells against human hepatocellular carcinoma in vivo. Cytotherapy 2021; 23:799-809. [PMID: 34176769 DOI: 10.1016/j.jcyt.2020.11.004] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2020] [Revised: 11/06/2020] [Accepted: 11/09/2020] [Indexed: 10/21/2022]
Abstract
BACKGROUND AIMS Tracking administered natural killer (NK) cells in vivo is critical for developing an effective NK cell-based immunotherapy against human hepatocellular carcinoma (HCC). Here the authors established a new molecular imaging using ex vivo-activated NK cells and investigated real-time biodistribution of administered NK cells during HCC progression. METHODS Ex vivo-expanded NK cells from healthy donors were labeled with a near-infrared lipophilic cytoplasmic dye, and their proliferation, surface receptor expression and cytotoxicity activity were evaluated. Human HCC HepG2 cells were implanted into the livers of NOD.Cg-Prkdcscid IL2rgtm1Wjl/SzJ (NSG) mice. The authors administered 1,1'-dioctadecyltetramethyl indotricarbocyanine iodide (DiR)-labeled NK cells intravenously to non-tumor-bearing and intrahepatic HCC tumor-bearing NSG mice. Fluorescent imaging was performed using a fluorescence-labeled organism bioimaging instrument. Single cell suspensions from the resected organs were analyzed using flow cytometry. RESULTS The fluorescent DiR dye was nontoxic and did not affect the proliferation or surface receptor expression levels of the NK cells, even at high doses. The administered DiR-labeled NK cells immediately migrated to the lungs of the non-tumor-bearing NSG mice, with increased NK cell signals evident in the liver and spleen after 4 h. NK cells migrated to the intrahepatic tumor-bearing livers of both early- and late-stage HCC mice within 1 h of injection. In early-stage intrahepatic tumor-bearing mice, the fluorescence signal increased in the liver until 48 h post-injection and decreased 7 days after NK injection. In late-stage HCC, the NK cell fluorescence signal was the highest in the liver for 7 days after NK injection and persisted for 14 days. The purity of long-term persistent CD45+CD56+CD3- NK cells was highest in early- and late-stage HepG2-bearing liver compared with normal liver 2 weeks after NK injection, whereas highest purity was still observed in the lungs of non-tumor-bearing mice. In addition, Ki-67 expression was detected in migrated human NK cells in the liver and lung up to 72 h after administration. With HepG2 tumor progression, NK cells reduced the expression of NKp30 and NKG2D. CONCLUSIONS Administered NK cells were successfully tracked in vivo by labeling the NK cells with near-infrared DiR dye. Highly expanded, activated NK cells migrated rapidly to the tumor-bearing liver, where they persisted for 14 days after administration, with high purity of CD45+CD56+CD3- NK cells. Liver biodistribution and persistence of administered NK cells showed significantly different accumulation patterns during HCC progression.
Collapse
Affiliation(s)
- Tung Nguyen Thanh Uong
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Mee Sun Yoon
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea.
| | - Kyung-Hwa Lee
- Department of Pathology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea.
| | - Hoon Hyun
- Department of Biomedical Sciences, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Taek-Keun Nam
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea
| | - Jung-Joon Min
- Department of Nuclear Medicine, Chonnam National University Hwasun Hospital, Gwangju, Republic of Korea
| | - Huy Phuoc Quang Nguyen
- Department of Radiation Oncology, Chonnam National University Hwasun Hospital, Chonnam National University Medical School, Gwangju, Republic of Korea; Department of Biomedical Science, Chonnam National University Graduate School, Gwangju, Republic of Korea
| | - Sang-Ki Kim
- Department of Companion and Laboratory Animal Science, Kongju National University, Yesan, Republic of Korea
| |
Collapse
|
4
|
Morshedi Rad D, Alsadat Rad M, Razavi Bazaz S, Kashaninejad N, Jin D, Ebrahimi Warkiani M. A Comprehensive Review on Intracellular Delivery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2005363. [PMID: 33594744 DOI: 10.1002/adma.202005363] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/07/2020] [Revised: 09/22/2020] [Indexed: 05/22/2023]
Abstract
Intracellular delivery is considered an indispensable process for various studies, ranging from medical applications (cell-based therapy) to fundamental (genome-editing) and industrial (biomanufacture) approaches. Conventional macroscale delivery systems critically suffer from such issues as low cell viability, cytotoxicity, and inconsistent material delivery, which have opened up an interest in the development of more efficient intracellular delivery systems. In line with the advances in microfluidics and nanotechnology, intracellular delivery based on micro- and nanoengineered platforms has progressed rapidly and held great promises owing to their unique features. These approaches have been advanced to introduce a smorgasbord of diverse cargoes into various cell types with the maximum efficiency and the highest precision. This review differentiates macro-, micro-, and nanoengineered approaches for intracellular delivery. The macroengineered delivery platforms are first summarized and then each method is categorized based on whether it employs a carrier- or membrane-disruption-mediated mechanism to load cargoes inside the cells. Second, particular emphasis is placed on the micro- and nanoengineered advances in the delivery of biomolecules inside the cells. Furthermore, the applications and challenges of the established and emerging delivery approaches are summarized. The topic is concluded by evaluating the future perspective of intracellular delivery toward the micro- and nanoengineered approaches.
