1
|
Delgado-Almenta V, Blaya-Cánovas JL, Calahorra J, López-Tejada A, Griñán-Lisón C, Granados-Principal S. Cancer Vaccines and Beyond: The Transformative Role of Nanotechnology in Immunotherapy. Pharmaceutics 2025; 17:216. [PMID: 40006583 PMCID: PMC11859086 DOI: 10.3390/pharmaceutics17020216] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2024] [Revised: 01/20/2025] [Accepted: 02/05/2025] [Indexed: 02/27/2025] Open
Abstract
Cancer is one of the leading causes of morbidity and mortality globally, responsible for approximately 10 million deaths in 2022 and an estimated 21 million new cases in 2024. Traditional cancer treatments such as surgery, radiation therapy, and chemotherapy often present limitations in efficacy and side effects. However, immunotherapeutic vaccines have emerged as a promising approach, leveraging the body's immune system to target and eliminate cancer cells. This review examines the evolving landscape of cancer vaccines, differentiating between preventive and therapeutic strategies and highlighting the significance of tumor-specific antigens, including tumor-associated antigens (TAAs) and neoantigens. Recent advancements in vaccine technology, particularly through nanotechnology, have resulted in the development of nanovaccines, which enhance antigen stability, optimize delivery to immune cells, and promote robust immune responses. Notably, clinical data indicate that patients receiving immune checkpoint inhibitors can achieve overall survival rates of approximately 34.8 months compared to just 15.7 months for traditional therapies. Despite these advancements, challenges remain, such as the immunosuppressive tumor microenvironment and tumor heterogeneity. Emerging evidence suggests that combining nanovaccines with immunomodulators may enhance therapeutic efficacy by overcoming these obstacles. Continued research and interdisciplinary collaboration will be essential to fully exploit the promise of nanovaccines, ultimately leading to more effective and accessible treatments for cancer patients. The future of cancer immunotherapy appears increasingly hopeful as these innovative strategies pave the way for enhanced patient outcomes and an improved quality of life in oncology.
Collapse
Affiliation(s)
- Violeta Delgado-Almenta
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
| | - Jose L. Blaya-Cánovas
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Jesús Calahorra
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
| | - Araceli López-Tejada
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| | - Carmen Griñán-Lisón
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
- Excellence Research Unit “Modeling Nature” (MNat), Centro de Investigación Biomédica (CIBM), University of Granada, 18016 Granada, Spain
| | - Sergio Granados-Principal
- GENYO, Centre for Genomics and Oncological Research, Pfizer/University of Granada/Andalusian Regional Government, 18016 Granada, Spain; (V.D.-A.); (J.L.B.-C.); (J.C.); (A.L.-T.)
- Instituto de Investigación Biosanitaria ibs.GRANADA, 18012 Granada, Spain
- Department of Biochemistry and Molecular Biology II, Faculty of Pharmacy, University of Granada, Campus de Cartuja s/n, 18011 Granada, Spain
| |
Collapse
|
2
|
Shah S, Nag A, Lucke-Wold B. Autologous tumor lysate-loaded dendritic cell vaccination in glioblastoma patients: a systematic review of literature. Clin Transl Oncol 2024:10.1007/s12094-024-03830-9. [PMID: 39714754 DOI: 10.1007/s12094-024-03830-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2024] [Accepted: 12/09/2024] [Indexed: 12/24/2024]
Abstract
Glioblastoma (GBM) is one of the most common primary malignant brain tumors. Annually, there are about six instances recorded per 100,000 inhabitants. Treatment for GB has not advanced all that much. Novel medications have been investigated recently for the management of newly diagnosed and recurring instances of GBM. For GBM, surgery, radiation therapy, and alkylating chemotherapy are often used therapies. Immunotherapies, which use the patient's immune reaction against tumors, have long been seen as a potential cancer treatment. One such treatment is the dendritic cell (DC) vaccine. This cell-based vaccination works by stimulating the patient's own dendritic cells' antigenic repertoire, therefore inducing a polyclonal T-cell response. Systematic retrieval of information was performed on PubMed, Embase, and Google Scholar. Specified keywords were used to search, and the articles published in peer-reviewed scientific journals were associated with brain GBM, cancer, and Autologous Tumor Lysate-Loaded Dendritic Cell Vaccination. Selected 90 articles were used in this manuscript, of which 30 articles were clinical trials. Compared to shared tumor antigen peptide vaccines, autologous cancer DCs have a greater ability to stimulate the immune system, which is why dendritic cell fusion vaccines have shown early promise in several clinical studies. Survival rates for vaccinated patients were notably better compared to matched or historical controls. For newly diagnosed patients, the median overall survival (mOS) ranged from 15 to 41.4 months, while the progression-free survival (PFS) ranged from 6 to 25.3 months. We discovered through this analysis that autologous multiomics analysis of DC vaccines showed enhanced antitumor immunity with a focus on using activated, antigen-loaded donor DCs to trigger T-cell responses against cancer, particularly in glioblastoma. It also showed improved patient survival, especially when combined with standard chemoradiotherapy. DC vaccines show promise in treating GBM by enhancing survival and reducing tumor recurrence. However, challenges in vaccine production, antigen selection, and tumor heterogeneity highlight the need for continued research and optimization to improve efficacy and patient outcomes.
Collapse
Affiliation(s)
- Siddharth Shah
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA.
| | - Aiswarya Nag
- Sri Ramachandra University Medical College: Sri Ramachandra Medical College and Research Institute, Chennai, India
| | - Brandon Lucke-Wold
- Lillian S Wells Department of Neurosurgery at the University of Florida: University of Florida Lillian S Wells Department of Neurosurgery, Gainesville, FL, USA
| |
Collapse
|
3
|
Sferruzza G, Consoli S, Dono F, Evangelista G, Giugno A, Pronello E, Rollo E, Romozzi M, Rossi L, Pensato U. A systematic review of immunotherapy in high-grade glioma: learning from the past to shape future perspectives. Neurol Sci 2024; 45:2561-2578. [PMID: 38308708 DOI: 10.1007/s10072-024-07350-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 01/22/2024] [Indexed: 02/05/2024]
Abstract
High-grade gliomas (HGGs) constitute the most common malignant primary brain tumor with a poor prognosis despite the standard multimodal therapy. In recent years, immunotherapy has changed the prognosis of many cancers, increasing the hope for HGG therapy. We conducted a comprehensive search on PubMed, Scopus, Embase, and Web of Science databases to include relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA) guidelines. Fifty-two papers were finally included (44 phase II and eight phase III clinical trials) and further divided into four different subgroups: 14 peptide vaccine trials, 15 dendritic cell vaccination (DCV) trials, six immune checkpoint inhibitor (ICI) trials, and 17 miscellaneous group trials that included both "active" and "passive" immunotherapies. In the last decade, immunotherapy created great hope to increase the survival of patients affected by HGGs; however, it has yielded mostly dismal results in the setting of phase III clinical trials. An in-depth analysis of these clinical results provides clues about common patterns that have led to failures at the clinical level and helps shape the perspective for the next generation of immunotherapies in neuro-oncology.
Collapse
Affiliation(s)
- Giacomo Sferruzza
- Vita-Salute San Raffaele University, Milan, Italy.
- Neurology Unit, IRCCS Ospedale San Raffaele Scientific Institute, Via Olgettina 60, 20132, Milan, Italy.
| | - Stefano Consoli
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Fedele Dono
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Giacomo Evangelista
- Department of Neuroscience, Imaging and Clinical Sciences, "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
- Center of Advanced Studies and Technologies (CAST), "G. d'Annunzio" University of Chieti-Pescara, Chieti, Italy
| | - Alessia Giugno
- Department of Medical and Surgical Sciences, Institute of Neurology, Magna Graecia University of Catanzaro, Catanzaro, Italy
| | - Edoardo Pronello
- Neurology Unit, Department of Translational Medicine, University of Eastern Piedmont, Novara, Italy
| | - Eleonora Rollo
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Marina Romozzi
- Department of Neurosciences, Università Cattolica del Sacro Cuore, Rome, Italy
| | - Lucrezia Rossi
- Neurology Unit, Department of Medical, Surgical and Health Sciences, Cattinara University Hospital, ASUGI, University of Trieste, Trieste, Italy
| | - Umberto Pensato
- Department of Biomedical Sciences, Humanitas University, Via Rita Levi Montalcini 4, Pieve Emanuele, 20072, Milan, Italy
- IRCCS Humanitas Research Hospital, Via Manzoni 56, Rozzano, 20089, Milan, Italy
| |
Collapse
|
4
|
Qiu Q, Chen S, He H, Chen J, Ding X, Wang D, Yang J, Guo P, Li Y, Kim J, Sheng J, Gao C, Yin B, Zheng S, Wang J. An injectable signal-amplifying device elicits a specific immune response against malignant glioblastoma. Acta Pharm Sin B 2023; 13:5091-5106. [PMID: 38045037 PMCID: PMC10692361 DOI: 10.1016/j.apsb.2023.06.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 06/04/2023] [Accepted: 06/05/2023] [Indexed: 12/05/2023] Open
Abstract
Despite exciting achievements with some malignancies, immunotherapy for hypoimmunogenic cancers, especially glioblastoma (GBM), remains a formidable clinical challenge. Poor immunogenicity and deficient immune infiltrates are two major limitations to an effective cancer-specific immune response. Herein, we propose that an injectable signal-amplifying nanocomposite/hydrogel system consisting of granulocyte-macrophage colony-stimulating factor and imiquimod-loaded antigen-capturing nanoparticles can simultaneously amplify the chemotactic signal of antigen-presenting cells and the "danger" signal of GBM. We demonstrated the feasibility of this strategy in two scenarios of GBM. In the first scenario, we showed that this simultaneous amplification system, in conjunction with local chemotherapy, enhanced both the immunogenicity and immune infiltrates in a recurrent GBM model; thus, ultimately making a cold GBM hot and suppressing postoperative relapse. Encouraged by excellent efficacy, we further exploited this signal-amplifying system to improve the efficiency of vaccine lysate in the treatment of refractory multiple GBM, a disease with limited clinical treatment options. In general, this biomaterial-based immune signal amplification system represents a unique approach to restore GBM-specific immunity and may provide a beneficial preliminary treatment for other clinically refractory malignancies.
Collapse
Affiliation(s)
- Qiujun Qiu
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Sunhui Chen
- Department of Pharmacy, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Huining He
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics, School of Pharmacy, Tianjin Medical University, Tianjin 300070, China
| | - Jixiang Chen
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Xinyi Ding
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Dongdong Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jiangang Yang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Pengcheng Guo
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Yang Li
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jisu Kim
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Jianyong Sheng
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
| | - Chao Gao
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Tropical Medicine, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Bo Yin
- Department of Radiology, Huashan Hospital, Fudan University, Shanghai 200040, China
| | - Shihao Zheng
- Department of Neurosurgery, Fujian Provincial Hospital & Provincial Clinical Medical College of Fujian Medical University, Fuzhou 350001, China
| | - Jianxin Wang
- Department of Pharmaceutics, School of Pharmacy, Fudan University & Key Laboratory of Smart Drug Delivery, Ministry of Education, Shanghai 201203, China
- Institute of Materia Medica, Academy of Chinese and Western Integrative Medicine, Fudan University, Shanghai 201203, China
| |
Collapse
|
5
|
Van Gool SW, Van de Vliet P, Kampers LFC, Kosmal J, Sprenger T, Reich E, Schirrmacher V, Stuecker W. Methods behind oncolytic virus-based DC vaccines in cancer: Toward a multiphase combined treatment strategy for Glioblastoma (GBM) patients. Methods Cell Biol 2023; 183:51-113. [PMID: 38548421 DOI: 10.1016/bs.mcb.2023.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Glioblastoma (GBM) remains an orphan cancer disease with poor outcome. Novel treatment strategies are needed. Immunotherapy has several modes of action. The addition of active specific immunotherapy with dendritic cell vaccines resulted in improved overall survival of patients. Integration of DC vaccination within the first-line combined treatment became a challenge, and immunogenic cell death immunotherapy during chemotherapy was introduced. We used a retrospective analysis using real world data to evaluate the complex combined treatment, which included individualized multimodal immunotherapy during and after standard of care, and which required adaptations during treatment, and found a further improvement of overall survival. We also discuss the use of real world data as evidence. Novel strategies to move the field of individualized multimodal immunotherapy forward for GBM patients are reviewed.
