1
|
Gao Y, Wang Z, Cui Y, Xu M, Weng L. Emerging Strategies of Engineering and Tracking Dendritic Cells for Cancer Immunotherapy. ACS APPLIED BIO MATERIALS 2023; 6:24-43. [PMID: 36520013 DOI: 10.1021/acsabm.2c00790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Dendritic cells (DCs), a kind of specialized immune cells, play key roles in antitumor immune response and promotion of innate and adaptive immune responses. Recently, many strategies have been developed to utilize DCs in cancer therapy, such as delivering antigens and adjuvants to DCs and using scaffold to recruit and activate DCs. Here we outline how different DC subsets influence antitumor immunity, summarize the FDA-approved vaccines and cancer vaccines under clinical trials, discuss the strategies for engineering DCs and noninvasive tracking of DCs to improve antitumor immunotherapy, and reveal the potential of artificial neural networks for the design of DC based vaccines.
Collapse
Affiliation(s)
- Yu Gao
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Zhixuan Wang
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Ying Cui
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Miaomiao Xu
- School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| | - Lixing Weng
- State Key Laboratory for Organic Electronics and Information Displays & Jiangsu Key Laboratory for Biosensors, Institute of Advanced Materials (IAM), Jiangsu National Synergistic Innovation Center for Advanced Materials (SICAM), Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China.,School of Geography and Biological Information, Nanjing University of Posts and Telecommunications, 9 Wenyuan Road, Nanjing 210023, China
| |
Collapse
|
2
|
Markov OV, Sen’kova AV, Mohamed IS, Shmendel EV, Maslov MA, Oshchepkova AL, Brenner EV, Mironova NL, Zenkova MA. Dendritic Cell-Derived Artificial Microvesicles Inhibit RLS 40 Lymphosarcoma Growth in Mice via Stimulation of Th1/Th17 Immune Response. Pharmaceutics 2022; 14:pharmaceutics14112542. [PMID: 36432733 PMCID: PMC9696603 DOI: 10.3390/pharmaceutics14112542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Revised: 11/16/2022] [Accepted: 11/17/2022] [Indexed: 11/23/2022] Open
Abstract
Cell-free antitumor vaccines represent a promising approach to immunotherapy of cancer. Here, we compare the antitumor potential of cell-free vaccines based on microvesicles derived from dendritic cells (DCs) with DC- and cationic-liposome-based vaccines using a murine model of drug-resistant lymphosarcoma RLS40 in vivo. The vaccines were the following: microvesicle vaccines—cytochalasin B-induced membrane vesicles (CIMVs) obtained from DCs loaded with total tumor RNA using cholesterol/spermine-containing cationic liposomes L or mannosylated liposomes ML; DC vaccines—murine DCs loaded with total tumor-derived RNA using the same liposomes; and liposomal vaccines—lipoplexes of total tumor-derived RNA with liposomes L or ML. Being non-hepatotoxic, CIMV- and DC-based vaccines administered subcutaneously exhibited comparable potential to stimulate highly efficient antitumor CTLs in vivo, whereas liposomal vaccines were 25% weaker CTL inducers. Nevertheless, the antitumor efficiencies of the different types of the vaccines were similar: sizes of tumor nodes and the number of liver metastases were significantly decreased, regardless of the vaccine type. Notably, the booster vaccination did not improve the overall antitumor efficacy of the vaccines under the study. CIMV- and DC- based vaccines more efficiently than liposome-based ones decreased mitotic activity of tumor cells and induced their apoptosis, stimulated accumulation of neutrophil inflammatory infiltration in tumor tissue, and had a more pronounced immunomodulatory activity toward the spleen and thymus. Administration of CIMV-, DC-, and liposome-based vaccines resulted in activation of Th1/Th17 cells as well as the induction of positive immune checkpoint 4-1BBL and downregulation of suppressive immune checkpoints in a raw PD-1 >>> TIGIT > CTLA4 > TIM3. We demonstrated that cell-free CIMV-based vaccines exhibited superior antitumor and antimetastatic activity in a tumor model in vivo. The obtained results can be considered as the basis for developing novel strategies for oncoimmunotherapy.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
- Correspondence: ; Tel.: +7-(383)-363-51-61
| | - Aleksandra V. Sen’kova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Islam S. Mohamed
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Elena V. Shmendel
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Mikhail A. Maslov
- M.V. Lomonosov Institute of Fine Chemical Technologies, MIREA—Russian Technological University, Vernadskogo Ave. 86, 119571 Moscow, Russia
| | - Anastasiya L. Oshchepkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Evgeniy V. Brenner
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine SB RAS, Lavrentieva Ave. 8, 630090 Novosibirsk, Russia
| |
Collapse
|
3
|
Rosinski SL, Graves SS, Higginbotham DA, Storb R. Mixed chimerism renders residual host dendritic cells incapable of alloimmunization of the marrow donor in the canine model of allogeneic marrow transplantation. CHIMERISM 2018; 6:54-64. [PMID: 28140754 DOI: 10.1080/19381956.2016.1270483] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
This study tested whether an alloimmune response can occur in the marrow donor when infused or injected with leukocytes from their mixed chimeric transplant recipient. Two mixed chimeras were produced after conditioning with three Gray total body irradiation, donor marrow infusion, and post-grafting immunosuppression. The marrow donors were then repeatedly infused and injected with leukocytes from their respective chimeric recipient. A donor lymphocyte infusion (DLI) into their mixed chimeras had no effect, even after the experiments were repeated. The presence of blood dendritic cells (DCs) of recipient origin was confirmed in chimeric recipients, as well as the presence of microchimerism in the marrow donors. Donor sensitization did occur following placement of a recipient skin graft that was confirmed following DLI into recipients that changed the mixed chimeras into full donor chimeras. These observations suggest that mixed chimerism renders recipient peripheral blood DCs incapable of inducing a donor T cell response.
