1
|
Yu R, Zhao F, Xu Z, Zhang G, Du B, Shu Q. Current status and future of cancer vaccines: A bibliographic study. Heliyon 2024; 10:e24404. [PMID: 38293405 PMCID: PMC10826732 DOI: 10.1016/j.heliyon.2024.e24404] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Revised: 11/24/2023] [Accepted: 01/08/2024] [Indexed: 02/01/2024] Open
Abstract
Background Cancer vaccines are an important component of tumour immunotherapy. An increasing number of studies have shown that cancer vaccines have considerable clinical benefits. With the development of tumour precision medicine, cancer vaccines have become important because of their individualised targeting effects. However, few bibliometric studies have conducted comprehensive systematic reviews in this field. This study aimed to assess the scientific output and trends in cancer vaccine research from a global perspective. Methods We collected publications on cancer vaccines from the Web of Science Core Collection database, which was limited to articles and reviews in English. Microsoft Excel, VOS Viewer, and CiteSpace V were used for quantitative and visual analyses. Results A total of 7807 articles were included. From 1991 to 2022, the number of publications increased annually. The United States had the highest number of articles published in this field (48.28 %), the highest citation frequency (183,964 times), and the highest H-index (182). The National Institutes of Health topped the list with 476 articles. Schlom J had the highest number of published articles (128) and was the main investigator in this field. The journal, Cancer Immunology Immunotherapy, had published the highest number of articles in related fields. In recent years, tumour microenvironment, immune checkpoint inhibitors, particle vaccines, tumour antigens, and dendritic cells have become research hotspots related to cancer vaccines. Conclusion Cancer vaccines are a popular research topic in the field of tumour immunotherapy. Related research and publications will enter a boom stage. "Immune checkpoint inhibitors", "tumour microenvironment" and "dendritic cells" may become future research hotspots, while "T-cell suppressor" is a potential puzzle to be solved.
Collapse
Affiliation(s)
- Rui Yu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Fangmin Zhao
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Zeting Xu
- The First School of Clinical Medical, Zhejiang Chinese Medical University, Hangzhou, China
| | - Gaochenxi Zhang
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| | - Bingqing Du
- Department of Neurology, Second Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, China
| | - Qijin Shu
- Department of Oncology, The First Affiliated Hospital of Zhejiang Chinese Medical University, Hangzhou, China
| |
Collapse
|
2
|
Zefferino R, Conese M. A Vaccine against Cancer: Can There Be a Possible Strategy to Face the Challenge? Possible Targets and Paradoxical Effects. Vaccines (Basel) 2023; 11:1701. [PMID: 38006033 PMCID: PMC10674257 DOI: 10.3390/vaccines11111701] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/07/2023] [Accepted: 10/19/2023] [Indexed: 11/26/2023] Open
Abstract
Is it possible to have an available vaccine that eradicates cancer? Starting from this question, this article tries to verify the state of the art, proposing a different approach to the issue. The variety of cancers and different and often unknown causes of cancer impede, except in some cited cases, the creation of a classical vaccine directed at the causative agent. The efforts of the scientific community are oriented toward stimulating the immune systems of patients, thereby preventing immune evasion, and heightening chemotherapeutic agents effects against cancer. However, the results are not decisive, because without any warning signs, metastasis often occurs. The purpose of this paper is to elaborate on a vaccine that must be administered to a patient in order to prevent metastasis; metastasis is an event that leads to death, and thus, preventing it could transform cancer into a chronic disease. We underline the fact that the field has not been studied in depth, and that the complexity of metastatic processes should not be underestimated. Then, with the aim of identifying the target of a cancer vaccine, we draw attention to the presence of the paradoxical actions of different mechanisms, pathways, molecules, and immune and non-immune cells characteristic of the tumor microenvironment at the primary site and pre-metastatic niche in order to exclude possible vaccine candidates that have opposite effects/behaviors; after a meticulous evaluation, we propose possible targets to develop a metastasis-targeting vaccine. We conclude that a change in the current concept of a cancer vaccine is needed, and the efforts of the scientific community should be redirected toward a metastasis-targeting vaccine, with the increasing hope of eradicating cancer.
Collapse
Affiliation(s)
- Roberto Zefferino
- Department of Medical and Surgical Sciences, University of Foggia, 71122 Foggia, Italy
| | - Massimo Conese
- Department of Clinical and Experimental Medicine, University of Foggia, 71122 Foggia, Italy;
| |
Collapse
|
3
|
D'Anniballe VM, Huang MN, Lueck BD, Nicholson LT, McFatridge I, Gunn MD. Antigen-loaded Monocyte Administration and Flt3 Ligand Augment the Antitumor Efficacy of Immune Checkpoint Blockade in a Murine Melanoma Model. J Immunother 2023; 46:333-340. [PMID: 37737688 PMCID: PMC10592023 DOI: 10.1097/cji.0000000000000487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2023] [Accepted: 08/28/2023] [Indexed: 09/23/2023]
Abstract
Undifferentiated monocytes can be loaded with tumor antigens (Ag) and administered intravenously to induce antitumor cytotoxic T lymphocyte (CTL) responses. This vaccination strategy exploits an endogenous Ag cross-presentation pathway, where Ag-loaded monocytes (monocyte vaccines) transfer their Ag to resident splenic dendritic cells (DC), which then stimulate robust CD8 + CTL responses. In this study, we investigated whether monocyte vaccination in combination with CDX-301, a DC-expanding cytokine Fms-like tyrosine kinase 3 ligand (Flt3L), could improve the antitumor efficacy of anti-programmed cell death (anti-PD-1) immune checkpoint blockade. We found that Flt3L expanded splenic DC over 40-fold in vivo and doubled the number of circulating Ag-specific T cells when administered before monocyte vaccination in C57BL/6 mice. In addition, OVA-monocyte vaccination combined with either anti-PD-1, anti-programmed cell death ligand 1 (anti-PD-L1), or anti-cytotoxic T lymphocyte antigen-4 (anti-CTLA-4) suppressed subcutaneous B16/F10-OVA tumor growth to a greater extent than checkpoint blockade alone. When administered together, OVA-monocyte vaccination improved the antitumor efficacy of Flt3L and anti-PD-1 in terms of circulating Ag-specific CD8 + T cell frequency and inhibition of subcutaneous B16/F10-OVA tumor growth. To our knowledge, this is the first demonstration that a cancer vaccine strategy and Flt3L can improve the antitumor efficacy of anti-PD-1. The findings presented here warrant further study of how monocyte vaccines can improve Flt3L and immune checkpoint blockade as they enter clinical trials.
Collapse
Affiliation(s)
- Vincent M D'Anniballe
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | - Benjamin D Lueck
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | | | - Ian McFatridge
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| | - Michael D Gunn
- Department of Immunology, Duke University Medical Center, Durham, NC
- Division of Cardiology, Department of Medicine, Duke University Medical Center, Durham, NC
| |
Collapse
|
4
|
Wen M, Li Y, Qin X, Qin B, Wang Q. Insight into Cancer Immunity: MHCs, Immune Cells and Commensal Microbiota. Cells 2023; 12:1882. [PMID: 37508545 PMCID: PMC10378520 DOI: 10.3390/cells12141882] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2023] [Revised: 06/16/2023] [Accepted: 07/05/2023] [Indexed: 07/30/2023] Open
Abstract
Cancer cells circumvent immune surveillance via diverse strategies. In accordance, a large number of complex studies of the immune system focusing on tumor cell recognition have revealed new insights and strategies developed, largely through major histocompatibility complexes (MHCs). As one of them, tumor-specific MHC-II expression (tsMHC-II) can facilitate immune surveillance to detect tumor antigens, and thereby has been used in immunotherapy, including superior cancer prognosis, clinical sensitivity to immune checkpoint inhibition (ICI) therapy and tumor-bearing rejection in mice. NK cells play a unique role in enhancing innate immune responses, accounting for part of the response including immunosurveillance and immunoregulation. NK cells are also capable of initiating the response of the adaptive immune system to cancer immunotherapy independent of cytotoxic T cells, clearly demonstrating a link between NK cell function and the efficacy of cancer immunotherapies. Eosinophils were shown to feature pleiotropic activities against a variety of solid tumor types, including direct interactions with tumor cells, and accessorily affect immunotherapeutic response through intricating cross-talk with lymphocytes. Additionally, microbial sequencing and reconstitution revealed that commensal microbiota might be involved in the modulation of cancer progression, including positive and negative regulatory bacteria. They may play functional roles in not only mucosal modulation, but also systemic immune responses. Here, we present a panorama of the cancer immune network mediated by MHCI/II molecules, immune cells and commensal microbiota and a discussion of prospective relevant intervening mechanisms involved in cancer immunotherapies.
Collapse
Affiliation(s)
- Minting Wen
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Yingjing Li
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Xiaonan Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Bing Qin
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| | - Qiong Wang
- School of Life Science, Guangzhou University, Guangzhou 510006, China
| |
Collapse
|
5
|
Massa C, Wang Y, Marr N, Seliger B. Interferons and Resistance Mechanisms in Tumors and Pathogen-Driven Diseases—Focus on the Major Histocompatibility Complex (MHC) Antigen Processing Pathway. Int J Mol Sci 2023; 24:ijms24076736. [PMID: 37047709 PMCID: PMC10095295 DOI: 10.3390/ijms24076736] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Revised: 02/22/2023] [Accepted: 02/25/2023] [Indexed: 04/08/2023] Open
Abstract
Interferons (IFNs), divided into type I, type II, and type III IFNs represent proteins that are secreted from cells in response to various stimuli and provide important information for understanding the evolution, structure, and function of the immune system, as well as the signaling pathways of other cytokines and their receptors. They exert comparable, but also distinct physiologic and pathophysiologic activities accompanied by pleiotropic effects, such as the modulation of host responses against bacterial and viral infections, tumor surveillance, innate and adaptive immune responses. IFNs were the first cytokines used for the treatment of tumor patients including hairy leukemia, renal cell carcinoma, and melanoma. However, tumor cells often develop a transient or permanent resistance to IFNs, which has been linked to the escape of tumor cells and unresponsiveness to immunotherapies. In addition, loss-of-function mutations in IFN signaling components have been associated with susceptibility to infectious diseases, such as COVID-19 and mycobacterial infections. In this review, we summarize general features of the three IFN families and their function, the expression and activity of the different IFN signal transduction pathways, and their role in tumor immune evasion and pathogen clearance, with links to alterations in the major histocompatibility complex (MHC) class I and II antigen processing machinery (APM). In addition, we discuss insights regarding the clinical applications of IFNs alone or in combination with other therapeutic options including immunotherapies as well as strategies reversing the deficient IFN signaling. Therefore, this review provides an overview on the function and clinical relevance of the different IFN family members, with a specific focus on the MHC pathways in cancers and infections and their contribution to immune escape of tumors.