Collapse
Affiliation(s)
| | | | | | | | | | - Ella Reich
- Immun-onkologisches Zentrum Köln, Cologne, Germany
| | | | | |
Collapse
|
6
|
Takei J, Kamata Y, Tanaka T, Fukasawa N, Gomisawa K, Satake M, Mori R, Yamamoto Y, Suzuki T, Oda A, Murahashi M, Fukuda T, Shimoda M, Murayama Y, Akasaki Y. Prognostic survival biomarkers of tumor-fused dendritic cell vaccine therapy in patients with newly diagnosed glioblastoma. Cancer Immunol Immunother 2023; 72:3175-3189. [PMID: 37382632 PMCID: PMC10491709 DOI: 10.1007/s00262-023-03482-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2023] [Accepted: 06/13/2023] [Indexed: 06/30/2023]
Abstract
Dendritic cell (DC)-based immunotherapy has been applied to glioblastoma (GBM); however, biomarkers informing response remain poorly understood. We conducted a phase I/IIa clinical trial investigating tumor-fused DC (TFDC) immunotherapy following temozolomide-based chemoradiotherapy in patients with newly diagnosed GBM and determined prognostic factors in patients receiving TFDC immunotherapy. Twenty-eight adult patients with GBM isocitrate dehydrogenase (IDH) wild-type (IDH-WT) were enrolled; 127 TFDC vaccine injections (4.5 ± 2.6 times/patient) were administered. Patients with GBM IDH-WT had a respectable 5-year survival rate (24%), verifying the clinical activity of TFDC immunotherapy, particularly against O6-methylguanine-DNA methyltransferase (MGMT) unmethylated GBM (5-year survival rate: 33%). To identify novel factors influencing overall survival (OS) in GBM IDH-WT treated with TFDC immunotherapy, clinical parameters were assessed and comprehensive molecular profiling involving transcriptome and exome analyses was performed. MGMT promoter methylation status, extent of tumor resection, and vaccine parameters (administration frequency, DC and tumor cell numbers, and fusion ratio) were not associated with survival following TFDC immunotherapy. Old age and pre- and post-operative Karnofsky performance status were significantly correlated with OS. Low HLA-A expression and lack of CCDC88A, KRT4, TACC2, and TONSL mutations in tumor cells were correlated with better prognosis. We validated the activity of TFDC immunotherapy against GBM IDH-WT, including chemoresistant, MGMT promoter unmethylated cases. The identification of molecular biomarkers predictive of TFDC immunotherapy efficacy in GBM IDH-WT will facilitate the design of and patient stratification in a phase-3 trial to maximize treatment benefits.
Collapse
Affiliation(s)
- Jun Takei
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuko Kamata
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Toshihide Tanaka
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
- Department of Neurosurgery, The Jikei University Kashiwa Hospital, Chiba, Japan
| | - Nei Fukasawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Kazutaka Gomisawa
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Mari Satake
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Ryosuke Mori
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yohei Yamamoto
- Department of Neurosurgery, The Jikei University Daisan Hospital, Tokyo, Japan
| | - Tomoya Suzuki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Ayaka Oda
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Mutsunori Murahashi
- Division of Oncology, Research Center for Medical Sciences, The Jikei University School of Medicine, Tokyo, Japan
| | - Takahiro Fukuda
- Medical Center for Memory and Cognitive Disorders, Sasebo Chuo Hospital, Nagasaki, Japan
| | - Masayuki Shimoda
- Department of Pathology, The Jikei University School of Medicine, Tokyo, Japan
| | - Yuichi Murayama
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan
| | - Yasuharu Akasaki
- Department of Neurosurgery, The Jikei University School of Medicine, 3-25-8 Nishishinbashi, Minato-Ku, Tokyo, 105-8461, Japan.
| |
Collapse
|
7
|
Abstract
Prostate cancer is a leading cause of death in men worldwide. For over 30 years, growing interest has focused on the development of vaccines as treatments for prostate cancer, with the goal of using vaccines to activate immune cells capable of targeting prostate cancer to either eradicate recurrent disease or at least delay disease progression. This interest has been prompted by the prevalence and long natural history of the disease and by the fact that the prostate is an expendable organ. Thus, an immune response elicited by vaccination might not need to target the tumour uniquely but could theoretically target any prostate tissue. To date, different vaccine approaches and targets for prostate cancer have been evaluated in clinical trials. Overall, five approaches have been assessed in randomized phase III trials and sipuleucel-T was approved as a treatment for metastatic castration-resistant prostate cancer, being the only vaccine approved to date by the FDA as a treatment for cancer. Most vaccine approaches showed safety and some evidence of immunological activity but had poor clinical activity when used as monotherapies. However, increased activity has been observed when these vaccines were used in combination with other immune-modulating therapies. This evidence suggests that, in the future, prostate cancer vaccines might be used to activate and expand tumour-specific T cells as part of combination approaches with agents that target tumour-associated immune mechanisms of resistance.
Collapse
Affiliation(s)
- Ichwaku Rastogi
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Anusha Muralidhar
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA
| | - Douglas G McNeel
- University of Wisconsin Carbone Cancer Center, University of Wisconsin, Madison, WI, USA.
| |
Collapse
|
8
|
Pu Y, Zhou G, Zhao K, Chen Y, Shen S. Immunotherapy for Recurrent Glioma-From Bench to Bedside. Cancers (Basel) 2023; 15:3421. [PMID: 37444531 DOI: 10.3390/cancers15133421] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Revised: 05/12/2023] [Accepted: 06/16/2023] [Indexed: 07/15/2023] Open
Abstract
Glioma is the most aggressive malignant tumor of the central nervous system, and most patients suffer from a recurrence. Unfortunately, recurrent glioma often becomes resistant to established chemotherapy and radiotherapy treatments. Immunotherapy, a rapidly developing anti-tumor therapy, has shown a potential value in treating recurrent glioma. Multiple immune strategies have been explored. The most-used ones are immune checkpoint blockade (ICB) antibodies, which are barely effective in monotherapy. However, when combined with other immunotherapy, especially with anti-angiogenesis antibodies, ICB has shown encouraging efficacy and enhanced anti-tumor immune response. Oncolytic viruses and CAR-T therapies have shown promising results in recurrent glioma through multiple mechanisms. Vaccination strategies and immune-cell-based immunotherapies are promising in some subgroups of patients, and multiple new tumor antigenic targets have been discovered. In this review, we discuss current applicable immunotherapies and related mechanisms for recurrent glioma, focusing on multiple preclinical models and clinical trials in the last 5 years. Through reviewing the current combination of immune strategies, we would like to provide substantive thoughts for further novel therapeutic regimes treating recurrent glioma.
Collapse
Affiliation(s)
- Yi Pu
- Laboratory of Mitochondria and Metabolism, Department of Burn and Reconstructive Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Guanyu Zhou
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Kejia Zhao
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yaohui Chen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Shensi Shen
- Institute of Thoracic Oncology, West China Hospital, Sichuan University, Chengdu 610041, China
- Department of Thoracic Surgery, West China Hospital, Sichuan University, Chengdu 610041, China
- National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
9
|
Segura-Collar B, Hiller-Vallina S, de Dios O, Caamaño-Moreno M, Mondejar-Ruescas L, Sepulveda-Sanchez JM, Gargini R. Advanced immunotherapies for glioblastoma: tumor neoantigen vaccines in combination with immunomodulators. Acta Neuropathol Commun 2023; 11:79. [PMID: 37165457 PMCID: PMC10171733 DOI: 10.1186/s40478-023-01569-y] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Accepted: 04/22/2023] [Indexed: 05/12/2023] Open
Abstract
Glial-origin brain tumors, including glioblastomas (GBM), have one of the worst prognoses due to their rapid and fatal progression. From an oncological point of view, advances in complete surgical resection fail to eliminate the entire tumor and the remaining cells allow a rapid recurrence, which does not respond to traditional therapeutic treatments. Here, we have reviewed new immunotherapy strategies in association with the knowledge of the immune micro-environment. To understand the best lines for the future, we address the advances in the design of neoantigen vaccines and possible new immune modulators. Recently, the efficacy and availability of vaccine development with different formulations, especially liposome plus mRNA vaccines, has been observed. We believe that the application of new strategies used with mRNA vaccines in combination with personalized medicine (guided by different omic's strategies) could give good results in glioma therapy. In addition, a large part of the possible advances in new immunotherapy strategies focused on GBM may be key improving current therapies of immune checkpoint inhibitors (ICI), given the fact that this type of tumor has been highly refractory to ICI.
Collapse
Affiliation(s)
- Berta Segura-Collar
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Sara Hiller-Vallina
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Olaya de Dios
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Instituto de Salud Carlos III, UFIEC, 28222, Majadahonda, Spain
| | - Marta Caamaño-Moreno
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Lucia Mondejar-Ruescas
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain
| | - Juan M Sepulveda-Sanchez
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain
| | - Ricardo Gargini
- Instituto de Investigaciones Biomédicas I+12, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
- Pathology and Neurooncology Unit, Hospital Universitario, 12 de Octubre, Av. de Córdoba, S/N, 28041, Madrid, Spain.
- Medical Oncology, Hospital Universitario, 12 de Octubre, 28041, Madrid, Spain.
| |
Collapse
|
10
|
Clinical Effects of Immuno-Oncology Therapy on Glioblastoma Patients: A Systematic Review. Brain Sci 2023; 13:brainsci13020159. [PMID: 36831702 PMCID: PMC9953849 DOI: 10.3390/brainsci13020159] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/11/2023] [Accepted: 01/13/2023] [Indexed: 01/20/2023] Open
Abstract
The most prevalent and deadly primary malignant glioma in adults is glioblastoma (GBM), which has a median survival time of about 15 months. Despite the standard of care for glioblastoma, which includes gross total resection, high-dose radiation, and temozolomide chemotherapy, this tumor is still one of the most aggressive and difficult to treat. So, it is critical to find more potent therapies that can help glioblastoma patients have better clinical outcomes. Additionally, the prognosis for recurring malignant gliomas is poor, necessitating the need for innovative therapeutics. Immunotherapy is a rather new treatment for glioblastoma and its effects are not well studied when it is combined with standard chemoradiation therapy. We conducted this study to evaluate different glioblastoma immunotherapy approaches in terms of feasibility, efficacy, and safety. We conducted a computer-assisted literature search of electronic databases for essays that are unique, involve either prospective or retrospective research, and are entirely written and published in English. We examined both observational data and randomized clinical trials. Eighteen studies met the criteria for inclusion. In conclusion, combining immunotherapy with radiochemotherapy and tumor removal is generally possible and safe, and rather effective in the prolongation of survival measures.
Collapse
|
11
|
Mantica M, Drappatz J. Immunotherapy associated central nervous system complications in primary brain tumors. Front Oncol 2023; 13:1124198. [PMID: 36874119 PMCID: PMC9981156 DOI: 10.3389/fonc.2023.1124198] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2022] [Accepted: 01/23/2023] [Indexed: 02/18/2023] Open
Abstract
Advances clarifying the genetics and function of the immune system within the central nervous system (CNS) and brain tumor microenvironment have led to increasing momentum and number of clinical trials using immunotherapy for primary brain tumors. While neurological complications of immunotherapy in extra-cranial malignancies is well described, the CNS toxicities of immunotherapy in patients with primary brain tumors with their own unique physiology and challenges are burgeoning. This review highlights the emerging and unique CNS complications associated with immunotherapy including checkpoint inhibitors, oncolytic viruses, adoptive cell transfer/chimeric antigen receptor (CAR) T cell and vaccines for primary brain tumors, as well as reviews modalities that have been currently employed or are undergoing investigation for treatment of such toxicities.
Collapse
Affiliation(s)
- Megan Mantica
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| | - Jan Drappatz
- Department of Neurology, University of Pittsburgh, University of Pittsburgh Medical Center (UPMC), Pittsburgh, PA, United States
| |
Collapse
|
12
|
Mowforth OD, Brannigan J, El Khoury M, Sarathi CIP, Bestwick H, Bhatti F, Mair R. Personalised therapeutic approaches to glioblastoma: A systematic review. Front Med (Lausanne) 2023; 10:1166104. [PMID: 37122327 PMCID: PMC10140534 DOI: 10.3389/fmed.2023.1166104] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Accepted: 03/23/2023] [Indexed: 05/02/2023] Open
Abstract
Introduction Glioblastoma is the most common and malignant primary brain tumour with median survival of 14.6 months. Personalised medicine aims to improve survival by targeting individualised patient characteristics. However, a major limitation has been application of targeted therapies in a non-personalised manner without biomarker enrichment. This has risked therapies being discounted without fair and rigorous evaluation. The objective was therefore to synthesise the current evidence on survival efficacy of personalised therapies in glioblastoma. Methods Studies reporting a survival outcome in human adults with supratentorial glioblastoma were eligible. PRISMA guidelines were followed. MEDLINE, Embase, Scopus, Web of Science and the Cochrane Library were searched to 5th May 2022. Clinicaltrials.gov was searched to 25th May 2022. Reference lists were hand-searched. Duplicate title/abstract screening, data extraction and risk of bias assessments were conducted. A quantitative synthesis is presented. Results A total of 102 trials were included: 16 were randomised and 41 studied newly diagnosed patients. Of 5,527 included patients, 59.4% were male and mean age was 53.7 years. More than 20 types of personalised therapy were included: targeted molecular therapies were the most studied (33.3%, 34/102), followed by autologous dendritic cell vaccines (32.4%, 33/102) and autologous tumour vaccines (10.8%, 11/102). There was no consistent evidence for survival efficacy of any personalised therapy. Conclusion Personalised glioblastoma therapies remain of unproven survival benefit. Evidence is inconsistent with high risk of bias. Nonetheless, encouraging results in some trials provide reason for optimism. Future focus should address target-enriched trials, combination therapies, longitudinal biomarker monitoring and standardised reporting.