Collapse
Affiliation(s)
- Dorsa Morshedi Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Maryam Alsadat Rad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Sajad Razavi Bazaz
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Navid Kashaninejad
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Dayong Jin
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- School of Life Sciences, Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| | - Majid Ebrahimi Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
- Institute of Molecular Medicine, Sechenov University, Moscow, 119991, Russia
| |
Collapse
|
5
|
Wang F, Lau JKC, Yu J. The role of natural killer cell in gastrointestinal cancer: killer or helper. Oncogene 2021; 40:717-730. [PMID: 33262461 PMCID: PMC7843415 DOI: 10.1038/s41388-020-01561-z] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 10/29/2020] [Accepted: 11/06/2020] [Indexed: 02/08/2023]
Abstract
Gastrointestinal cancer is one of the leading health problems worldwide, with a high morbidity and mortality. To date, harnessing both the innate and adaptive immune system against cancer provides a selective and effective therapeutic strategy for patients. As a first line defense against cancer, natural killer (NK) cells can swiftly target and lyse tumor cells without prior activation. In addition to its pivotal role in innate immunity, NK cells also play unique roles in the adaptive immune system as it enhance anti-tumor adaptive immune responses through secretion of cytokines and retaining an immunological memory. All these characteristics make NK cell a promising anti-cancer agent for patients. In spite of scarce infiltration and impaired function of NK cells in tumors, and the fact that tumors easily develop resistant mechanisms to evade the attacks from endogenous NK cells, multiple strategies have been developed to boost anti-tumor effect of NK cells and abolish tumor resistance. Some examples include adoptive transfer of NK cells after ex vivo activation and expansion; restoration of NK cell function using immune checkpoint inhibitors, and monoclonal antibody or cytokine treatment. Preclinical data have shown encouraging results, suggesting that NK cells hold great potential in cancer therapy. In this review, we discuss NK cells' cytotoxicity and modulation function in GI cancer and the current application in clinical therapy.
Collapse
Affiliation(s)
- Feixue Wang
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jennie Ka Ching Lau
- Faculty of Medicine, SHHO College, The Chinese University of Hong Kong, Hong Kong SAR, PR China
| | - Jun Yu
- Institute of Digestive Disease, Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, CUHK Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong SAR, PR China.
| |
Collapse
|
6
|
Hwang S, Han J, Baek JS, Tak E, Song GW, Lee SG, Jung DH, Park GC, Ahn CS, Kim N. Cytotoxicity of Human Hepatic Intrasinusoidal CD56 bright Natural Killer Cells against Hepatocellular Carcinoma Cells. Int J Mol Sci 2019; 20:ijms20071564. [PMID: 30925759 PMCID: PMC6480584 DOI: 10.3390/ijms20071564] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2019] [Revised: 03/26/2019] [Accepted: 03/26/2019] [Indexed: 12/12/2022] Open
Abstract
Hepatic intrasinusoidal (HI) natural killer (NK) cells from liver perfusate have unique features that are similar to those of liver-resident NK cells. Previously, we have reported that HI CD56bright NK cells effectively degranulate against SNU398 hepatocellular carcinoma (HCC) cells. Thus, the aim of this study was to further investigate the phenotype and function of HI NK cells. We found that HI CD56bright NK cells degranulated much less to Huh7 cells. HI CD56bright NK cells expressed NKG2D, NKp46, TNF-related apoptosis-inducing ligand (TRAIL), and FAS ligand (FASL) at higher levels than CD56dim cells. SNU398 cells expressed more NKG2D ligands and FAS and less PD-L1 than Huh7 cells. Blockade of NKG2D, TRAIL, and FASL significantly reduced the cytotoxicity of HI NK cells against SNU398 cells, but blockade of PD-L1 did not lead to any significant change. However, HI NK cells produced IFN-γ well in response to Huh7 cells. In conclusion, the cytotoxicity of HI CD56bright NK cells was attributed to the expression of NKG2D, TRAIL, and FASL. The results suggest the possible use of HI NK cells for cancer immunotherapy and prescreening of HCC cells to help identify the most effective NK cell therapy recipients.
Collapse
Affiliation(s)
- Shin Hwang
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Jaeseok Han
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Ji-Seok Baek
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Eunyoung Tak
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Gi-Won Song
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Sung-Gyu Lee
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Dong-Hwan Jung
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Gil-Chun Park
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Chul-Soo Ahn
- Division of Liver Transplantation and Hepatobiliary Surgery, Department of Surgery, University of Ulsan College of Medicine, Seoul 05505, Korea.
| | - Nayoung Kim
- Department of Convergence Medicine & Asan Institute for Life Sciences, Asan Medical Center, University of Ulsan College of Medicine, Seoul 05505, Korea.
| |
Collapse
|
7
|
Novel natural killer cell-mediated cancer immunotherapeutic activity of anisomycin against hepatocellular carcinoma cells. Sci Rep 2018; 8:10668. [PMID: 30006566 PMCID: PMC6045618 DOI: 10.1038/s41598-018-29048-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 06/29/2018] [Indexed: 12/27/2022] Open
Abstract
Despite advances in the clinical management of hepatocellular carcinoma (HCC), this form of cancer remains the second leading cause of cancer-related death worldwide. Currently, there are few treatment options for advanced HCC. Therefore, novel treatment strategies for HCC are required. Here, we described the promising antitumour effects of anisomycin, which exerts both direct killing effects and natural killer cell (NK)-mediated immunotherapeutic effects in HCC. To better elucidate the mechanisms through which anisomycin mediates its antitumour effects, we performed a genome-scale transcriptional analysis. We found that anisomycin treatment of HCC differentially modulated a broad range of immune regulation-associated genes. Among these immune regulation-associated genes, we found that lymphocyte function-associated antigen-3 (LFA-3, also called CD58), whose expression was significantly increased in anisomycin-treated HCC cells, was a critical player in NK-mediated immunotherapeutic effects. Furthermore major histocompatibility complex molecules class I (MHC-I) on HCC cells were also significantly regulated by treatment of anisomycin. Those adhesion molecules like CD58, MHC-I, and ICAM4 should be important for immune synapse formation between NK cells and HCC cells to boost NK-mediated immunotherapeutic effects. Notably, this is the first report of NK-dependent immunomodulatory effects of anisomycin suggesting anisomycin as a novel therapeutic drug for treatment of HCC.
