1
|
Sheng W, Ding Y, Su Y, Hu J, Wang L, Guo M, Yuan X, Wang D, Dai C, Wang X. The predictive value of peripheral blood monocytic myeloid-derived suppressor cells for survival and immunotherapy responses in tumor patients. BMC Immunol 2025; 26:41. [PMID: 40410668 DOI: 10.1186/s12865-025-00722-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 05/08/2025] [Indexed: 05/25/2025] Open
Abstract
BACKGROUND AND OBJECTIVES The identification of affordable and easily accessible indicators to predict overall survival is important for tumor immunotherapy. Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population of immature myeloid cells, which promote tumor immune escape in the tumor microenvironment (TME). This study aimed to determine whether peripheral blood MDSCs could determine their potential as predictors of survival in tumor patients with immunotherapy. METHODS Flow cytometry was used to detect peripheral blood monocytic myeloid-derived suppressor cells (M-MDSCs) and granulocytic myeloid-derived suppressor cells (G-MDSCs) in 126 patients. Multivariate Cox regression analysis was conducted to examine the associations between peripheral blood MDSCs and patient survival. The receiver operating characteristic (ROC) curve determined the optimal cutoff value for peripheral blood MDSCs and grouped the indicators. The relationship between peripheral blood M-MDSCs and the prognosis and treatment outcome of tumor patients was explored. RESULTS The proportion of peripheral blood M-MDSCs was associated with the prognosis of patients with tumors, as were tumor metastasis, the red blood cell count, absolute neutrophil count, absolute monocyte count, and BMI. Multivariate Cox regression analysis revealed that M-MDSCs, absolute lymphocyte value, and tumor metastasis were independent risk factors affecting the prognosis of patients with tumors. Detection of peripheral blood M-MDSCs obtained high sensitivity and specificity for tumor diagnosis. Patients with high M-MDSCs percentage demonstrated reduced survival durations and diminished responses to immunotherapy compared to those with low M-MDSCs percentage. CONCLUSIONS Peripheral blood M-MDSCs may be used to predict overall survival and immunotherapy efficacy outcomes. This study provides a putative predictive biomarker for clinicians to choose from to predict tumor patients' survival and the selection of receiving immunotherapy regimens.
Collapse
Affiliation(s)
- Wanying Sheng
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yan Ding
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Yuting Su
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Jing Hu
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Lu Wang
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Minjie Guo
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Xiao Yuan
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China
| | - Deqiang Wang
- Cancer Center, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Chunhua Dai
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| | - Xu Wang
- Department of Thoracic Oncology, Cancer Institute of Jiangsu University, Affiliated Hospital of Jiangsu University, Zhenjiang, China.
| |
Collapse
|
2
|
Piqueras-Nebot M, Benet M, Estors M, Cremades A, Juan-Vidal Ó, Carretero J, Galbis-Caravajal JM, Lahoz A. A novel method for isolation of tumor infiltrating myeloid-derived suppressor cells from human lung tumor tissue. Sci Rep 2025; 15:15175. [PMID: 40307421 PMCID: PMC12044027 DOI: 10.1038/s41598-025-99877-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Accepted: 04/23/2025] [Indexed: 05/02/2025] Open
Abstract
The tumor microenvironment comprises different cell subsets including myeloid-derived suppressor cells, which exert intratumoral immunosuppression and favor cancer progression. Isolating tumor-infiltrating myeloid-derived suppressor cells (tMDSCs) from human tumor samples remains a challenge. Current methods such as magnetic bead sorting (MACS) or flow cytometry sorting (FACS) present some drawbacks in terms of purity and viability. Here, we have setup an innovative workflow that combines RosetteSep technology and MACS for isolation of tMDSCs from lung cancer biopsies. To evaluate our Rosette-MACS approach, we compared its performance with MACS and FACS. The isolated cells were characterized by flow cytometry, gene expression analysis and proliferation assays for comparison purposes. The results showed that the Rosette-MACS protocol had the highest yield and purity of tMDSCs (79.64% vs 13.30% with FACS and 0.39% with MACS). Furthermore, the functionality of the isolated tMDSCs was tested not only by upregulation of immunosuppressive genes (e.g. ARG1, IDO1, or PD-L1), but also by their capacity to inhibit CD8+ T cells proliferation. The combined use of RosetteSep and MACS provides an improved approach for the isolation of functional tMDSCs, which delineates a suitable experimental framework to selectively study the molecular mechanisms underpinning tMDSCs-derived immunosuppression in the TME.
Collapse
Affiliation(s)
- Marta Piqueras-Nebot
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Marta Benet
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
| | - Miriam Estors
- Thoracic Surgery Service, Hospital Universitario de La Ribera, Valencia, Spain
| | - Antonio Cremades
- Pathological Anatomy Service, Hospital Universitario de La Ribera, Valencia, Spain
| | - Óscar Juan-Vidal
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain
- Medical Oncology Service, Hospital Universitario y Politécnico La Fe, Valencia, Spain
| | | | | | - Agustín Lahoz
- Biomarkers and Precision Medicine Unit, Instituto de Investigación Sanitaria La Fe, 46026, Valencia, Spain.
| |
Collapse
|
3
|
Ge Y, Zhou Q, Pan F, Wang R. Utilizing Nanoparticles to Overcome Anti-PD-1/PD-L1 Immunotherapy Resistance in Non-Small Cell Lung cancer: A Potential Strategy. Int J Nanomedicine 2025; 20:2371-2394. [PMID: 40027868 PMCID: PMC11871910 DOI: 10.2147/ijn.s505539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2024] [Accepted: 01/25/2025] [Indexed: 03/05/2025] Open
Abstract
Lung cancer is the leading cause of cancer-related mortality globally, with non-small cell lung cancer (NSCLC) constituting 85% of cases. Immune checkpoint inhibitors (ICIs) represented by anti-programmed cell death protein 1 (PD-1)/ programmed cell death ligand 1 (PD-L1) have emerged as a promising frontier in cancer treatment, effectively extending the survival of patients with NSCLC. However, the efficacy of ICIs exhibits significant variability across diverse patient populations, with a substantial proportion showing poor responsiveness and acquired resistance in those initially responsive to ICIs treatments. With the advancement of nanotechnology, nanoparticles offer unique advantages in tumor immunotherapy, including high permeability and prolonged retention(EPR) effects, enhanced drug delivery and stability, and modulation of the inflammatory tumor microenvironment(TME). This review summarizes the mechanisms of resistance to ICIs in NSCLC, focusing on tumor antigens loss and defective antigen processing and presentation, failure T cell priming, impaired T cell migration and infiltration, immunosuppressive TME, and genetic mutations. Furthermore, we discuss how nanoparticles, through their intrinsic properties such as the EPR effect, active targeting effect, shielding effect, self-regulatory effect, and synergistic effect, can potentiate the efficacy of ICIs and reverse resistance. In conclusion, nanoparticles serve as a robust platform for ICIs-based NSCLC therapy, aiding in overcoming resistance challenges.