Collapse
Affiliation(s)
- Chiara Massa
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
| | - Yuan Wang
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
| | - Nico Marr
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- College of Health and Life Sciences, Hamad Bin Khalifa University, Doha P.O. Box 34110, Qatar
| | - Barbara Seliger
- Medical Faculty, Martin Luther University Halle-Wittenberg, Magdeburger Str. 2, 06112 Halle, Germany
- Institute for Translational Immunology, Brandenburg Medical School Theodor Fontane, Hochstr. 29, 14770 Brandenburg an der Havel, Germany
- Fraunhofer Institute for Cell Therapy and Immunology, Perlickstr. 1, 04103 Leipzig, Germany
| |
Collapse
|
6
|
Oladejo M, Paulishak W, Wood L. Synergistic potential of immune checkpoint inhibitors and therapeutic cancer vaccines. Semin Cancer Biol 2023; 88:81-95. [PMID: 36526110 DOI: 10.1016/j.semcancer.2022.12.003] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/15/2022]
Abstract
Cancer vaccines and immune checkpoint inhibitors (ICIs) function at different stages of the cancer immune cycle due to their distinct mechanisms of action. Therapeutic cancer vaccines enhance the activation and infiltration of cytotoxic immune cells into the tumor microenvironment (TME), while ICIs, prevent and/or reverse the dysfunction of these immune cells. The efficacy of both classes of immunotherapy has been evaluated in monotherapy, but they have been met with several challenges. Although therapeutic cancer vaccines can activate anti-tumor immune responses, these responses are susceptible to attenuation by immunoregulatory molecules. Similarly, ICIs are ineffective in the absence of tumor-infiltrating lymphocytes (TILs). Further, ICIs are often associated with immune-related adverse effects that may limit quality of life and compliance. However, the combination of the improved immunogenicity afforded by cancer vaccines and restrained immunosuppression provided by immune checkpoint inhibitors may provide a suitable platform for therapeutic synergism. In this review, we revisit the history and various classifications of therapeutic cancer vaccines. We also provide a summary of the currently approved ICIs. Finally, we provide mechanistic insights into the synergism between ICIs and cancer vaccines.
Collapse
Affiliation(s)
- Mariam Oladejo
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Wyatt Paulishak
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA
| | - Laurence Wood
- Department of Immunotherapeutics and Biotechnology, Jerry H. Hodge School of Pharmacy, Texas Tech University Health Sciences Center, Abilene, TX 79601, USA.
| |
Collapse
|
7
|
Thol K, Pawlik P, McGranahan N. Therapy sculpts the complex interplay between cancer and the immune system during tumour evolution. Genome Med 2022; 14:137. [PMID: 36476325 PMCID: PMC9730559 DOI: 10.1186/s13073-022-01138-3] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Accepted: 11/09/2022] [Indexed: 12/12/2022] Open
Abstract
Cancer development is an evolutionary process. A key selection pressure is exerted by therapy, one of the few players in cancer evolution that can be controlled. As such, an understanding of how treatment acts to sculpt the tumour and its microenvironment and how this influences a tumour's subsequent evolutionary trajectory is critical. In this review, we examine cancer evolution and intra-tumour heterogeneity in the context of therapy. We focus on how radiotherapy, chemotherapy and immunotherapy shape both tumour development and the environment in which tumours evolve and how resistance can develop or be selected for during treatment.
Collapse
Affiliation(s)
- Kerstin Thol
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Piotr Pawlik
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK
| | - Nicholas McGranahan
- Cancer Research UK Lung Cancer Centre of Excellence, University College London Cancer Institute, London, UK.
- Cancer Genome Evolution Research Group, University College London Cancer Institute, London, UK.
| |
Collapse
|
8
|
Corti C, Giachetti PPMB, Eggermont AMM, Delaloge S, Curigliano G. Therapeutic vaccines for breast cancer: Has the time finally come? Eur J Cancer 2022; 160:150-174. [PMID: 34823982 PMCID: PMC8608270 DOI: 10.1016/j.ejca.2021.10.027] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2021] [Revised: 10/19/2021] [Accepted: 10/21/2021] [Indexed: 12/15/2022]
Abstract
The ability to exploit the immune system as a weapon against cancer has revolutionised the treatment of cancer patients, especially through immune checkpoint inhibitors (ICIs). However, ICIs demonstrated a modest benefit in treating breast cancer (BC), with the exception of certain subsets of triple-negative BCs. An immune-suppressive tumour microenvironment (TME), typically present in BC, is an important factor in the poor response to immunotherapy. After almost two decades of poor clinical trial results, cancer vaccines (CVs), an active immunotherapy, have come back in the spotlight because of some technological advancements, ultimately boosted by coronavirus disease 2019 pandemic. In particular, neoantigens are emerging as the preferred targets for CVs, with gene-based and viral vector-based platforms in development. Moreover, lipid nanoparticles proved to be immunogenic and efficient delivery vehicles. Past clinical trials investigating CVs focused especially on the metastatic disease, where the TME is more likely compromised by inhibitory mechanisms. In this sense, favouring the use of CVs as monotherapy in premalignant or in the adjuvant setting and establishing combination treatments (i.e. CV plus ICI) in late-stage disease are promising strategies. This review provides a full overview of the past and current breast cancer vaccine landscape.
Collapse
Affiliation(s)
- Chiara Corti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Pier P M B Giachetti
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy
| | - Alexander M M Eggermont
- Princess Máxima Center, Utrecht, the Netherlands; Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Suzette Delaloge
- Department of Cancer Medicine, Institut Gustave Roussy, Villejuif, France
| | - Giuseppe Curigliano
- Division of Early Drug Development for Innovative Therapies, European Institute of Oncology, IRCCS, Milan, Italy; Department of Oncology and Haematology (DIPO), University of Milan, Milan, Italy.
| |
Collapse
|
9
|
Abstract
Therapeutic cancer vaccines have undergone a resurgence in the past decade. A better understanding of the breadth of tumour-associated antigens, the native immune response and development of novel technologies for antigen delivery has facilitated improved vaccine design. The goal of therapeutic cancer vaccines is to induce tumour regression, eradicate minimal residual disease, establish lasting antitumour memory and avoid non-specific or adverse reactions. However, tumour-induced immunosuppression and immunoresistance pose significant challenges to achieving this goal. In this Review, we deliberate on how to improve and expand the antigen repertoire for vaccines, consider developments in vaccine platforms and explore antigen-agnostic in situ vaccines. Furthermore, we summarize the reasons for failure of cancer vaccines in the past and provide an overview of various mechanisms of resistance posed by the tumour. Finally, we propose strategies for combining suitable vaccine platforms with novel immunomodulatory approaches and standard-of-care treatments for overcoming tumour resistance and enhancing clinical efficacy.
Collapse
Affiliation(s)
- Mansi Saxena
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA
| | - Sjoerd H van der Burg
- Department of Medical Oncology, Oncode Institute, Leiden University Medical Center, Leiden, Netherlands
| | | | - Nina Bhardwaj
- Vaccine and Cell Therapy Laboratory, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Tisch Cancer Institute, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Hematology and Oncology Department, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
- Parker Institute of Cancer Immunotherapy, San Francisco, CA, USA.
| |
Collapse
|
10
|
Shukla A, Cloutier M, Appiya Santharam M, Ramanathan S, Ilangumaran S. The MHC Class-I Transactivator NLRC5: Implications to Cancer Immunology and Potential Applications to Cancer Immunotherapy. Int J Mol Sci 2021; 22:ijms22041964. [PMID: 33671123 PMCID: PMC7922096 DOI: 10.3390/ijms22041964] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2021] [Revised: 02/03/2021] [Accepted: 02/08/2021] [Indexed: 12/13/2022] Open
Abstract
The immune system constantly monitors the emergence of cancerous cells and eliminates them. CD8+ cytotoxic T lymphocytes (CTLs), which kill tumor cells and provide antitumor immunity, select their targets by recognizing tumor antigenic peptides presented by MHC class-I (MHC-I) molecules. Cancer cells circumvent immune surveillance using diverse strategies. A key mechanism of cancer immune evasion is downregulation of MHC-I and key proteins of the antigen processing and presentation machinery (APM). Even though impaired MHC-I expression in cancers is well-known, reversing the MHC-I defects remains the least advanced area of tumor immunology. The discoveries that NLRC5 is the key transcriptional activator of MHC-I and APM genes, and genetic lesions and epigenetic modifications of NLRC5 are the most common cause of MHC-I defects in cancers, have raised the hopes for restoring MHC-I expression. Here, we provide an overview of cancer immunity mediated by CD8+ T cells and the functions of NLRC5 in MHC-I antigen presentation pathways. We describe the impressive advances made in understanding the regulation of NLRC5 expression, the data supporting the antitumor functions of NLRC5 and a few reports that argue for a pro-tumorigenic role. Finally, we explore the possible avenues of exploiting NLRC5 for cancer immunotherapy.
Collapse
Affiliation(s)
- Akhil Shukla
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Maryse Cloutier
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Madanraj Appiya Santharam
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
| | - Sheela Ramanathan
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
| | - Subburaj Ilangumaran
- Department of Immunology and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, QC J1H 5N4, Canada; (A.S.); (M.C.); (M.A.S.); (S.R.)
- CRCHUS, Centre Hospitalier de l’Université de Sherbrooke, Sherbrooke, QC J1H5N4, Canada
- Correspondence: ; Tel.: +1-819-346-1110 (ext. 14834)
| |
Collapse
|
11
|
Kalbasi A, Tariveranmoshabad M, Hakimi K, Kremer S, Campbell KM, Funes JM, Vega-Crespo A, Parisi G, Champekar A, Nguyen C, Torrejon D, Shin D, Zaretsky JM, Damoiseaux RD, Speiser DE, Lopez-Casas PP, Quintero M, Ribas A. Uncoupling interferon signaling and antigen presentation to overcome immunotherapy resistance due to JAK1 loss in melanoma. Sci Transl Med 2020; 12:eabb0152. [PMID: 33055240 PMCID: PMC8053376 DOI: 10.1126/scitranslmed.abb0152] [Citation(s) in RCA: 87] [Impact Index Per Article: 17.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2020] [Accepted: 09/04/2020] [Indexed: 12/11/2022]
Abstract
Defects in tumor-intrinsic interferon (IFN) signaling result in failure of immune checkpoint blockade (ICB) against cancer, but these tumors may still maintain sensitivity to T cell-based adoptive cell therapy (ACT). We generated models of IFN signaling defects in B16 murine melanoma observed in patients with acquired resistance to ICB. Tumors lacking Jak1 or Jak2 did not respond to ICB, whereas ACT was effective against Jak2 KO tumors, but not Jak1 KO tumors, where both type I and II tumor IFN signaling were defective. This was a direct result of low baseline class I major histocompatibility complex (MHC I) expression in B16 and the dependency of MHC I expression on either type I or type II IFN signaling. We used genetic and pharmacologic approaches to uncouple this dependency and restore MHC I expression. Through independent mechanisms, overexpression of NLRC5 (nucleotide-binding oligomerization domain-like receptor family caspase recruitment domain containing 5) and intratumoral delivery of BO-112, a potent nanoplexed version of polyinosinic:polycytidylic acid (poly I:C), each restored the efficacy of ACT against B16-Jak1 KO tumors. BO-112 activated double-stranded RNA (dsRNA) sensing (via protein kinase R and Toll-like receptor 3) and induced MHC I expression via nuclear factor κB, independent of both IFN signaling and NLRC5. In summary, we demonstrated that in the absence of tumor IFN signaling, MHC I expression is essential and sufficient for the efficacy of ACT. For tumors lacking MHC I expression due to deficient IFN signaling, activation of dsRNA sensors by BO-112 affords an alternative approach to restore the efficacy of ACT.