Collapse
|
8
|
Pectin-guar gum-zinc oxide nanocomposite enhances human lymphocytes cytotoxicity towards lung and breast carcinomas. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2018; 90:494-503. [PMID: 29853118 DOI: 10.1016/j.msec.2018.04.085] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2017] [Revised: 04/16/2018] [Accepted: 04/28/2018] [Indexed: 11/22/2022]
Abstract
Pectin-guar gum-zinc oxide (PEC-GG-ZnO) nanocomposite was prepared by precipitation technique. The composite was characterized by using FT-IR, XRD, HRTEM, SAED, EDS, and SEM. TEM images showed the hexagonal shape of nanocomposite with the size range of 50-70 nm. Further, PEC-GG-ZnO was used as an immunomodulator for the first time to improve the cancer cells killing capabilities of human peripheral-blood lymphocytes (PBL). The lymphocyte proliferation assay proved the immunostimulatory property of the PEC-GG-ZnO which increased with the increase in concentration (25 μg/ml to 200 μg/ml). ELISA detection confirmed a significant increase in the release of IFN-γ, IL-2 and TNF-α cytokines and flow cytometry analysis revealed enhanced expression of CD3, CD8, and CD56 after treating PBL with PEC-GG-ZnO as compared to PEC and GG treatment. Moreover, we also found that nanocomposite pretreated human PBL displayed enhanced cytotoxicity towards lung (A549) and breast carcinoma (MCF-7) cells as compared to untreated PBL. The microcytotoxicity assay also demonstrated that with increase in effector: target ratios from 2.5:1 to 20:1, there was an increase in the cancer cell death. Taken together, the current data corroborates the immunostimulatory activities of PEC-GG-ZnO, a novel nanocomposite, hence it can serve as a promising cancer therapeutic agent.
Collapse
|
9
|
Villanueva-Paz M, Cordero MD, Pavón AD, Vega BC, Cotán D, De la Mata M, Oropesa-Ávila M, Alcocer-Gomez E, de Lavera I, Garrido-Maraver J, Carrascosa J, Zaderenko AP, Muntané J, de Miguel M, Sánchez-Alcázar JA. Amitriptyline induces mitophagy that precedes apoptosis in human HepG2 cells. Genes Cancer 2016; 7:260-277. [PMID: 27738496 PMCID: PMC5059116 DOI: 10.18632/genesandcancer.114] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/04/2022] Open
Abstract
Systemic treatments for hepatocellular carcinoma (HCC) have been largely unsuccessful. This study investigated the antitumoral activity of Amitriptyline, a tricyclic antidepressant, in hepatoma cells. Amitriptyline-induced toxicity involved early mitophagy activation that subsequently switched to apoptosis. Amitriptyline induced mitochondria dysfunction and oxidative stress in HepG2 cells. Amitriptyline specifically inhibited mitochondrial complex III activity that is associated with decreased mitochondrial membrane potential (∆Ψm) and increased reactive oxygen species (ROS) production. Transmission electron microscopy (TEM) studies revealed structurally abnormal mitochondria that were engulfed by double-membrane structures resembling autophagosomes. Consistent with mitophagy activation, fluorescence microscopy analysis showed mitochondrial Parkin recruitment and colocalization of mitochondria with autophagosome protein markers. Pharmacological or genetic inhibition of autophagy exacerbated the deleterious effects of Amitriptyline on hepatoma cells and led to increased apoptosis. These results suggest that mitophagy acts as an initial adaptive mechanism of cell survival. However persistent mitochondrial damage induced extensive and lethal mitophagy, autophagy stress and autophagolysome permeabilization leading eventually to cell death by apoptosis. Amitriptyline also induced cell death in hepatoma cells lines with mutated p53 and non-sense p53 mutation. Our results support the hypothesis that Amitriptyline-induced mitochondrial dysfunction can be a useful therapeutic strategy for HCC treatment, especially in tumors showing p53 mutations and/or resistant to genotoxic treatments.
Collapse
Affiliation(s)
- Marina Villanueva-Paz
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Mario D Cordero
- Facultad de Odontología, Universidad de Sevilla, Sevilla, Spain
| | - Ana Delgado Pavón
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Beatriz Castejón Vega
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - David Cotán
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Mario De la Mata
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Manuel Oropesa-Ávila
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Elizabet Alcocer-Gomez
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Isabel de Lavera
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Juan Garrido-Maraver
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - José Carrascosa
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain
| | - Ana Paula Zaderenko
- Sistemas Físicos, Químicos y Naturales-Universidad Pablo de Olavide, Sevilla, Spain
| | - Jordi Muntané
- Departmento de Cirugía General y Aparato Digestivo, Hospital Universitario Virgen del Rocío/Instituto de Biomedicina de Sevilla (IBiS)/CSIC/Universidad de Sevilla, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Hepáticas y Digestivas (CIBEREHD), Madrid, Spain
| | - Manuel de Miguel
- Departamento de Citología e Histología Normal y Patológica, Facultad de Medicina, Universidad de Sevilla, Sevilla, Spain
| | - José Antonio Sánchez-Alcázar
- Centro Andaluz de Biología de Desarrollo (CABD), Universidad Pablo de Olavide/CSIC/, Sevilla, Spain; Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), ISCIII, Madrid, Spain
| |
Collapse
|
10
|
Christakou AE, Ohlin M, Önfelt B, Wiklund M. Ultrasonic three-dimensional on-chip cell culture for dynamic studies of tumor immune surveillance by natural killer cells. LAB ON A CHIP 2015; 15:3222-31. [PMID: 26126574 DOI: 10.1039/c5lc00436e] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2023]
Abstract
We demonstrate a simple method for three-dimensional (3D) cell culture controlled by ultrasonic standing waves in a multi-well microplate. The method gently arranges cells in a suspension into a single aggregate in each well of the microplate and, by this, nucleates 3D tissue-like cell growth for culture times between two and seven days. The microplate device is compatible with both high-resolution optical microscopy and maintenance in a standard cell incubator. The result is a scaffold- and coating-free method for 3D cell culture that can be used for controlling the cellular architecture, as well as the cellular and molecular composition of the microenvironment in and around the formed cell structures. We demonstrate the parallel production of one hundred synthetic 3D solid tumors comprising up to thousands of human hepatocellular carcinoma (HCC) HepG2 cells, we characterize the tumor structure by high-resolution optical microscopy, and we monitor the functional behavior of natural killer (NK) cells migrating, docking and interacting with the tumor model during culture. Our results show that the method can be used for determining the collective ability of a given number of NK cells to defeat a solid tumor having a certain size, shape and composition. The ultrasound-based method itself is generic and can meet any demand from applications where it is advantageous to monitor cell culture from production to analysis of 3D tissue or tumor models using microscopy in one single microplate device.