Collapse
Affiliation(s)
- Yuli Ge
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| | - Qiong Zhou
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Fan Pan
- Department of Medical Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, Jiangsu, 210093, People’s Republic of China
| | - Rui Wang
- Department of Medical Oncology, Jinling Clinical Medical College, Nanjing University of Chinese Medicine, Nanjing, Jiangsu, 210023, People’s Republic of China
| |
Collapse
|
4
|
Wang X, Yin X, Li Y, Zhang S, Hu M, Wei M, Li Z. Novel insight and perspectives of nanoparticle-mediated gene delivery and immune-modulating therapies for pancreatic cancer. J Nanobiotechnology 2024; 22:771. [PMID: 39696302 DOI: 10.1186/s12951-024-02975-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 11/04/2024] [Indexed: 12/20/2024] Open
Abstract
Current standard-of-care therapies have failed to improve the survival of patients with metastatic pancreatic cancer (PCA). Therefore, exploring novel therapeutic approaches for cancer targeting is of utmost need. During the past few years, many efforts have been made to develop conventional treatment strategies to reduce chemotherapy resistance. However, critical challenges have impeded current cancer management outcomes, and limited clinical responses have been achieved due to unfavorable off-target effects. Advances in nanotechnology-based gene and immune-modulator delivery systems have excellent advantages for improving the therapeutic efficacy of PCA and provide promising avenues for overcoming the immunosuppressive tumor microenvironment and enhancing patient treatment outcomes. This review article provides insight into the challenges, opportunities, and future perspectives of these novel emerging nanoparticles based on lipid, polymer, and inorganic metal carriers to modulate genes and immunotherapy paradigms for PCA anticancer activity.
Collapse
Affiliation(s)
- Xinqiao Wang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
- Department of Pharmacy, The First Hospital of China Medical University, Shenyang, Liaoning Province, 110001, P.R. China
| | - Xue Yin
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Yuxin Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Shuhui Zhang
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Meie Hu
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China
| | - Minjie Wei
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| | - Zhenhua Li
- School of Pharmacy, China Medical University, Shenyang, Liaoning Province, 110122, P.R. China.
| |
Collapse
|
5
|
Wang Z, Hu Y, Song J, Ma P, Xia H. Polymorphonuclear myeloid-derived suppressor cells regulates immune recovery during HIV infection through PD-L1 and TGF-β pathways. Front Cell Infect Microbiol 2024; 14:1516421. [PMID: 39742336 PMCID: PMC11685070 DOI: 10.3389/fcimb.2024.1516421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 12/03/2024] [Indexed: 01/03/2025] Open
Abstract
Background Although MDSCs are widely recognized for their immunoinhibitory effects in pathological conditions, their function during HIV infection particularly within the mechanisms underlying incomplete immune recovery remains elusive. Methods We conducted a cross-sectional study in which 30 healthy controls and 62 HIV-1-infected subjects [31 immunological non-responders (INRs) and 31 immunological responders (IRs)] were selected. The proportion of MDSCs was determined in each category of participants. Using flow cytometry and real-time PCR, immune regulatory molecules (including PD-L1, ARG1, iNOS, IL-10, TGF-β, and IDO) that are relevant for MDSCs activity were quantified. Furthermore, we investigated the impact of the blockade of PD-L1 and TGF-β pathways on MDSCs and their effects on CD4+ T-cells using in vitro functional experiments. Results PMN-MDSCs are more abundant and are negatively correlated to CD4 counts in HIV-infected individuals. In addition, PMN-MDSCs suppress CD4+ T-cell proliferation and IFN-γ production in INRs. Furthermore, correlations were found between PD-L1 expression on PMN-MDSCs and PD-1+ CD4+ T-cells. TGF-β expression on PMN-MDSCs was likewise enhanced in INRs. Importantly, inhibiting both PD-L1 and TGF-β pathways had a synergistic impact on restoring CD4+ T-cell activity in vitro. Conclusions PMN-MDSCs expansion inhibits CD4+ T-cell responses. We suggest that targeting PD-L1 and TGF-β pathways together may significantly improve immune recovery in INRs.
Collapse
Affiliation(s)
- Zihua Wang
- Department of Medical Oncology, Bethune International Peace Hospital, Shijiazhuang, China
| | - Yue Hu
- Department of Infectious Diseases, Tianjin Second People’s Hospital, Tianjin, China
| | - Jing Song
- Department of Infectious Diseases, Tianjin Second People’s Hospital, Tianjin, China
| | - Ping Ma
- Department of Infectious Diseases, Tianjin Second People’s Hospital, Tianjin, China
| | - Huan Xia
- Department of Infectious Diseases, Tianjin Second People’s Hospital, Tianjin, China
| |
Collapse
|
6
|
Vacca P, Bilotta MT, Moretta L, Tumino N. Myeloid-derived suppressor cells: Identification and function. Methods Cell Biol 2024; 190:151-169. [PMID: 39515878 DOI: 10.1016/bs.mcb.2024.07.009] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2024]
Abstract
Myeloid-derived suppressor cells (MDSCs) are cells that play a regulatory role in immune responses and inflammation. They can have both positive and negative effects on various diseases, including cancer, infections, sepsis, and trauma. MDSCs inhibit immune cells by releasing immunosuppressive factors and can be categorized as monocytic (M) or polymorphonuclear (PMN) cell lineages. Most MDSCs are PMN-MDSC and are found in the peripheral blood (PB) and in the tissue microenvironment of tumor and inflamed patients, where they can directly inhibit immune cell activity and promote tumor progression. Various markers have been suggested for their identification, but in order to be defined as MDSC, their inhibitory capacity has to be certified. In this article, we summarize the identification and functional protocol for characterizing MDSCs, focusing on PMN-MDSC.
Collapse
Affiliation(s)
- Paola Vacca
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | | | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | - Nicola Tumino
- Innate lymphoid cells Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| |
Collapse
|
7
|
Sarkar D, Pramanik A, Das D, Bhattacharyya S. Shifting phenotype and differentiation of CD11b +Gr.1 + immature heterogeneous myeloid derived adjuster cells support inflammation and induce regulators of IL17A in imiquimod induced psoriasis. Inflamm Res 2024; 73:1581-1599. [PMID: 39052064 DOI: 10.1007/s00011-024-01918-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 06/19/2024] [Accepted: 07/09/2024] [Indexed: 07/27/2024] Open
Abstract
OBJECTIVE AND DESIGN The exact immunological mechanism of widespread chronic inflammatory skin disorder psoriasis has not been fully established. CD11b+Gr.1+ myeloid-derived cells are immature heterogeneous cells with T-cell suppressive property in neoplasia; however, influence of these cells on adaptive immunity is highly contextual; therefore, we dubbed these cells as myeloid-derived adjuster cells (MDAC). We studied imiquimod induced psoriasis in mouse model and evaluated for the first time the RORγt-NFAT1 axis in MDACs and the function, differentiation and interaction of these cells with T cells. MATERIALS AND METHODS The status of T cells and MDACs; their functionality and differentiation properties, and the roles of RORγt and NFAT1 in MDACs were evaluated using flow cytometry, qRT-PCR and confocal imaging. RESULTS We found gradual increase in T cells and MDACs and an increase in the number of IL17 -secreting MDACs and T cells in the skin of psoriatic animals. We also noted that MDAC differentiation is biased toward M1 macrophages and DCs which perpetuate inflammation. We found that psoriatic MDACs were unable to suppress T-cell proliferation or activation but seemingly helped these T cells produce more IL17. Inhibition of the RORγt/NFAT1 axis in MDACs increased the suppressive nature of MDACs, allowing these cells to suppress the activity of psoriatic T-cells. CONCLUSION Our results indicate that altered MDAC properties in psoriatic condition sustains pathological inflammation and RORγt and NFAT1 as promising intervention target for psoriasis management.