Collapse
Affiliation(s)
- Anusha Kalbasi
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA.
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
| | - Mito Tariveranmoshabad
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Kevin Hakimi
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Sarah Kremer
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Katie M Campbell
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Juan M Funes
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
| | - Agustin Vega-Crespo
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Giulia Parisi
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Ameya Champekar
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Christine Nguyen
- Department of Radiation Oncology, University of California Los Angeles (UCLA), Los Angeles, CA 90095, USA
| | - Davis Torrejon
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Daniel Shin
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Jesse M Zaretsky
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
| | - Robert D Damoiseaux
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
- California NanoSystems Institute, UCLA, Los Angeles, CA 90095, USA
| | - Daniel E Speiser
- Department of Oncology, University of Lausanne, 1015 Lausanne, Switzerland
| | | | | | - Antoni Ribas
- Division of Surgical Oncology, Department of Surgery, UCLA, Los Angeles, CA 90095, USA
- Jonsson Comprehensive Cancer Center, UCLA, Los Angeles, CA 90095, USA
- Division of Hematology-Oncology, Department of Medicine, UCLA, Los Angeles, CA 90095, USA
- Department of Molecular and Medical Pharmacology, UCLA, Los Angeles, CA 90095, USA
- Parker Institute for Cancer Immunotherapy, San Francisco, CA 94129, USA
| |
Collapse
|
12
|
Dhall A, Patiyal S, Kaur H, Bhalla S, Arora C, Raghava GPS. Computing Skin Cutaneous Melanoma Outcome From the HLA-Alleles and Clinical Characteristics. Front Genet 2020; 11:221. [PMID: 32273881 PMCID: PMC7113398 DOI: 10.3389/fgene.2020.00221] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 02/25/2020] [Indexed: 12/16/2022] Open
Abstract
Human leukocyte antigen (HLA) are essential components of the immune system that stimulate immune cells to provide protection and defense against cancer. Thousands of HLA alleles have been reported in the literature, but only a specific set of HLA alleles are present in an individual. The capability of the immune system to recognize cancer-associated mutations depends on the presence of a particular set of alleles, which elicit an immune response to fight against cancer. Therefore, the occurrence of specific HLA alleles affects the survival outcome of cancer patients. In the current study, prediction models were developed, using 401 cutaneous melanoma patients, to predict the overall survival (OS) of patients using their clinical data and HLA alleles. We observed that the presence of certain favorable superalleles like HLA-B∗55 (HR = 0.15, 95% CI 0.034-0.67), HLA-A∗01 (HR = 0.5, 95% CI 0.3-0.8), is responsible for the improved OS. In contrast, the presence of certain unfavorable superalleles such as HLA-B∗50 (HR = 2.76, 95% CI 1.284-5.941), HLA-DRB1∗12 (HR = 3.44, 95% CI 1.64-7.2) is responsible for the poor survival. We developed prediction models using key 14 HLA superalleles, demographic, and clinical characteristics for predicting high-risk cutaneous melanoma patients and achieved HR = 4.52 (95% CI 3.088-6.609, p-value = 8.01E-15). Eventually, we also provide a web-based service to the community for predicting the risk status in cutaneous melanoma patients (https://webs.iiitd.edu.in/raghava/skcmhrp/).
Collapse
Affiliation(s)
- Anjali Dhall
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Sumeet Patiyal
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Harpreet Kaur
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
- Bioinformatics Centre, CSIR-Institute of Microbial Technology, Chandigarh, India
| | - Sherry Bhalla
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Chakit Arora
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| | - Gajendra P. S. Raghava
- Department of Computational Biology, Indraprastha Institute of Information Technology, New Delhi, India
| |
Collapse
|
13
|
Breast cancer vaccines: Heeding the lessons of the past to guide a path forward. Cancer Treat Rev 2020; 84:101947. [DOI: 10.1016/j.ctrv.2019.101947] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 01/29/2023]
|
14
|
Clinicopathologic significance of human leukocyte antigen class I expression in patients with stage II and III gastric cancer. Cancer Immunol Immunother 2019; 68:1779-1790. [PMID: 31620857 DOI: 10.1007/s00262-019-02410-z] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2018] [Accepted: 10/05/2019] [Indexed: 12/12/2022]
Abstract
Human leukocyte antigen class I (HLA I) molecules composed of alpha (heavy) chain, including HLA-A, -B, or -C encoded by HLA genes, and beta-2-microglobulin (β2M) are membrane proteins on all nucleated cells that display peptide antigens for recognition by CD8-positive cytotoxic T cells. Here, we examined the clinicopathologic signification of HLA I expression in patients with gastric cancer (GC). Immunohistochemistry was performed to detect HLA A/B/C, β2M, CD8, p53, and programmed death-ligand 1 (PD-L1) in the center and invasive margin of the tumor in 395 stage II and III GCs using tissue array method. Additionally, Epstein-Barr virus (EBV) infection and microsatellite instability (MSI) status were investigated. Negative expression of HLA A/B/C and β2M was observed in 258 (65.3%) and 235 (59.5%) of 395 stage II and III GCs, respectively. Negative HLA I expression was significantly associated with aggressive clinicopathologic features. Furthermore, negative expression of HLA A/B/C and β2M was inversely correlated with CD8-positive cytotoxic T cell infiltration, EBV-positivity, and PD-L1 expression (all p < 0.001). Patients with HLA A/B/C-negative GC had worse overall survival (OS) (p = 0.019) and combined analysis with both HLA A/B/C and β2M expression status significantly predicted OS in univariate (p = 0.004) and multivariate survival analysis (p = 0.016). Negative expression of HLA A/B/C and β2M was frequently observed in stage II and III GCs, particularly with the aggressive clinicopathologic features, and correlated with an unfavorable prognosis and host immune response status. These findings contribute to further development of immunotherapy.
Collapse
|
15
|
Interactions between cancer stem cells, immune system and some environmental components: Friends or foes? Immunol Lett 2019; 208:19-29. [DOI: 10.1016/j.imlet.2019.03.004] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2018] [Revised: 03/02/2019] [Accepted: 03/08/2019] [Indexed: 12/17/2022]
|
16
|
Abstract
In this chapter I describe Tumour Immune Escape mechanisms associated with MHC/HLA class I loss in human and experimental tumours. Different altered HLA class-I phenotypes can be observed that are produced by different molecular mechanisms. Experimental and histological evidences are summarized indicating that at the early stages of tumour development there is an enormous variety of tumour clones with different MHC class I expression patterns. This phase is followed by a strong T cell mediated immune-selection of MHC/HLA class-I negative tumour cells in the primary tumour lesion. This transition period results in a formation of a tumour composed only of HLA-class I negative cells. An updated description of this process observed in a large variety of human tumors is included. In the second section I focus on MHC/HLA class I alterations observed in mouse and human metastases, and describe the generation of different tumor cell clones with altered MHC class I phenotypes, which could be similar or different from the original tumor clone. The biological and immunological relevance of these observations is discussed. Finally, the interesting phenomenon of metastatic dormancy is analyzed in association with a particular MHC class I negative tumor phenotype.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Analisis Clinicos e Inmunologia, Hospital Universitario Virgen de las Nieves, Facultad de Medicina, Universidad de Granada, Granada, Spain
| |
Collapse
|
17
|
Correlates of immune and clinical activity of novel cancer vaccines. Semin Immunol 2018; 39:119-136. [PMID: 29709421 DOI: 10.1016/j.smim.2018.04.001] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2018] [Revised: 04/16/2018] [Accepted: 04/17/2018] [Indexed: 12/30/2022]
Abstract
Cancer vaccines are solely meant to amplify the pool of type 1 cytokine oriented CD4+ and CD8+ T cells that recognize tumor antigen and ultimately foster control and destruction of a growing tumor. They are not designed to deal with all aspects of immune ignorance, exclusion, suppression and escape that are generally in place in patients with cancer and may prevent the T cells to enter the tumor or to exert their effector function. This simple fact prompted for a reappraisal of the many recent trials in which therapeutic cancer vaccines have been examined as monotherapy. In this review, I focus on trials examining therapeutic cancer vaccines at different stages of existing disease. The analysis of vaccine-induced immune responses and clinical activity of therapeutic cancer vaccines revealed four levels of evidence for vaccine efficacy. The lowest levels, reflect the many trials in which the strength of the tumor-reactive T cell response of vaccinated patients is associated with better clinical outcome or change in tumor marker. The highest levels indicate occasional regressions of tumors and metastases after vaccination or reflect a stronger clinical impact of vaccine in a randomized trial. A whole series of trials in which vaccine-induced tumor immunity correlates with the clinical impact of cancer vaccines in premalignant diseases, settings of low tumor burden or tumor regressions in patients with cancer, form an attest to the fact that cancer vaccines work. While the current number of true clinical responders in each cancer trial is too low for firm conclusions on immune correlates of clinical reactivity in cancer, extrapolation of the results from vaccinated patients with pre-cancers suggest a requirement of broad type 1 T cell reactivity.
Collapse
|
18
|
Gravett AM, Trautwein N, Stevanović S, Dalgleish AG, Copier J. Gemcitabine alters the proteasome composition and immunopeptidome of tumour cells. Oncoimmunology 2018; 7:e1438107. [PMID: 29930882 PMCID: PMC5990974 DOI: 10.1080/2162402x.2018.1438107] [Citation(s) in RCA: 48] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 01/30/2018] [Accepted: 02/02/2018] [Indexed: 01/05/2023] Open
Abstract
The antigenic makeup of tumour cells can have a profound effect on the progression of cancer and success of immunotherapies. Therefore, one strategy to improve the efficacy of cancer treatments is to augment the antigens displayed by tumours. The present study explores how the recognition of tumour cells may be altered by non-cytotoxic concentrations of gemcitabine (GEM). Testing a panel of chemotherapeutics in human cancer cell lines in vitro, it was found that GEM increased surface expression of HLA-A,B,C and that underlying this were specific increases in β-2-microglobulin and immunoproteasome subunit proteins. Furthermore, the peptide antigen repertoire displayed on HLA class I was altered, revealing a number of novel antigens, many of which that were derived from proteins involved in the DNA-damage response. Changes in the nature of the peptide antigens eluted from HLA-A,B,C after GEM treatment consisted of amino acid anchor-residue modifications and changes in peptide length which rendered peptides likely to favour alternative HLA-alleles and increased their predicted immunogenicity. Signalling through the MAPK/ERK and NFκB/RelB pathways was associated with these changes. These data may explain observations made in previous in vivo studies, advise as to which antigens should be used in future vaccination protocols and reinforce the idea that chemotherapy and immunotherapy could be used in combination.