Collapse
|
11
|
Permethylated Anigopreissin A inhibits human hepatoma cell proliferation by mitochondria-induced apoptosis. Chem Biol Interact 2015; 237:1-8. [DOI: 10.1016/j.cbi.2015.05.005] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2015] [Revised: 05/05/2015] [Accepted: 05/08/2015] [Indexed: 12/21/2022]
|
12
|
Mechanical stress promotes cisplatin-induced hepatocellular carcinoma cell death. BIOMED RESEARCH INTERNATIONAL 2015; 2015:430569. [PMID: 25685789 PMCID: PMC4317602 DOI: 10.1155/2015/430569] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 09/18/2014] [Accepted: 10/13/2014] [Indexed: 01/21/2023]
Abstract
Cisplatin (CisPt) is a commonly used platinum-based chemotherapeutic agent. Its efficacy is limited due to drug resistance and multiple side effects, thereby warranting a new approach to improving the pharmacological effect of CisPt. A newly developed mathematical hypothesis suggested that mechanical loading, when coupled with a chemotherapeutic drug such as CisPt and immune cells, would boost tumor cell death. The current study investigated the aforementioned mathematical hypothesis by exposing human hepatocellular liver carcinoma (HepG2) cells to CisPt, peripheral blood mononuclear cells, and mechanical stress individually and in combination. HepG2 cells were also treated with a mixture of CisPt and carnosine with and without mechanical stress to examine one possible mechanism employed by mechanical stress to enhance CisPt effects. Carnosine is a dipeptide that reportedly sequesters platinum-based drugs away from their pharmacological target-site. Mechanical stress was achieved using an orbital shaker that produced 300 rpm with a horizontal circular motion. Our results demonstrated that mechanical stress promoted CisPt-induced death of HepG2 cells (~35% more cell death). Moreover, results showed that CisPt-induced death was compromised when CisPt was left to mix with carnosine 24 hours preceding treatment. Mechanical stress, however, ameliorated cell death (20% more cell death).
Collapse
|
13
|
Distinctive pharmacological differences between liver cancer cell lines HepG2 and Hep3B. Cytotechnology 2014; 67:1-12. [PMID: 25002206 DOI: 10.1007/s10616-014-9761-9] [Citation(s) in RCA: 93] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2014] [Accepted: 06/23/2014] [Indexed: 01/11/2023] Open
Abstract
As cellular models for in vitro liver cancer and toxicity studies, HepG2 and Hep3B are the two most frequently used liver cancer cell lines. Because of their similarities they are often treated as the same in experimental studies. However, there are many differences that have been largely over-sighted or ignored between them. In this review, we summarize the differences between HepG2 and Hep3B cell lines that can be found in the literature based on PubMed search. We particularly focus on the differential gene expression, differential drug responses (chemosensitivity, cell cycle and growth inhibition, and gene induction), signaling pathways associated with these differences, as well as the factors in governing these differences between HepG2 and Hep3B cell lines. Based on our analyses of the available data, we suggest that neither HBx nor p53 may be the crucial factor to determine the differences between HepG2 and Hep3B cell lines although HBx regulates the expression of the majority of genes that are differentially expressed between HepG2 and Hep3B. Instead, the different maturation stages in cancer development of the original specimen between HepG2 and Hep3B may be responsible for the differences between them. This review provides insight into the molecular mechanisms underlying the differences between HepG2 and Hep3B and help investigators especially the beginners in the areas of liver cancer research and drug metabolism to fully understand, and thus better use and interpret the data from these two cell lines in their studies.
Collapse
|
14
|
Yeap SK, Omar AR, Ho WY, Beh BK, Ali AM, Alitheen NB. Rhaphidophora korthalsii modulates peripheral blood natural killer cell proliferation, cytokine secretion and cytotoxicity. BMC COMPLEMENTARY AND ALTERNATIVE MEDICINE 2013; 13:145. [PMID: 23800124 PMCID: PMC3701493 DOI: 10.1186/1472-6882-13-145] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/26/2012] [Accepted: 06/10/2013] [Indexed: 11/10/2022]
Abstract
Background Rhaphidophora korthalsii (Araceae) is a root-climber plant which has been widely used in Chinese traditional medicine for cancer and skin disease treatment. Previous reports have recorded its immunomodulatory effects on mice splenocyte and human peripheral blood. This study investigated the potential immunostimulatory effect of Rhaphidophora korthalsii on human PBMC enriched NK cell. Methods PBMC was exposed to various concentrations of R. korthalsii extract and the T and NK cell population in the control and extract treated PBMC were identified by immunophenotyping. Intracellular perforin and granzyme B expressions were detected by flow cytometry and extra-cellular Granzyme B, IFN-γ and TNF-α production in the isolated NK cells were determined by ELISA. The cytotoxicity of effector NK cell towards target K562 cell was assessed by CytoTox 96 assay. Results Rhaphidophora korthalsii methanol extract significantly increased PBMC NK cell population and intracellular perforin and granzyme B expressions. Moreover, the extract also enhanced the secretion of IFN-γ and TNF-α which subsequently enhanced the cytotoxicity of NK cell against the NK sensitive target K562 cell line. NK cell enriched with extract treated PBMC showed better activation than NK cell directly treated with the extract. Conclusion Our findings indicated a potential IL-2 free immunotherapy through direct and indirect R. korthalsii stimulation on NK cell activation.