Collapse
Affiliation(s)
- Debanjan Sarkar
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Anik Pramanik
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Dona Das
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India
| | - Sankar Bhattacharyya
- Immunobiology and Translational Medicine Laboratory, Department of Zoology, Sidho Kanho Birsha University, Purulia, 723104, India.
| |
Collapse
|
8
|
Bizymi N, Damianaki A, Aresti N, Karasachinidis A, Vlata Z, Lavigne M, Dialynas E, Gounalaki N, Stratidaki I, Tsaknakis G, Batsali A, Mavroudi I, Velegraki M, Sperelakis I, Pontikoglou C, Verginis P, Papadaki HA. Characterization of myeloid-derived suppressor cells in the peripheral blood and bone marrow of patients with chronic idiopathic neutropenia. Hemasphere 2024; 8:e70005. [PMID: 39315322 PMCID: PMC11417472 DOI: 10.1002/hem3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Nikoleta Bizymi
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Athina Damianaki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Nikoletta Aresti
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Anastasios Karasachinidis
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Zacharenia Vlata
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Matthieu Lavigne
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Emmanuel Dialynas
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Niki Gounalaki
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Irene Stratidaki
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Grigorios Tsaknakis
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Aristea Batsali
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Irene Mavroudi
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Maria Velegraki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Ioannis Sperelakis
- Department of OrthopedicsUniversity Hospital of HeraklionHeraklionGreece
| | - Charalampos Pontikoglou
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, School of MedicineUniversity of CreteHeraklionGreece
- Department of Laboratory HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| |
Collapse
|
9
|
Habib S, Osborn G, Willsmore Z, Chew MW, Jakubow S, Fitzpatrick A, Wu Y, Sinha K, Lloyd-Hughes H, Geh JLC, MacKenzie-Ross AD, Whittaker S, Sanz-Moreno V, Lacy KE, Karagiannis SN, Adams R. Tumor associated macrophages as key contributors and targets in current and future therapies for melanoma. Expert Rev Clin Immunol 2024; 20:895-911. [PMID: 38533720 PMCID: PMC11286214 DOI: 10.1080/1744666x.2024.2326626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Accepted: 02/29/2024] [Indexed: 03/28/2024]
Abstract
INTRODUCTION Despite the success of immunotherapies for melanoma in recent years, there remains a significant proportion of patients who do not yet derive benefit from available treatments. Immunotherapies currently licensed for clinical use target the adaptive immune system, focussing on Tcell interactions and functions. However, the most prevalent immune cells within the tumor microenvironment (TME) of melanoma are macrophages, a diverse immune cell subset displaying high plasticity, to which no current therapies are yet directly targeted. Macrophages have been shown not only to activate the adaptive immune response, and enhance cancer cell killing, but, when influenced by factors within the TME of melanoma, these cells also promote melanoma tumorigenesis and metastasis. AREAS COVERED We present a review of the most up-to-date literatureavailable on PubMed, focussing on studies from within the last 10 years. We also include data from ongoing and recent clinical trials targeting macrophages in melanoma listed on clinicaltrials.gov. EXPERT OPINION Understanding the multifaceted role of macrophages in melanoma, including their interactions with immune and cancer cells, the influence of current therapies on macrophage phenotype and functions and how macrophages could be targeted with novel treatment approaches, are all critical for improving outcomes for patients with melanoma.
Collapse
Affiliation(s)
- Shabana Habib
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Gabriel Osborn
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Zena Willsmore
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Min Waye Chew
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophie Jakubow
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Amanda Fitzpatrick
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Yin Wu
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Oncology Department, Guy’s and St Thomas’ Hospital, London, UK
- Peter Gorer Department of Immunobiology, School of Immunology & Microbial Sciences, King’s College London, London, UK
| | - Khushboo Sinha
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
| | - Hawys Lloyd-Hughes
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | - Jenny L. C. Geh
- St John’s Institute of Dermatology, Guy’s, King’s and St. Thomas’ Hospitals NHS Foundation Trust, London, England
- Department of Plastic Surgery, Guy’s, King’s and St. Thomas’ Hospitals, London, England
| | | | - Sean Whittaker
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Victoria Sanz-Moreno
- The Breast Cancer Now Toby Robins Research Centre, Division of Breast Cancer Research, The Institute of Cancer Research, London
| | - Katie E. Lacy
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| | - Sophia N Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, King’s College London, Innovation Hub, Guy’s Hospital, London, UK
| | - Rebecca Adams
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London, UK
| |
Collapse
|
10
|
Wang L, Wang H, Zhu M, Ni X, Sun L, Wang W, Xie J, Li Y, Xu Y, Wang R, Han S, Zhang P, Peng J, Hou M, Hou Y. Platelet-derived TGF-β1 induces functional reprogramming of myeloid-derived suppressor cells in immune thrombocytopenia. Blood 2024; 144:99-112. [PMID: 38574321 DOI: 10.1182/blood.2023022738] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2023] [Revised: 03/11/2024] [Accepted: 03/26/2024] [Indexed: 04/06/2024] Open
Abstract
ABSTRACT Platelet α-granules are rich in transforming growth factor β1 (TGF-β1), which is associated with myeloid-derived suppressor cell (MDSC) biology. Responders to thrombopoietin receptor agonists (TPO-RAs) revealed a parallel increase in the number of both platelets and MDSCs. Here, anti-CD61 immune-sensitized splenocytes were transferred into severe combined immunodeficient mice to establish an active murine model of immune thrombocytopenia (ITP). Subsequently, we demonstrated that TPO-RAs augmented the inhibitory activities of MDSCs by arresting plasma cells differentiation, reducing Fas ligand expression on cytotoxic T cells, and rebalancing T-cell subsets. Mechanistically, transcriptome analysis confirmed the participation of TGF-β/Smad pathways in TPO-RA-corrected MDSCs, which was offset by Smad2/3 knockdown. In platelet TGF-β1-deficient mice, TPO-RA-induced amplification and enhanced suppressive capacity of MDSCs was waived. Furthermore, our retrospective data revealed that patients with ITP achieving complete platelet response showed superior long-term outcomes compared with those who only reach partial response. In conclusion, we demonstrate that platelet TGF-β1 induces the expansion and functional reprogramming of MDSCs via the TGF-β/Smad pathway. These data indicate that platelet recovery not only serves as an end point of treatment response but also paves the way for immune homeostasis in immune-mediated thrombocytopenia.