Collapse
Affiliation(s)
- A M Gravett
- Institute for infection and immunity, St George's, University of London, London, UK
| | - N Trautwein
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - S Stevanović
- Department of Immunology, Institute of Cell Biology, University of Tübingen, Tübingen, Germany
| | - A G Dalgleish
- Institute for infection and immunity, St George's, University of London, London, UK
| | - J Copier
- Institute for infection and immunity, St George's, University of London, London, UK
| |
Collapse
|
19
|
Melsted WN, Johansen LL, Lock-Andersen J, Behrendt N, Eriksen JO, Bzorek M, Scheike T, Hviid TVF. HLA class Ia and Ib molecules and FOXP3+ TILs in relation to the prognosis of malignant melanoma patients. Clin Immunol 2017; 183:191-197. [PMID: 28882620 DOI: 10.1016/j.clim.2017.09.004] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2017] [Revised: 08/26/2017] [Accepted: 09/01/2017] [Indexed: 12/27/2022]
Abstract
HLA class Ia (HLA-ABC) and HLA class Ib (HLA-E, -F and -G) molecules and FOXP3+ tumor-infiltrating lymphocytes (TILs) are often reported as relevant factors of tumor immune regulation. We investigated their expression as prognostic factors in 200 patients with primary cutaneous melanoma (PCM). In our cohort, patients with tumors showing upregulation of HLA-ABC molecules had significantly thicker tumors (32% vs 7%, P<0.001), frequent ulceration (20% vs 6%, P=0.007) and frequent nodular melanomas (20% vs 4%, P=0.001). Additionally, high expression of HLA-G in the tumor was a sign of bad prognosis for the patients, being associated with thick tumors (30% vs 12%, P=0.017), ulceration (24% vs 5%, P<0.001) and positive sentinel node (13% vs 6%, P=0.015). HLA-E, HLA-F and FOXP3+ TILs were not indicative of the prognosis in PCM. High HLA-ABC and HLA-G were associated with tumor aggressiveness and could be relevant predictive markers for effective immunotherapy of melanoma tumors.
Collapse
Affiliation(s)
- Wenna Nascimento Melsted
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Lasse Lindholm Johansen
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Jørgen Lock-Andersen
- Department of Plastic Surgery, Zealand University Hospital, Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Nille Behrendt
- Department of Pathology, Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Jens Ole Eriksen
- Department of Pathology, Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Michael Bzorek
- Department of Pathology, Zealand University Hospital, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark
| | - Thomas Scheike
- Department of Biostatistics, University of Copenhagen, Denmark
| | - Thomas Vauvert F Hviid
- Centre for Immune Regulation and Reproductive Immunology (CIRRI), Department of Clinical Biochemistry, Zealand University Hospital, DK-4000 Roskilde, Denmark; Department of Clinical Medicine, University of Copenhagen, Denmark.
| |
Collapse
|
20
|
Seliger B. Immune modulatory microRNAs as a novel mechanism to revert immune escape of tumors. Cytokine Growth Factor Rev 2017; 36:49-56. [DOI: 10.1016/j.cytogfr.2017.07.001] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 07/11/2017] [Indexed: 12/17/2022]
|
21
|
van der Burg SH, Arens R, Ossendorp F, van Hall T, Melief CJM. Vaccines for established cancer: overcoming the challenges posed by immune evasion. Nat Rev Cancer 2016; 16:219-33. [PMID: 26965076 DOI: 10.1038/nrc.2016.16] [Citation(s) in RCA: 524] [Impact Index Per Article: 58.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Therapeutic vaccines preferentially stimulate T cells against tumour-specific epitopes that are created by DNA mutations or oncogenic viruses. In the setting of premalignant disease, carcinoma in situ or minimal residual disease, therapeutic vaccination can be clinically successful as monotherapy; however, in established cancers, therapeutic vaccines will require co-treatments to overcome immune evasion and to become fully effective. In this Review, we discuss the progress that has been made in overcoming immune evasion controlled by tumour cell-intrinsic factors and the tumour microenvironment. We summarize how therapeutic benefit can be maximized in patients with established cancers by improving vaccine design and by using vaccines to increase the effects of standard chemotherapies, to establish and/or maintain tumour-specific T cells that are re-energized by checkpoint blockade and other therapies, and to sustain the antitumour response of adoptively transferred T cells.
Collapse
Affiliation(s)
| | - Ramon Arens
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | - Ferry Ossendorp
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
| | | | - Cornelis J M Melief
- Department of Immunohematology and Blood Transfusion, Leiden University Medical Center, Albinusdreef 2, 2333 ZA, Leiden, The Netherlands
- ISA Pharmaceuticals, J. H. Oortweg 19, 2333 CH, Leiden, The Netherlands
| |
Collapse
|
22
|
Rodriguez GM, Bobbala D, Serrano D, Mayhue M, Champagne A, Saucier C, Steimle V, Kufer TA, Menendez A, Ramanathan S, Ilangumaran S. NLRC5 elicits antitumor immunity by enhancing processing and presentation of tumor antigens to CD8(+) T lymphocytes. Oncoimmunology 2016; 5:e1151593. [PMID: 27471621 PMCID: PMC4938303 DOI: 10.1080/2162402x.2016.1151593] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2015] [Revised: 01/18/2016] [Accepted: 02/01/2016] [Indexed: 11/10/2022] Open
Abstract
Cancers can escape immunesurveillance by diminishing the expression of MHC class-I molecules (MHC-I) and components of the antigen-processing machinery (APM). Developing new approaches to reverse these defects could boost the efforts to restore antitumor immunity. Recent studies have shown that the expression of MHC-I and antigen-processing molecules is transcriptionally regulated by NOD-like receptor CARD domain containing 5 (NLRC5). To investigate whether NLRC5 could be used to improve tumor immunogenicity, we established stable lines of B16-F10 melanoma cells expressing NLRC5 (B16-5), the T cell co-stimulatory molecule CD80 (B16-CD80) or both (B16-5/80). Cells harboring NLRC5 constitutively expressed MHC-I and LMP2, LMP7 and TAP1 genes of the APM. The B16-5 cells efficiently presented the melanoma antigenic peptide gp10025–33 to Pmel-1 TCR transgenic CD8+ T cells and induced their proliferation. In the presence of CD80, B16-5 cells stimulated Pmel-1 cells even without the addition of gp100 peptide, indicating that NLRC5 facilitated the processing and presentation of endogenous tumor antigen. Upon subcutaneous implantation, B16-5 cells showed markedly reduced tumor growth in C57BL/6 hosts but not in immunodeficient hosts, indicating that the NLRC5-expressing tumor cells elicited antitumor immunity. Following intravenous injection, B16-5 and B16-5/80 cells formed fewer lung tumor foci compared to control cells. In mice depleted of CD8+ T cells, B16-5 cells formed large subcutaneous and lung tumors. Finally, immunization with irradiated B16-5 cells conferred protection against challenge by parental B16 cells. Collectively, our findings indicate that NLRC5 could be exploited to restore tumor immunogenicity and to stimulate protective antitumor immunity.
Collapse
Affiliation(s)
| | | | | | | | - Audrey Champagne
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Caroline Saucier
- Department of Anatomy and Cell Biology, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada; CRCHUS, Sherbrooke, Québec, Canada
| | - Viktor Steimle
- Department of Biology, Faculty of Sciences, Université de Sherbrooke , Sherbrooke, Quebec, Canada
| | - Thomas A Kufer
- Department of Immunology, Institute of Nutritional Medicine, University of Hohenheim , Stuttgart, Germany
| | - Alfredo Menendez
- CRCHUS, Sherbrooke, Québec, Canada; Department of Microbiology and Infectious diseases, Faculty of Medicine and Health Sciences, Université de Sherbrooke, Sherbrooke, Quebec, Canada
| | - Sheela Ramanathan
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| | - Subburaj Ilangumaran
- Immunology division, Department of Pediatrics; CRCHUS, Sherbrooke, Québec, Canada
| |
Collapse
|
23
|
Garrido F, Romero I, Aptsiauri N, Garcia-Lora AM. Generation of MHC class I diversity in primary tumors and selection of the malignant phenotype. Int J Cancer 2014; 138:271-80. [PMID: 25471439 DOI: 10.1002/ijc.29375] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Accepted: 11/26/2014] [Indexed: 12/12/2022]
Abstract
Intratumor heterogeneity among cancer cells is promoted by reversible or irreversible genetic alterations and by different microenvironmental factors. There is considerable experimental evidence of the presence of a variety of malignant cell clones with a wide diversity of major histocompatibility class I (MHC-I) expression during early stages of tumor development. This variety of MHC-I phenotypes may define the evolution of a particular tumor. Loss of MHC-I molecules frequently results in immune escape of MHC-negative or -deficient tumor cells from the host T cell-mediated immune response. We review here the results obtained by our group and other researchers in animal models and humans, showing how MHC-I intratumor heterogeneity may affect local oncogenicity and metastatic progression. In particular, we summarize the data obtained in an experimental mouse cancer model of a methylcholanthrene-induced fibrosarcoma (GR9), in which isolated clones with different MHC-I expression patterns demonstrated distinct local tumor growth rates and metastatic capacities. The observed "explosion of diversity" of MHC-I phenotypes in primary tumor clones and the molecular mechanism ("hard"/irreversible or "soft"/reversible) responsible for a given MHC-I alteration might determine not only the metastatic capacity of the cells but also their response to immunotherapy. We also illustrate the generation of further MHC heterogeneity during metastatic colonization and discuss different strategies to favor tumor rejection by counteracting MHC-I loss. Finally, we highlight the role of MHC-I genes in tumor dormancy and cell cycle control.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain.,Departamento de Bioquímica, Biología Molecular e Inmunología III, Universidad de Granada, Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Natalia Aptsiauri
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| | - Angel M Garcia-Lora
- Servicio de Análisis Clínicos e Inmunología, UGC Laboratorio Clínico; Hospital Universitario Virgen de las Nieves, Granada, Spain.,Instituto de Investigación Biosanitaria ibs.Granada, Granada, Spain
| |
Collapse
|
24
|
FENG DAN, YE XIAOFEI, ZHU ZHENXIN, WEI ZIRAN, CAI QINGPING, WANG YAJIE. Comparative transcriptome analysis between metastatic and non-metastatic gastric cancer reveals potential biomarkers. Mol Med Rep 2014; 11:386-92. [DOI: 10.3892/mmr.2014.2709] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2013] [Accepted: 07/04/2014] [Indexed: 11/05/2022] Open
|
25
|
Saito T, Wada H, Yamasaki M, Miyata H, Nishikawa H, Sato E, Kageyama S, Shiku H, Mori M, Doki Y. High expression of MAGE-A4 and MHC class I antigens in tumor cells and induction of MAGE-A4 immune responses are prognostic markers of CHP-MAGE-A4 cancer vaccine. Vaccine 2014; 32:5901-7. [PMID: 25218300 DOI: 10.1016/j.vaccine.2014.09.002] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2014] [Revised: 07/18/2014] [Accepted: 09/01/2014] [Indexed: 12/22/2022]
Abstract
PURPOSE We conducted a cancer vaccine clinical trial with MAGE-A4 protein. Safety, clinical response, and antigen-specific immune responses were analyzed and the prognostic factors by vaccination were investigated. EXPERIMENTAL DESIGN Twenty patients with advanced esophageal, stomach or lung cancer were administered MAGE-A4 vaccine containing 300μg protein subcutaneously once every 2 weeks in six doses. Primary endpoints of this study were safety and MAGE-A4 immune responses. RESULTS The vaccine was well tolerated. Fifteen of 20 patients completed one cycle of vaccination and two patients showed SD. A MAGE-A4-specific humoral immune response was observed in four patients who had high expression of MAGE-A4 and MHC class I on tumor cells. These four patients showed significantly longer overall survival than patients without an antibody response after vaccination (p=0.009). Patients with tumor cells expressing high MAGE-A4 or MHC class I antigen showed significantly longer overall survival than those with low expression. Induction of CD4 and CD8T cell responses was observed in three and six patients, respectively, and patients with induction of MAGE-A4-specific IFNγ-producing CD8T cells, but not CD4T cells, lived longer than those without induction. CONCLUSIONS The CHP-MAGE-A4 vaccine was safe. Expression of MAGE-A4 and MHC class I in tumor tissue and the induction of a MAGE-A4-specific immune response after vaccination would be feasible prognostic markers for patients vaccinated with MAGE-A4.