Collapse
Affiliation(s)
- Steven L Rosinski
- a Division of Clinical Research, Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Medicine , University of Washington , Seattle , WA , USA
| | - Scott S Graves
- a Division of Clinical Research, Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Medicine , University of Washington , Seattle , WA , USA
| | - Deborah A Higginbotham
- a Division of Clinical Research, Fred Hutchinson Cancer Research Center , Seattle , WA , USA
| | - Rainer Storb
- a Division of Clinical Research, Fred Hutchinson Cancer Research Center , Seattle , WA , USA.,b Department of Medicine , University of Washington , Seattle , WA , USA
| |
Collapse
|
4
|
Salem ML, Nassef M, Gomaa S, Essa I. Synergistic combination of murine bone marrow-derived dendritic cells loaded ex vivo with whole tumor lysate and systemic chemotherapy mediates antitumor immune responses in vivo. Biomed Pharmacother 2017; 93:286-295. [PMID: 28648976 DOI: 10.1016/j.biopha.2017.06.046] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2017] [Revised: 06/01/2017] [Accepted: 06/16/2017] [Indexed: 02/07/2023] Open
Abstract
In order to get mature dendritic cells (DC) that is a crucial prerequisite for success in tumor immunotherapy protocols. Herein, we assumed that administration of murine bone marrow (BM)-derived DC (BM-DC), loaded ex vivo with whole Ehrlich ascites carcinoma (EAC) lysate, in the context of systemic chemotherapy cyclophosphamide (CTX) to induce antitumor immune responses, may be a good strategy to improve the presentation of tumor-specific antigens to the immune system. In the first series of experiments, BM cells generated either from BM of naïve mice or from BM of EAC-bearing mice were cultured in the presence of GM-CSF and IL-4 for 6days. At day 7, cells were loaded for 48h with one of the following maturation agents: EAC lysate (1mg/ml), poly-inosinic: polycytidylic acid [poly(I:C)] (25μg/ml) or mRNA encoding human telomerase reverse transcriptase (hTERT-mRNA) (2μg/ml). In the second series of experiments, EAC-bearing mice were intraperitoneally (i.p.) injected with CTX followed by i.p. vaccination with DC, loaded ex vivo with EAC lysate. DC yield and the phenotypic expression of maturity-related surface markers of DC (i.e. CD11b and CD11c) in both series of experiments were investigated. As a result, a significant decrease in the number of DC generated from poly(I:C)-supplemented BM culture from EAC-bearing mice has been detected. Loading of BM cells with poly(I:C), EAC lysate or hTERT-mRNA could induce the expression of CD11b and CD11c. Additionally, vaccination of EAC-bearing mice with DC loaded ex vivo with EAC lysate following CTX treatment, resulted in increases in the percentage of multiple populations of CD11b+CD11c+ in BM, spleen and peripheral blood (PB). To conclude, further researches to clarify the mechanism involved in DC maturation are crucial not only to comprehend DC biology but also to optimize DC immunotherapy protocols.
Collapse
Affiliation(s)
- Mohamed L Salem
- Zoology Department, Faculty of Science, Tanta University, El-Giesh St., Gharbia province, Tanta 31527, Egypt; Center of Excellence in Cancer Research, Tanta University, El-Giesh St., Gharbia province, Tanta 31527, Egypt
| | - Mohamed Nassef
- Zoology Department, Faculty of Science, Tanta University, El-Giesh St., Gharbia province, Tanta 31527, Egypt.
| | - Soha Gomaa
- Zoology Department, Faculty of Science, Tanta University, El-Giesh St., Gharbia province, Tanta 31527, Egypt
| | - Ibrahim Essa
- Zoology Department, Faculty of Science, Tanta University, El-Giesh St., Gharbia province, Tanta 31527, Egypt
| |
Collapse
|
5
|
Park SH, Kim MS, Lim HX, Cho D, Kim TS. IL-33-matured dendritic cells promote Th17 cell responses via IL-1β and IL-6. Cytokine 2017; 99:106-113. [PMID: 28802996 DOI: 10.1016/j.cyto.2017.07.022] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2017] [Revised: 07/07/2017] [Accepted: 07/27/2017] [Indexed: 12/20/2022]
Abstract
IL-33 is associated with a variety of autoimmune diseases, such as sclerosis, inflammatory bowel disease, and rheumatoid arthritis. Although IL-33 is mainly involved in the induction of Th2 cells, however, the relationship between IL-33 and Th17 cells is still largely unknown. In this study, we investigated the effects of IL-33 on DC-mediated CD4+ T cell activation and Th17 cell differentiation because DCs are essential cells for presenting self-antigens to CD4+ T cells in autoimmune disease conditions. OT-II mice were injected with IL-33-treated DCs or untreated DCs that were primed by OVA323-339 peptide, and their Th17 cell responses were compared. Th17 cell population and IL-17 expression levels were significantly increased in draining lymph nodes of mice injected with IL-33-treated DCs, compared with those in mice injected with untreated DCs. IL-33 treatment maturated DCs to present self-antigens and to increase production of proinflammatory cytokines such as IL-1β and IL-6, which have a crucial role in Th17 cell differentiation. We found that the IL-33-matured DCs enhanced the expression of an early T cell activation marker (CD69) and the Th17 master transcription factor (RORγt), but IL-33 did not directly affect CD4+ T cell differentiation or increase Th17 polarization. Notably, neutralizing IL-1β and/or IL-6 significantly decreased IL-17 expression levels and Th17 cell population which were increased by the coculture of CD4+ T cells with IL-33-matured DCs, indicating that IL-33 may induce Th17 cell responses via IL-1β and IL-6 derived from IL-33-matured DCs.
Collapse
Affiliation(s)
- Su-Ho Park
- Division of Life Science, College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Myun Soo Kim
- Division of Life Science, College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Hui Xuan Lim
- Division of Life Science, College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Daeho Cho
- Department of Cosmetic Sciences, Sookmyung Women's University, Yongsan-gu, Seoul 04310, Republic of Korea
| | - Tae Sung Kim
- Division of Life Science, College of Life Science and Biotechnology, Korea University, 145 Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
6
|
Abstract
The details of patients who have entered remission from metastatic melanoma following palliative radiotherapy are reported. We review the relevant immune physiology and radiotherapy particulars and propose the hypothesis that radiovaccination with high fractional dose to skin metastases can stimulate the development of a robust systemic anti-tumoral immune response capable of causing remission of metastatic disease.