Collapse
Affiliation(s)
- Lingjun Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Haoyi Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Mingfang Zhu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Xiaofei Ni
- Institute of Hematology and Blood Diseases Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Tianjin, China
| | - Lu Sun
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Wanru Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Jie Xie
- Department of Hematology, Central Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Yubin Li
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yitong Xu
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ruting Wang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Shouqing Han
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ping Zhang
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Jun Peng
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Ming Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| | - Yu Hou
- Department of Hematology, Qilu Hospital of Shandong University, Shandong University, Jinan, China
| |
Collapse
|
11
|
Wu Y, Chen D, Gao Y, Xu Q, Zhou Y, Ni Z, Na M. Immunosuppressive regulatory cells in cancer immunotherapy: restrain or modulate? Hum Cell 2024; 37:931-943. [PMID: 38814516 DOI: 10.1007/s13577-024-01083-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2024] [Accepted: 05/22/2024] [Indexed: 05/31/2024]
Abstract
Immunosuppressive regulatory cells (IRCs) play important roles in negatively regulating immune response, and are mainly divided into myeloid-derived suppressor cells (MDSCs) and regulatory T cells (Tregs). Large numbers of preclinical and clinical studies have shown that inhibition or reduction of IRCs could effectively elevate antitumor immune responses. However, several studies also reported that excessive inhibition of IRCs function is one of the main reasons causing the side effects of cancer immunotherapy. Therefore, the reasonable regulation of IRCs is crucial for improving the safety and efficiency of cancer immunotherapy. In this review, we summarised the recent research advances in the cancer immunotherapy by regulating the proportion of IRCs, and discussed the roles of IRCs in regulating tumour immune evasion and drug resistance to immunotherapies. Furthermore, we also discussed how to balance the potential opportunities and challenges of using IRCs to improve the safety of cancer immunotherapies.
Collapse
Affiliation(s)
- Yan Wu
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China
- School of Medicine, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Dongfeng Chen
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Gao
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Sciences, University of Macau, Macau, 999078, China
| | - Qinggang Xu
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Yang Zhou
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Zhong Ni
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China
| | - Manli Na
- Department of Burn and Plastic Surgery, The Affiliated Hospital of Jiangsu University, Zhenjiang, 210031, Jiangsu, People's Republic of China.
- School of Life Sciences, Jiangsu University, Zhenjiang, 212013, Jiangsu, People's Republic of China.
- International Genome Center, Jiangsu University, 301 Xuefu Road, Zhenjiang, 212013, Jiangsu, People's Republic of China.
| |
Collapse
|
12
|
Gu Y, Liu Q, He Q, Wu Q, Li L, Xu D, Zheng L, Xie L, Cheng S, Shen H, Zhou Y, Yang J, Jin H, Zhang X. LC3-dependent extracellular vesicles promote M-MDSC accumulation and immunosuppression in colorectal cancer. iScience 2024; 27:109272. [PMID: 38706868 PMCID: PMC11066428 DOI: 10.1016/j.isci.2024.109272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 04/24/2023] [Accepted: 02/14/2024] [Indexed: 05/07/2024] Open
Abstract
For a long time, myeloid-derived suppressor cells (MDSCs) dilated in circulation system of colorectal cancer (CRC) patients have been puzzling clinicians. Various evidence shows that MDSCs constitute the bulk of immunosuppression in CRC, which is related to tumor growth, adhesion, invasion, metastasis, and immune escape. However, the mechanisms underlying these cells formation remain incompletely understood. In this study, we reported that CRC cell-derived LC3-dependent extracellular vesicles (LDEVs)-mediated M-MDSCs formation via TLR2-MYD88 pathway. Furthermore Hsp60 was the LDEVs surface ligand that triggered these MDSCs induction. In clinical studies, we reported that accumulation of circulating M-MDSCs as well as IL-10 and arginase1 secretion were reliant upon the levels of tumor cell-derived LDEVs in CRC patients. These findings indicated how local tumor cell-derived extracellular vesicles influence distal hematopoiesis and provided novel justification for therapeutic targeting of LDEVs in patients with CRC.
Collapse
Affiliation(s)
- Ye Gu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, Zhejiang University School of Medicine, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiang Liu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiaoxian He
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Qiangsheng Wu
- Department of Assay Development, EOTOBio TECHNOLOGY CO., LTD, Nanjing, Jiangsu 310006, P.R. China
| | - Lingyun Li
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Dongchao Xu
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Liyun Zheng
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Lu Xie
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Sile Cheng
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Hongzhang Shen
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Yifeng Zhou
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Jianfeng Yang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Hangbin Jin
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| | - Xiaofeng Zhang
- Department of Gastroenterology, Affiliated Hangzhou First People’s Hospital, School of Medicine, Westlake University, Hangzhou 310006, Zhejiang, P.R. China
- Department of Gastroenterology, The Fourth Clinical Medicine College, Zhejiang Chinese Medical University, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Integrated Traditional Chinese and Western Medicine for Biliary and Pancreatic Diseases of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
- Hangzhou Hospital & Institute of Digestive Diseases, Hangzhou, Zhejiang 310006, P.R. China
- Key Laboratory of Clinical Cancer Pharmacology and Toxicology Research of Zhejiang Province, Hangzhou, Zhejiang 310006, P.R. China
| |
Collapse
|
13
|
Balan Y, Sundaramurthy R, Gaur A, Varatharajan S, Raj GM. Impact of high-salt diet in health and diseases and its role in pursuit of cancer immunotherapy by modulating gut microbiome. J Family Med Prim Care 2024; 13:1628-1635. [PMID: 38948582 PMCID: PMC11213449 DOI: 10.4103/jfmpc.jfmpc_1574_23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2023] [Revised: 11/27/2023] [Accepted: 12/04/2023] [Indexed: 07/02/2024] Open
Abstract
Cancer chemotherapy remains an area of concern, as many of the therapies are uncomfortable involving side effects and unpleasant experiences. These factors could further reduce patient's quality of life, and even endanger their life. Many therapeutic strategies have been tried to reduce the unpleasant side effects and increase the treatment effectiveness; however, none have shown to have promising effects. One of the main hindrances to cancer therapy is the escape strategies by tumor cells to the immune attack. Promoting inflammation in the tumor microenvironment is the cornerstone and key therapeutic target in cancer chemotherapy. High-salt diet (HSD) intake, though it has deleterious effects on human health by promoting chronic inflammation, is found to be advantageous in the tumor microenvironment. Studies identified HSD favors an increased abundance of Bifidobacterium species in the tumor environment due to gut barrier alteration, which, in turn, promotes inflammation and favors improved response to cancer chemotherapy. A review of the literature was carried out to find out the effects of an HSD on health and diseases, with special mention of its effect on cancer chemotherapy. Studies emphasized HSD would block the myeloid-derived suppressor cells which will enhance the tumor immunity. Exploration of the precise mechanism of simple HSD regime/ingestion of specific bacterial species as probiotics will be effective and essential to formulate the game-changing cancer chemotherapy. With the modern era of healthcare moving toward precision medicine where the physician can choose the treatment option suitable for the individual, HSD regime/ingestion of specific bacterial species can be considered.