Collapse
|
15
|
Lin YW, Chiang BH. 4-acetylantroquinonol B isolated from Antrodia cinnamomea arrests proliferation of human hepatocellular carcinoma HepG2 cell by affecting p53, p21 and p27 levels. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2011; 59:8625-8631. [PMID: 21739974 DOI: 10.1021/jf2011326] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
The 4-acetylantroquinonol B isolated from the mycelium of Antrodia cinnamomea could inhibit proliferation of hepatocellular carcinoma cells HepG2 with IC(50) 0.1 μg/mL. When the HepG2 cells were treated with 4-acetylantroquinonol B for 72 h, the proportion of cells in the G1 phase of the cell cycle increased and that in the S phase decreased significantly, and the proportion of G2/M phase cells were not obviously changed. In addition, the 4-acetylantroquinonol B treatment resulted in the decreases of CDK2 and CDK4, and an increase of p27 in a dose-dependent manner. The protein levels of p53 and p21 proteins were also increased when the cells were treated with low dosage (0.1 μg/mL) of 4-acetylantroquinonol B. Higher dosages, however, decreased the expression of p53 and p21 proteins. Assay of RT-PCR indicated that, corresponding to the increases of p53 and p21 proteins at the dosage of 0.1 μg/mL, the mRNAs of p53 and p21 showed 1.66- and 1.61-fold upregulations, respectively. Corresponding to the decreases of CDK2 and CDK4 proteins, the mRNAs of CDK2 and CDK4 showed -1.02- and -1.13-fold downregulations, respectively. However, level of p27 mRNA showed -1.2-fold downregulation in spite of the increase in p27 protein. This observation, again, confirms the fact that the p27 gene rarely undergoes homozygous inactivation in cancer cells. Our finding suggested that the 4-acetylantroquinonol B inhibits proliferation of HepG2 cells via affecting p53, p21 and p27 proteins, and can be considered as a potential cancer drug.
Collapse
Affiliation(s)
- Yu-Wei Lin
- Institute of Food Science and Technology, National Taiwan University, Taipei, Taiwan
| | | |
Collapse
|
16
|
Qian S, Fan J, Qiu SJ, Xiao YS, Lu L. Natural killer cells in the liver. NATURAL KILLER CELLS 2010:345-357. [DOI: 10.1016/b978-0-12-370454-2.00026-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
17
|
Kim HR, Lee KH, Park SJ, Kim SY, Yang YK, Tae J, Kim J. Anti-cancer activity and mechanistic features of a NK cell activating molecule. Cancer Immunol Immunother 2009; 58:1691-700. [PMID: 19259669 PMCID: PMC11030105 DOI: 10.1007/s00262-009-0680-0] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2008] [Accepted: 02/05/2009] [Indexed: 01/06/2023]
Abstract
Natural cytotoxicity receptors (NCRs) are major activating receptors involved in NK cytotoxicity. NCR expression varies with the activation state of NK cells, and the expression level correlates with NK cells' natural cytotoxicity. In this study, we found that Gö6983, a PKC inhibitor, induced a remarkable increase of NCR expression on primary NK cells, but other PKC inhibitors and NK cell stimulators such as IL-2 and PMA, did not. Gö6983 increased the expression of NCR in a time- and concentration-dependent manner. Furthermore, Gö6983 strongly upregulated the surface expression of death ligands FasL and TRAIL, but not cytotoxic molecules perforin and granzyme B. Unlike two other NK stimulating molecules, IL-2, and PMA, Gö6983 did not induce NK cell proliferation. Up-regulation of NCRs and death ligands on NK cells by Gö6983 resulted in a significant enhancement of NK cytotoxicity against various cancer cell lines. Most importantly, administration of Gö6983 effectively inhibited pulmonary tumor metastasis in mice in a dose-dependent manner. These results suggest that Gö6983 functions as an NK cell activating molecule (NKAM); this NKAM is a novel anti-cancer and anti-metastasis drug candidate because it enhances NK cytotoxicity against cancer cells in vivo as well as in vitro.
Collapse
Affiliation(s)
- Hyung-Ran Kim
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | - Kyoung-Ho Lee
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Kangwon Korea
| | - Su Jung Park
- Department of Microbiology, Yonsei University Wonju College of Medicine, Wonju, Kangwon Korea
| | - So Young Kim
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
| | | | - Jinsung Tae
- Department of Chemistry, Yonsei University, Seoul, Korea
| | - Jongsun Kim
- Brain Korea 21 Project for Medical Sciences, Department of Microbiology, Yonsei University College of Medicine, Seoul, Korea
- Department of Microbiology, Institute for Immunology and Immunological Diseases, Yonsei University College of Medicine, 134 Shinchon-dong, Seodaemoon-gu, Seoul, 120-752 Korea
| |
Collapse
|
18
|
Xiao Y, Yang FQ, Li SP, Hu G, Lee SMY, Wang YT. Essential oil of Curcuma wenyujin induces apoptosis in human hepatoma cells. World J Gastroenterol 2008; 14:4309-18. [PMID: 18666318 PMCID: PMC2731181 DOI: 10.3748/wjg.14.4309] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effects of the essential oil of Curcuma wenyujin (CWO) on growth inhibition and on the induction of apoptosis in human HepG2 cancer cells.