Collapse
Affiliation(s)
- Takuro Saito
- Department of Gastroenterological Surgery, Japan
| | - Hisashi Wada
- Department of Gastroenterological Surgery, Japan; Department of Clinical Research in Tumor Immunology, Graduate School of Medicine, Japan.
| | | | | | - Hiroyoshi Nishikawa
- Experimental Immunology, Immunology Frontier Research Center Osaka University, Suita, Osaka, Japan
| | - Eiichi Sato
- Department of Pathology, Tokyo Medical University, Tokyo, Japan
| | - Shinichi Kageyama
- Departments of Immuno-Gene Therapy and Cancer Vaccine, Mie University, Tsu, Mie, Japan
| | - Hiroshi Shiku
- Departments of Immuno-Gene Therapy and Cancer Vaccine, Mie University, Tsu, Mie, Japan
| | - Masaki Mori
- Department of Gastroenterological Surgery, Japan
| | | |
Collapse
|
26
|
Genotyping of human leukocyte antigen (HLA) ancestral haplotypes as prognostic marker in cancer using PCR analysis. Methods Mol Biol 2014; 1102:353-66. [PMID: 24258987 DOI: 10.1007/978-1-62703-727-3_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The major histocompatibility complex (MHC) comprises a set of genes that are essential to immunity and surveillance against neoplastic transformation. MHC antigens not only regulate antitumor immune responses in experimental animal models but also directly correlate with survival and prognosis of patients with various types of cancers. Effective recognition of tumor cells by effector T cells may be affected by the genotype and the extent of expression of human leukocyte antigen (HLA)-peptide complexes. Therefore, MHC antigens may serve as potential biomarkers for prognosis and allow selection of cancer patients for specific therapy. We describe PCR-based method to determine the HLA genotype in healthy individuals and patients using blood and tumor tissue as DNA source.
Collapse
|
27
|
Murphy GF, Wilson BJ, Girouard SD, Frank NY, Frank MH. Stem cells and targeted approaches to melanoma cure. Mol Aspects Med 2013; 39:33-49. [PMID: 24145241 DOI: 10.1016/j.mam.2013.10.003] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2013] [Revised: 10/08/2013] [Accepted: 10/09/2013] [Indexed: 12/24/2022]
Abstract
Melanoma stem cells, also known as malignant melanoma-initiating cells, are identifiable through expression of specific biomarkers such as ABCB5 (ATP-binding cassette, sub-family B (MDR/TAP), member 5), NGFR (nerve growth factor receptor, CD271) and ALDH (aldehyde dehydrogenase), and drive melanoma initiation and progression based on prolonged self-renewal capacity, vasculogenic differentiation and immune evasion. As we will review here, specific roles of these aggressive subpopulations have been documented in tumorigenic growth, metastatic dissemination, therapeutic resistance, and malignant recurrence. Moreover, recent findings have provided pre-clinical proof-of-concept for the potential therapeutic utility of the melanoma stem cell concept. Therefore, melanoma stem cell-directed therapeutic approaches represent promising novel strategies to improve therapy of this arguably most virulent human cancer.
Collapse
Affiliation(s)
- George F Murphy
- Department of Pathology, Brigham & Women's Hospital, Boston, MA, USA.
| | - Brian J Wilson
- Transplantation Research Center, Children's Hospital Boston, Boston, MA, USA; Department of Dermatology, Brigham & Women's Hospital, Boston, MA, USA
| | - Sasha D Girouard
- Dermatology Residency Program, Harvard Medical School, Boston, MA, USA
| | - Natasha Y Frank
- Department of Medicine, VA Boston Healthcare System, Boston, MA, USA
| | - Markus H Frank
- Transplantation Research Center, Children's Hospital Boston, Boston, MA, USA; Department of Dermatology, Brigham & Women's Hospital, Boston, MA, USA.
| |
Collapse
|
28
|
Tumor dormancy and cancer stem cells: two sides of the same coin? ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2013; 734:145-79. [PMID: 23143979 DOI: 10.1007/978-1-4614-1445-2_8] [Citation(s) in RCA: 99] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Increasing evidence suggests that tumor dormancy represents an important mechanism underlying the observed failure of existing therapeutic modalities to fully eradicate cancers. In addition to its more established role in maintaining minimal residual disease after treatment, dormancy might also critically contribute to early stages of tumor development and the formation of clinically undetectable micrometastatic foci. There are striking parallels between the concept of tumor dormancy and the cancer stem cell (CSC) theory of tumor propagation. For instance, the CSC hypothesis similarly predicts that a subset of self-renewing cancer cells-that is CSCs-is responsible for tumor initiation, bears the preferential ability to survive tumor therapy, and persists long term to ultimately cause delayed cancer recurrence and metastatic progression. Additionally, many of the biological mechanisms involved in controlling the dormant state of a tumor can also govern CSC behavior, including cell cycle modifications, alteration of angiogenic processes, and modulation of antitumor immune responses. In fact, quiescence and immune escape are emerging hallmark features of at least some CSCs, indicating significant overlap between dormant cancer populations and CSCs. Herein, we crucially dissect whether CSCs occupy specific roles in orchestrating the switch between dormancy and exuberant tumor growth. We elucidate how recently uncovered CSC biological features could enable these cells to evade immunologic clearance and regulate cancer expansion, relapse, and progression. We propose that the study of CSC immunobiological pathways holds the promise to critically advance our understanding of the processes mediating tumor dormancy. Ultimately, such research endeavors could unravel novel therapeutic avenues that efficiently target both proliferating and dormant CSCs to minimize the risk of tumor recurrence in cancer patients.
Collapse
|
29
|
del Campo AB, Carretero J, Aptsiauri N, Garrido F. Targeting HLA class I expression to increase tumor immunogenicity. ACTA ACUST UNITED AC 2012; 79:147-54. [PMID: 22309256 DOI: 10.1111/j.1399-0039.2011.01831.x] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
Abstract
The dynamic interaction between the host immune system and growing cancer has been of central interest to the field of tumor immunology over the past years. Recognition of tumor-associated antigens (TAA) by self-HLA (human leukocyte antigen) class I-restricted CD8+ T cells is a main feature in the detection and destruction of malignant cells. The discovery and molecular characterization of TAA has changed the field of cancer treatment and introduced a new era of cancer immunotherapy aimed at increasing tumor immunogenicity and T-cell-mediated anti-tumor immunity. Unfortunately, while these new protocols of cancer immunotherapy are mediating induction of tumor-specific T lymphocytes in patients with certain malignancies, they have not yet delivered substantial clinical benefits, such as induction of tumor regression or increased disease-free survival. It has become apparent that lack of tumor rejection is the result of immune selection and escape by tumor cells that develop low immunogenic phenotypes. Substantial experimental data support the existence of a variety of different mechanisms involved in the tumor escape phase, including loss or downregulation of HLA class I antigens. These alterations could be caused by regulatory ('soft') or by structural/irreversible ('hard') defects. On the basis of the evidence obtained from experimental mouse cancer models and metastatic human tumors, the structural defects underlying HLA class I loss may have profound implications on T-cell-mediated tumor rejection and ultimately on the outcome of cancer immunotherapy. Strategies to overcome this obstacle, including gene therapy to recover normal expression of HLA class I genes, require consideration. In this review, we outline the importance of monitoring and correction of HLA class I alterations during cancer development and immunotherapy.
Collapse
Affiliation(s)
- A B del Campo
- Servicio de Análisis Clínicos, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | |
Collapse
|
30
|
Carretero R, Wang E, Rodriguez AI, Reinboth J, Ascierto ML, Engle AM, Liu H, Camacho FM, Marincola FM, Garrido F, Cabrera T. Regression of melanoma metastases after immunotherapy is associated with activation of antigen presentation and interferon-mediated rejection genes. Int J Cancer 2012; 131:387-95. [PMID: 21964766 PMCID: PMC3504975 DOI: 10.1002/ijc.26471] [Citation(s) in RCA: 67] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2011] [Accepted: 09/12/2011] [Indexed: 01/11/2023]
Abstract
We present the results of a comparative gene expression analysis of 15 metastases (10 regressing and 5 progressing) obtained from 2 melanoma patients with mixed response following different forms of immunotherapy. Whole genome transcriptional analysis clearly indicate that regression of melanoma metastases is due to an acute immune rejection mediated by the upregulation of genes involved in antigen presentation and interferon mediated response (STAT-1/IRF-1) in all the regressing metastases from both patients. In contrast, progressing metastases showed low transcription levels of genes involved in these pathways. Histological analysis showed T cells and HLA-DR positive infiltrating cells in the regressing but not in the progressing metastases. Quantitative expression analysis of HLA-A,B and C genes on microdisected tumoral regions indicate higher HLA expression in regressing than in progressing metastases. The molecular signature obtained in melanoma rejection appeared to be similar to that observed in other forms of immune-mediated tissue-specific rejection such as allograft, pathogen clearance, graft versus host or autoimmune disease, supporting the immunological constant of rejection. We favor the idea that the major factor determining the success or failure of immunotherapy is the nature of HLA Class I alterations in tumor cells and not the type of immunotherapy used. If the molecular alteration is reversible by the immunotherapy, the HLA expression will be upregulated and the lesion will be recognized and rejected. In contrast, if the defect is structural the MHC Class I expression will remain unchanged and the lesion will progress.