Collapse
Affiliation(s)
- Oliver D. Mowforth
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
| | - Jamie Brannigan
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
| | - Marc El Khoury
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | | | - Harry Bestwick
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Faheem Bhatti
- School of Clinical Medicine, University of Cambridge, Cambridge, England, United Kingdom
| | - Richard Mair
- Division of Neurosurgery, Department of Clinical Neurosciences, University of Cambridge, Cambridge, England, United Kingdom
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, England, United Kingdom
- *Correspondence: Richard Mair,
| |
Collapse
|
13
|
Bottlenecks and opportunities in immunotherapy for glioma: a narrative review. JOURNAL OF BIO-X RESEARCH 2022. [DOI: 10.1097/jbr.0000000000000135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
|
14
|
Karami Fath M, Babakhaniyan K, Anjomrooz M, Jalalifar M, Alizadeh SD, Pourghasem Z, Abbasi Oshagh P, Azargoonjahromi A, Almasi F, Manzoor HZ, Khalesi B, Pourzardosht N, Khalili S, Payandeh Z. Recent Advances in Glioma Cancer Treatment: Conventional and Epigenetic Realms. Vaccines (Basel) 2022; 10:1448. [PMID: 36146527 PMCID: PMC9501259 DOI: 10.3390/vaccines10091448] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2022] [Revised: 08/14/2022] [Accepted: 08/27/2022] [Indexed: 11/29/2022] Open
Abstract
Glioblastoma (GBM) is the most typical and aggressive form of primary brain tumor in adults, with a poor prognosis. Successful glioma treatment is hampered by ineffective medication distribution across the blood-brain barrier (BBB) and the emergence of drug resistance. Although a few FDA-approved multimodal treatments are available for glioblastoma, most patients still have poor prognoses. Targeting epigenetic variables, immunotherapy, gene therapy, and different vaccine- and peptide-based treatments are some innovative approaches to improve anti-glioma treatment efficacy. Following the identification of lymphatics in the central nervous system, immunotherapy offers a potential method with the potency to permeate the blood-brain barrier. This review will discuss the rationale, tactics, benefits, and drawbacks of current glioma therapy options in clinical and preclinical investigations.
Collapse
Affiliation(s)
- Mohsen Karami Fath
- Department of Cellular and Molecular Biology, Faculty of Biological Sciences, Kharazmi University, Tehran 1571914911, Iran
| | - Kimiya Babakhaniyan
- Department of Medical Surgical Nursing, School of Nursing and Midwifery, Iran University of Medical Sciences, Tehran 1996713883, Iran
| | - Mehran Anjomrooz
- Department of Radiology, Shariati Hospital, Tehran University of Medical Sciences, Tehran 1411713135, Iran
| | | | | | - Zeinab Pourghasem
- Department of Microbiology, Islamic Azad University of Lahijan, Gilan 4416939515, Iran
| | - Parisa Abbasi Oshagh
- Department of Biology, Faculty of Basic Sciences, Malayer University, Malayer 6571995863, Iran
| | - Ali Azargoonjahromi
- Department of Nursing, School of Nursing and Midwifery, Shiraz University of Medical Sciences, Shiraz 7417773539, Iran
| | - Faezeh Almasi
- Pharmaceutical Biotechnology Lab, Department of Microbial Biotechnology, School of Biology and Center of Excellence in Phylogeny of Living Organisms, College of Science, University of Tehran, Tehran 1411734115, Iran
| | - Hafza Zahira Manzoor
- Experimental and Translational Medicine, University of Insubria, Via jean Henry Dunant 3, 21100 Varese, Italy
| | - Bahman Khalesi
- Department of Research and Production of Poultry Viral Vaccine, Razi Vaccine and Serum Research Institute, Agricultural Research, Education and Extension Organization, Karaj 3197619751, Iran
| | - Navid Pourzardosht
- Cellular and Molecular Research Center, Faculty of Medicine, Guilan University of Medical Sciences, Rasht 4193713111, Iran
| | - Saeed Khalili
- Department of Biology Sciences, Shahid Rajaee Teacher Training University, Tehran 1678815811, Iran
| | - Zahra Payandeh
- Department of Medical Biochemistry and Biophysics, Division Medical Inflammation Research, Karolinska Institute, SE-17177 Stockholm, Sweden
| |
Collapse
|
15
|
Hu W, Liu H, Li Z, Liu J, Chen L. Impact of molecular and clinical variables on survival outcome with immunotherapy for glioblastoma patients: A systematic review and meta-analysis. CNS Neurosci Ther 2022; 28:1476-1491. [PMID: 35822692 PMCID: PMC9437230 DOI: 10.1111/cns.13915] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2022] [Revised: 06/22/2022] [Accepted: 06/24/2022] [Indexed: 11/29/2022] Open
Abstract
BACKGROUND Given that only a subset of patients with glioblastoma multiforme (GBM) responds to immuno-oncology, this study aimed to assess the impact of multiple factors on GBM immunotherapy prognosis and investigate the potential predictors. METHODS A quantitative meta-analysis was conducted using the random-effects model. Several potential factors were also reviewed qualitatively. RESULTS A total of 39 clinical trials were included after screening 1317 papers. Patients with O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation [hazard ratio (HR) for overall survival (OS) = 2.30, p < 0.0001; HR for progression-free survival (PFS) = 2.10, p < 0.0001], gross total resection (HR for OS = 0.70, p = 0.02; HR for PFS = 0.56, p = 0.004), and no baseline steroid use (HR for OS = 0.52, p = 0.0002; HR for PFS = 0.61, p = 0.02) had a relatively significant favorable OS and PFS following immunotherapy. Patients with a Karnofsky Performance Status score < 80 (HR = 1.73, p = 0.0007) and undergoing two prior relapses (HR = 2.08, p = 0.003) were associated with worse OS. Age, gender, tumor programmed death-ligand 1 expression, and history of chemotherapy were not associated with survival outcomes. Notably, immunotherapy significantly improved the OS among patients undergoing two prior recurrences (HR = 0.40, p = 0.008) but not among patients in any other subgroups, as opposed to non-immunotherapy. CONCLUSION Several factors were associated with prognostic outcomes of GBM patients receiving immunotherapy; multiple recurrences might be a candidate predictor. More marker-driven prospective studies are warranted.
Collapse
Affiliation(s)
- Wentao Hu
- School of Medicine, Nankai University, Tianjin, China.,Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Hongyu Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ze Li
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Jialin Liu
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| | - Ling Chen
- Department of Neurosurgery, First Medical Center of Chinese PLA General Hospital, Beijing, China
| |
Collapse
|
16
|
Sener U, Ruff MW, Campian JL. Immunotherapy in Glioblastoma: Current Approaches and Future Perspectives. Int J Mol Sci 2022; 23:7046. [PMID: 35806051 PMCID: PMC9266573 DOI: 10.3390/ijms23137046] [Citation(s) in RCA: 38] [Impact Index Per Article: 12.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2022] [Revised: 06/16/2022] [Accepted: 06/22/2022] [Indexed: 02/04/2023] Open
Abstract
Glioblastoma (GBM) is the most common malignant brain tumor. Despite multimodality treatment with surgical resection, radiation therapy, chemotherapy, and tumor treating fields, recurrence is universal, median observed survival is low at 8 months and 5-year overall survival is poor at 7%. Immunotherapy aims to generate a tumor-specific immune response to selectively eliminate tumor cells. In treatment of GBM, immunotherapy approaches including use of checkpoint inhibitors, chimeric antigen receptor (CAR) T-Cell therapy, vaccine-based approaches, viral vector therapies, and cytokine-based treatment has been studied. While there have been no major breakthroughs to date and broad implementation of immunotherapy for GBM remains elusive, multiple studies are underway. In this review, we discuss immunotherapy approaches to GBM with an emphasis on molecularly informed approaches.
Collapse
Affiliation(s)
- Ugur Sener
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Michael W. Ruff
- Department of Neurology, Mayo Clinic, Rochester, MN 55905, USA;
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| | - Jian L. Campian
- Department of Medical Oncology, Mayo Clinic, Rochester, MN 55905, USA;
| |
Collapse
|
17
|
Nikova AS, Sioutas G, Karanikas M, Birbilis T. “Security Dilemma”: Active Immunotherapy before Versus after Radiation Therapy Alone or Chemo-Radiotherapy for Newly Diagnosed Glioblastoma. Folia Med (Plovdiv) 2022; 64:195-201. [DOI: 10.3897/folmed.64.e62981] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2021] [Accepted: 03/18/2021] [Indexed: 11/12/2022] Open
Abstract
Management of glioblastoma should be aggressive and personalised to increase the quality of life. Many new therapies, such as active immunotherapy, increase the overall survival, yet they result in complications which render the search for the optimal treatment stra-tegy challenging.
In order to answer whether the available treatment options should be administered in a specific row, we performed a literature search and meta-analysis. The results show that overall survival among the different treatment groups was equal, while the rates of complications were unequal. After surgery, when active immunotherapy was administered before radiation, radiation and chemotherapy, complication rates were lower.
For newly diagnosed glioblastoma in adults, applying active immunotherapy after total resection but before the other complementary treatment options is associated with lower complication rates.
Collapse
|
18
|
Wahyuhadi J, Immadoel Haq IB, Arifianto MR, Sulistyono B, Meizikri R, Rosada A, Sigit Prakoeswa CR, Susilo RI. Active Immunotherapy for Glioblastoma Treatment: A Systematic Review and Meta-Analysis. Cancer Control 2022; 29:10732748221079474. [PMID: 36748348 PMCID: PMC8950026 DOI: 10.1177/10732748221079474] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022] Open
Abstract
INTRODUCTION Glioblastoma multiforme (GBM) makes 60-70% of gliomas and 15% of primary brain tumors. Despite the availability of standard multimodal therapy, 2 years, 3 years, and 5 years survival rate of GBM are still low. Active immunotherapy is a relatively new treatment option for GBM that seems promising. METHODS An electronic database search on PubMed, Cochrane, Scopus, and clinicaltrials.gov was performed to include all relevant studies. This study was conducted according to the Preferred Reporting Items for Systematic Reviews and Meta-Analysis (PRISMA). Reported parameters are OS, PFS, AEs, post treatment KPS, and 2 year mortality. RESULTS Active immunotherapy provided better OS (HR = .85; 95% CI = .71-1.01; P = .06) and PFS (HS = .83; 95% CI= .66 - 1.03; P = .11) side albeit not statistically significant. Active immunotherapy reduces the risk of 2 year mortality as much as 2.5% compared to control group (NNT and RRR was 56.7078 and 0,0258, respectively). CONCLUSION Active immunotherapy might be beneficial in terms of survival rate in patients with GBM although not statistically significant. It could be a treatment option for GBM in the future.
Collapse
Affiliation(s)
- Joni Wahyuhadi
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia,Joni Wahyuhadi, Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia. Jl. Mayjen Prof. Dr. Moestopo No.6-8, Gubeng, Surabaya, East Java 60286, Indonesia.
| | - Irwan Barlian Immadoel Haq
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Muhammad Reza Arifianto
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Bagus Sulistyono
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Rizki Meizikri
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Atika Rosada
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Cita Rosita Sigit Prakoeswa
- Department of Dermatology and Venereology, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| | - Rahadian Indarto Susilo
- Department of Neurosurgery, Dr Soetomo General Academic Hospital, Surabaya, Indonesia,Faculty of Medicine - Universitas Airlangga, Surabaya, Indonesia
| |
Collapse
|
19
|
MRI Response Assessment in Glioblastoma Patients Treated with Dendritic-Cell-Based Immunotherapy. Cancers (Basel) 2022; 14:cancers14061579. [PMID: 35326730 PMCID: PMC8946797 DOI: 10.3390/cancers14061579] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2022] [Revised: 02/22/2022] [Accepted: 03/18/2022] [Indexed: 11/17/2022] Open
Abstract
Introduction: In this post hoc analysis we compared various response-assessment criteria in newly diagnosed glioblastoma (GB) patients treated with tumor lysate-charged autologous dendritic cells (Audencel) and determined the differences in prediction of progression-free survival (PFS) and overall survival (OS). Methods: 76 patients enrolled in a multicenter phase II trial receiving standard of care (SOC, n = 40) or SOC + Audencel vaccine (n = 36) were included. MRI scans were evaluated using MacDonald, RANO, Vol-RANO, mRANO, Vol-mRANO and iRANO criteria. Tumor volumes (T1 contrast-enhancing as well as T2/FLAIR volumes) were calculated by semiautomatic segmentation. The Kruskal-Wallis-test was used to detect differences in PFS among the assessment criteria; for correlation analysis the Spearman test was used. Results: There was a significant difference in median PFS between mRANO (8.6 months) and Vol-mRANO (8.6 months) compared to MacDonald (4.0 months), RANO (4.2 months) and Vol-RANO (5.4 months). For the vaccination arm, median PFS by iRANO was 6.2 months. There was no difference in PFS between SOC and SOC + Audencel. The best correlation between PFS/OS was detected for mRANO (r = 0.65) and Vol-mRANO (r = 0.69, each p < 0.001). A total of 16/76 patients developed a pure T2/FLAIR progressing disease, and 4/36 patients treated with Audencel developed pseudoprogression. Conclusion: When comparing different response-assessment criteria in GB patients treated with dendritic cell-based immunotherapy, the best correlation between PFS and OS was observed for mRANO and Vol-mRANO. Interestingly, iRANO was not superior for predicting OS in patients treated with Audencel.