Collapse
Affiliation(s)
- Libni Eapen
- Radiation Medicine Program, The Ottawa Hospital Cancer Centre
| |
Collapse
|
7
|
Markov OV, Mironova NL, Sennikov SV, Vlassov VV, Zenkova MA. Prophylactic Dendritic Cell-Based Vaccines Efficiently Inhibit Metastases in Murine Metastatic Melanoma. PLoS One 2015; 10:e0136911. [PMID: 26325576 PMCID: PMC4556596 DOI: 10.1371/journal.pone.0136911] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2015] [Accepted: 08/10/2015] [Indexed: 12/16/2022] Open
Abstract
Recent data on the application of dendritic cells (DCs) as anti-tumor vaccines has shown their great potential in therapy and prophylaxis of cancer. Here we report on a comparison of two treatment schemes with DCs that display the models of prophylactic and therapeutic vaccination using three different experimental tumor models: namely, Krebs-2 adenocarcinoma (primary tumor), melanoma (B16, metastatic tumor without a primary node) and Lewis lung carcinoma (LLC, metastatic tumor with a primary node). Dendritic cells generated from bone marrow-derived DC precursors and loaded with lysate of tumor cells or transfected with the complexes of total tumor RNA with cationic liposomes were used for vaccination. Lipofectamine 2000 and liposomes consisting of helper lipid DOPE (1,2-dioleoyl-sn-glycero-3-phosphoethanolamine) and cationic lipid 2D3 (1,26-Bis(1,2-de-O-tetradecyl-rac-glycerol)-7,11,16,20-tetraazahexacosan tetrahydrocloride) were used for RNA transfection. It was shown that DCs loaded with tumor lysate were ineffective in contrast to tumor-derived RNA. Therapeutic vaccination with DCs loaded by lipoplexes RNA/Lipofectamine 2000 was the most efficient for treatment of non-metastatic Krebs-2, where a 1.9-fold tumor growth retardation was observed. Single prophylactic vaccination with DCs loaded by lipoplexes RNA/2D3 was the most efficient to treat highly aggressive metastatic tumors LLC and B16, where 4.7- and 10-fold suppression of the number of lung metastases was observed, respectively. Antimetastatic effect of single prophylactic DC vaccination in metastatic melanoma model was accompanied by the reductions in the levels of Th2-specific cytokines however the change of the levels of Th1/Th2/Th17 master regulators was not found. Failure of double prophylactic vaccination is explained by Th17-response polarization associated with autoimmune and pro-inflammatory reactions. In the case of therapeutic DC vaccine the polarization of Th1-response was found nevertheless the antimetastatic effect was less effective in comparison with prophylactic DC vaccine.
Collapse
Affiliation(s)
- Oleg V. Markov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Nadezhda L. Mironova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Sergey V. Sennikov
- Federal State Budgetary Institution "Research Institute of Clinical Immunology", Siberian Branch of Russian Academy of Medical Sciences, Novosibirsk, Russia
| | - Valentin V. Vlassov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
| | - Marina A. Zenkova
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk, Russia
- * E-mail:
| |
Collapse
|
8
|
Gonzalez NK, Wennhold K, Balkow S, Kondo E, Bölck B, Weber T, Garcia-Marquez M, Grabbe S, Bloch W, von Bergwelt-Baildon M, Shimabukuro-Vornhagen A. In vitro and in vivo imaging of initial B-T-cell interactions in the setting of B-cell based cancer immunotherapy. Oncoimmunology 2015; 4:e1038684. [PMID: 26405608 DOI: 10.1080/2162402x.2015.1038684] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2014] [Revised: 04/01/2015] [Accepted: 04/02/2015] [Indexed: 01/19/2023] Open
Abstract
There has been a growing interest in the use of B cells for cancer vaccines, since they have yielded promising results in preclinical animal models. Contrary to dendritic cells (DCs), we know little about the migration behavior of B cells in vivo. Therefore, we investigated the interactions between CD40-activated B (CD40B) cells and cytotoxic T cells in vitro and the migration behavior of CD40B cells in vivo. Dynamic interactions of human antigen-presenting cells (APCs) and T cells were observed by time-lapse video microscopy. The migratory and chemoattractant potential of CD40B cells was analyzed in vitro and in vivo using flow cytometry, standard transwell migration assays, and imaging of fluorescently labeled murine CD40B cells. Murine CD40B cells show migratory features similar to human CD40B cells. They express important lymph node homing receptors which were functional and induced chemotaxis of T cells in vitro. Striking differences were observed with regard to interactions of human APCs with T cells. CD40B cells differ from DCs by displaying a rapid migratory pattern undergoing highly dynamic, short-lived and sequential interactions with T cells. In vivo, CD40B cells are home to the secondary lymphoid organs where they accumulate in the B cell zone before traveling to the B/T cell boundary. Moreover, intravenous (i.v.) administration of murine CD40B cells induced an antigen-specific cytotoxic T cell response. Taken together, this data show that CD40B cells home secondary lymphoid organs where they physically interact with T cells to induce antigen-specific T cell responses, thus underscoring their potential as cellular adjuvant for cancer immunotherapy.
Collapse
Affiliation(s)
- Nela Klein Gonzalez
- Department of Hematology; Vall d'Hebron University Hospital; VHIR; Universitat Autónoma de Barcelona ; Barcelona, Spain ; Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Kerstin Wennhold
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Sandra Balkow
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Eisei Kondo
- Department of General Medicine; Okayama University ; Okayama, Japan
| | - Birgit Bölck
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Tanja Weber
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Maria Garcia-Marquez
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Stephan Grabbe
- Department of Dermatology and Research Center for Immunology (FZI); University Medical Center Mainz ; Mainz, Germany
| | - Wilhelm Bloch
- Institute of Cardiology and Sports Medicine; Department of Molecular and Cellular Sport Medicine; German Sport University Cologne ; Cologne, Germany
| | - Michael von Bergwelt-Baildon
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| | - Alexander Shimabukuro-Vornhagen
- Cologne Interventional Immunology (CII); University Hospital of Cologne ; Cologne, Germany ; Department I of Internal Medicine; University Hospital of Cologne ; Cologne, Germany
| |
Collapse
|
9
|
Engman C, Wen Y, Meng WS, Bottino R, Trucco M, Giannoukakis N. Generation of antigen-specific Foxp3+ regulatory T-cells in vivo following administration of diabetes-reversing tolerogenic microspheres does not require provision of antigen in the formulation. Clin Immunol 2015; 160:103-23. [PMID: 25773782 DOI: 10.1016/j.clim.2015.03.004] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2015] [Accepted: 03/05/2015] [Indexed: 11/20/2022]
Abstract
We have developed novel antisense oligonucleotide-formulated microspheres that can reverse hyperglycemia in newly-onset diabetic mice. Dendritic cells taking up the microspheres adopt a restrained co-stimulation ability and migrate to the pancreatic lymph nodes when injected into an abdominal region that is drained by those lymph nodes. Furthermore, we demonstrate that the absolute numbers of antigen-specific Foxp3+ T regulatory cells are increased only in the lymph nodes draining the site of administration and that these T-cells proliferate independently of antigen supply in the microspheres. Taken together, our data add to the emerging model where antigen supply may not be a requirement in "vaccines" for autoimmune disease, but the site of administration - subserved by lymph nodes draining the target organ - is in fact critical to foster the generation of antigen-specific regulatory cells. The implications of these observations on "vaccine" design for autoimmunity are discussed and summarized.