Collapse
Affiliation(s)
- Yuvaraj Balan
- Department of Biochemistry, All India Institute of Medical Sciences, Madurai, Tamil Nadu, India
| | - Raja Sundaramurthy
- Department of Microbiology, All India Institute of Medical Sciences, Hyderabad, Telangana, India
| | - Archana Gaur
- Department of Physiology, All India Institute of Medical Sciences, Hyderabad, Telangana, India
| | | | - Gerard Marshall Raj
- Department of Pharmacology, All India Institute of Medical Sciences, Hyderabad, Telangana, India
| |
Collapse
|
14
|
Zhou J, Xiao H, Wang Z, Wang H, Liang X, Zhai Z, Hong J. CD14 -CD10 -CD45 +HLA-DR -SSC + neutrophils may be granulocytic myeloid-derived suppressor cell-like cells and relate to disease progression in non-Hodgkin's lymphoma patients. Immunol Cell Biol 2024; 102:256-268. [PMID: 38361210 DOI: 10.1111/imcb.12728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Revised: 08/31/2023] [Accepted: 01/16/2024] [Indexed: 02/17/2024]
Abstract
We explored the frequency of CD14-CD10-CD45+HLA-DR-SSC++ neutrophils (CD10- neutrophils) in patients with non-Hodgkin's lymphoma (NHL), and their immunologic characteristics and clinical significance. Patients with NHL who were newly diagnosed (NDP; n = 33), in remission (RMP; n = 28) and relapsed (RLP; n = 29) were included, and 47 volunteers were recruited as healthy controls (HCs). The frequency of CD10- neutrophils in the peripheral blood from HC and patients with NHL was detected. CD10- and CD10+ neutrophils were sorted, and their cytology was analyzed. CD3+ T cells were also isolated and cultured with the autologous CD10- or CD10+ neutrophils, after which the proliferation and death rates of T cells were determined. The levels of arginase-1 (Arg-1) and reactive oxygen species (ROS) in CD10+ or CD10- neutrophils were examined. Few CD10- neutrophils were detected in HCs but were significantly elevated in patients with NHL, especially in NDP and RLP. In addition, CD10- neutrophils in NDP with advanced stage and high risk were markedly higher than those in NDP with limited stage and low risk. In RMP and RLP, the relapse-free survival and overall survival in patients with high CD10- neutrophils were shorter than those with low CD10- neutrophils. CD10- neutrophils from patients with NHL, which mainly consist of immature neutrophils, inhibit T-cell proliferation and facilitate T-cell death. Furthermore, a significant increase was observed in Arg-1 expression, along with an increase to a certain extent in ROS. CD10- neutrophils in patients with NHL have characteristics of myeloid-derived suppressor cells and may be related to disease progression and poor prognosis.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, China
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| | - Hao Xiao
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhitao Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Huiping Wang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Xue Liang
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Zhimin Zhai
- Hematologic Diseases Research Center of Second Affiliated Hospital of Anhui Medical University, Hefei, China
- Hematologic Department of Second Affiliated Hospital of Anhui Medical University, Hefei, China
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, China
- Nursing International Collaboration Research Center of Anhui Province, Hefei, China
| |
Collapse
|
15
|
Wakita H, Lu Y, Li X, Kobayashi T, Hachiya T, Ide H, Horie S. Evaluating Leukocyte Telomere Length and Myeloid-Derived Suppressor Cells as Biomarkers for Prostate Cancer. Cancers (Basel) 2024; 16:1386. [PMID: 38611064 PMCID: PMC11011111 DOI: 10.3390/cancers16071386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 03/27/2024] [Accepted: 03/30/2024] [Indexed: 04/14/2024] Open
Abstract
BACKGROUND Leukocyte telomere length (LTL) and myeloid-derived suppressor cells (MDSC) are associated with aging and the development and progression of cancer. However, the exact nature of this relationship remains unclear. Our study aimed to investigate the potential of LTL and MDSC as diagnostic biomarkers for prostate cancer while also seeking to deepen our understanding of the relationship of these potential biomarkers to each other. METHODS Our study involved patients undergoing a prostate biopsy. We analyzed the relative LTL in genomic DNA obtained from peripheral blood leukocytes as well as the percentage of MDSC and their subtypes in peripheral blood mononuclear cells (PBMC). Our evaluation focused on examining the relationship between LTL and MDSC and pathological diagnoses as well as investigating the correlation between LTL and MDSC levels. RESULTS In our study of 102 participants, 56 were pathologically diagnosed with localized prostate cancer (cancer group), while 46 tested negative (control group). The cancer group exhibited significantly shorter LTL in comparison to the control group (p = 0.024). Additionally, the cancer group showed a tendency towards a higher percentage of monocytic MDSC (M-MDSC), although this difference did not reach statistical significance (p = 0.056). Our multivariate logistic regression analysis revealed that patients with shorter LTL and higher percentages of M-MDSC had a 2.98-fold (95% CI = 1.001-8.869, p = 0.049) and 3.03-fold (95% CI = 1.152-7.977, p = 0.025) increased risk of prostate cancer diagnosis, respectively. There was also a significant negative correlation between LTL and M-MDSC. (r = -0.347, p < 0.001). CONCLUSIONS Our research has established a correlation between LTL and MDSC in patients undergoing biopsy for prostate cancer. Notably, we observed that individuals with localized prostate cancer tend to have shorter LTL and a higher percentage of M-MDSC prior to their diagnosis. These findings suggest that LTL and M-MDSC could potentially serve as adjunctive biomarkers for the early diagnosis of prostate cancer.
Collapse
Affiliation(s)
- Haruhiko Wakita
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
| | - Yan Lu
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
| | - Xiaoxu Li
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
| | - Takuro Kobayashi
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
| | - Tsuyoshi Hachiya
- Department of Advanced Informatics for Genetic Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan;
| | - Hisamitsu Ide
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
- Department of Digital Therapeutics, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan
| | - Shigeo Horie
- Department of Urology, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan; (H.W.); (Y.L.); (X.L.); (T.K.); (H.I.)