Collapse
|
20
|
Han MH, Kim CH. Current Immunotherapeutic Approaches for Malignant Gliomas. Brain Tumor Res Treat 2022; 10:1-11. [PMID: 35118842 PMCID: PMC8819466 DOI: 10.14791/btrt.2022.10.e25] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/24/2021] [Accepted: 01/17/2022] [Indexed: 11/20/2022] Open
Abstract
Glioblastoma is the most common malignant central nervous system (CNS) tumor (48.3%), with a median survival of only about 14.6 months. Although the CNS is an immune-privileged site, activated T cells can cross the blood-brain barrier. The recent successes of several immunotherapies for various cancers have drawn interest in immunotherapy for treatment of malignant glioma. There have been extensive attempts to evaluate the efficiency of immunotherapy against malignant glioma. Passive immunotherapy for malignant glioma includes monoclonal antibody-mediated immunotherapy, cytokine-mediated therapy, and adoptive cell transfer, also known as chimeric antigen receptor T cell treatment. On the other hand, active immunotherapy, which stimulates the patient’s adaptive immune system against specific tumor-associated antigens, includes cancer vaccines that are divided into peptide vaccines and cell-based vaccines. In addition, there is immune checkpoint blockade therapy, which increases the efficiency of immunotherapy by reducing the resistance of malignant glioma to immunotherapy. Despite centuries of efforts, immunotherapeutic successes for malignant glioma remain limited. However, many clinical trials of adoptive cell transfer immunotherapy on malignant glioma are ongoing, and the outcomes are eagerly awaited. In addition, although there are still several obstacles, current clinical trials using personalized neoantigen-based dendritic cell vaccines offer new hope to glioblastoma patients. Furthermore, immune checkpoint targeted therapy is expected to decipher the mechanism of immunotherapy resistance in malignant glioma in the near future. More studies are needed to increase the efficacy of immunotherapy in malignant glioma. We hope that immunotherapy will become a new treatment of malignant glioma.
Collapse
Affiliation(s)
- Myung-Hoon Han
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea
| | - Choong Hyun Kim
- Department of Neurosurgery, Hanyang University Guri Hospital, Guri, Korea.
| |
Collapse
|
21
|
Immunotherapy for Neuro-oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1342:233-258. [PMID: 34972967 DOI: 10.1007/978-3-030-79308-1_7] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
Immunotherapy has changed the landscape of treatment of many solid and hematological malignancies and is at the forefront of cancer breakthroughs. Several circumstances unique to the central nervous system (CNS) such as limited space for an inflammatory response, difficulties with repeated sampling, corticosteroid use for management of cerebral edema, and immunosuppressive mechanisms within the tumor and brain parenchyma have posed challenges in clinical development of immunotherapy for intracranial tumors. Nonetheless, the success of immunotherapy in brain metastases (BMs) from solid cancers such as melanoma and non-small cell lung cancer (NSCLC) proves that the CNS is not an immune-privileged organ and is capable of initiating and regulating immune responses that lead to tumor control. However, the development of immunotherapeutics for the most malignant primary brain tumor, glioblastoma (GBM), has been challenging due to systemic and profound tumor-mediated immunosuppression unique to GBM, intratumoral and intertumoral heterogeneity, and lack of stably expressed clonal antigens. Here, we review recent advances in the field of immunotherapy for neuro-oncology with a focus on BM, GBM, and rare CNS cancers.
Collapse
|
22
|
Immunogenic cell death and its therapeutic or prognostic potential in high-grade glioma. Genes Immun 2022; 23:1-11. [PMID: 35046546 PMCID: PMC8866117 DOI: 10.1038/s41435-021-00161-5] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2021] [Revised: 12/14/2021] [Accepted: 12/30/2021] [Indexed: 12/22/2022]
Abstract
Immunogenic cell death (ICD) has emerged as a key component of therapy-induced anti-tumor immunity. Over the past few years, ICD was found to play a pivotal role in a wide variety of novel and existing treatment modalities. The clinical application of these techniques in cancer treatment is still in its infancy. Glioblastoma (GBM) is the most lethal primary brain tumor with a dismal prognosis despite maximal therapy. The development of new therapies in this aggressive type of tumors remains highly challenging partially due to the cold tumor immune environment. GBM could therefore benefit from ICD-based therapies stimulating the anti-tumor immune response. In what follows, we will describe the mechanisms behind ICD and the ICD-based (pre)clinical advances in anticancer therapies focusing on GBM.
Collapse
|
23
|
Sun R, Kim AH. The multifaceted mechanisms of malignant glioblastoma progression and clinical implications. Cancer Metastasis Rev 2022; 41:871-898. [PMID: 35920986 PMCID: PMC9758111 DOI: 10.1007/s10555-022-10051-5] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Accepted: 07/20/2022] [Indexed: 02/06/2023]
Abstract
With the application of high throughput sequencing technologies at single-cell resolution, studies of the tumor microenvironment in glioblastoma, one of the most aggressive and invasive of all cancers, have revealed immense cellular and tissue heterogeneity. A unique extracellular scaffold system adapts to and supports progressive infiltration and migration of tumor cells, which is characterized by altered composition, effector delivery, and mechanical properties. The spatiotemporal interactions between malignant and immune cells generate an immunosuppressive microenvironment, contributing to the failure of effective anti-tumor immune attack. Among the heterogeneous tumor cell subpopulations of glioblastoma, glioma stem cells (GSCs), which exhibit tumorigenic properties and strong invasive capacity, are critical for tumor growth and are believed to contribute to therapeutic resistance and tumor recurrence. Here we discuss the role of extracellular matrix and immune cell populations, major components of the tumor ecosystem in glioblastoma, as well as signaling pathways that regulate GSC maintenance and invasion. We also highlight emerging advances in therapeutic targeting of these components.
Collapse
Affiliation(s)
- Rui Sun
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA
| | - Albert H. Kim
- Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110 USA ,The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110 USA
| |
Collapse
|
24
|
Understanding and improving cellular immunotherapies against cancer: From cell-manufacturing to tumor-immune models. Adv Drug Deliv Rev 2021; 179:114003. [PMID: 34653533 DOI: 10.1016/j.addr.2021.114003] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 10/05/2021] [Accepted: 10/08/2021] [Indexed: 12/14/2022]
Abstract
The tumor microenvironment (TME) is shaped by dynamic metabolic and immune interactions between precancerous and cancerous tumor cells and stromal cells like epithelial cells, fibroblasts, endothelial cells, and hematopoietically-derived immune cells. The metabolic states of the TME, including the hypoxic and acidic niches, influence the immunosuppressive phenotypes of the stromal and immune cells, which confers resistance to both host-mediated tumor killing and therapeutics. Numerous in vitro TME platforms for studying immunotherapies, including cell therapies, are being developed. However, we do not yet understand which immune and stromal components are most critical and how much model complexity is needed to answer specific questions. In addition, scalable sourcing and quality-control of appropriate TME cells for reproducibly manufacturing these platforms remain challenging. In this regard, lessons from the manufacturing of immunomodulatory cell therapies could provide helpful guidance. Although immune cell therapies have shown unprecedented results in hematological cancers and hold promise in solid tumors, their manufacture poses significant scale, cost, and quality control challenges. This review first provides an overview of the in vivo TME, discussing the most influential cell populations in the tumor-immune landscape. Next, we summarize current approaches for cell therapies against cancers and the relevant manufacturing platforms. We then evaluate current immune-tumor models of the TME and immunotherapies, highlighting the complexity, architecture, function, and cell sources. Finally, we present the technical and fundamental knowledge gaps in both cell manufacturing systems and immune-TME models that must be addressed to elucidate the interactions between endogenous tumor immunity and exogenous engineered immunity.
Collapse
|
25
|
Datsi A, Sorg RV. Dendritic Cell Vaccination of Glioblastoma: Road to Success or Dead End. Front Immunol 2021; 12:770390. [PMID: 34795675 PMCID: PMC8592940 DOI: 10.3389/fimmu.2021.770390] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2021] [Accepted: 10/11/2021] [Indexed: 12/11/2022] Open
Abstract
Glioblastomas (GBM) are the most frequent and aggressive malignant primary brain tumor and remains a therapeutic challenge: even after multimodal therapy, median survival of patients is only 15 months. Dendritic cell vaccination (DCV) is an active immunotherapy that aims at inducing an antitumoral immune response. Numerous DCV trials have been performed, vaccinating hundreds of GBM patients and confirming feasibility and safety. Many of these studies reported induction of an antitumoral immune response and indicated improved survival after DCV. However, two controlled randomized trials failed to detect a survival benefit. This raises the question of whether the promising concept of DCV may not hold true or whether we are not yet realizing the full potential of this therapeutic approach. Here, we discuss the results of recent vaccination trials, relevant parameters of the vaccines themselves and of their application, and possible synergies between DCV and other therapeutic approaches targeting the immunosuppressive microenvironment of GBM.
Collapse
Affiliation(s)
- Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich-Heine University Hospital, Medical Faculty, Düsseldorf, Germany
| |
Collapse
|
26
|
Nava S, Lisini D, Frigerio S, Bersano A. Dendritic Cells and Cancer Immunotherapy: The Adjuvant Effect. Int J Mol Sci 2021; 22:ijms222212339. [PMID: 34830221 PMCID: PMC8620771 DOI: 10.3390/ijms222212339] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2021] [Revised: 11/10/2021] [Accepted: 11/12/2021] [Indexed: 01/01/2023] Open
Abstract
Dendritic cells (DCs) are immune specialized cells playing a critical role in promoting immune response against antigens, and may represent important targets for therapeutic interventions in cancer. DCs can be stimulated ex vivo with pro-inflammatory molecules and loaded with tumor-specific antigen(s). Protocols describing the specific details of DCs vaccination manufacturing vary widely, but regardless of the employed protocol, the DCs vaccination safety and its ability to induce antitumor responses is clearly established. Many years of studies have focused on the ability of DCs to provide overall survival benefits at least for a selection of cancer patients. Lessons learned from early trials lead to the hypothesis that, to improve the efficacy of DCs-based immunotherapy, this should be combined with other treatments. Thus, the vaccine’s ultimate role may lie in the combinatorial approaches of DCs-based immunotherapy with chemotherapy and radiotherapy, more than in monotherapy. In this review, we address some key questions regarding the integration of DCs vaccination with multimodality therapy approaches for cancer treatment paradigms.
Collapse
|
27
|
Nobashi TW, Mayer AT, Xiao Z, Chan CT, Chaney AM, James ML, Gambhir SS. Whole-body PET Imaging of T-cell Response to Glioblastoma. Clin Cancer Res 2021; 27:6445-6456. [PMID: 34548318 DOI: 10.1158/1078-0432.ccr-21-1412] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/30/2021] [Accepted: 09/17/2021] [Indexed: 11/16/2022]
Abstract
PURPOSE Immunotherapy is a promising approach for many oncological malignancies, including glioblastoma, however, there are currently no available tools or biomarkers to accurately assess whole-body immune responses in patients with glioblastoma treated with immunotherapy. Here, the utility of OX40, a costimulatory molecule mainly expressed on activated effector T cells known to play an important role in eliminating cancer cells, was evaluated as a PET imaging biomarker to quantify and track response to immunotherapy. EXPERIMENTAL DESIGN A subcutaneous vaccination approach of CpG oligodeoxynucleotide, OX40 mAb, and tumor lysate at a remote site in a murine orthotopic glioma model was developed to induce activation of T cells distantly while monitoring their distribution in stimulated lymphoid organs with respect to observed therapeutic effects. To detect OX40-positive T cells, we utilized our in-house-developed 89Zr-DFO-OX40 mAb and in vivo PET/CT imaging. RESULTS ImmunoPET with 89Zr-DFO-OX40 mAb revealed strong OX40-positive responses with high specificity, not only in the nearest lymph node from vaccinated area (mean, 20.8%ID/cc) but also in the spleen (16.7%ID/cc) and the tumor draining lymph node (11.4%ID/cc). When the tumor was small (<106 p/sec/cm2/sr in bioluminescence imaging), a high number of responders and percentage shrinkage in tumor signal was indicated after only a single cycle of vaccination. CONCLUSIONS The results highlight the promise of clinically translating cancer vaccination as a potential glioma therapy, as well as the benefits of monitoring efficacy of these treatments using immunoPET imaging of T-cell activation.
Collapse
Affiliation(s)
- Tomomi W Nobashi
- Department of Radiology, Stanford University, Stanford, California.
| | - Aaron T Mayer
- Department of Radiology, Stanford University, Stanford, California. .,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California
| | - Zunyu Xiao
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Molecular Imaging Research Center of Harbin Medical University, Harbin, China
| | - Carmel T Chan
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Aisling M Chaney
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Michelle L James
- Department of Radiology, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California
| | - Sanjiv S Gambhir
- Department of Radiology, Stanford University, Stanford, California.,Department of Bioengineering, Stanford University, Stanford, California.,Molecular Imaging Program at Stanford (MIPS), Stanford University, Stanford, California.,Bio-X Program at Stanford, Stanford University, Stanford, California.,Department of Materials Science and Engineering, Stanford University, Stanford, California.,Canary Center at Stanford, Stanford University, Stanford, California
| |
Collapse
|
28
|
Frederico SC, Hancock JC, Brettschneider EES, Ratnam NM, Gilbert MR, Terabe M. Making a Cold Tumor Hot: The Role of Vaccines in the Treatment of Glioblastoma. Front Oncol 2021; 11:672508. [PMID: 34041034 PMCID: PMC8141615 DOI: 10.3389/fonc.2021.672508] [Citation(s) in RCA: 69] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 04/19/2021] [Indexed: 12/28/2022] Open
Abstract
The use of immunotherapies for the treatment of brain tumors is a topic that has garnered considerable excitement in recent years. Discoveries such as the presence of a glymphatic system and immune surveillance in the central nervous system (CNS) have shattered the theory of immune privilege and opened up the possibility of treating CNS malignancies with immunotherapies. However, despite many immunotherapy clinical trials aimed at treating glioblastoma (GBM), very few have demonstrated a significant survival benefit. Several factors for this have been identified, one of which is that GBMs are immunologically "cold," implying that the cancer does not induce a strong T cell response. It is postulated that this is why clinical trials using an immune checkpoint inhibitor alone have not demonstrated efficacy. While it is well established that anti-cancer T cell responses can be facilitated by the presentation of tumor-specific antigens to the immune system, treatment-related death of GBM cells and subsequent release of molecules have not been shown to be sufficient to evoke an anti-tumor immune response effective enough to have a significant impact. To overcome this limitation, vaccines can be used to introduce exogenous antigens at higher concentrations to the immune system to induce strong tumor antigen-specific T cell responses. In this review, we will describe vaccination strategies that are under investigation to treat GBM; categorizing them based on their target antigens, form of antigens, vehicles used, and pairing with specific adjuvants. We will review the concept of vaccine therapy in combination with immune checkpoint inhibitors, as it is hypothesized that this approach may be more effective in overcoming the immunosuppressive milieu of GBM. Clinical trial design and the need for incorporating robust immune monitoring into future studies will also be discussed here. We believe that the integration of evolving technologies of vaccine development, delivery, and immune monitoring will further enhance the role of these therapies and will likely remain an important area of investigation for future treatment strategies for GBM patients.