Collapse
MESH Headings
- Animals
- B7-1 Antigen/genetics
- B7-2 Antigen/genetics
- Blood Glucose/drug effects
- CD11c Antigen/metabolism
- CD40 Antigens/genetics
- Cell Movement/drug effects
- Cell Proliferation/drug effects
- Cells, Cultured
- Dendritic Cells/immunology
- Diabetes Mellitus, Experimental/therapy
- Diabetes Mellitus, Type 1/therapy
- Female
- Forkhead Transcription Factors/analysis
- Gene Knockdown Techniques
- Hyperglycemia/therapy
- Leukocyte Common Antigens/metabolism
- Lymph Nodes/cytology
- Lymph Nodes/immunology
- Lymphocyte Activation/immunology
- Macaca fascicularis
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C3H
- Mice, Inbred NOD
- Mice, Transgenic
- Microspheres
- Oligonucleotides, Antisense/genetics
- Pancreas/immunology
- Receptors, Antigen, T-Cell/genetics
- T-Lymphocytes, Regulatory/cytology
- Vaccines/administration & dosage
- Vaccines/immunology
Collapse
Affiliation(s)
- Carl Engman
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Yi Wen
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA
| | - Wilson S Meng
- Division of Pharmaceutical Sciences, Mylan School of Pharmacy, Mellon 413, 600 Forbes Avenue, Pittsburgh, PA 15282, USA.
| | - Rita Bottino
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Massimo Trucco
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| | - Nick Giannoukakis
- Institute of Cellular Therapeutics, 11th Floor South Tower, Allegheny Health Network, 320 East North Avenue, Pittsburgh, PA, 15212, USA.
| |
Collapse
|
10
|
Creusot RJ, Giannoukakis N, Trucco M, Clare-Salzler MJ, Fathman CG. It's time to bring dendritic cell therapy to type 1 diabetes. Diabetes 2014; 63:20-30. [PMID: 24357690 PMCID: PMC3968436 DOI: 10.2337/db13-0886] [Citation(s) in RCA: 42] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
- Rémi J. Creusot
- Department of Medicine, Columbia Center for Translational Immunology and Naomi Berrie Diabetes Center, Columbia University Medical Center, New York, NY
| | - Nick Giannoukakis
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Massimo Trucco
- Division of Immunogenetics, Department of Pediatrics, John G. Rangos Research Center, Children’s Hospital of Pittsburgh, University of Pittsburgh School of Medicine, Pittsburgh, PA
| | - Michael J. Clare-Salzler
- Department of Pathology, Immunology and Laboratory Medicine, University of Florida College of Medicine, Gainesville, FL
| | - C. Garrison Fathman
- Division of Immunology and Rheumatology, Department of Medicine, Stanford University School of Medicine, Stanford, CA
- Corresponding author: C. Garrison Fathman,
| |
Collapse
|
11
|
Mou Y, Xie H, Huang X, Han W, Ni Y, Su H, Wang Z, Hu Q. Immunological suppression of head and neck carcinoma by dendritic cell tumor fusion vaccine. Oncol Lett 2013; 6:1799-1803. [PMID: 24260079 PMCID: PMC3833945 DOI: 10.3892/ol.2013.1633] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2013] [Accepted: 10/09/2013] [Indexed: 01/01/2023] Open
Abstract
The successful treatment of cancer with dendritic cell (DC) tumor vaccine is highly dependent on the efficacy of antigen presentation and T cell activation. In the present study, a novel vaccine of DCs fused with autologous tumor cells was introduced, which had a marked ability to suppress head and neck carcinoma. DCs generated from the bone marrow of mice were fused with an autologous tumor cell line using polyethylene glycol (PEG). To observe the fused cells, confocal microscopy and FACS analysis were performed. Subsequently, the activation and proliferation of T cells, as well as animal experiments, were examined. The efficiency of DC/tumor fusion was 18.03% and T cells were well-activated by the hybrids. The volumes of tumors on the tumor-bearing mice were controlled, survival time of tumor-bearing mice was prolonged and the level of IFN-γ in serum was significantly increased compared with the control group and lysate-pulsed DC group. The results indicate that the DC/tumor fusion vaccine appears to be more effective than DCs pulsed with tumor lysate for the treatment of head and neck carcinoma, which may be useful in future clinical studies.
Collapse
Affiliation(s)
- Yongbin Mou
- Center Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, Jiangsu 210008, P.R. China
| | | | | | | | | | | | | | | |
Collapse
|
12
|
Chen X, Liu Z, Huang Y, Li R, Zhang H, Dong S, Ge C, Zhang Z, Wang Y, Wang Y, Xue Y, Li Z, Song X. Superior anti-tumor protection and therapeutic efficacy of vaccination with dendritic cell/tumor cell fusion hybrids for murine Lewis lung carcinoma. Autoimmunity 2013; 47:46-56. [PMID: 24191684 DOI: 10.3109/08916934.2013.850080] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
BACKGROUND The development of protocols for the ex vivo generation of dendritic cells (DCs) has led to intensive research into their potential use in immunotherapy in the treatment of cancer. In this study, we examined the efficacy of dendritic cell-tumor cell fusion hybrid vaccines in eliciting an immune response against Lewis lung carcinoma (LLC) cells, as compared to other types of tumor vaccines. In addition, we also tested whether the efficacy of the vaccines was affected by the route of administration. Four different tumor vaccines were compared: (1) HC (hybrid cell), consisting of DC/LLC hybrids; (2) DC+LLC (DCs pulsed with apoptotic LLCs); (3) DC without antigen loading/pulsing; (4) LLC (apoptotic/irradiated tumor cells). We also compared four different routes of administration for each vaccine: (1) Preimmunization; (2) Vaccination therapy; (3) Adoptive immunotherapy; (4) Vaccination therapy combined with adoptive immunotherapy. Anti-tumor immunity was assessed in vivo and the CTL (cytotoxic T lymphocyte) response as well as the expression of key cytokines, IFN-γ and IL-10 were further evaluated using in vitro assays. RESULTS Our data demonstrate that vaccination with HC hybrids provides more effective anti-tumor protective immunity and significantly greater therapeutic immunity than vaccination with DC+LLC, DC or LLC. Most remarkably, vaccination therapy with HC hybrids was more successful than combination (vaccination + adoptive) therapy for the induction of anti-tumor responses. Splenocytes harvested from mice immunized with HC hybrids demonstrated the greatest cytotoxic T lymphocyte (CTL) activity and their production of IFN-γ was high, while their production of IL-10 was very low. CONCLUSIONS Our results suggest that vaccination therapy with DC-tumor cell fusion hybrids provides more effective protection against lung cancer.