METHODS: The cytotoxic effect of drugs on HepG2 cells was measured by 3-(4,5-dimethylthiazole-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. DNA fragmentation was visualized by agarose gel electrophoresis. Cell cycle and mitochondrial transmembrane potential (ΔΨm) were determined by flow cytometry (FCM). Cytochrome C immunostaining was evaluated by fluorescence microscopy. Caspase-3 enzymatic activity was assayed by the cleavage of Ac-DEVD-R110. Cleaved PARP and active caspase-3 protein levels were measured by FCM using BD™ CBA Human Apoptosis Kit.
RESULTS: Treatment with CWO inhibited the growth of HepG2 cells in a dose-dependent manner, and the IC50 of CWO was approximately 70 &mgr;g/mL. CWO was found to inhibit the growth of HepG2 cells by inducing a cell cycle arrest at S/G2. DNA fragmentation was evidently observed at 70 &mgr;g/mL after 72 h of treatment. During the process, cytosolic HepG2 cytochrome C staining showed a markedly stronger green fluorescence than in control cells in a dose-dependent fashion, and CWO also caused mitochondrial transmembrane depolarization. Furthermore, the results clearly demonstrated that both, activity of caspase-3 enzyme and protein levels of cleaved PARP, significantly increased in a dose-dependent manner after treatment with CWO.
CONCLUSION: CWO exhibits an antiproliferative effect in HepG2 cells by inducing apoptosis. This growth inhibition is associated with cell cycle arrest, cytochrome C translocation, caspase 3 activation, Poly-ADP-ribose polymerase (PARP) degradation, and loss of mitochondrial membrane potential. This process involves a mitochondria-caspase dependent apoptosis pathway. As apoptosis is an important anti-cancer therapeutic target, these results suggest a potential of CWO as a chemotherapeutic agent.
Collapse
|
19
|
Kim HR, Kim K, Lee KH, Kim SJ, Kim J. Inhibition of casein kinase 2 enhances the death ligand- and natural kiler cell-induced hepatocellular carcinoma cell death. Clin Exp Immunol 2008; 152:336-44. [PMID: 18336591 DOI: 10.1111/j.1365-2249.2008.03622.x] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Recent studies have shown that the inhibition of casein kinase 2 (CK2) sensitizes many cancer cells to Fas ligand- and tumour necrosis factor-related apoptosis-inducing ligand (TRAIL)-induced apoptosis. However, it has not been demonstrated directly whether CK2 inhibition can also enhance the cytotoxicity of natural killer (NK) cells, which actually use the death ligands to kill cancer cells in vivo. To address whether NK cell-mediated cancer cell death is affected by the inhibition of CK2, we first checked whether the death ligand-induced apoptosis of hepatocellular carcinoma cells (HCCs) and HeLa were affected by CK2 inhibition. We then investigated the effect of CK2 inhibition on NK cytotoxicity against HCCs and HeLa cells and its mechanistic features. Inhibition of CK2 by emodin increased the apoptotic cell death of HepG2, Hep3B and HeLa when the cancer cell lines were treated with a soluble form of recombinant TRAIL or an agonistic antibody of Fas. This phenomenon appeared to be correlated with the expression level of death receptors on the cancer cell surface. More interestingly, the inhibition of CK2 also greatly increased the NK cell-mediated cancer cell killing. The NK cytotoxicity against the cancer cells increased about twofold when the target cells were pretreated with a specific CK2 inhibitor, emodin or 4,5,6,7-tetrabromobenzotriazole. Furthermore, the increase of the NK cytotoxicity against cancer cells by CK2 inhibition was granule-independent and mediated possibly by the death ligands on the NK cell surface. This suggests that CK2 inhibitors could be used to enhance the cytotoxicity of NK cells and consequently increase host tumour immunity.
Collapse
Affiliation(s)
- H-R Kim
- Department of Microbiology and Brain Korea 21 Project for Medical Sciences, Yonsei University College of Medicine, Seoul, Korea
| | | | | | | | | |
Collapse
|
20
|
Yeap SK, Alitheen NB, Ali AM, Omar AR, Raha AR, Suraini AA, Muhajir AH. Effect of Rhaphidophora korthalsii methanol extract on human peripheral blood mononuclear cell (PBMC) proliferation and cytolytic activity toward HepG2. JOURNAL OF ETHNOPHARMACOLOGY 2007; 114:406-11. [PMID: 17884317 DOI: 10.1016/j.jep.2007.08.020] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/04/2007] [Revised: 08/10/2007] [Accepted: 08/14/2007] [Indexed: 05/17/2023]
Abstract
The study of bioactivity of natural product is one of the major researches for drug discovery. The aim of this finding was to study the proliferation effect of Rhaphidophora korthalsii methanol extract on human PBMC and subsequently the cytotoxic effect of activated PBMC toward HepG2 human hepatocellular carcinoma. In this present study, MTT assay, cell cycle study and Annexin 5 binding assay were used to study the immunomodulatory and cytotoxic effects. In vitro cytotoxic screening of Rhaphidophora korthalsii methanol extract showed that the extract was non-toxic against hepatocellular carcinoma (HepG2). In contrast, the extract was able to stimulate the proliferation of human PBMC at 48 h and 72 h in MTT assay and cell cycle progress study. The application of immunomodulator in tumor research was studied by using MTT microcytotoxicity assay and flow cytometric Annexin V. Results indicated that pre-treated PBMC with Rhaphidophora korthalsii methanol extract induced the highest cytotoxicity (44.87+/-6.06% for MTT microcytotoxicity assay and 51.51+/-3.85% for Annexin V) toward HepG2. This finding demonstrates that Rhaphidophora korthalsii methanol extract are potent to stimulate the cytotoxic effect of immune cells toward HepG2.