Collapse
Affiliation(s)
- Stephen C. Frederico
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - John C. Hancock
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Emily E. S. Brettschneider
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
- Ludwig Institute for Cancer Research, University of Oxford, Oxford, United Kingdom
| | - Nivedita M. Ratnam
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Mark R. Gilbert
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| | - Masaki Terabe
- Neuro-Oncology Branch, CCR, NCI, National Institutes of Health, Bethesda, MD, United States
| |
Collapse
|
29
|
McAleenan A, Kelly C, Spiga F, Kernohan A, Cheng HY, Dawson S, Schmidt L, Robinson T, Brandner S, Faulkner CL, Wragg C, Jefferies S, Howell A, Vale L, Higgins JPT, Kurian KM. Prognostic value of test(s) for O6-methylguanine-DNA methyltransferase (MGMT) promoter methylation for predicting overall survival in people with glioblastoma treated with temozolomide. Cochrane Database Syst Rev 2021; 3:CD013316. [PMID: 33710615 PMCID: PMC8078495 DOI: 10.1002/14651858.cd013316.pub2] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
BACKGROUND Glioblastoma is an aggressive form of brain cancer. Approximately five in 100 people with glioblastoma survive for five years past diagnosis. Glioblastomas that have a particular modification to their DNA (called methylation) in a particular region (the O6-methylguanine-DNA methyltransferase (MGMT) promoter) respond better to treatment with chemotherapy using a drug called temozolomide. OBJECTIVES To determine which method for assessing MGMT methylation status best predicts overall survival in people diagnosed with glioblastoma who are treated with temozolomide. SEARCH METHODS We searched MEDLINE, Embase, BIOSIS, Web of Science Conference Proceedings Citation Index to December 2018, and examined reference lists. For economic evaluation studies, we additionally searched NHS Economic Evaluation Database (EED) up to December 2014. SELECTION CRITERIA Eligible studies were longitudinal (cohort) studies of adults with diagnosed glioblastoma treated with temozolomide with/without radiotherapy/surgery. Studies had to have related MGMT status in tumour tissue (assessed by one or more method) with overall survival and presented results as hazard ratios or with sufficient information (e.g. Kaplan-Meier curves) for us to estimate hazard ratios. We focused mainly on studies comparing two or more methods, and listed brief details of articles that examined a single method of measuring MGMT promoter methylation. We also sought economic evaluations conducted alongside trials, modelling studies and cost analysis. DATA COLLECTION AND ANALYSIS Two review authors independently undertook all steps of the identification and data extraction process for multiple-method studies. We assessed risk of bias and applicability using our own modified and extended version of the QUality In Prognosis Studies (QUIPS) tool. We compared different techniques, exact promoter regions (5'-cytosine-phosphate-guanine-3' (CpG) sites) and thresholds for interpretation within studies by examining hazard ratios. We performed meta-analyses for comparisons of the three most commonly examined methods (immunohistochemistry (IHC), methylation-specific polymerase chain reaction (MSP) and pyrosequencing (PSQ)), with ratios of hazard ratios (RHR), using an imputed value of the correlation between results based on the same individuals. MAIN RESULTS We included 32 independent cohorts involving 3474 people that compared two or more methods. We found evidence that MSP (CpG sites 76 to 80 and 84 to 87) is more prognostic than IHC for MGMT protein at varying thresholds (RHR 1.31, 95% confidence interval (CI) 1.01 to 1.71). We also found evidence that PSQ is more prognostic than IHC for MGMT protein at various thresholds (RHR 1.36, 95% CI 1.01 to 1.84). The data suggest that PSQ (mainly at CpG sites 74 to 78, using various thresholds) is slightly more prognostic than MSP at sites 76 to 80 and 84 to 87 (RHR 1.14, 95% CI 0.87 to 1.48). Many variants of PSQ have been compared, although we did not see any strong and consistent messages from the results. Targeting multiple CpG sites is likely to be more prognostic than targeting just one. In addition, we identified and summarised 190 articles describing a single method for measuring MGMT promoter methylation status. AUTHORS' CONCLUSIONS PSQ and MSP appear more prognostic for overall survival than IHC. Strong evidence is not available to draw conclusions with confidence about the best CpG sites or thresholds for quantitative methods. MSP has been studied mainly for CpG sites 76 to 80 and 84 to 87 and PSQ at CpG sites ranging from 72 to 95. A threshold of 9% for CpG sites 74 to 78 performed better than higher thresholds of 28% or 29% in two of three good-quality studies making such comparisons.
Collapse
Affiliation(s)
- Alexandra McAleenan
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Claire Kelly
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Francesca Spiga
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Ashleigh Kernohan
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Hung-Yuan Cheng
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Sarah Dawson
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Lena Schmidt
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Tomos Robinson
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Sebastian Brandner
- Department of Neurodegenerative Disease, UCL Queen Square Institute of Neurology, London, UK
- Division of Neuropathology, The National Hospital for Neurology and Neurosurgery, University College London Hospitals NHS Foundation Trust, London, UK
| | - Claire L Faulkner
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Christopher Wragg
- Bristol Genetics Laboratory, Pathology Sciences, Southmead Hospital, Bristol, UK
| | - Sarah Jefferies
- Department of Oncology, Addenbrooke's Hospital, Cambridge, UK
| | - Amy Howell
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
| | - Luke Vale
- Population Health Sciences Institute, Newcastle University, Newcastle upon Tyne, UK
| | - Julian P T Higgins
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- NIHR Applied Research Collaboration West (ARC West) , University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
- NIHR Bristol Biomedical Research Centre, University Hospitals Bristol and Weston NHS Foundation Trust, Bristol, UK
| | - Kathreena M Kurian
- Population Health Sciences, Bristol Medical School, University of Bristol, Bristol, UK
- Bristol Medical School: Brain Tumour Research Centre, Public Health Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
30
|
Randomized Controlled Immunotherapy Clinical Trials for GBM Challenged. Cancers (Basel) 2020; 13:cancers13010032. [PMID: 33374196 PMCID: PMC7796083 DOI: 10.3390/cancers13010032] [Citation(s) in RCA: 27] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/14/2020] [Accepted: 12/21/2020] [Indexed: 12/19/2022] Open
Abstract
Simple Summary Although multiple meta-analyses on active specific immunotherapy treatment for glioblastoma multiforme (GBM) have demonstrated a significant prolongation of overall survival, no single research group has succeeded in demonstrating the efficacy of this type of treatment in a prospective, double-blind, placebo-controlled, randomized clinical trial. In this paper, we explain how the complexity of the tumor biology and tumor–host interactions make proper stratification of a control group impossible. The individualized characteristics of advanced therapy medicinal products for immunotherapy contribute to heterogeneity within an experimental group. The dynamics of each tumor and in each patient aggravate comparative stable patient groups. Finally, combinations of immunotherapy strategies should be integrated with first-line treatment. We illustrate the complexity of a combined first-line treatment with individualized multimodal immunotherapy in a group of 70 adults with GBM and demonstrate that the integration of immunogenic cell death treatment within maintenance chemotherapy followed by dendritic cell vaccines and maintenance immunotherapy might provide a step towards improving the overall survival rate of GBM patients. Abstract Immunotherapies represent a promising strategy for glioblastoma multiforme (GBM) treatment. Different immunotherapies include the use of checkpoint inhibitors, adoptive cell therapies such as chimeric antigen receptor (CAR) T cells, and vaccines such as dendritic cell vaccines. Antibodies have also been used as toxin or radioactive particle delivery vehicles to eliminate target cells in the treatment of GBM. Oncolytic viral therapy and other immunogenic cell death-inducing treatments bridge the antitumor strategy with immunization and installation of immune control over the disease. These strategies should be included in the standard treatment protocol for GBM. Some immunotherapies are individualized in terms of the medicinal product, the immune target, and the immune tumor–host contact. Current individualized immunotherapy strategies focus on combinations of approaches. Standardization appears to be impossible in the face of complex controlled trial designs. To define appropriate control groups, stratification according to the Recursive Partitioning Analysis classification, MGMT promotor methylation, epigenetic GBM sub-typing, tumor microenvironment, systemic immune functioning before and after radiochemotherapy, and the need for/type of symptom-relieving drugs is required. Moreover, maintenance of a fixed treatment protocol for a dynamic, deadly cancer disease in a permanently changing tumor–host immune context might be inappropriate. This complexity is illustrated using our own data on individualized multimodal immunotherapies for GBM. Individualized medicines, including multimodal immunotherapies, are a rational and optimal yet also flexible approach to induce long-term tumor control. However, innovative methods are needed to assess the efficacy of complex individualized treatments and implement them more quickly into the general health system.
Collapse
|
31
|
Marenco-Hillembrand L, Wijesekera O, Suarez-Meade P, Mampre D, Jackson C, Peterson J, Trifiletti D, Hammack J, Ortiz K, Lesser E, Spiegel M, Prevatt C, Hawayek M, Quinones-Hinojosa A, Chaichana KL. Trends in glioblastoma: outcomes over time and type of intervention: a systematic evidence based analysis. J Neurooncol 2020; 147:297-307. [PMID: 32157552 DOI: 10.1007/s11060-020-03451-6] [Citation(s) in RCA: 142] [Impact Index Per Article: 28.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 03/05/2020] [Indexed: 12/25/2022]
Abstract
INTRODUCTION Despite aggressive treatment with chemoradiotherapy and maximum surgical resection, survival in patients with glioblastoma (GBM) remains poor. Ongoing efforts are aiming to prolong the lifespan of these patients; however, disparities exist in reported survival values with lack of clear evidence that objectively examines GBM survival trends. We aim to describe the current status and advances in the survival of patients with GBM, by analyzing median overall survival through time and between treatment modalities. METHODS A systematic review was conducted according to PRISMA guidelines to identify articles of newly diagnosed glioblastoma from 1978 to 2018. Full-text glioblastoma papers with human subjects, ≥ 18 years old, and n ≥ 25, were included for evaluation. RESULTS The central tendency of median overall survival (MOS) was 13.5 months (2.3-29.6) and cumulative 5-year survival was 5.8% (0.01%-29.1%), with a significant difference in survival between studies that predate versus postdate the implementation of temozolomide and radiation, [12.5 (2.3-28) vs 15.6 (3.8-29.6) months, P < 0.001]. In clinical trials, bevacizumab [18.2 (10.6-23.0) months], tumor treating fields (TTF) [20.7 (20.5-20.9) months], and vaccines [19.2 (15.3-26.0) months] reported the highest central measure of median survival. CONCLUSION Coadministration with radiotherapy and temozolomide provided a statistically significant increase in survival for patients suffering from glioblastoma. However, the natural history for GBM remains poor. Therapies including TTF pooled values of MOS and provide means of prolonging the survival of GBM patients.
Collapse
Affiliation(s)
- Lina Marenco-Hillembrand
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Olindi Wijesekera
- Department of Neurological Surgery, Case Western University, Cleveland, OH, USA
| | - Paola Suarez-Meade
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - David Mampre
- School of Medicine, Johns Hopkins University, Baltimore, MD, USA
| | - Christina Jackson
- Department of Neurological Surgery, Johns Hopkins University, Baltimore, MD, USA
| | - Jennifer Peterson
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Daniel Trifiletti
- Department of Radiation Oncology, Mayo Clinic, Jacksonville, FL, USA
| | - Julie Hammack
- Department of Neurology, Mayo Clinic, Jacksonville, FL, USA
| | - Kyle Ortiz
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Elizabeth Lesser
- Division of Biomedical Statistics and Bioinformatics, Mayo Clinic, Jacksonville, FL, USA
| | - Matthew Spiegel
- Division of Biomedical Statistics and Bioinformatics, Mayo Clinic, Jacksonville, FL, USA
| | - Calder Prevatt
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Maria Hawayek
- School of Medicine, University of Puerto Rico, San Juan, PR, USA
| | - Alfredo Quinones-Hinojosa
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA
| | - Kaisorn L Chaichana
- Department of Neurological Surgery, Mayo Clinic, 4500 San Pablo Road South, Jacksonville, FL, 32224, USA.
| |
Collapse
|
32
|
Xu S, Tang L, Li X, Fan F, Liu Z. Immunotherapy for glioma: Current management and future application. Cancer Lett 2020; 476:1-12. [PMID: 32044356 DOI: 10.1016/j.canlet.2020.02.002] [Citation(s) in RCA: 435] [Impact Index Per Article: 87.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/30/2022]
Abstract
Gliomas are intrinsic brain tumors that originate from neuroglial progenitor cells. Conventional therapies, including surgery, chemotherapy, and radiotherapy, have achieved limited improvements in the prognosis of glioma patients. Immunotherapy, a revolution in cancer treatment, has become a promising strategy with the ability to penetrate the blood-brain barrier since the pioneering discovery of lymphatics in the central nervous system. Here we detail the current management of gliomas and previous studies assessing different immunotherapies in gliomas, despite the fact that the associated clinical trials have not been completed yet. Moreover, several drugs that have undergone clinical trials are listed as novel strategies for future application; however, these clinical trials have indicated limited efficacy in glioma. Therefore, additional studies are warranted to evaluate novel therapeutic approaches in glioma treatment.