Collapse
Affiliation(s)
- Rafael Carretero
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Ena Wang
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Ana I. Rodriguez
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Jennifer Reinboth
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
- Department of Biochemistry, Biocenter, University of Wuerzburg, Wuerzburg, Germany
- Genelux Corporation, San Diego Science Center, San Diego, CA
| | - Maria L. Ascierto
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Alyson M. Engle
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Hui Liu
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | | | - Francesco M. Marincola
- Infectious Disease and Immunogenetics Section (IDIS), Department of Transfusion Medicine and Trans-NIH Center for Human Immunology (CHI), National Institutes of Health, Bethesda, MD
| | - Federico Garrido
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| | - Teresa Cabrera
- Departamento de Bioquímica, Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Departamento de Análisis Clínicos e Inmunología, Hospital Virgen de las Nieves, Granada, Spain
| |
Collapse
|
31
|
|
32
|
Ito G, Tanaka H, Ohira M, Yoshii M, Muguruma K, Kubo N, Yashiro M, Yamada N, Maeda K, Sawada T, Hirakawa K. Correlation between efficacy of PSK postoperative adjuvant immunochemotherapy for gastric cancer and expression of MHC class I. Exp Ther Med 2012; 3:925-930. [PMID: 22969994 DOI: 10.3892/etm.2012.537] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2012] [Accepted: 02/13/2012] [Indexed: 01/17/2023] Open
Abstract
Protein-bound polysaccharide K (PSK) is a glycoprotein that is purified from the mushroom Coriolus versicolor. In Japan, PSK is clinically used in combination with anticancer agents following gastric cancer surgery. Evaluation of the response is difficult, as efficacy is determined via antitumor immunoenhancing effects, and for that reason PSK has not become a standard therapy. The present study evaluated the expression of MHC class I in gastric cancer patients who received PSK postoperative adjuvant immunochemotherapy, and investigated the correlation between MHC class I expression and clinical outcomes. The subjects comprised 349 patients with stage II/III gastric cancer, who had received adjuvant therapy following curative resection between 1995 and 2008. MHC class I expression in the primary lesion was evaluated by immunohistochemical staining. Patients were divided into two treatment groups: one was only administered oral chemotherapy (chemotherapy-only group) and the other was administered chemotherapy plus PSK (PSK group). The clinical outcomes were compared between the two groups. The two groups did not differ in regard to their MHC class I expression. Expression-negative cases demonstrated 3-year recurrence-free survival (RFS) rates of 65% in the PSK group and 47% in the chemotherapy-only group. Therefore, the PSK group revealed a prolonged survival. For the 82 expression-negative cases with pN2 or greater, the RFS rates were 68% in the PSK group and 28% in the chemotherapy-only group, representing a significant difference. Thus, PSK adjuvant immunochemotherapy may be effective in MHC class I-negative patients, who are in a state of antitumor immunological tolerance, and patients with advanced lymph node metastasis of pN2 or greater.
Collapse
Affiliation(s)
- Gentaro Ito
- Department of Surgical Oncology, Osaka City University Graduate School of Medicine, Abeno-Ku, Osaka 545-8585, Japan
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
33
|
Torigoe T, Asanuma H, Nakazawa E, Tamura Y, Hirohashi Y, Yamamoto E, Kanaseki T, Hasegawa T, Sato N. Establishment of a monoclonal anti-pan HLA class I antibody suitable for immunostaining of formalin-fixed tissue: unusually high frequency of down-regulation in breast cancer tissues. Pathol Int 2012; 62:303-8. [PMID: 22524657 DOI: 10.1111/j.1440-1827.2012.02789.x] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
A novel monoclonal anti-pan human leukocyte antigen (HLA) class I heavy chain antibody, EMR8-5, was established. It could detect HLA-A, -B, and -C antigens in formalin-fixed paraffin embedded tissues. By immunohistochemical staining using the EMR8-5 antibody, various cancer tissues from 246 cases were examined for HLA class I expression. It was found that HLA class I expression was decreased in 20% to 42% of the cases of lung cancer, hepatocellular carcinoma, colon cancer, renal cell carcinoma, and urothelial carcinoma. In contrast, 85% of breast cancer cases had loss of or decreased HLA class I expression. Of the 35 breast cancer cases that had decreased HLA class I heavy chain expression, 33 (94%) also had decreased beta2-microglobulin expression detected by immunohistochemical staining. It was suggested that HLA class I down-regulation might be a common characteristic of breast cancer mostly caused by the down-regulation of beta2-microglobulin expression.
Collapse
Affiliation(s)
- Toshihiko Torigoe
- Departments of Pathology, Sapporo Medical University School of Medicine, Sapporo, Japan.
| | | | | | | | | | | | | | | | | |
Collapse
|
34
|
Oliveras-Ferraros C, Cufí S, Vazquez-Martin A, Menendez OJ, Bosch-Barrera J, Martin-Castillo B, Joven J, Menendez JA. Metformin rescues cell surface major histocompatibility complex class I (MHC-I) deficiency caused by oncogenic transformation. Cell Cycle 2012; 11:865-70. [PMID: 22333588 DOI: 10.4161/cc.11.5.19252] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Active avoidance by tumor cells from attack and elimination by immune cells is an emerging cancer hallmark that is achieved primarily through decreasing the levels of major histocompatibility complex class I (MHC-I) at the cancer cells' surface. Deficiencies in MHC-I antigen-restricted immunosurveillance may be intertwined with an altered, Warburg-like cancer cell-intrinsic metabolism, another emerging hallmark of cancer that involves a switch from mitochondrial respiration to glycolysis to efficiently support large-scale biosynthetic programs that are required for active cell proliferation. We recently envisioned that intervention strategies aimed at reversing the bioenergetic signature of cancer cells (e.g., the antidiabetic biguanide metformin) should correct oncogene (e.g., HER2)-driven MHC-I defects, thus preventing immune escape of oncogene transformants. First, we explored how metformin treatment impacted mitochondrial biogenesis in cultured breast cancer cells overexpressing the membrane tyrosine kinase receptor HER2, the best-characterized downregulator of MHC-I. Metformin exposure was found to dose-dependently increase the expression levels of cytochrome c oxidase I and mitochondrial succinate dehydrogenase, which are encoded by mitochondrial and nuclear DNA, respectively. Second, we explored whether metformin-enhanced mitochondrial biogenesis might significantly alter the MHC-I status in breast carcinoma cells. MHC-I expression, as assessed by flow cytometry using an anti-HLA-ABC monoclonal antibody, was fully restored (up to ~25-fold upregulation) in MHC-I-negative HER2 gene-amplified carcinoma cells. These findings may help delineate a previously unrecognized mechanism through which metformin (and metformin-like drugs) may enable a cancer patient's own immune system to mount an efficient anti-metastasis response that can prevent or delay disease recurrence. Restored antigenicity and immunogenicity of tumor cells may represent a previously unrecognized primary mode of action underlying the cancer-preventive effects of metformin.
Collapse
|
35
|
Rodríguez JA, Galeano L, Palacios DM, Gómez C, Serrano ML, Bravo MM, Combita AL. Altered HLA class I and HLA-G expression is associated with IL-10 expression in patients with cervical cancer. Pathobiology 2011; 79:72-83. [PMID: 22213066 DOI: 10.1159/000334089] [Citation(s) in RCA: 49] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2011] [Accepted: 09/21/2011] [Indexed: 12/14/2022] Open
Abstract
Although high-risk human papillomaviruses (HPVs) are an important risk factor in the etiopathogenesis of cervical cancer, increasing evidence suggests that the ability to avoid immune surveillance seems to be linked to the transforming potential of HPV and a rapid progression to cancer. In other cancer models, IL-10 contributes to impair anti-tumor immune response either by downregulating human leukocyte antigen Class I (HLA-I) expression or by increasing HLA-G expression. To comprehend how these alterations could contribute to evasion of immune surveillance in cervical cancer, we analyzed HLA-I, HLA-G and IL-10 expressions by immunohistochemistry in 63 biopsies from patients with cervical intraepithelial neoplasia III (CIN-III) and cervical cancer. Immunohistochemistry showed absent or weak HLA-I expression in 50/59 cases. In these cases, a high percentage had loss of heterozygosis. IL-10 and HLA-G expression were observed in 46.6 and 27.6% of cases, respectively. Concurrent upregulation of IL-10 was found in 87.5% of HLA-G positive cases (p = 0.000). Similarly, a significant association between IL-10 expression and HLA-I downregulation was found (p = 0.028). Finally, we observed higher HLA-G expression in patients with HLA-I downregulation than in those with normal HLA-I expression (p = 0.004). Our results suggest that, in cervical cancer, the IL-10 expression may induce an immunosuppressive environment by upregulating HLA-G expression and downregulating HLA class I expression.
Collapse
Affiliation(s)
- Josefa Antonia Rodríguez
- Grupo de Investigación en Biología del Cáncer, Instituto Nacional de Cancerología, Bogotá, Colombia
| | | | | | | | | | | | | |
Collapse
|
36
|
A novel category of antigens enabling CTL immunity to tumor escape variants: Cinderella antigens. Cancer Immunol Immunother 2011; 61:119-25. [PMID: 22116347 PMCID: PMC3249164 DOI: 10.1007/s00262-011-1160-x] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2011] [Accepted: 11/10/2011] [Indexed: 12/11/2022]
Abstract
Deficiencies in MHC class I antigen presentation are a common feature of tumors and allows escape from cytotoxic T lymphocyte (CTL)-mediated killing. It is crucial to take this capacity of tumors into account for the development of T-cell-based immunotherapy, as it may strongly impair their effectiveness. A variety of escape mechanisms has been described thus far, but progress in counteracting them is poor. Here we review a novel strategy to target malignancies with defects in the antigenic processing machinery (APM). The concept is based on a unique category of CD8+ T-cell epitopes that is associated with impaired peptide processing, which we named TEIPP. We characterized this alternative peptide repertoire emerging in MHC-I on tumors lacking classical antigen processing due to defects in the peptide transporter TAP (transporter associated with peptide processing). These TEIPPs exemplify interesting parallels with the folktale figure Cinderella: they are oppressed and neglected by a stepmother (like functional TAP prevents TEIPP presentation), until the suppression is released and Cinderella/TEIPP achieves unexpected recognition. TEIPP-specific CTLs and their cognate peptide-epitopes provide a new strategy to counteract immune evasion by APM defects and bear potential to targeting escape variants observed in a wide range of cancers.