- Department of Advanced Informatics for Genetic Disease, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan;
- Department of Digital Therapeutics, Graduate School of Medicine, Juntendo University, Tokyo 113-8431, Japan
| |
Collapse
|
16
|
Zhou J, Zhang M, Ju X, Wang H, Xiao H, Zhai Z, Zhong X, Hong J. Increased monocytic myeloid-derived suppressor cells in type 2 diabetes correlate with hyperglycemic and was a risk factor of infection and tumor occurrence. Sci Rep 2024; 14:4384. [PMID: 38388535 PMCID: PMC10883972 DOI: 10.1038/s41598-024-54496-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 02/13/2024] [Indexed: 02/24/2024] Open
Abstract
To investigate the frequency of monocytic myeloid-derived suppressor cells (M-MDSCs) in type 2 diabetes mellitus (T2DM) patients and explore the potential associations between M-MDSCs, glycemic control, and the occurrence of infections and tumor. 102 healthy and 77 T2DM individuals were enrolled. We assessed the M-MDSCs frequency, levels of fasting plasma glucose (FPG), haemoglobin A1c (HbA1c), and other relevant indicators. Each patient underwent a follow-up of at least 6 months after M-MDSCs detection. The M-MDSCs frequency was significantly higher in patients with poor glycemic control (PGC) compared to the healthy population (P < 0.001), whereas there was no significant difference between patients with good glycemic control and the healthy (P > 0.05). There was a positive correlation between the M-MDSCs frequency and FPG, HbA1c (R = 0.517 and 0.315, P < 0.001, respectively). T2DM patients with abnormally increased M-MDSCs have a higher incidence of infection and tumor (48.57% and 11.43% respectively). Our results shed new light on the pathogenesis of T2DM, help to understand why T2DM patients are susceptible to infection and tumor and providing novel insights for future prevention and treatment of T2DM.
Collapse
Affiliation(s)
- Ji Zhou
- Department of Epidemiology and Health Statistics, School of Public Health, Anhui Medical University, Hefei, 230032, Anhui, China
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Mengjie Zhang
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China
- Department of Endocrinology, Fuyang People's Hospital, Fuyang, 236000, Anhui, China
| | - Xiaodi Ju
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China
| | - Huiping Wang
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Hao Xiao
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Zhimin Zhai
- Hematologic Department/Hematologic Disease Research Center, the Second Affiliated Hospital of Anhui Medical University, Hefei, 230601, Anhui, China
| | - Xing Zhong
- Department of Endocrinology, The Second Affiliated Hospital of Anhui Medical University, 678 Furong Road, Hefei, 230601, Anhui, China.
| | - Jingfang Hong
- School of Nursing, Anhui Medical University, Hefei, 230032, Anhui, China.
- Nursing International Collaboration Research Center of Anhui Province, Hefei, 230601, Anhui, China.
| |
Collapse
|
17
|
Shan F, Tang F, Liu Y, Han X, Wu W, Tang Y, Zhan Q, Zhang N. The effect of adoptive transferring myeloid-derived suppressor cells in ventilator-induced lung injury mice. Heliyon 2024; 10:e25595. [PMID: 38356581 PMCID: PMC10865327 DOI: 10.1016/j.heliyon.2024.e25595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Revised: 01/29/2024] [Accepted: 01/30/2024] [Indexed: 02/16/2024] Open
Abstract
The effects of adoptive transferring myeloid-derived suppressor cells (MDSCs) to mice with ventilator-induced lung injury (VILI) are unclear. Our objective was to investigate the effects of adoptively transferring MDSCs in VILI. The mouse model was created by introducing mechanical ventilation through a high tidal volume of 20 ml/kg for 4 h. Inflammation-induced MDSCs (iMDSCs) were collected from the bone marrow of mice with cecal ligation and puncture. iMDSCs were administrated through retrobulbar angular vein 1 h before the mechanical ventilation. The control group was anesthetized and maintained spontaneous respiration. After the termination of mechanical ventilation, bronchoalveolar lavage fluid (BALF) and lung samples 6 h were collected. The concentrations of BALF protein, levels of inflammatory mediators, and white blood cells were all significantly decreased in mice treated with iMDSCs. Histological examinations indicated reduced lung damage after iMDSCs treatment. Moreover, adoptive transfer of iMDSCs could reduce CD4+ T-cell counts and inhibit its inflammatory cytokine secretion. iMDSCs treatment was found to had no immunostimulatory effects or cause secondary infections in mice. In conclusion, MDSCs might be a potential targeted therapy for alleviating the inflammatory response of VILI mice in a T-cell dependent manner.
Collapse
Affiliation(s)
- Fangzhen Shan
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Medical Research Center, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Fenglian Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yuan Liu
- Department of Intensive care unit III, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Xiao Han
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Wei Wu
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Yanhua Tang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
| | - Qingyuan Zhan
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| | - Nannan Zhang
- Department of Pulmonary and Critical Care Medicine, Affiliated Hospital of Jining Medical University, Shandong, China
- Department of Pulmonary and Critical Care Medicine, China-Japan Friendship Hospital, Beijing, China
| |
Collapse
|
18
|
Del Pilar C, Garrido-Matilla L, Del Pozo-Filíu L, Lebrón-Galán R, Arias RF, Clemente D, Alonso JR, Weruaga E, Díaz D. Intracerebellar injection of monocytic immature myeloid cells prevents the adverse effects caused by stereotactic surgery in a model of cerebellar neurodegeneration. J Neuroinflammation 2024; 21:49. [PMID: 38355633 PMCID: PMC10867997 DOI: 10.1186/s12974-023-03000-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2023] [Accepted: 12/18/2023] [Indexed: 02/16/2024] Open
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) constitute a recently discovered bone-marrow-derived cell type useful for dealing with neuroinflammatory disorders. However, these cells are only formed during inflammatory conditions from immature myeloid cells (IMCs) that acquire immunosuppressive activity, thus being commonly gathered from diseased animals. Then, to obtain a more clinically feasible source, we characterized IMCs directly derived from healthy bone marrow and proved their potential immunosuppressive activity under pathological conditions in vitro. We then explored their neuroprotective potential in a model of human cerebellar ataxia, the Purkinje Cell Degeneration (PCD) mouse, as it displays a well-defined neurodegenerative and neuroinflammatory process that can be also aggravated by invasive surgeries. METHODS IMCs were obtained from healthy bone marrow and co-cultured with activated T cells. The proliferation and apoptotic rate of the later were analyzed with Tag-it Violet. For in vivo studies, IMCs were transplanted by stereotactic surgery into the cerebellum of PCD mice. We also used sham-operated animals as controls of the surgical effects, as well as their untreated counterparts. Motor behavior of mice was assessed by rotarod test. The Purkinje cell density was measured by immunohistochemistry and cell death assessed with the TUNEL technique. We also analyzed the microglial phenotype by immunofluorescence and the expression pattern of inflammation-related genes by qPCR. Parametric tests were applied depending on the specific experiment: one or two way ANOVA and Student's T test. RESULTS IMCs were proven to effectively acquire immunosuppressive activity under pathological conditions in vitro, thus acting as MDSCs. Concerning in vivo studios, sham-operated PCD mice suffered detrimental effects in motor coordination, Purkinje cell survival and microglial activation. After intracranial administration of IMCs into the cerebellum of PCD mice, no special benefits were detected in the transplanted animals when compared to untreated mice. Nonetheless, this transplant almost completely prevented the impairments caused by the surgery in PCD mice, probably by the modulation of the inflammatory patterns. CONCLUSIONS Our work comprise two main translational findings: (1) IMCs can be directly used as they behave as MDSCs under pathological conditions, thus avoiding their gathering from diseased subjects; (2) IMCs are promising adjuvants when performing neurosurgery.