Collapse
Affiliation(s)
- Shengchao Xu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Lu Tang
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Xizhe Li
- Department of Thoracic Surgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China
| | - Fan Fan
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| | - Zhixiong Liu
- Department of Neurosurgery, Xiangya Hospital of Central South University, Changsha, 410008, Hunan, People's Republic of China.
| |
Collapse
|
33
|
Majd N, Dasgupta P, de Groot J. Immunotherapy for Neuro-Oncology. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2020; 1244:183-203. [PMID: 32301015 DOI: 10.1007/978-3-030-41008-7_8] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Immunotherapy has changed the landscape of treatment of many solid and hematological malignancies and is at the forefront of cancer breakthroughs. Several circumstances unique to the central nervous system (CNS) such as limited space for an inflammatory response, difficulties with repeated sampling, corticosteroid use for management of cerebral edema, and immunosuppressive mechanisms within the tumor and brain parenchyma have posed challenges in clinical development of immunotherapy for intracranial tumors. Nonetheless, the success of immunotherapy in brain metastases (BMs) from solid cancers such as melanoma and non-small cell lung cancer (NSCLC) proves that the CNS is not an immune-privileged organ and is capable of initiating and regulating immune responses that lead to tumor control. However, the development of immunotherapeutics for the most malignant primary brain tumor, glioblastoma (GBM), has been challenging due to systemic and profound tumor-mediated immunosuppression unique to GBM, intratumoral and intertumoral heterogeneity, low mutation burden, and lack of stably expressed clonal antigens. Here, we review recent advances in the field of immunotherapy for neuro-oncology with a focus on BM and GBM.
Collapse
Affiliation(s)
- Nazanin Majd
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA
| | - Pushan Dasgupta
- Department of Neurology, University of Texas Austin Dell Medical School, Austin, TX, USA
| | - John de Groot
- Department of Neuro-Oncology, MD Anderson Cancer Center, Houston, TX, USA.
| |
Collapse
|
34
|
Dastmalchi F, Karachi A, Yang C, Azari H, Sayour EJ, Dechkovskaia A, Vlasak AL, Saia ME, Lovaton RE, Mitchell DA, Rahman M. Sarcosine promotes trafficking of dendritic cells and improves efficacy of anti-tumor dendritic cell vaccines via CXC chemokine family signaling. J Immunother Cancer 2019; 7:321. [PMID: 31753028 PMCID: PMC6873439 DOI: 10.1186/s40425-019-0809-4] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Accepted: 11/06/2019] [Indexed: 01/20/2023] Open
Abstract
Background Dendritic cell (DC) vaccine efficacy is directly related to the efficiency of DC migration to the lymph node after delivery to the patient. We discovered that a naturally occurring metabolite, sarcosine, increases DC migration in human and murine cells resulting in significantly improved anti-tumor efficacy. We hypothesized that sarcosine induced cell migration was due to chemokine signaling. Methods DCs were harvested from the bone marrow of wild type C57BL/6 mice and electroporated with tumor messenger RNA (mRNA). Human DCs were isolated from peripheral blood mononuclear cells (PBMCs). DCs were treated with 20 mM of sarcosine. Antigen specific T cells were isolated from transgenic mice and injected intravenously into tumor bearing mice. DC vaccines were delivered via intradermal injection. In vivo migration was evaluated by flow cytometry and immunofluorescence microscopy. Gene expression in RNA was investigated in DCs via RT-PCR and Nanostring. Results Sarcosine significantly increased human and murine DC migration in vitro. In vivo sarcosine-treated DCs had significantly increased migration to both the lymph nodes and spleens after intradermal delivery in mice. Sarcosine-treated DC vaccines resulted in significantly improved tumor control in a B16F10-OVA tumor flank model and improved survival in an intracranial GL261-gp100 glioma model. Gene expression demonstrated an upregulation of CXCR2, CXCL3 and CXCL1 in sarcosine- treated DCs. Further metabolic analysis demonstrated the up-regulation of cyclooxygenase-1 and Pik3cg. Sarcosine induced migration was abrogated by adding the CXCR2 neutralizing antibody in both human and murine DCs. CXCR2 neutralizing antibody also removed the survival benefit of sarcosine-treated DCs in the tumor models. Conclusion Sarcosine increases the migration of murine and human DCs via the CXC chemokine pathway. This platform can be utilized to improve existing DC vaccine strategies.
Collapse
Affiliation(s)
- Farhad Dastmalchi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA.
| | - Aida Karachi
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Changlin Yang
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Hassan Azari
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Elias Joseph Sayour
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Anjelika Dechkovskaia
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Alexander Loren Vlasak
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Megan Ellen Saia
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | | | - Duane Anthony Mitchell
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| | - Maryam Rahman
- Preston A. Wells, Jr. Center for Brain Tumor Therapy, UF Brain Tumor Immunotherapy Program, University of Florida, Gainesville, FL, USA
| |
Collapse
|
35
|
Rajani KR, Carlstrom LP, Parney IF, Johnson AJ, Warrington AE, Burns TC. Harnessing Radiation Biology to Augment Immunotherapy for Glioblastoma. Front Oncol 2019; 8:656. [PMID: 30854331 PMCID: PMC6395389 DOI: 10.3389/fonc.2018.00656] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2018] [Accepted: 12/12/2018] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common adult primary brain tumor and carries a dismal prognosis. Radiation is a standard first-line therapy, typically deployed following maximal safe surgical debulking, when possible, in combination with cytotoxic chemotherapy. For other systemic cancers, standard of care is being transformed by immunotherapies, including checkpoint-blocking antibodies targeting CTLA-4 and PD-1/PD-L1, with potential for long-term remission. Ongoing studies are evaluating the role of immunotherapies for GBM. Despite dramatic responses in some cases, randomized trials to date have not met primary outcomes. Challenges have been attributed in part to the immunologically "cold" nature of glioblastoma relative to other malignancies successfully treated with immunotherapy. Radiation may serve as a mechanism to improve tumor immunogenicity. In this review, we critically evaluate current evidence regarding radiation as a synergistic facilitator of immunotherapies through modulation of both the innate and adaptive immune milieu. Although current preclinical data encourage efforts to harness synergistic biology between radiation and immunotherapy, several practical and scientific challenges remain. Moreover, insights from radiation biology may unveil additional novel opportunities to help mobilize immunity against GBM.
Collapse
Affiliation(s)
- Karishma R. Rajani
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Lucas P. Carlstrom
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Ian F. Parney
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| | - Aaron J. Johnson
- Department of Immunology, Mayo Clinic, Rochester, MN, United States
| | | | - Terry C. Burns
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN, United States
| |
Collapse
|
36
|
Lynes J, Sanchez V, Dominah G, Nwankwo A, Nduom E. Current Options and Future Directions in Immune Therapy for Glioblastoma. Front Oncol 2018; 8:578. [PMID: 30568917 PMCID: PMC6290347 DOI: 10.3389/fonc.2018.00578] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 11/19/2018] [Indexed: 12/12/2022] Open
Abstract
Glioblastoma is in need of innovative treatment approaches. Immune therapy for cancer refers to the use of the body's immune system to target malignant cells in the body. Such immune therapeutics have recently been very successful in treating a diverse group of cancerous lesions. As a result, many new immune therapies have gained Food and Drug Administration approval for the treatment of cancer, and there has been an explosion in the study of immune therapeutics for cancer treatment over the past few years. However, the immune suppression of glioblastoma and the unique immune microenvironment of the brain make immune therapeutics more challenging to apply to the brain than to other systemic cancers. Here, we discuss the existing barriers to successful immune therapy for glioblastoma and the ongoing development of immune therapeutics. We will discuss the discovery and classification of immune suppressive factors in the glioblastoma microenvironment; the development of vaccine-based therapies; the use of convection-enhanced delivery to introduce tumoricidal viruses into the tumor microenvironment, leading to secondary immune responses; the emerging use of adoptive cell therapy in the treatment of glioblastoma; and future frontiers, such as the use of cerebral microdialysis for immune monitoring and the use of sequencing to develop patient-specific therapeutics. Armed with a better understanding of the challenges inherent in immune therapy for glioblastoma, we may soon see more successes in immune-based clinical trials for this deadly disease.
Collapse
Affiliation(s)
- John Lynes
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States.,MedStar Georgetown University Hospital, Washington, DC, United States
| | - Victoria Sanchez
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Gifty Dominah
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Anthony Nwankwo
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| | - Edjah Nduom
- National Institute of Neurological Disorders and Stroke, Bethesda, MD, United States
| |
Collapse
|
37
|
Stepanenko AA, Chekhonin VP. Recent Advances in Oncolytic Virotherapy and Immunotherapy for Glioblastoma: A Glimmer of Hope in the Search for an Effective Therapy? Cancers (Basel) 2018; 10:E492. [PMID: 30563098 PMCID: PMC6316815 DOI: 10.3390/cancers10120492] [Citation(s) in RCA: 42] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Revised: 11/19/2018] [Accepted: 11/29/2018] [Indexed: 02/06/2023] Open
Abstract
To date, no targeted drugs, antibodies or combinations of chemotherapeutics have been demonstrated to be more efficient than temozolomide, or to increase efficacy of standard therapy (surgery, radiotherapy, temozolomide, steroid dexamethasone). According to recent phase III trials, standard therapy may ensure a median overall survival of up to 18⁻20 months for adult patients with newly diagnosed glioblastoma. These data explain a failure of positive non-controlled phase II trials to predict positive phase III trials and should result in revision of the landmark Stupp trial as a historical control for median overall survival in non-controlled trials. A high rate of failures in clinical trials and a lack of effective chemotherapy on the horizon fostered the development of conceptually distinct therapeutic approaches: dendritic cell/peptide immunotherapy, chimeric antigen receptor (CAR) T-cell therapy and oncolytic virotherapy. Recent early phase trials with the recombinant adenovirus DNX-2401 (Ad5-delta24-RGD), polio-rhinovirus chimera (PVSRIPO), parvovirus H-1 (ParvOryx), Toca 511 retroviral vector with 5-fluorocytosine, heat shock protein-peptide complex-96 (HSPPC-96) and dendritic cell vaccines, including DCVax-L vaccine, demonstrated that subsets of patients with glioblastoma/glioma may benefit from oncolytic virotherapy/immunotherapy (>3 years of survival after treatment). However, large controlled trials are required to prove efficacy of next-generation immunotherapeutics and oncolytic vectors.
Collapse
Affiliation(s)
- Aleksei A Stepanenko
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
| | - Vladimir P Chekhonin
- Department of Fundamental and Applied Neurobiology, V. P. Serbsky National Medical Research Center for Psychiatry and Narcology, the Ministry of Health of the Russian Federation, Kropotkinsky lane 23, 119034 Moscow, Russia.
- Department of Medical Nanobiotechnologies, Medico-Biological Faculty, N. I. Pirogov Russian National Research Medical University, the Ministry of Health of the Russian Federation, Ostrovitianov str. 1, 117997 Moscow, Russia.
| |
Collapse
|
38
|
Okonogi N, Suzuki Y, Sato H, Oike T, Yoshimoto Y, Mimura K, Noda SE, Okamoto M, Tamaki T, Morokoshi Y, Hasegawa S, Ohgaki H, Yokoo H, Nakano T. Combination Therapy of Intravenously Injected Microglia and Radiation Therapy Prolongs Survival in a Rat Model of Spontaneous Malignant Glioma. Int J Radiat Oncol Biol Phys 2018; 102:601-608. [PMID: 29928947 DOI: 10.1016/j.ijrobp.2018.06.018] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 04/26/2018] [Accepted: 06/09/2018] [Indexed: 12/23/2022]
Abstract
PURPOSE The aim of this study was to investigate the efficacy of combination therapy with intravenously injected microglia (MI) and radiation therapy (RT) for malignant glioma in rats. METHODS AND MATERIALS Transgenic rats expressing v-erbB and spontaneously developing malignant glioma were used. The rats were divided into 4 groups: control (n = 19), RT alone (n = 10), MI alone (n = 9), and combination MI and RT (MI + RT) (n = 10). Cranial x-ray irradiation (8 Gy per fraction; once per week) was performed at 50 and 51 weeks of age. Cultured rat microglial cells (5 × 106 cells/rat) were intravenously injected via the tail vein within 30 minutes after RT. RESULTS No evidence of side effects, including thrombosis or graft-versus-host disease, was noted. Rats treated with RT alone, MI alone, MI + RT, and control survived 60.9, 56.3, 66.0, and 56.1 weeks, respectively. The survival period of MI + RT was significantly longer than that of control (P = .014), MI alone (P = .027), and RT alone (P = .049). Immunohistochemical analysis showed a significantly higher number of tumor-infiltrated MI in the RT alone (P = .041) and MI + RT groups (P = .014) compared with the control. Significantly more CD8-positive lymphocytes were observed in the MI + RT group (P = .049) compared with the control. A positive correlation was found between the number of MI and CD8-positive lymphocytes (R2 = 0.556). A positive correlation was also found between CD8-positive lymphocytes and survival periods (R2 = 0.460). CONCLUSIONS MI + RT increased infiltrated MI and CD8-positive T cells and prolonged survival in transgenic rats that spontaneously developed malignant glioma. Combined immunocellular therapy and RT may provide a novel treatment strategy for malignant glioma.