Collapse
|
13
|
Potent CD4+ T-cell epitope P30 enhances HER2/neu-engineered dendritic cell-induced immunity against Tg1-1 breast cancer in transgenic FVBneuN mice by enhanced CD4+ T-cell-stimulated CTL responses. Cancer Gene Ther 2013; 20:590-8. [PMID: 24052129 DOI: 10.1038/cgt.2013.60] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2013] [Revised: 08/13/2013] [Accepted: 08/18/2013] [Indexed: 12/29/2022]
Abstract
One of the major obstacles in human epidermal growth factor receptor (HER)-2/neu-specific trastuzumab immunotherapy of HER2/neu-positive breast cancer is the development of trastuzumab resistance, warranting the search for other therapeutic strategies. Although dendritic cell (DC) vaccines have been extensively applied in clinical trials for cancer treatment, the vaccination efficacy is still limited, mostly because DC vaccines are not sufficient to break tumor-associated antigen-specific self-immune tolerance in cancer patients. P30 (FNNFTVSFWLRVPKVSASHLE) derived from tetanus toxin is a universally potent CD4(+) T helper epitope capable of enhancing CD8(+) cytotoxic T-lymphocyte (CTL) responses. In this study, we constructed two recombinant adenoviral vectors (AdVs), AdVOVA-P30 and AdVHER2/neu-P30, expressing ovalbumin (OVA)-P30 and HER2/neu-P30. In order to enhance DC vaccine efficacy, we transfected mouse bone marrow (BM)-derived DCs with AdVOVA-P30 and AdVHER2/neu-P30 to generate engineered DCOVA-P30 and DCHER2/neu-P30 vaccines, respectively. We, then, compared CD4(+) and CD8(+) T-cell responses and antitumor immunity derived from DCOVA-P30 and DCHER2/neu-P30 vaccination in wild-type C57BL/6 and transgenic FVBneuN mice, respectively. We demonstrate that engineered DCOVA-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses than DCOVA in C57BL/6 mice. Interestingly, the increased DCOVA-P30-induced CTL responses are mainly contributed by enhanced CD4(+) T-cell-stimulated CTL proliferation. We show that DCOVA-P30 vaccine also stimulates more efficient therapeutic immunity against OVA-expressing BL6-10OVA melanoma than DCOVA in C57BL/6 mice. In addition, we demonstrate that DCHER2/neu-P30 vaccine stimulates more efficient CD4(+) and CD8(+) T-cell responses and protective immunity against HER2/neu-expressing Tg1-1 breast cancer than DCHER2/neu in transgenic FVBneuN mice with HER2/neu-specific self-immune tolerance. Therefore, the engineered DCHER2/neu-P30 vaccine may provide a new immunotherapy alternative for women with HER2/neu(+) breast cancer, especially for trastuzumab-resistant HER2/neu(+) breast cancer patients.
Collapse
|
14
|
Ataera H, Simkins HMA, Hyde E, Yang J, Hermans IF, Petersen TR, Ronchese F. The control of CD8+ T cell responses is preserved in perforin-deficient mice and released by depletion of CD4+CD25+ regulatory T cells. J Leukoc Biol 2013; 94:825-33. [PMID: 23883515 DOI: 10.1189/jlb.0413200] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Immune suppression by Treg has been demonstrated in a number of models, but the mechanisms of this suppression are only partly understood. Recent work has suggested that Tregs may suppress by directly killing immune cell populations in vivo in a perforin- and granzyme B-dependent manner. To establish whether perforin is necessary for the regulation of immune responses in vivo, we examined OVA-specific CD8(+) T cell responses in WT and PKO mice immunized with OVA and α-GalCer and the expansion of WT OT-I CD8(+) T cells adoptively transferred into WT or PKO mice immunized with DC-OVA. We observed similar expansion, phenotype, and effector function of CD8(+) T cells in WT and PKO mice, suggesting that CD8(+) T cells were subjected to a similar amount of regulation in the two mouse strains. In addition, when WT and PKO mice were depleted of Tregs by anti-CD25 mAb treatment before DC-OVA immunization, CD8(+) T cell proliferation, cytotoxicity, and cytokine production were increased similarly, suggesting a comparable involvement of CD25(+) Tregs in controlling T cell proliferation and effector function in these two mouse strains. These data suggest that perforin expression is not required for normal immune regulation in these models of in vivo CD8(+) T cell responses induced by immunization with OVA and α-GalCer or DC-OVA.
Collapse
Affiliation(s)
- Haley Ataera
- 2.Entrance 7 Kelburn Parade, 6012 Kelburn, Wellington, New Zealand.
| | | | | | | | | | | | | |
Collapse
|
15
|
Long J, Zhou B, Li H, Dai Q, Zhang B, Xing S, Zeng Z, Chen W, Yang J. Improvement of HBsAg gene-modified dendritic cell-based vaccine efficacy by optimizing immunization method or the application of β-glucosylceramide. Immunol Invest 2013; 42:137-55. [PMID: 23323523 DOI: 10.3109/08820139.2012.744418] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
Hepatocellular carcinoma (HCC) in China is mostly Hepatitis B virus infection related. The antitumor efficacy of HBsAg gene-modified dendritic cells (DC) has been widely tested both in vitro and in vivo. In this study, we analyzed whether adenoviral vector mediated HBsAg expression would alter cell surface phenotype or autologous T cell stimulating function of mature DCs. Further, the anti-tumor efficacy of pAd-HBsAg-DC-based vaccine was evaluated in mice bearing HBsAg expressing HCC. We also tested whether β-glucosylceramide (β-GC) would enhance the anti-tumor activity of pAd-HBsAg-DC. Results revealed that pAd-HBsAg-DC expressed and secreted HBsAg, while maintaining phenotypic characteristics of mature DCs. Vaccination with pAd-HBsAg-DC conferred specific therapeutic antitumor immunity to animal model bearing HBsAg expressing HCC. The application of β-GC activated mice hepatic NKT cells and enhanced the antitumor activity of pAd-HBsAg-DC. Most importantly, in vivo results showed that the inhibiting effect of pAd-HBsAg-DC vaccination on tumor growth was more significant when applied before tumor inoculation, suggesting that genetically modified DC based therapeutic cancer vaccine may achieve the most optimized antitumor effect when applied before tumor onset, and β-GC may serve as a potent innate immune enhancer for augmenting the antitumor effect of pAd-HBsAg-DC vaccine.