Collapse
Affiliation(s)
- Carlos Del Pilar
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Lucía Garrido-Matilla
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Departamento de Psicobiología, Facultad de Psicología, Universidad Nacional de Educación a Distancia (UNED), Madrid, Spain
| | - Lucía Del Pozo-Filíu
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Translational Stroke Laboratory (TREAT), Clinical Neurosciences Research Laboratory (LINC), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Rafael Lebrón-Galán
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Hospital Universitario de Toledo, Avd. Río Guadiana, s/n, 45007, Toledo, Spain
| | - Raúl F Arias
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Diego Clemente
- Neuroimmuno-Repair Group, Hospital Nacional de Parapléjicos-SESCAM, Finca La Peraleda s/n, 45004, Toledo, Spain
- Centro de Investigación Biomédica en Red de Enfermedades Neurodegenerativas (CIBERNED), Carlos III Health Institute, Av. Monforte de Lemos, 3-5, 28029, Madrid, Spain
| | - José Ramón Alonso
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain
| | - Eduardo Weruaga
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| | - David Díaz
- Institute for Neuroscience of Castile and Leon, INCyL, Universidad de Salamanca, C/Pintor Fernando Gallego 1, 37007, Salamanca, Spain.
- Institute of Biomedical Research of Salamanca, IBSAL, Salamanca, Spain.
| |
Collapse
|
19
|
Shu J, Wang K, Liu Y, Zhang J, Ding X, Sun H, Wu J, Huang B, Qiu J, Sheng H, Lu L. Trichosanthin alleviates streptozotocin-induced type 1 diabetes mellitus in mice by regulating the balance between bone marrow-derived IL6 + and IL10 + MDSCs. Heliyon 2024; 10:e22907. [PMID: 38187307 PMCID: PMC10770427 DOI: 10.1016/j.heliyon.2023.e22907] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/15/2023] [Accepted: 11/22/2023] [Indexed: 01/09/2024] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) occupy a pivotal role in the intricate pathogenesis of the autoimmune disorder, Type 1 diabetes mellitus (T1DM). Since our previous work demonstrated that trichosanthin (TCS), an active compound of Chinese herb medicine Tian Hua Fen, regulated immune response, we aimed to clarify the efficacy and molecular mechanism of TCS in the treatment of T1DM. To this end, T1DM mouse model was established by streptozotocin (STZ) induction. The mice were randomly divided into normal control group (Ctl), T1DM group (STZ), TCS treated diabetic group (STZ + TCS) and insulin-treated diabetic group (STZ + insulin). Our comprehensive evaluation encompassed variables such as blood glucose, glycosylated hemoglobin, body weight, pertinent biochemical markers, pancreatic histopathology, and the distribution of immune cell populations. Furthermore, we meticulously isolated MDSCs from the bone marrow of T1DM mice, probing into the expressions of genes pertaining to the advanced glycation end product receptor (RAGE)/NF-κB signaling pathway through RT-qPCR. Evidently, TCS exhibited a substantial capacity to effectively counteract the T1DM-induced elevation in random blood glucose, glycosylated hemoglobin, and IL-6 levels in plasma. Pathological scrutiny underscored the ability of TCS to mitigate the damage incurred by islets. Intriguingly, TCS interventions engendered a reduction in the proportion of MDSCs within the bone marrow, particularly within the IL-6+ MDSC subset. In contrast, IL-10+ MDSCs exhibited an elevation following TCS treatment. Moreover, we observed a significant down-regulation of relative mRNA of pro-inflammatory genes, including arginase 1 (Arg1), inducible nitric oxide synthase (iNOS), RAGE and NF-κB, within MDSCs due to the influence of TCS. It decreases total MDSCs and regulates the balance between IL-6+ and IL-10+ MDSCs thus alleviating the symptoms of T1DM. TCS also down-regulates the RAGE/NF-κB signaling pathway, making it a promising alternative therapeutic treatment for T1DM. Collectively, our study offered novel insights into the underlying mechanism by which TCS serves as a promising therapeutic intervention for T1DM.
Collapse
Affiliation(s)
- Jie Shu
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Kefan Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Yuting Liu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Jie Zhang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Xuping Ding
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| | - Hanxiao Sun
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Jiaoxiang Wu
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Biao Huang
- College of Life Sciences and Medicine, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Ju Qiu
- The Key Laboratory of Stem Cell Biology, Shanghai Institutes of Biological Sciences, University of Chinese Academy of Sciences, Chinese Academy of Sciences, Shanghai, 200031, China
| | - Huiming Sheng
- Department of Clinical Laboratory, Tong Ren Hospital, Shanghai Jiao Tong University School of Medicine, 1111 Xian Xia Road, Shanghai, 200336, China
| | - Liming Lu
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, 280 Chong Qing South Road, 200025, China
| |
Collapse
|
20
|
Takeda Y, Kato T, Sabrina S, Naito S, Ito H, Emi N, Kuboki Y, Takai Y, Fukuhara H, Ushijima M, Narisawa T, Yagi M, Kanno H, Sakurai T, Nishida H, Araki A, Shimotai Y, Nagashima M, Nouchi Y, Saitoh S, Nara H, Tsuchiya N, Asao H. Intracellular Major Histocompatibility Complex Class II and C-X-C Motif Chemokine Ligand 10-Expressing Neutrophils Indicate the State of Anti-Tumor Activity Induced by Bacillus Calmette-Guérin. Biomedicines 2023; 11:3062. [PMID: 38002062 PMCID: PMC10669614 DOI: 10.3390/biomedicines11113062] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 10/20/2023] [Accepted: 11/07/2023] [Indexed: 11/26/2023] Open
Abstract
(1) Background: Inflammatory responses induce the formation of both anti-tumor and pro-tumor neutrophils known as myeloid-derived suppressor cells (MDSCs). Intermittent intravesical infusion of Bacillus Calmette-Guérin (BCG) is an established cancer immunotherapy for non-muscle-invasive bladder cancer (NMIBC). However, the types of neutrophils induced via the inflammatory response to both tumor-bearing and BCG remain unclear. (2) Methods: We therefore analyzed neutrophil dynamics in the peripheral blood and urine of patients with NMIBC who received BCG therapy. Further, we analyzed the effects of BCG in a mouse intraperitoneal tumor model. (3) Results: BCG therapy induced the formation of CXCL10 and MHC class II-positive neutrophils in the urine of patients with NMIBC but did not induce MDSC formation. CXCL10- and MHC class II-expressing neutrophils were detected in peritoneal exudate cells formed after BCG administration. Partial neutrophil depletion using an anti-Ly6G antibody suppressed the upregulation of CXCL10 and MHC class II in neutrophils and reversed the anti-tumor activity of BCG in mouse models. (4) Conclusions: These results indicated that intracellular MHC class II- and CXCL10-expressing neutrophils indicate the state of anti-tumor activity induced via BCG. The status of neutrophils in mixed inflammation of immunosuppressive and anti-tumor responses may therefore be useful for evaluating immunological systemic conditions.