Collapse
Affiliation(s)
- Noriyuki Okonogi
- National Institute of Radiological Sciences Hospital, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan; Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yoshiyuki Suzuki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan.
| | - Hiro Sato
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takahiro Oike
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Yuya Yoshimoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Kosaku Mimura
- Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Advanced Cancer Immunotherapy, Fukushima Medical University School of Medicine, Fukushima, Japan; Department of Progressive DOHaD Research, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Shin-Ei Noda
- Department of Radiation Oncology, Saitama Medical University International Medical Center, Hidaka, Japan
| | - Masahiko Okamoto
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Tomoaki Tamaki
- Department of Radiation Oncology, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Yukie Morokoshi
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Sumitaka Hasegawa
- Radiation and Cancer Biology Team, National Institutes for Quantum and Radiological Science and Technology, Chiba, Japan
| | - Hiroko Ohgaki
- Institute of Neuropathology, Charité Medical University Berlin, Germany
| | - Hideaki Yokoo
- Department of Human Pathology, Gunma University Graduate School of Medicine, Maebashi, Japan
| | - Takashi Nakano
- Department of Radiation Oncology, Gunma University Graduate School of Medicine, Maebashi, Japan
| |
Collapse
|
39
|
JIAPAER S, FURUTA T, TANAKA S, KITABAYASHI T, NAKADA M. Potential Strategies Overcoming the Temozolomide Resistance for Glioblastoma. Neurol Med Chir (Tokyo) 2018; 58:405-421. [PMID: 30249919 PMCID: PMC6186761 DOI: 10.2176/nmc.ra.2018-0141] [Citation(s) in RCA: 227] [Impact Index Per Article: 32.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2018] [Accepted: 07/31/2018] [Indexed: 12/14/2022] Open
Abstract
Glioblastoma (GBM) is a highly malignant type of primary brain tumor with a high mortality rate. Although the current standard therapy consists of surgery followed by radiation and temozolomide (TMZ), chemotherapy can extend patient's post-operative survival but most cases eventually demonstrate resistance to TMZ. O6-methylguanine-DNA methyltransferase (MGMT) repairs the main cytotoxic lesion, as O6-methylguanine, generated by TMZ, can be the main mechanism of the drug resistance. In addition, mismatch repair and BER also contribute to TMZ resistance. TMZ treatment can induce self-protective autophagy, a mechanism by which tumor cells resist TMZ treatment. Emerging evidence also demonstrated that a small population of cells expressing stem cell markers, also identified as GBM stem cells (GSCs), contributes to drug resistance and tumor recurrence owing to their ability for self-renewal and invasion into neighboring tissue. Some molecules maintain stem cell properties. Other molecules or signaling pathways regulate stemness and influence MGMT activity, making these GCSs attractive therapeutic targets. Treatments targeting these molecules and pathways result in suppression of GSCs stemness and, in highly resistant cases, a decrease in MGMT activity. Recently, some novel therapeutic strategies, targeted molecules, immunotherapies, and microRNAs have provided new potential treatments for highly resistant GBM cases. In this review, we summarize the current knowledge of different resistance mechanisms, novel strategies for enhancing the effect of TMZ, and emerging therapeutic approaches to eliminate GSCs, all with the aim to produce a successful GBM treatment and discuss future directions for basic and clinical research to achieve this end.
Collapse
Affiliation(s)
| | - Takuya FURUTA
- Department of Pathology, Kurume University, Kurume, Fukuoka, Japan
| | - Shingo TANAKA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| | | | - Mitsutoshi NAKADA
- Department of Neurosurgery, Kanazawa University, Kanazawa, Ishikawa, Japan
| |
Collapse
|
40
|
Buchroithner J, Erhart F, Pichler J, Widhalm G, Preusser M, Stockhammer G, Nowosielski M, Iglseder S, Freyschlag CF, Oberndorfer S, Bordihn K, von Campe G, Hoffermann M, Ruckser R, Rössler K, Spiegl-Kreinecker S, Fischer MB, Czech T, Visus C, Krumpl G, Felzmann T, Marosi C. Audencel Immunotherapy Based on Dendritic Cells Has No Effect on Overall and Progression-Free Survival in Newly Diagnosed Glioblastoma: A Phase II Randomized Trial. Cancers (Basel) 2018; 10:E372. [PMID: 30301187 PMCID: PMC6210090 DOI: 10.3390/cancers10100372] [Citation(s) in RCA: 74] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2018] [Revised: 09/22/2018] [Accepted: 09/30/2018] [Indexed: 11/17/2022] Open
Abstract
Dendritic cells (DCs) are antigen-presenting cells that are capable of priming anti-tumor immune responses, thus serving as attractive tools to generate tumor vaccines. In this multicentric randomized open-label phase II study, we investigated the efficacy of vaccination with tumor lysate-charged autologous DCs (Audencel) in newly diagnosed glioblastoma multiforme (GBM). Patients aged 18 to 70 years with histologically proven primary GBM and resection of at least 70% were randomized 1:1 to standard of care (SOC) or SOC plus vaccination (weekly intranodal application in weeks seven to 10, followed by monthly intervals). The primary endpoint was progression-free survival at 12 months. Secondary endpoints were overall survival, safety, and toxicity. Seventy-six adult patients were analyzed in this study. Vaccinations were given for seven (3⁻20) months on average. No severe toxicity was attributable to vaccination. Seven patients showed flu-like symptoms, and six patients developed local skin reactions. Progression-free survival at 12 months did not differ significantly between the control and vaccine groups (28.4% versus 24.5%, p = 0.9975). Median overall survival was similar with 18.3 months (vaccine: 564 days, 95% CI: 436⁻671 versus control: 568 days, 95% CI: 349⁻680; p = 0.89, harzard ratio (HR) 0.99). Hence, in this trial, the clinical outcomes of patients with primary GBM could not be improved by the addition of Audencel to SOC.
Collapse
Affiliation(s)
- Johanna Buchroithner
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Friedrich Erhart
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
- Institute of Neurology, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Josef Pichler
- Department of Internal Medicine and Neurooncology, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Georg Widhalm
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Matthias Preusser
- Clinical Division of Medical Oncology, Department for Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Günther Stockhammer
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Martha Nowosielski
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Sarah Iglseder
- Department of Neurology, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Christian F Freyschlag
- Department of Neurosurgery, Medical University of Innsbruck, Christoph-Probst-Platz 1, Innrain 52, 6020 Innsbruck, Austria.
| | - Stefan Oberndorfer
- Department of Neurology, University Clinic St. Pölten, Karl Landsteiner Privat Universität, Dunant-Platz 1, 3100 St. Pölten, Austria.
| | - Karin Bordihn
- Department of Neurosurgery, Landeskrankenhaus Salzburg, University Clinic of the Paracelsus Private Medical University, Müllner Hauptstraße 48, 5020 Salzburg, Austria.
| | - Gord von Campe
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria.
| | - Markus Hoffermann
- Department of Neurosurgery, Medical University of Graz, Auenbruggerplatz 29, 8036 Graz, Austria.
| | - Reinhard Ruckser
- Department of Internal Medicine 2, Donauspital, Langobardenstraße 122, 1220 Vienna, Austria.
| | - Karl Rössler
- Department of Neurosurgery, Friedrich-Alexander-Universität Erlangen-Nürnberg, Schwabachanlage 6, 91054 Erlangen, Germany.
| | - Sabine Spiegl-Kreinecker
- University Clinic for Neurosurgery, Kepler University Hospital, Johannes Kepler University, Wagner-Jauregg-Weg 15, 4020 Linz, Austria.
| | - Michael B Fischer
- Department of Blood Group Serology and Transfusion Medicine, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Thomas Czech
- Department of Neurosurgery, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| | - Carmen Visus
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Günther Krumpl
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Thomas Felzmann
- Activartis Biotech GmbH, Wilhelminenstraße 91/IIf, 1160 Vienna, Austria.
| | - Christine Marosi
- Clinical Division of Medical Oncology, Department for Internal Medicine I, Medical University of Vienna, Währinger Gürtel 18-20, 1090 Vienna, Austria.
| |
Collapse
|
41
|
van Willigen WW, Bloemendal M, Gerritsen WR, Schreibelt G, de Vries IJM, Bol KF. Dendritic Cell Cancer Therapy: Vaccinating the Right Patient at the Right Time. Front Immunol 2018; 9:2265. [PMID: 30327656 PMCID: PMC6174277 DOI: 10.3389/fimmu.2018.02265] [Citation(s) in RCA: 105] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2018] [Accepted: 09/11/2018] [Indexed: 12/12/2022] Open
Abstract
Immune checkpoint inhibitors propelled the field of oncology with clinical responses in many different tumor types. Superior overall survival over chemotherapy has been reported in various metastatic cancers. Furthermore, prolonged disease-free and overall survival have been reported in the adjuvant treatment of stage III melanoma. Unfortunately, a substantial portion of patients do not obtain a durable response. Therefore, additional strategies for the treatment of cancer are still warranted. One of the numerous options is dendritic cell vaccination, which employs the central role of dendritic cells in activating the innate and adaptive immune system. Over the years, dendritic cell vaccination was shown to be able to induce an immunologic response, to increase the number of tumor infiltrating lymphocytes and to provide overall survival benefit for at least a selection of patients in phase II studies. However, with the success of immune checkpoint inhibition in several malignancies and considering the plethora of other treatment modalities being developed, it is of utmost importance to delineate the position of dendritic cell therapy in the treatment landscape of cancer. In this review, we address some key questions regarding the integration of dendritic cell vaccination in future cancer treatment paradigms.
Collapse
Affiliation(s)
- Wouter W van Willigen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Martine Bloemendal
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Winald R Gerritsen
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gerty Schreibelt
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - I Jolanda M de Vries
- Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| | - Kalijn F Bol
- Department of Medical Oncology, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Tumor Immunology, Radboud Institute for Molecular Life Sciences, Nijmegen, Netherlands
| |
Collapse
|
42
|
|
43
|
Eagles ME, Nassiri F, Badhiwala JH, Suppiah S, Almenawer SA, Zadeh G, Aldape KD. Dendritic cell vaccines for high-grade gliomas. Ther Clin Risk Manag 2018; 14:1299-1313. [PMID: 30100728 PMCID: PMC6067774 DOI: 10.2147/tcrm.s135865] [Citation(s) in RCA: 40] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
Glioblastoma (GBM) is the most common and fatal primary adult brain tumor. To date, various promising chemotherapeutic regimens have been trialed for use in GBM; however, temozolomide (TMZ) therapy remains the only US Food and Drug Administration-approved first-line chemotherapeutic option for newly diagnosed GBM. Despite maximal therapy with surgery and combined concurrent chemoradiation and adjuvant TMZ therapy, the median overall survival remains approximately 14 months. Given the failure of conventional chemotherapeutic strategies in GBM, there has been renewed interest in the role of immunotherapy in GBM. Dendritic cells are immune antigen-presenting cells that play a role in both the innate and adaptive immune system, thereby making them prime vehicles for immunotherapy via dendritic cell vaccinations (DCVs) in various cancers. There is great enthusiasm surrounding the use of DCVs for GBM with multiple ongoing trials. In this review, we comprehensively summarize the safety, efficacy, and quality of life results from 33 trials reporting on DCV for high-grade gliomas.