Collapse
Affiliation(s)
- Jianting Long
- Department of Medicinal Oncology, First Affiliated Hospital of Sun Yat-Sen University, Guangzhou, 510080, PR China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Bhargava A, Mishra D, Banerjee S, Mishra PK. Dendritic cell engineering for tumor immunotherapy: from biology to clinical translation. Immunotherapy 2012; 4:703-718. [PMID: 22853757 DOI: 10.2217/imt.12.40] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/02/2023] Open
Abstract
Dendritic cells (DCs) are the most potent APCs, with the ability to orchestrate a repertoire of immune responses. DCs play a pivotal role in the initiation, programming and regulation of tumor-specific immune responses, as they are poised to take up, process and present tumor antigens to naive or effector T lymphocytes. Although, to an extent, DC-based immunotherapeutic strategies have successfully induced specific anti-tumor responses in animal models, their clinical efficacy has rarely been translated into the clinic. This article attempts to present a complete picture of recent developments of DC-based therapeutic strategies addressing multiple components of tumor immunoenvironment. It also showcases certain practical intricacies in order to explore novel strategies for providing new impetus to DC-based cancer vaccination.
Collapse
Affiliation(s)
- Arpit Bhargava
- Division of Translational Research, Tata Memorial Centre, ACTREC, India
| | | | | | | |
Collapse
|
17
|
Fransen JH, Berden JH, Koeter CM, Adema GJ, Van Der Vlag J, Hilbrands LB. Effect of administration of apoptotic blebs on disease development in lupus mice. Autoimmunity 2012; 45:290-7. [PMID: 22390780 DOI: 10.3109/08916934.2012.664668] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
Abstract
INTRODUCTION Systemic lupus erythematosus (SLE) is an autoimmune disease characterised by the formation of autoantibodies against nuclear components. Disturbed apoptosis and reduced clearance of apoptotic material have been assigned a role in the pathogenesis of SLE. During apoptosis, apoptotic blebs are formed, in which SLE autoantigens are clustered. In vitro, apoptotic blebs can induce maturation of dendritic cells (DC), which in turn can stimulate IL-17 production by T cells. Here, we investigated the effects of administration of apoptotic blebs, separate or in combination with dendritic cells, on disease progression and autoantibody production in lupus and normal mice. METHODS A preparation of apoptotic blebs, with or without DC, was intravenously administered to MRL/lpr and CBA mice at weeks 7, 9, and 11 of age. T-cell responses against autoantigens present in blebs were examined by delayed type hypersensitivity reactions. Disease progression of the mice was evaluated by determining proteinuria and the titers of anti-DNA, anti-histone, and anti-nucleosome autoantibodies in plasma. RESULTS Repeated administration of apoptotic blebs, with or without DC, had no effect on the course of proteinuria or on anti-DNA, anti-histone and anti-nucleosome autoantibody levels in MRL/lpr mice. Intravenous injections of apoptotic blebs resulted in a decrease in the DTH response towards s.c. administered blebs in MRL/lpr mice and in reduced anti-nucleosome antibody titers in CBA mice. These tolerizing effects were lost when apoptotic blebs were administered together with syngeneic DC after 2 hours of co-incubation. DISCUSSION AND CONCLUSIONS In contrast to previous studies with apoptotic cells, and deviating from our in vitro findings with apoptotic blebs, we observed no stimulating effect of the administration of apoptotic blebs on disease progression in MRL/lpr lupus mice. The tolerogenic effects that were observed may be associated with rapid removal of i.v. administered blebs by phagocytes in an immune-silencing way.
Collapse
Affiliation(s)
- Justin H Fransen
- Nephrology Research Laboratory, Nijmegen Centre for Molecular Life Sciences, Department of Nephrology, Radboud University Nijmegen Medical Centre, Nijmegen, The Netherlands
| | | | | | | | | | | |
Collapse
|
18
|
Prophylactic and therapeutic vaccination using dendritic cells primed with peptide 10 derived from the 43-kilodalton glycoprotein of Paracoccidioides brasiliensis. CLINICAL AND VACCINE IMMUNOLOGY : CVI 2011; 19:23-9. [PMID: 22089247 DOI: 10.1128/cvi.05414-11] [Citation(s) in RCA: 45] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Vaccination with peptide 10 (P10), derived from the Paracoccidioides brasiliensis glycoprotein 43 (gp43), induces a Th1 response that protects mice in an intratracheal P. brasiliensis infection model. Combining P10 with complete Freund's adjuvant (CFA) or other adjuvants further increases the peptide's antifungal effect. Since dendritic cells (DCs) are up to 1,000-fold more efficient at activating T cells than CFA, we examined the impact of P10-primed bone-marrow-derived DC vaccination in mice. Splenocytes from mice immunized with P10 were stimulated in vitro with P10 or P10-primed DCs. T cell proliferation was significantly increased in the presence of P10-primed DCs compared to the peptide. The protective efficacy of P10-primed DCs was studied in an intratracheal P. brasiliensis model in BALB/c mice. Administration of P10-primed DCs prior to (via subcutaneous vaccination) or weeks after (via either subcutaneous or intravenous injection) P. brasiliensis infection decreased pulmonary damage and significantly reduced fungal burdens. The protective response mediated by the injection of primed DCs was characterized mainly by an increased production of gamma interferon (IFN-γ) and interleukin 12 (IL-12) and a reduction in IL-10 and IL-4 compared to those of infected mice that received saline or unprimed DCs. Hence, our data demonstrate the potential of P10-primed DCs as a vaccine capable of both the rapid protection against the development of serious paracoccidioidomycosis or the treatment of established P. brasiliensis disease.