Collapse
|
37
|
Natarajan N, Telang S, Miller D, Chesney J. Novel immunotherapeutic agents and small molecule antagonists of signalling kinases for the treatment of metastatic melanoma. Drugs 2011; 71:1233-50. [PMID: 21770473 DOI: 10.2165/11591380-000000000-00000] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
Abstract
Melanoma incidence is increasing annually and over 40,000 die of this disease each year worldwide. In this review, we discuss the rationale and recent trial results of several novel immunotherapeutic approaches and small molecule inhibitors of signalling kinases. Ipilimumab is a humanized anti-CTLA4 antibody that has been proven to increase the median overall survival of large cohorts of patients with unresectable melanoma in two phase III trials. OncoVEX(GM-CSF) is an oncolytic herpes simplex virus-1 recombined with granulocyte-macrophage colony-stimulating factor that has demonstrated durable objective responses in a phase II trial. Tumour-infiltrating lymphocytes given after lymphocyte depletion and followed by high-dose interleukin (IL)-2 yield durable complete responses in a significant percentage of melanoma patients. Lastly, denileukin diftitox, a fusion of IL-2 and diphtheria toxin, was recently observed to deplete regulatory T cells and cause durable partial responses, particularly in chemo/immune-naïve patients. These agents are enabling the rational design of novel combination trials to simultaneously increase antigen presentation, deplete regulatory T cells and block immune check-points in order to activate melanoma antigen-specific immunity. Although melanoma metastases have been found to contain thousands of mutations, the V600E BRAF mutation is clearly a driver of the neoplastic phenotype and is present in 40-60% of melanomas. Two separate small molecule antagonists of B-Raf have been found to yield very high partial response rates in metastatic melanoma, and the B-Raf inhibitor, vemurafenib (PLX4032), was recently observed to increase median overall survival in an interim analysis. However, B-Raf inhibitor resistance through up-regulation or activating mutations of alternative oncogenic signalling receptors and enzymes is proving to be a major challenge. Inhibitors of c-Kit and mitogen-activated protein kinase (MEK) have also been found to have activity against melanomas and MEK inhibitors are now being examined as a strategy to overcome B-Raf inhibitor resistance. In summary, these studies reveal that, for the first time, several immunotherapeutic and targeted agents are yielding dramatic clinical responses and improvements in overall survival in patients with unresectable stage III and IV melanoma.
Collapse
Affiliation(s)
- Nagendra Natarajan
- Division of Medical Oncology/Hematology, University of Louisville School of Medicine, James Graham Brown Cancer Center, KY 40202, USA
| | | | | | | |
Collapse
|
38
|
Garrido C, Romero I, Berruguilla E, Cancela B, Algarra I, Collado A, García-Lora A, Garrido F. Immunotherapy eradicates metastases with reversible defects in MHC class I expression. Cancer Immunol Immunother 2011; 60:1257-68. [PMID: 21553283 PMCID: PMC11028956 DOI: 10.1007/s00262-011-1027-1] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2010] [Accepted: 04/21/2011] [Indexed: 01/05/2023]
Abstract
Tumor or metastatic cells lose MHC class I (MHC-I) expression during cancer progression as an escape mechanism from immune surveillance. These defects in MHC-I may be reversible by cytokines or different agents (soft lesions) or irreversible due to structural defects (hard lesions). The nature of these MHC-I alterations might determine the success or failure of immunotherapy treatments. In this study, we have used an MHC-I-positive murine fibrosarcoma tumor clone, GR9-A7, which generates multiple lung and lymph node metastases with reversible MHC-I alterations after treatment with IFN-γ. Four different antitumor treatments were carried out after primary tumor excision to determine their capacity to inhibit spontaneous metastatic colonization of the GR9-A7 tumor clone. We found that 2 different immunotherapy protocols (CpG plus autologous irradiated-GR9-A7 cells and protein-bound polysaccharide K (PSK) and 1 chemoimmunotherapy (docetaxel plus PSK) induced eradication of metastases. In contrast, chemotherapy with docetaxel alone produced only partial reduction in the number of metastases. Flow cytometric analysis of lymphocyte populations showed an immunosuppression in GR9-A7 tumor-bearing host, which could be reverted by immunotherapy treatments. Our results suggest that irreversible or reversible MHC-I alterations in tumor target cells may determine its progression or regression independently of the type of immunotherapy used.
Collapse
Affiliation(s)
- Cristina Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Irene Romero
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Enrique Berruguilla
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Bárbara Cancela
- Servicio de Farmacia, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Antonia Collado
- Unidad de Investigación, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | - Angel García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| | - Federico Garrido
- Departamento De Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
39
|
Carretero R, Cabrera T, Gil H, Saenz-Lopez P, Maleno I, Aptsiauri N, Cozar JM, Garrido F. Bacillus Calmette-Guerin immunotherapy of bladder cancer induces selection of human leukocyte antigen class I-deficient tumor cells. Int J Cancer 2011; 129:839-46. [PMID: 20957629 DOI: 10.1002/ijc.25733] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/11/2010] [Accepted: 09/27/2010] [Indexed: 11/09/2022]
Abstract
Bacillus Calmette-Guerin (BCG) immunotherapy is a standard treatment for high-risk non-muscle-infiltrating bladder cancer patients. Although the outcomes are good, cancer relapse is observed in around 40% of patients. We present the comparative analysis of human leukocyte antigen (HLA) class I expression in recurrent bladder tumors in patients treated with mitomycin or BCG. HLA class I expression was analyzed by RT-Q-PCR and immunohistochemical techniques. Loss of heterozygosity (LOH) was determined by microsatellite amplification of markers in chromosome 6 and 15. More profound alterations in HLA class I expression were found in post-BCG recurrent tumors than in pre-BCG lesions, whereas mitomycin treatment did not change the HLA class I expression pattern. Post-BCG recurrent tumors also showed a higher incidence of structural defects underlying altered HLA class I expression. We hypothesize that the immunotherapy-activated immune system recognizes and eliminates tumor cells with reversible ("soft") HLA class I changes but not transformed cells with additional, irreversible ("hard") alterations. To our knowledge, this is the first clinical evidence of immunotherapy-induced immunoselection of HLA class I loss tumor variants in bladder cancer, although the study involved a small number of patients.
Collapse
Affiliation(s)
- Rafael Carretero
- Department of Clinical Analysis, Virgen de las Nieves University Hospital, and Department of Biochemistry, Molecular Biology III and Immunology, University of Granada, Spain
| | | | | | | | | | | | | | | |
Collapse
|
40
|
Abstract
While many solid tumors have been reported to contain stem cell-like cells termed cancer stem cells, the case for a melanoma stem cell has been debated over the last few years. Herein, we summarize current knowledge of melanoma-initiating cells and provide an update on recently gained knowledge regarding cancer stem cells and melanoma.
Collapse
Affiliation(s)
- Ruby Ghadially
- Department of Dermatology, Epithelial Pipeline of the Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California, San Francisco, California, USA.
| |
Collapse
|
41
|
Abstract
Since the identification of self-renewing cells in the hematopoietic system, stem cells have transformed the study of medicine. Cancer biologists have identified stem-like cells in multiple malignancies, including those of solid organs. This has led to the development of a stem cell theory of cancer, which purports that a subpopulation of self-renewing tumor cells is responsible for tumorigenesis. This contrasts with the stochastic model of tumor development, which advances that all tumor cells are capable of tumor formation. Within the field of melanoma, the identity and existence of cancer stem cells has been the subject of recent debate. Much of the controversy may be traced to differences in interpretations and definitions related to the cancer stem cell theory, and the use of dissimilar methodologies to study melanoma cells. Accumulating evidence suggests that cancer stem cells may exist in melanoma, although their frequency may vary and they may be capable of phenotypic plasticity. Importantly, these primitive melanoma cells are not only capable of self-renewal and differentiation plasticity, but also may confer virulence via immune evasion and multidrug resistance, and potentially via vasculogenic mimicry and transition to migratory and metastasizing derivatives. Therapeutic targeting of melanoma stem cells and the pathways that endow them with virulence hold promise for the design of more effective strategies for amelioration and eradication of this most lethal form of skin cancer.
Collapse
|
42
|
Lampen MH, van Hall T. Strategies to counteract MHC-I defects in tumors. Curr Opin Immunol 2011; 23:293-8. [PMID: 21295956 DOI: 10.1016/j.coi.2010.12.005] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2010] [Revised: 11/26/2010] [Accepted: 12/08/2010] [Indexed: 11/25/2022]
Abstract
Defects in MHC-I antigen presentation represent a common feature of cancer and allow evasion from T cell recognition. Recent findings from immunotherapy in melanoma suggested that irreversible MHC-I defects enable escape from immune pressure. Although loss of antigen presentation is known for many years, strategies to counteract these defects are scarce and largely unexamined. Now that the first forms of T-cell-based immunotherapy show clinical efficacy and reach FDA approval, this issue deserves urgent awareness. Here we describe possible roads leading to corrections of MHC-I defects in tumors and describe a salvage pathway for CTL by targeting novel tumor antigens that we recently uncovered.
Collapse
Affiliation(s)
- Margit H Lampen
- Department of Clinical Oncology, Leiden University Medical Center, Netherlands
| | | |
Collapse
|
43
|
Maleno I, Aptsiauri N, Cabrera T, Gallego A, Paschen A, López-Nevot MA, Garrido F. Frequent loss of heterozygosity in the β2-microglobulin region of chromosome 15 in primary human tumors. Immunogenetics 2010; 63:65-71. [PMID: 21086121 DOI: 10.1007/s00251-010-0494-4] [Citation(s) in RCA: 64] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2010] [Accepted: 11/03/2010] [Indexed: 01/01/2023]
Abstract
Downregulation or total loss of HLA class I expression on tumor cells is known as a mechanism of cancer immune escape. Alterations of the HLA phenotype are frequently due to mutations affecting genes encoding the HLA class I heavy chains located on chromosome 6p21 or the β2-microglobulin (β2m) gene encoding the light chain of the HLA complex located on chromosome 15q21. Frequently irreversible total loss of HLA class I molecules is due to the coincidence of two molecular events, the mutation of one β2m gene and the loss of the second copy. The latter is detectable as loss of heterozygosity (LOH) of microsatellite markers in the β2m region on chromosome 15q21 (LOH-15q21). Thus, LOH-15q21 might be an important event in the processes of HLA class I downregulation and total loss. Here we studied the frequency of LOH-15q21 in tumor tissues of different entities. By determining the status of heterozygosity of two microsatellite markers we detected LOH-15q21 in 44% of bladder carcinomas (n = 69), in 35% of colon carcinomas (n = 95), in 16% of melanomas (n = 70) but only in 7% of renal cancers (n = 45). Moreover, we observed a frequent coincidence of LOH-15q21 and LOH-6p21 in colorectal carcinoma, bladder carcinoma and melanoma, but not for renal carcinoma. We believe that the high incidence of LOH-15q21 in some malignancies and especially the coincidence of LOH-15q21 and LOH-6p21 might have a strong impact on tumor immunogenicity and on the efficiency of cancer immunotherapy.