Collapse
Affiliation(s)
- Matthew E Eagles
- Section of Neurosurgery, Department of Clinical Neurosciences, University of Calgary, Calgary, AB, Canada
| | - Farshad Nassiri
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada, .,MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada
| | - Jetan H Badhiwala
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Suganth Suppiah
- Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, ON, Canada,
| | - Saleh A Almenawer
- Division of Neurosurgery, Department of Surgery, McMaster University, Hamilton, ON, Canada
| | - Gelareh Zadeh
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Neurosurgery, University Health Network, Toronto, ON, Canada
| | - Kenneth D Aldape
- MacFeeters-Hamilton Neuro-Oncology Program, University Health Network, Toronto, ON, Canada.,Division of Pathology, University Health Network, Toronto, ON, Canada
| |
Collapse
|
44
|
Rapp M, Grauer OM, Kamp M, Sevens N, Zotz N, Sabel M, Sorg RV. A randomized controlled phase II trial of vaccination with lysate-loaded, mature dendritic cells integrated into standard radiochemotherapy of newly diagnosed glioblastoma (GlioVax): study protocol for a randomized controlled trial. Trials 2018; 19:293. [PMID: 29801515 PMCID: PMC5970474 DOI: 10.1186/s13063-018-2659-7] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2018] [Accepted: 05/02/2018] [Indexed: 01/06/2023] Open
Abstract
Background Despite the combination of surgical resection, radio- and chemotherapy, median survival of glioblastoma multiforme (GBM) patients only slightly increased in the last years. Disease recurrence is definite with no effective therapy existing after tumor removal. Dendritic cell (DC) vaccination is a promising active immunotherapeutic approach. There is clear evidence that it is feasible, results in immunological anti-tumoral responses, and appears to be beneficial for survival and quality of life of GBM patients. Moreover, combining it with the standard therapy of GBM may allow exploiting synergies between the treatment modalities. In this randomized controlled trial, we seek to confirm these promising initial results. Methods One hundred and thirty-six newly diagnosed, isocitrate dehydrogenase wildtype GBM patients will be randomly allocated (1:1 ratio, stratified by O6-methylguanine-DNA-methyltransferase promotor methylation status) after near-complete resection in a multicenter, prospective phase II trial into two groups: (1) patients receiving the current therapeutic “gold standard” of radio/temozolomide chemotherapy and (2) patients receiving DC vaccination as an add-on to the standard therapy. A recruitment period of 30 months is anticipated; follow-up will be 2 years. The primary objective of the study is to compare overall survival (OS) between the two groups. Secondary objectives are comparing progression-free survival (PFS) and 6-, 12- and 24-month OS and PFS rates, the safety profile, overall and neurological performance and quality of life. Discussion Until now, close to 500 GBM patients have been treated with DC vaccination in clinical trials or on a compassionate-use basis. Results have been encouraging, but cannot provide robust evidence of clinical efficacy because studies have been non-controlled or patient numbers have been low. Therefore, a prospective, randomized phase II trial with a sufficiently large number of patients is now mandatory for clear evidence regarding the impact of DC vaccination on PFS and OS in GBM. Trial registration Protocol code: GlioVax, date of registration: 17. February 2017. Trial identifier: EudraCT-Number 2017–000304-14. German Registry for Clinical Studies, ID: DRKS00013248 (approved primary register in the WHO network) and at ClinicalTrials.gov, ID: NCT03395587. Registered on 11 March 2017. Electronic supplementary material The online version of this article (10.1186/s13063-018-2659-7) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Marion Rapp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany. .,Department of Neurosurgery, Heinrich Heine University Hospital Düsseldorf, Moorenstr. 5, 40225, Düsseldorf, Germany.
| | - Oliver M Grauer
- Department of Neurology, University Hospital Münster, Albert-Schweitzer-Campus 1, 48149, Münster, Germany
| | - Marcel Kamp
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Natalie Sevens
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Nikola Zotz
- Coordination Center for Clinical Trials, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Michael Sabel
- Department of Neurosurgery, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| | - Rüdiger V Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Heinrich Heine University Hospital, Moorenstr. 5, 40225, Düsseldorf, Germany
| |
Collapse
|
45
|
Kong Z, Wang Y, Ma W. Vaccination in the immunotherapy of glioblastoma. Hum Vaccin Immunother 2018; 14:255-268. [PMID: 29087782 PMCID: PMC5806656 DOI: 10.1080/21645515.2017.1388481] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2017] [Revised: 09/10/2017] [Accepted: 10/02/2017] [Indexed: 12/25/2022] Open
Abstract
Glioblastoma remains one of the most common central nervous system tumors with an extremely poor prognosis. Recently, rapid progress in immunotherapy has provided new options for the treatment of glioblastoma. Vaccination, the primary method of immunotherapy, stimulates the body's tumor-specific immune response by the injection of foreign antigens. Peptide vaccines involve the injection of tumor-specific antigens, such as EGFRvIII or heat-shock proteins. Cell-based vaccines, which primarily include dendritic cell vaccines and tumor cell vaccines, involve injections of ex vivo-modified cells. Despite the encouraging results of phase I/II clinical trials, no successful phase III clinical trials involving glioblastoma immunotherapy, including glioblastoma vaccinations, have been reported to date. In this review, the authors summarize the published outcomes of glioblastoma vaccine therapy, explore its future prospects based on ongoing clinical trials, and discuss combined therapy as a future direction for glioblastoma treatment.
Collapse
Affiliation(s)
- Ziren Kong
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yu Wang
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Wenbin Ma
- Department of Neurosurgery, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
46
|
Maxwell R, Luksik AS, Garzon-Muvdi T, Lim M. The Potential of Cellular- and Viral-Based Immunotherapies for Malignant Glioma-Dendritic Cell Vaccines, Adoptive Cell Transfer, and Oncolytic Viruses. Curr Neurol Neurosci Rep 2017; 17:50. [PMID: 28488122 DOI: 10.1007/s11910-017-0754-x] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
PURPOSE OF REVIEW Malignant gliomas, including glioblastoma and anaplastic astrocytoma, are the most frequent primary brain tumors and present with many treatment challenges. In this review, we discuss the potential of cellular- and viral-based immunotherapies in the treatment of malignant glioma, specifically focusing on dendritic cell vaccines, adoptive cell therapy, and oncolytic viruses. RECENT FINDINGS Diverse cellular- and viral-based strategies have been engineered and optimized to generate either a specific or broad antitumor immune response in malignant glioma. Due to their successes in the preclinical arena, many of these therapies have undergone phase I and II clinical testing. These early clinical trials have demonstrated the feasibility, safety, and efficacy of these immunotherapies. Dendritic cell vaccines, adoptive cell transfer, and oncolytic viruses may have a potential role in the treatment of malignant glioma. However, these modalities must be investigated in well-designed phase III trials to prove their efficacy.
Collapse
Affiliation(s)
- Russell Maxwell
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Neurosurgery - Phipps 123, Baltimore, MD, 21287, USA
| | - Andrew S Luksik
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Neurosurgery - Phipps 123, Baltimore, MD, 21287, USA
| | - Tomas Garzon-Muvdi
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Neurosurgery - Phipps 123, Baltimore, MD, 21287, USA
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University School of Medicine, 600 N. Wolfe Street, Neurosurgery - Phipps 123, Baltimore, MD, 21287, USA.
| |
Collapse
|
47
|
Bloch O, Lim M, Sughrue ME, Komotar RJ, Abrahams JM, O'Rourke DM, D'Ambrosio A, Bruce JN, Parsa AT. Autologous Heat Shock Protein Peptide Vaccination for Newly Diagnosed Glioblastoma: Impact of Peripheral PD-L1 Expression on Response to Therapy. Clin Cancer Res 2017; 23:3575-3584. [PMID: 28193626 PMCID: PMC5511566 DOI: 10.1158/1078-0432.ccr-16-1369] [Citation(s) in RCA: 77] [Impact Index Per Article: 9.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2016] [Revised: 07/11/2016] [Accepted: 01/31/2017] [Indexed: 01/18/2023]
Abstract
Purpose: Standard therapy for newly diagnosed glioblastoma (GBM) is surgical resection, followed by concurrent radiotherapy and temozolomide chemotherapy. In this phase II clinical trial, the addition of an autologous heat-shock protein vaccine to standard therapy was evaluated. Tumor-induced immunosuppression, mediated by expression of PD-L1 on tumor and circulating immune cells, may impact the efficacy of vaccination. Expression of PD-L1 on peripheral myeloid cells was evaluated for the first time as a predictor of survival.Experimental Design: In this single arm, phase II study, adult patients with GBM underwent surgical resection followed by standard radiation and chemotherapy. Autologous vaccine (Prophage) was generated from resected tumors and delivered in weekly vaccinations after completion of radiotherapy. The primary endpoint was overall survival.Results: Forty-six patients received the vaccine with a median overall survival of 23.8 months [95% confidence interval (CI), 19.8-30.2]. Median overall survival for patients with high PD-L1 expression on myeloid cells was 18.0 months (95% CI, 10.0-23.3) as compared with 44.7 months (95% CI, incalculable) for patients with low PD-L1 expression (hazard ratio 3.3; 95% CI, 1.4-8.6; P = 0.007). A multivariate proportional hazards model revealed MGMT methylation, Karnofsky performance status, and PD-L1 expression as the primary independent predictors of survival.Conclusions: Vaccination with autologous tumor-derived heat shock proteins may improve survival for GBM patients when combined with standard therapy and warrants further study. Systemic immunosuppression mediated by peripheral myeloid expression of PD-L1 is a recently identified factor that may significantly impact vaccine efficacy. Clin Cancer Res; 23(14); 3575-84. ©2017 AACR.
Collapse
Affiliation(s)
- Orin Bloch
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois.
| | - Michael Lim
- Department of Neurosurgery, Johns Hopkins University, Baltimore, Maryland
| | - Michael E Sughrue
- Department of Neurosurgery, University of Oklahoma, Oklahoma City, Oklahoma
| | | | | | - Donald M O'Rourke
- Department of Neurosurgery, University of Pennsylvania, Philadelphia, Pennsylvania
| | | | - Jeffrey N Bruce
- Department of Neurological Surgery, Columbia University, New York, New York
| | - Andrew T Parsa
- Department of Neurological Surgery, Northwestern University, Chicago, Illinois
| |
Collapse
|
48
|
Winograd EK, Ciesielski MJ, Fenstermaker RA. Novel vaccines for glioblastoma: clinical update and perspective. Immunotherapy 2017; 8:1293-1308. [PMID: 27993092 DOI: 10.2217/imt-2016-0059] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Glioblastoma is the most common primary brain cancer. Aggressive treatment with surgery, radiation therapy and chemotherapy provides limited overall survival benefit. Glioblastomas have a formidable tumor microenvironment that is hostile to immunological effector cells and these cancers produce profound systemic immunosuppression. However, surgical resection of these tumors creates conditions that favor the use of immunotherapeutic strategies. Therefore, extensive surgical resection, when feasible, will remain part of the equation to provide an environment in which active specific immunotherapy has the greatest chance of working. Toward that end, a number of vaccination protocols are under investigation. Vaccines studied to date have produced cellular and humoral antitumor responses, but unequivocal clinical efficacy has yet to be demonstrated. In addition, focus is shifting toward the prospect of therapies involving vaccines in combination with immune checkpoint inhibitors and other immunomodulatory agents so that effector cells remain active against their targets systemically and within the tumor microenvironment.
Collapse
Affiliation(s)
- Evan K Winograd
- Department of Neurosurgery, State University of New York at Buffalo, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY 14260, USA
| | - Michael J Ciesielski
- Department of Neurosurgery, State University of New York at Buffalo, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY 14260, USA.,Department of Neurosurgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| | - Robert A Fenstermaker
- Department of Neurosurgery, State University of New York at Buffalo, Jacobs School of Medicine & Biomedical Sciences, Buffalo, NY 14260, USA.,Department of Neurosurgery, Roswell Park Cancer Institute, Elm & Carlton Streets, Buffalo, NY 14263, USA.,Center for Immunotherapy, Roswell Park Cancer Institute, Buffalo, NY 14263, USA
| |
Collapse
|
49
|
Touat M, Idbaih A, Sanson M, Ligon KL. Glioblastoma targeted therapy: updated approaches from recent biological insights. Ann Oncol 2017; 28:1457-1472. [PMID: 28863449 PMCID: PMC5834086 DOI: 10.1093/annonc/mdx106] [Citation(s) in RCA: 311] [Impact Index Per Article: 38.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2016] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma (WHO grade IV astrocytoma) is the most frequent primary brain tumor in adults, representing a highly heterogeneous group of neoplasms that are among the most aggressive and challenging cancers to treat. An improved understanding of the molecular pathways that drive malignancy in glioblastoma has led to the development of various biomarkers and the evaluation of several agents specifically targeting tumor cells and the tumor microenvironment. A number of rational approaches are being investigated, including therapies targeting tumor growth factor receptors and downstream pathways, cell cycle and epigenetic regulation, angiogenesis and antitumor immune response. Moreover, recent identification and validation of prognostic and predictive biomarkers have allowed implementation of modern trial designs based on matching molecular features of tumors to targeted therapeutics. However, while occasional targeted therapy responses have been documented in patients, to date no targeted therapy has been formally validated as effective in clinical trials. The lack of knowledge about relevant molecular drivers in vivo combined with a lack of highly bioactive and brain penetrant-targeted therapies remain significant challenges. In this article, we review the most promising biological insights that have opened the way for the development of targeted therapies in glioblastoma, and examine recent data from clinical trials evaluating targeted therapies and immunotherapies. We discuss challenges and opportunities for the development of these agents in glioblastoma.
Collapse
Affiliation(s)
- M. Touat
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- Gustave Roussy, Université Paris-Saclay, Département d’Innovation Thérapeutique et d’Essais Précoces (DITEP), Villejuif
| | - A. Idbaih
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - M. Sanson
- Inserm U 1127, CNRS UMR 7225, Sorbonne Universités, UPMC Univ Paris 06 UMR S 1127, Institut du Cerveau et de la Moelle épinière, ICM, Paris
- AP-HP, Hôpitaux Universitaires La Pitié Salpêtrière - Charles Foix, Service de Neurologie 2-Mazarin, Paris, France
| | - K. L. Ligon
- Department of Oncologic Pathology, Dana-Farber/Brigham and Women's Cancer Center, Boston, USA
| |
Collapse
|
50
|
|