Collapse
|
19
|
Mou Y, Hou Y, Chen B, Hua Z, Zhang Y, Xie H, Xia G, Wang Z, Huang X, Han W, Ni Y, Hu Q. In vivo migration of dendritic cells labeled with synthetic superparamagnetic iron oxide. Int J Nanomedicine 2011; 6:2633-40. [PMID: 22114494 PMCID: PMC3218577 DOI: 10.2147/ijn.s24307] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022] Open
Abstract
BACKGROUND Successful treatment of cancer with dendritic cell tumor vaccine is highly dependent on how effectively the vaccine migrates into lymph nodes and activates T cells. In this study, a simple method was developed to trace migration of dendritic cells to lymph nodes. METHODS Superparamagnetic iron oxide (SPIO) of γ-Fe(2)O(3) nanoparticles were prepared to label dendritic cells generated from bone marrow of enhanced green fluorescent protein (EGFP) transgenic mice, to explore the fluorescence intensity of EGFP influenced by the SPIO, and to make images of labeled dendritic cells with the help of magnetic resonance imaging in vitro. The SPIO-EGFP-labeled dendritic cells were injected into the footpads of five mice. After 48 hours, magnetic resonance imaging, optical imaging, confocal imaging, and Prussian blue staining were used to confirm migration of the SPIO-EGFP-labeled dendritic cells into draining lymph nodes. RESULTS The synthetic SPIO nanoparticles had a spherical shape and desirable superparamagnetism, and confocal imaging and Prussian blue staining showed perfect labeling efficiency as well. Furthermore, the dendritic cells dual-labeled by SPIO and EGFP could migrate into lymph nodes after footpad injection, and could be detected by both magnetic resonance imaging and optical imaging simultaneously, which was further confirmed by immunohistochemistry and Prussian blue staining. The percentage of dendritic cells migrated to the draining lymph nodes was about 4%. CONCLUSION Synthetic SPIO nanoparticles are strong contrast agents with good biocompatibility, and EGFP transgenic dendritic cells can be labeled efficiently by SPIO, which are suitable for further study of the migratory behavior and biodistribution of dendritic cells in vivo.
Collapse
Affiliation(s)
- Yongbin Mou
- Central Laboratory of Stomatology, Stomatological Hospital Affiliated Medical School, Nanjing University, Nanjing, People's Republic of China
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
20
|
In vivo cellular MRI of dendritic cell migration using micrometer-sized iron oxide (MPIO) particles. Mol Imaging Biol 2011; 13:679-94. [PMID: 20803172 DOI: 10.1007/s11307-010-0403-0] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
PURPOSE This study seeks to assess the use of labeling with micron-sized iron oxide (MPIO) particles for the detection and quantification of the migration of dendritic cells (DCs) using cellular magnetic resonance imaging (MRI). PROCEDURES DCs were labeled with red fluorescent MPIO particles for detection by cellular MRI and a green fluorescent membrane dye (PKH67) for histological detection. MPIO-labeled DCs or unlabeled control DCs were injected into mice footpads at two doses (0.1 × 10(6) and 1 × 10(6)). Images were acquired at 3 Tesla before DC injection and 2, 3, and 7 days post-DC injection. RESULTS Labeling DCs with MPIO particles did not affect viability, but it did alter markers of DC activation and maturation. MRI and fluorescence microscopy allowed for the detection of MPIO-labeled DCs within the draining popliteal nodes after their injection into the footpad. CONCLUSIONS This paper presents the first report of the successful use of fluorescent MPIO particles to label and track DC migration.
Collapse
|
21
|
Rossowska J, Pajtasz-Piasecka E, Ryśnik O, Wojas J, Krawczenko A, Szyda A, Duś D. Generation of antitumor response by IL-2-transduced JAWS II dendritic cells. Immunobiology 2011; 216:1074-84. [DOI: 10.1016/j.imbio.2011.05.006] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2010] [Revised: 03/16/2011] [Accepted: 05/07/2011] [Indexed: 11/16/2022]
|
22
|
Pajtasz-Piasecka E, Indrová M. Dendritic cell-based vaccines for the therapy of experimental tumors. Immunotherapy 2010; 2:257-68. [PMID: 20635932 DOI: 10.2217/imt.10.7] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Dendritic cells (DCs) are believed to be the most potent antigen-presenting cells able to link the innate and adaptive immune systems. Many studies have focused on different immunotherapeutic approaches to applying DCs as tools to improve anticancer therapy. Although a number of investigations suggesting the benefit of DC-based vaccination during anticancer therapy have been reported, the general knowledge regarding the ultimate methods of DC-vaccine preparation is still unsatisfactory. In this article, the perspectives of DC-based anti-tumor immunotherapy and optimizing strategies of DC vaccination in humans in light of results obtained in mouse models are discussed.
Collapse
Affiliation(s)
- Elzbieta Pajtasz-Piasecka
- Ludwik Hirszfeld Institute of Immunology & Experimental Therapy, Polish Academy of Sciences, Wroclaw, Poland.
| | | |
Collapse
|
23
|
Song S, Zhang K, You H, Wang J, Wang Z, Yan C, Liu F. Significant anti-tumour activity of adoptively transferred T cells elicited by intratumoral dendritic cell vaccine injection through enhancing the ratio of CD8(+) T cell/regulatory T cells in tumour. Clin Exp Immunol 2010; 162:75-83. [PMID: 20735440 DOI: 10.1111/j.1365-2249.2010.04226.x] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
We have shown that immunization with dendritic cells (DCs) pulsed with hepatitis B virus core antigen virus-like particles (HBc-VLP) packaging with cytosine-guanine dinucleotide (CpG) (HBc-VLP/CpG) alone were able to delay melanoma growth but not able to eradicate the established tumour in mice. We tested whether, by modulating the vaccination approaches and injection times, the anti-tumour activity could be enhanced. We used a B16-HBc melanoma murine model not only to compare the efficacy of DC vaccine immunized via footpads, intravenously or via intratumoral injections in treating melanoma and priming tumour-specific immune responses, but also to observe how DC vaccination could improve the efficacy of adoptively transferred T cells to induce an enhanced anti-tumour immune response. Our results indicate that, although all vaccination approaches were able to protect mice from developing melanoma, only three intratumoral injections of DCs could induce a significant anti-tumour response. Furthermore, the combination of intratumoral DC vaccination and adoptive T cell transfer led to a more robust anti-tumour response than the use of each treatment individually by increasing CD8(+) T cells or the ratio of CD8(+) T cell/regulatory T cells in the tumour site. Moreover, the combination vaccination induced tumour-specific immune responses that led to tumour regression and protected surviving mice from tumour rechallenge, which is attributed to an increase in CD127-expressing and interferon-γ-producing CD8(+) T cells. Taken together, these results indicate that repeated intratumoral DC vaccination not only induces expansion of antigen-specific T cells against tumour-associated antigens in tumour sites, but also leads to elimination of pre-established tumours, supporting this combined approach as a potent strategy for DC-based cancer immunotherapy.