Collapse
Affiliation(s)
- S K Yeap
- Department of Cell and Molecular Biology, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, 43400 Serdang, Selangor, Malaysia
| | | | | | | | | | | | | |
Collapse
|
21
|
Weiss JM, Allen C, Shivakumar R, Feller S, Li LH, Liu LN. Efficient responses in a murine renal tumor model by electroloading dendritic cells with whole-tumor lysate. J Immunother 2006; 28:542-50. [PMID: 16224271 DOI: 10.1097/01.cji.0000179437.95335.23] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Electroporation of dendritic cells (DCs) with tumor lysate elicited greater antitumor responses in vitro and in vivo, using less lysate than standard coincubation. Electroloaded DCs had normal surface marker expression and matured into competent antigen-presenting cells. In a renal carcinoma (RENCA) model, mice were pretreated with lysate-loaded DCs before tumor challenge. Mice that received DCs electroloaded with RENCA lysate had significantly smaller tumors (9+/-6 mm2) than mice given DCs coincubated with the same lysate (23+/-5 mm2). To evaluate a metastatic therapeutic tumor model, mice were first injected with Lewis lung carcinoma (LLC) and then given 2 doses of cryopreserved LLC lysate-loaded DCs. Mice treated with electroloaded DCs had a 50% reduction in lung metastases compared with control mice that received no DCs or DCs loaded with liver lysate. In contrast, DCs coincubated with LLC lysate were indistinguishable from controls. Tumor lysate-electroloaded but not-coincubated DCs also primed syngeneic mouse splenocytes in vitro to produce interferon-gamma and, specifically, lyse tumor cells. The electroloaded DCs elicited specific T-cell responses with less lysate than the amount reported in standard coincubation procedures. This approach may be particularly useful when small amounts of tumor material are available.
Collapse
MESH Headings
- Animals
- Antigens, Neoplasm/immunology
- Cancer Vaccines/immunology
- Carcinoma, Lewis Lung/immunology
- Carcinoma, Lewis Lung/therapy
- Carcinoma, Renal Cell/immunology
- Carcinoma, Renal Cell/therapy
- Cell Line, Tumor
- Dendritic Cells/immunology
- Dextrans/metabolism
- Electroporation
- Fluorescein-5-isothiocyanate/analogs & derivatives
- Fluorescein-5-isothiocyanate/metabolism
- Immunotherapy
- Kidney Neoplasms/immunology
- Kidney Neoplasms/therapy
- Male
- Melanoma, Experimental/immunology
- Melanoma, Experimental/therapy
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Neoplasm Transplantation
- Spleen/cytology
- Spleen/immunology
- T-Lymphocytes/immunology
Collapse
|
22
|
Varghese L, Agarwal C, Tyagi A, Singh RP, Agarwal R. Silibinin efficacy against human hepatocellular carcinoma. Clin Cancer Res 2005; 11:8441-8. [PMID: 16322307 DOI: 10.1158/1078-0432.ccr-05-1646] [Citation(s) in RCA: 93] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
PURPOSE Hepatocellular carcinoma (HCC) is one of the most common recurrent malignancies, for which, currently, there is no effective therapy. Considering the antihepatotoxic activity of silibinin, a widely used drug and supplement for various liver disorders, together with its strong preventive and anticancer efficacy against various epithelial cancers, we investigated the efficacy of silibin against human HCC cells. EXPERIMENTAL DESIGN Silibinin effects were examined on growth, cytotoxicity, apoptosis, and cell cycle progression in two different HCC cell lines, HepG2 (hepatitis B virus negative; p53 intact) and Hep3B (hepatitis B virus positive; p53 mutated). At molecular level, cell cycle effects of silibinin were assessed by immunoblotting and in-bead kinase assays. RESULTS Silibinin strongly inhibited growth of both HepG2 and Hep3B cells with a relatively stronger cytotoxicity in Hep3B cells, which was associated with apoptosis induction. Silibinin also caused G1 arrest in HepG2 and both G1 and G2-M arrests in Hep3B cells. Mechanistic studies revealed that silibinin induces Kip1/p27 but decreases cyclin D1, cyclin D3, cyclin E, cyclin-dependent kinase (CDK)-2, and CDK4 levels in both cell lines. In Hep3B cells, silibinin also reduced the protein levels of G2-M regulators. Furthermore, silibinin strongly inhibited CDK2, CDK4, and CDC2 kinase activity in these HCC cells. CONCLUSION Together, these results for the first time identify the biological efficacy of silibinin against HCC cells, suggesting the importance of conducting further investigations in preclinical HCC models, especially on in vivo efficacy, to support the clinical usefulness of silibinin against hepatocellular carcinoma in addition to its known clinical efficacy as an antihepatotoxic agent.
Collapse
Affiliation(s)
- Leyon Varghese
- Department of Pharmaceutical Sciences, School of Pharmacy and University of Colorado Cancer Center, University of Colorado Health Sciences Center, Denver, Colorado 80262, USA
| | | | | | | | | |
Collapse
|
23
|
Langhans B, Ahrendt M, Nattermann J, Sauerbruch T, Spengler U. Comparative study of NK cell-mediated cytotoxicity using radioactive and flow cytometric cytotoxicity assays. J Immunol Methods 2005; 306:161-8. [PMID: 16202423 DOI: 10.1016/j.jim.2005.08.010] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2005] [Revised: 08/03/2005] [Accepted: 08/17/2005] [Indexed: 11/22/2022]
Abstract
Cell-mediated cytotoxicity is a major effector pathway of the immune system. Thus far, radioactive assays have been widely used, but have significant disadvantages. Meanwhile, flow cytometric assays have been established but have not all been assessed simultaneously relative to the radioactive assays. Here, we have evaluated flow cytometric enumeration of surviving target cells, annexin-V binding and detection of activated caspase-3 and caspase-6 in direct comparison to the 51chromium (51Cr) release assay, and the JAM test. For assay evaluation NKL effector cells Fas-resistant K562 and Fas-sensitive Jurkat target cells were studied. Percent specific lysis measured for each E:T ratio was fitted to a sigmoid dose response curve. Both the flow cytometric and radioactive cytotoxicity assays showed equivalent background lysis (1-13%) but differed considerably with respect to maximum cytotoxicity (11-82% in K562 and 49-75% in Jurkat cells). Half maximum lysis ranged from 4:1 to 28:1 E:T ratios in K562 cells and from 1:3 to 24:1 in Jurkat cells, respectively. Flow cytometric enumeration of surviving target cells was the only assay which permitted detection of cytotoxicity at considerable lower E:T ratios (in K562 cells 1:4 to 2:1 and in Jurkat cells 1:4 to 1:1) than the conventional assays. Prolonged incubation over 24 h did not improve the sensitivity for flow cytometric enumeration of surviving target cells or the JAM test. The observed differences in the lysis of target cells are likely to reflect different sensitivity of cell death-associated changes which are measured by each assay. Thus, the particular choice of a cytotoxicity assay must be carefully adapted to the experimental situation under study.