Collapse
Affiliation(s)
- Isabel Maleno
- Department of Clinical Analysis, Hospital Universitario Virgen de las Nieves, Granada, Spain
| | | | | | | | | | | | | |
Collapse
|
44
|
Garrido F, Algarra I, García-Lora AM. The escape of cancer from T lymphocytes: immunoselection of MHC class I loss variants harboring structural-irreversible "hard" lesions. Cancer Immunol Immunother 2010; 59:1601-6. [PMID: 20625726 PMCID: PMC11029827 DOI: 10.1007/s00262-010-0893-2] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2010] [Accepted: 06/30/2010] [Indexed: 10/19/2022]
Abstract
The discovery of tumor antigens recognized by T lymphocytes has stimulated the development of a variety of cancer treatment protocols aimed at enhancing antitumor-specific T cell responses and tumor rejection. However, immunotherapy-mediated regression of established tumors and clearly positive clinical response to such treatment has not been achieved yet despite the induction of T cells directed against tumor antigens. The failure of the modern immunotherapy protocols can be explained by different tumor escape mechanisms that have been defined in various types of malignancy. The loss or downregulation of MHC class I antigens in tumor cells is one of the best analyzed mechanisms. In this review, we show experimental evidence obtained in our laboratory on human tumors and in a mouse cancer model suggesting that the molecular mechanism responsible for the MHC class I alteration in tumor cells might have a crucial impact on tumor recovery of normal H-2/HLA expression during the natural history of tumor development or after immunotherapy. When the preexisting molecular lesion underlying tumor MHC class I alteration is reversible (regulatory or soft), class I expression can be recovered leading to regression of tumor lesion. In contrast, if the HLA class I alteration is irreversible in nature (structural or hard), the lesion will progress killing the host. This is a new vision of the role of MHC class I alteration in tumors that can explain the failure of immunotherapy in a variety of different clinical protocols.
Collapse
Affiliation(s)
- Federico Garrido
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
- Departamento de Bioquímica y Biología Molecular III e Inmunología, Universidad de Granada, Granada, Spain
| | - Ignacio Algarra
- Departamento de Ciencias de la Salud, Universidad de Jaén, Jaén, Spain
| | - Angel M. García-Lora
- Servicio de Análisis Clínicos and Inmunología, Hospital Universitario Virgen de las Nieves, Av. de las Fuerzas Armadas 2, 18014 Granada, Spain
| |
Collapse
|
45
|
Garrido F, Cabrera T, Aptsiauri N. "Hard" and "soft" lesions underlying the HLA class I alterations in cancer cells: implications for immunotherapy. Int J Cancer 2010; 127:249-56. [PMID: 20178101 DOI: 10.1002/ijc.25270] [Citation(s) in RCA: 146] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023]
Abstract
The ability of cancer cells to escape from the natural or immunotherapy-induced antitumor immune response is often associated with alterations in the tumor cell surface expression of Major Histocompatibility Complex (MHC) Class I antigens. Considerable knowledge has been gained on the prevalence of various patterns of MHC Class I defects and the underlying molecular mechanisms in different types of cancer. In contrast, few data are available on the changes in MHC Class I expression happening during the course of cancer immunotherapy. We have recently proposed that the progression or regression of a tumor lesion in cancer patients undergoing immunotherapy could be predetermined by the molecular mechanism responsible for the MHC Class I alteration and not by the type of immunotherapy used, i.e., interleukin-2 (IL-2), Bacillus Calmette-Guèrin (BCG), interferon-alpha (IFN-alpha), peptides alone, dendritic cells loaded with peptides, protein-bound polysaccharide etc. If the molecular alteration responsible for the changes in MHC Class I expression is reversible by cytokines ("soft" lesion), the MHC Class I expression will be upregulated, the specific T cell-mediated response will increase and the lesion will regress. However, if the molecular defect is structural ("hard" lesion), the MHC Class I expression will remain low, the escape mechanism will prevail and the primary tumor or the metastatic lesion will progress. According to this idea, the nature of the preexisting MHC Class I lesion in the cancer cell has a crucial impact determining the final outcome of cancer immunotherapy. In this article, we discuss the importance of these two types of molecular mechanisms of MHC Class I-altered expression.
Collapse
Affiliation(s)
- Federico Garrido
- Departamento de Bioquímica, Universidad de Granada, Granada, Spain.
| | | | | |
Collapse
|
46
|
Hamanishi J, Mandai M, Matsumura N, Baba T, Yamaguchi K, Fujii S, Konishi I. Activated local immunity by CC chemokine ligand 19-transduced embryonic endothelial progenitor cells suppresses metastasis of murine ovarian cancer. Stem Cells 2010; 28:164-73. [PMID: 19911426 DOI: 10.1002/stem.256] [Citation(s) in RCA: 38] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Although tumor microenvironments play a key role in successful tumor immunotherapy, effective manipulation of local immunity is difficult because of the lack of an appropriate target system. It is well known that bone marrow-derived endothelial progenitor cells (EPCs) are actively recruited during tumor angiogenesis. Using this feature, we attempted to establish a novel therapeutic modality that targets tumor vessels of multiple metastases using embryonic endothelial progenitor cells (eEPCs) transduced with an immune-activating gene. The eEPCs were retrovirally transduced with the mouse CC chemokine ligand 19 (CCL19) gene, a lymphocyte-migrating chemokine. The mouse ovarian cancer cell line OV2944-HM-1 (HM-1) was inoculated subcutaneously into B6C3F1 mice, along with CCL19-tranduced eEPCs (eEPC-CCL19), resulting in immunologic activity and tumor-inhibitory effects. In this model, eEPC-CCL19 showed tumor repression accompanied by increased tumor-infiltrating CD8+ lymphocytes compared with the control group. In contrast, no tumor repression was observed when the same experiment was done in immunodeficient (SCID) mice, suggesting a crucial role of T-cell function in this system. Next, we established a lung metastasis model by injecting HM-1 cells or B16 melanoma cells via the tail vein. Subsequent intravenous injection of eEPC-CCL19 leads to a decrease in the number of lung metastasis and prolonged survival. Antitumor effects were also observed in a peritoneal dissemination model using HM-1. These results suggest that systemic delivery of an immune-activating signal using EPCs can alter the tumor immune microenvironment and lead to a therapeutic effect, which may provide a novel strategy for targeting multiple metastases of various malignancies.
Collapse
Affiliation(s)
- Junzo Hamanishi
- Department of Gynecology and Obstetrics, Graduate School of Medicine, Kyoto University, Kyoto 606-8507, Japan
| | | | | | | | | | | | | |
Collapse
|
47
|
Sáenz-López P, Gouttefangeas C, Hennenlotter J, Concha A, Maleno I, Ruiz-Cabello F, Cózar JM, Tallada M, Stenzl A, Rammensee HG, Garrido F, Cabrera T. Higher HLA class I expression in renal cell carcinoma than in autologous normal tissue. ACTA ACUST UNITED AC 2010; 75:110-8. [DOI: 10.1111/j.1399-0039.2009.01409.x] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
48
|
Schatton T, Schütte U, Frank NY, Zhan Q, Hoerning A, Robles SC, Zhou J, Hodi FS, Spagnoli GC, Murphy GF, Frank MH. Modulation of T-cell activation by malignant melanoma initiating cells. Cancer Res 2010; 70:697-708. [PMID: 20068175 DOI: 10.1158/0008-5472.can-09-1592] [Citation(s) in RCA: 234] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Highly immunogenic cancers such as malignant melanoma are capable of inexorable tumor growth despite the presence of antitumor immunity. Thus, only a restricted minority of tumorigenic malignant cells may possess the phenotypic and functional characteristics needed to modulate tumor-directed immune activation. Here we provide evidence supporting this hypothesis. Tumorigenic ABCB5(+) malignant melanoma initiating cells (MMICs) possessed the capacity to preferentially inhibit IL-2-dependent T-cell activation and to support, in a B7.2-dependent manner, induction of CD4(+)CD25(+)FoxP3(+) regulatory T cells (Tregs). Compared with melanoma bulk cell populations, ABCB5(+) MMICs displayed lower levels of MHC class I, aberrant positivity for MHC class II, and lower expression levels of the melanoma-associated antigens MART-1, ML-IAP, NY-ESO-1, and MAGE-A. Additionally, these tumorigenic ABCB5(+) subpopulations preferentially expressed the costimulatory molecules B7.2 and PD-1, both in established melanoma xenografts and in clinical tumor specimens. In immune activation assays, MMICs inhibited mitogen-dependent human peripheral blood mononuclear cell (PBMC) proliferation and IL-2 production more efficiently than ABCB5(-) melanoma cell populations. Moreover, coculture with ABCB5(+) MMICs increased the abundance of Tregs, in a B7.2 signaling-dependent manner, along with IL-10 production by mitogen-activated PBMCs. Consistent with these findings, MMICs also preferentially inhibited IL-2 production and induced IL-10 secretion by cocultured patient-derived, syngeneic PBMCs. Our findings identify novel T-cell modulatory functions of ABCB5(+) melanoma subpopulations and suggest specific roles for these MMICs in the evasion of antitumor immunity and in cancer immunotherapeutic resistance.
Collapse
Affiliation(s)
- Tobias Schatton
- Transplantation Research Center, Children's Hospital Boston, Boston, Massachusetts 02115, USA
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
49
|
Fassati A, Mitchison NA. Testing the theory of immune selection in cancers that break the rules of transplantation. Cancer Immunol Immunother 2009; 59:643-51. [PMID: 20033157 PMCID: PMC2831185 DOI: 10.1007/s00262-009-0809-1] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2009] [Accepted: 12/06/2009] [Indexed: 12/17/2022]
Abstract
Modification of cancer cells likely to reduce their immunogenicity, including loss or down-regulation of MHC molecules, is now well documented and has become the main support for the concept of immune surveillance. The evidence that these modifications, in fact, result from selection by the immune system is less clear, since the possibility that they may result from reorganized metabolism associated with proliferation or from cell de-differentiation remains. Here, we (a) survey old and new transplantation experiments that test the possibility of selection and (b) survey how transmissible tumours of dogs and Tasmanian devils provide naturally evolved tests of immune surveillance.
Collapse
Affiliation(s)
- Ariberto Fassati
- MRC Centre for Medical Molecular Virology, University College London, UK.
| | | |
Collapse
|
50
|
Jandus C, Speiser D, Romero P. Recent advances and hurdles in melanoma immunotherapy. Pigment Cell Melanoma Res 2009; 22:711-23. [DOI: 10.1111/j.1755-148x.2009.00634.x] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
|