Collapse
Affiliation(s)
- S Song
- Department of Molecular Biology and Key Laboratory of Experimental Animal, Hebei Medical University, Medical experimental Center, People's Hospital of Hebei Province, Shijiazhuang, China
| | | | | | | | | | | | | |
Collapse
|
24
|
Combination of intensive chemotherapy and anticancer vaccines in the treatment of human malignancies: the hematological experience. J Biomed Biotechnol 2010; 2010:692097. [PMID: 20625438 PMCID: PMC2896720 DOI: 10.1155/2010/692097] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 03/20/2010] [Indexed: 12/21/2022] Open
Abstract
In vitro studies have demonstrated that cancer-specific T cell cytotoxicity can be induced both ex vivo and in vivo, but this therapeutic strategy should probably be used as an integrated part of a cancer treatment regimen. Initial chemotherapy should be administered to reduce the cancer cell burden and disease-induced immune defects. This could be followed by autologous stem cell transplantation that is a safe procedure including both high-dose disease-directed chemotherapy and the possibility for ex vivo enrichment of the immunocompetent graft cells. The most intensive conventional chemotherapy and stem cell transplantation are used especially in the treatment of aggressive hematologic malignancies; both strategies induce T cell defects that may last for several months but cancer-specific T cell reactivity is maintained after both procedures. Enhancement of anticancer T cell cytotoxicity is possible but posttransplant vaccination therapy should probably be combined with optimalisation of immunoregulatory networks. Such combinatory regimens should be suitable for patients with aggressive hematological malignancies and probably also for other cancer patients.
Collapse
|
25
|
Vohra N, Verhaegen M, Martin L, Mackay A, Pilon-Thomas S. TNF-alpha-treated DC exacerbates disease in a murine tumor metastasis model. Cancer Immunol Immunother 2010; 59:729-36. [PMID: 19921187 DOI: 10.1007/s00262-009-0793-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2009] [Accepted: 10/29/2009] [Indexed: 12/23/2022]
Abstract
Due to the pivotal role that dendritic cells (DC) play in eliciting functional anti-tumor T cell responses, immunotherapeutic approaches utilizing DC-based vaccines have readily been exploited. It has been argued that, in the setting of immunotherapy, mature DC will be more efficient at T cell priming and, therefore, required for effective vaccination. As TNF-alpha is commonly used as a DC maturation factor, we have examined the efficacy of treatment with DC matured with TNF-alpha (DC-TNF) in a murine model of melanoma. We have now shown that treatment with DC-TNF leads to an increase in the number of lung metastases as compared to mice treated with immature DC. No differences in the number of CD4(+)CD25(+) T-regulatory cells were measured in the lungs of DC-TNF-treated mice. On examination of the infiltrating lymphocytes, an enhanced secretion of IL-10 and a higher percentage of CD4(+)IL -10(+) T cells were measured in the lungs of DC-TNF-treated mice. However, treatment with DC-TNF did not enhance the number of melanoma lesions in the lungs of IL-10 knockout mice or in mice depleted of CD4(+) T cells. Together, these studies indicate that treatment of melanoma-bearing mice with DC treated with TNF-alpha can induce IL-10 production by resident cells at the tumor site, leading to immune tolerance and exacerbation of disease.
Collapse
Affiliation(s)
- Nasreen Vohra
- Department of Translational Science, H. Lee Moffitt Cancer Center and Research Institute, Tampa, FL 33612, USA
| | | | | | | | | |
Collapse
|
26
|
Salem ML, Cole DJ. Dendritic cell recovery post-lymphodepletion: a potential mechanism for anti-cancer adoptive T cell therapy and vaccination. Cancer Immunol Immunother 2010; 59:341-353. [PMID: 19921513 PMCID: PMC3070377 DOI: 10.1007/s00262-009-0792-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2009] [Accepted: 10/26/2009] [Indexed: 02/07/2023]
Abstract
Adoptive transfer of autologous tumor-reactive T cells holds promise as a cancer immunotherapy. In this approach, T cells are harvested from a tumor-bearing host, expanded in vitro and infused back to the same host. Conditioning of the recipient host with a lymphodepletion regimen of chemotherapy or radiotherapy before adoptive T cell transfer has been shown to substantially improve survival and anti-tumor responses of the transferred cells. These effects are further enhanced when the adoptive T cell transfer is followed by vaccination with tumor antigens in combination with a potent immune adjuvant. Although significant progress has been made toward an understanding of the reasons underlying the beneficial effects of lymphodepletion to T cell adoptive therapy, the precise mechanisms remain poorly understood. Recent studies, including ours, would indicate a more central role for antigen presenting cells, in particular dendritic cells. Unraveling the exact role of these important cells in mediation of the beneficial effects of lymphodepletion could provide novel pathways toward the rational design of more effective anti-cancer immunotherapy. This article focuses on how the frequency, phenotype, and functions of dendritic cells are altered during the lymphopenic and recovery phases post-induction of lymphodepletion, and how they affect the anti-tumor responses of adoptively transferred T cells.
Collapse
Affiliation(s)
- Mohamed Labib Salem
- Surgery Department, Medical University of South Carolina, Charleston, 29425, USA.
| | | |
Collapse
|
27
|
|
28
|
Andrew KA, Simkins HMA, Witzel S, Perret R, Hudson J, Hermans IF, Ritchie DS, Yang J, Ronchese F. Dendritic Cells Treated with Lipopolysaccharide Up-Regulate Serine Protease Inhibitor 6 and Remain Sensitive to Killing by Cytotoxic T Lymphocytes In Vivo. THE JOURNAL OF IMMUNOLOGY 2008; 181:8356-62. [DOI: 10.4049/jimmunol.181.12.8356] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
|
29
|
Verdijk P, Aarntzen EHJG, Punt CJA, de Vries IJM, Figdor CG. Maximizing dendritic cell migration in cancer immunotherapy. Expert Opin Biol Ther 2008; 8:865-74. [PMID: 18549318 DOI: 10.1517/14712598.8.7.865] [Citation(s) in RCA: 49] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Abstract
BACKGROUND The success of dendritic cell (DC)-based immunotherapy in inducing cellular immunity against tumors is highly dependent on accurate delivery and trafficking of the DC to T-cell-rich areas of secondary lymphoid tissues. OBJECTIVE To provide an overview of DC migration in vivo and how migration to peripheral lymph nodes might be improved to optimize DC therapy. METHODS We focused on DC migration in preclinical models and human skin explants and on clinical vaccination trials studying migration of in vitro-generated DC. RESULTS/CONCLUSIONS DC migration requires an intricate interplay between the cell and its environment. To maximize migration for cellular therapy, it is important to optimize the generation of migratory DC as well as treatment strategies.
Collapse
Affiliation(s)
- Pauline Verdijk
- Radboud University Nijmegen Medical Centre, Department of Tumor Immunology, Nijmegen Centre for Molecular Life Sciences, Geert Grooteplein 28, Nijmegen, The Netherlands
| | | | | | | | | |
Collapse
|