Collapse
|
24
|
Ding L, Chen XP, Zhang ZW, Guan J, Zhang WG, Wang HP, Wang ZH, Li CL. Synergistic effect of bromocriptine and tumor necrosis factor-α on reversing hepatocellular carcinoma multidrug resistance in nude mouse MDR1 model of liver neoplasm. World J Gastroenterol 2005; 11:5621-6. [PMID: 16237754 PMCID: PMC4481477 DOI: 10.3748/wjg.v11.i36.5621] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
AIM: To investigate the effect of bromocriptine (BCT) and tumor necrosis factor-α (TNF-α ) on hepatocellular carcinoma (HCC) multidrug resistance (MDR) in nude mouse MDR model of liver neoplasm.
METHODS: Human hepatocarcinoma cell line HepG2, drug resistant hepatocarcinoma cell line HepG2/adriamycin (ADM) and hepatocarcinoma cell line transfected with TNF-α gene HepG2/ADM/TNF were injected into the liver of nude mice via orthotopic implantation and MDR model of liver neoplasm in vivo was established (HepG2, ADM, TNF, BCT groups). Among these groups, BCT group and TNF group were treated with BCT through gastric canal. Each group was divided into control group and chemotherapy group. Size and weight of the tumor were measured. Furthermore, tumor histological character and growth of the nude mice were observed and their chemosensitivity was tested. MDR-associated genes and proteins (MRP, LRP) of implanted tumors were detected by immunohistochemistry, reverse transcriptase polymerase chain reaction, and apoptosis rate of hepatocarcinoma cells was detected by TUNEL assay.
RESULTS: The nude mouse model of each cell line was inoculated successfully. The tumor growth rate and weight were significantly different among groups. After chemotherapy, abdominal cavity tumor growth inhibition rate was higher in BCT group (67%) compared to ADM and TNF groups, and similar to HepG2 group (54%). MDR1 and LRPmRNA could be detected in all groups, but TNF-αwas detected only in TNF and BCT groups. Furthermore, MDR1 and LRP protein expression of tumors in TNF and BCT groups was low similar to HepG2 group. The apoptosis rate of hepatocarcinoma cells was much higher in BCT group than in other groups with TUNEL assay.
CONCLUSION: BCT and TNF-α can reverse HCC MDR in nude mouse MDR1 model of liver neoplasm.
Collapse
MESH Headings
- ATP Binding Cassette Transporter, Subfamily B, Member 1/genetics
- ATP Binding Cassette Transporter, Subfamily B, Member 1/metabolism
- Animals
- Antineoplastic Agents/pharmacology
- Antineoplastic Agents/therapeutic use
- Apoptosis
- Bromocriptine/pharmacology
- Cell Line, Tumor
- Drug Resistance, Neoplasm/drug effects
- Drug Synergism
- Female
- Gene Expression Regulation, Neoplastic
- Genes, MDR/genetics
- Genes, MDR/physiology
- Humans
- Liver Neoplasms/drug therapy
- Liver Neoplasms/physiopathology
- Mice
- Mice, Nude
- Neoplasm Transplantation
- RNA, Messenger/metabolism
- Tumor Necrosis Factor-alpha/pharmacology
Collapse
Affiliation(s)
- Lei Ding
- Hepatic Surgery Center, Affiliated Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, Hubei Province, China
| | | | | | | | | | | | | | | |
Collapse
|
25
|
Jacobs R, Heiken H, Schmidt RE. Mutual interference of HIV and natural killer cell-mediated immune response. Mol Immunol 2005; 42:239-49. [PMID: 15488611 DOI: 10.1016/j.molimm.2004.06.021] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Natural killer (NK) cells represent important early effector cells in innate immune defense as they exert their functions without prior sensitization. They participate in regulation of innate and adaptive immune responses and hematopoiesis by producing various cytokines and chemokines. In addition, NK cells lyse virally infected and malignant cells raising them to multifunctional members of the first line of defense. Unlike other lymphocytes they lack specific antigen receptors. They rather bind cells using ubiquitous molecules and communicate via a pattern of receptors specific for MHC-I molecules with their counterparts. In general, successful binding of the receptors delivers an inhibitory signal to NK cells thus sparing the target cell from lysis. In contrast, down-regulated or altered MHC-I expression as frequently observed during virus infection or on malignant cells prevents ligation of inhibitory receptors and MHC-I paralyzing inhibition and thus inducing lysis of the target cell. In human immunodeficiency virus (HIV) infection NK cells are of central importance since they can combat viral infection itself and opportunistic pathogens like fungi and protozoa that usually spread during the course of HIV infection. However, various studies have reported alterations in HIV patients affecting NK cell numbers and functions that might negatively influence course and severity of the disease. This review will focus on the mutual interference of NK cells and the HI virus.
Collapse
Affiliation(s)
- Roland Jacobs
- Department of Clinical Immunology, Hannover Medical School, 30625 Hannover, Germany.
| | | | | |
Collapse
|