Collapse
Affiliation(s)
- Yuji Takeda
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Tomoyuki Kato
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Saima Sabrina
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Sei Naito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiromi Ito
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Naoto Emi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yuya Kuboki
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Yuki Takai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hiroki Fukuhara
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Masaki Ushijima
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Takafumi Narisawa
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Mayu Yagi
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hidenori Kanno
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Toshihiko Sakurai
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hayato Nishida
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Akemi Araki
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yoshitaka Shimotai
- Department of Infectious Diseases, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan;
| | - Mikako Nagashima
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Yusuke Nouchi
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Shinichi Saitoh
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| | - Hidetoshi Nara
- Department of Biological Sciences, Faculty of Science and Engineering, Ishinomaki Senshu University, Miyagi 986-8580, Japan;
| | - Norihiko Tsuchiya
- Department of Urology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (T.K.); (S.N.); (H.I.); (Y.K.); (Y.T.); (H.F.); (M.U.); (T.N.); (M.Y.); (H.K.); (T.S.); (H.N.); (N.T.)
| | - Hironobu Asao
- Department of Immunology, Faculty of Medicine, Yamagata University, Yamagata 990-9585, Japan; (S.S.); (N.E.); (M.N.); (Y.N.); (S.S.); (H.A.)
| |
Collapse
|
21
|
Xu T, Dai J, Tang L, Sun L, Si L, Guo J. Systemic administration of STING agonist promotes myeloid cells maturation and antitumor immunity through regulating hematopoietic stem and progenitor cell fate. Cancer Immunol Immunother 2023; 72:3491-3505. [PMID: 37550427 PMCID: PMC10991199 DOI: 10.1007/s00262-023-03502-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/18/2023] [Indexed: 08/09/2023]
Abstract
STING is a pivotal mediator of effective innate and adaptive anti-tumor immunity; however, intratumoral administration of STING agonists have shown limited therapeutic benefit in clinical trials. The systemic effect of the intravenous delivery of STING agonists in cancer is not well-defined. Here, we demonstrated that systemic administration of STING agonist inhibited melanoma growth, improved inflammatory effector cell infiltration, and induced bone marrow mobilization and extramedullary hematopoiesis, causing widespread changes in immune components in the peripheral blood. The systemically administered STING agonist promoted HSC expansion and influenced lineage fate commitment, which was manifested as the differentiation of HSPCs was skewed toward myeloid cells at the expense of B-cell lymphopoiesis and erythropoiesis. Transcriptome analysis revealed upregulation of myeloid lineage differentiation-related and type I interferon-related genes. This myeloid-biased differentiation promoted the production and maturation of myeloid cells toward an activated phenotype. Furthermore, depletion of Gr-1+ myeloid cells attenuated the anti-tumor immunity of STING agonist. Our findings reveal the anti-tumor mechanism of systemic administration of STING agonist that involves modulating HSPC differentiation and promoting myeloid cells maturation. Our study may help explain the limited clinical activity of STING agonists administered intratumorally.
Collapse
Affiliation(s)
- Tianxiao Xu
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Jie Dai
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lirui Tang
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Linzi Sun
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China
| | - Lu Si
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| | - Jun Guo
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Melanoma and Sarcoma, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
- Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing), Department of Genitourinary Oncology, Peking University Cancer Hospital and Institute, 52# Fucheng Road, Haidian District, Beijing, 100142, China.
| |
Collapse
|
22
|
Shang T, Yu X, Gu Y, Du R, Cai Y, Li Y, Zheng G, Wang C, Zhang J, Liu J, Han S, Yang B. Supermolecular nanovehicles co-delivering TLR7/8-agonist and anti-CD47 siRNA for enhanced tumor immunotherapy. Int J Biol Macromol 2023; 251:126539. [PMID: 37634787 DOI: 10.1016/j.ijbiomac.2023.126539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 08/23/2023] [Accepted: 08/24/2023] [Indexed: 08/29/2023]
Abstract
Cancer immunotherapy is the most promising method for tumor therapy in recent years, among which the macrophages play a critical role in the antitumor immune response. However, tumor-associated macrophages (TAMs) usually display the tumor-promoting M2 phenotype rather than the tumor-killing M1 phenotype. Moreover, the over-expressed CD47 on tumor cells severely hinders the function of macrophages by blocking the CD47/SIRPα pathway. Herein, a nano-assembly system of CHTR/siRNA was constructed through the host-guest interaction of a hyperbranched amino-functionalized β-cyclodextrin and immune agonist imiquimod (R848), while CD47 siRNA was loaded inside through electrostatic interaction. The Toll-like receptor (TLR) 7/8 agonist R848 can "re-educate" macrophages from the protumoral M2 phenotype to antitumoral M1 phenotype, while CD47 siRNA can down-regulate the "don't eat me" CD47 signal on the surface of cancer cells and enhance the phagocytosis of cancer cells by macrophages. Through the dual regulation of TAMs, the immunosuppressive tumor microenvironment was relieved, and the host-guest drug-carrying system resulted in synergistic immunotherapy effect on tumors and inhibited tumor growth. The facile self-assembly of nanodrug offers a new strategy in co-delivery of multiple therapeutic agents for cascade cancer immunotherapy.
Collapse
Affiliation(s)
- Tongyi Shang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Xinying Yu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuan Gu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Rong Du
- School of Pharmaceutical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yanjun Cai
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Yuwei Li
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Guodong Zheng
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Chaoqun Wang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jian Zhang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China
| | - Jifang Liu
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| | - Shisong Han
- Zhuhai Institute of Translational Medicine, Guangdong Provincial Key Laboratory of Tumor Interventional Diagnosis and Treatment, Zhuhai People's Hospital (Zhuhai Hospital Affiliated with Jinan University), Zhuhai 519000, China.
| | - Bin Yang
- The Sixth Affiliated Hospital of Guangzhou Medical University, Qingyuan People's Hospital, Department of Biomedical Engineering, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou 511436, China.
| |
Collapse
|
23
|
Iglesias-Escudero M, San Segundo D, López-Hoyos M. CD4+ T cells proliferation assay to analyze Mo-MDSCs suppressive function. Methods Cell Biol 2023; 184:69-84. [PMID: 38555159 DOI: 10.1016/bs.mcb.2023.04.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/02/2024]
Abstract
Among myeloid regulatory cells (MRCs), some particular subsets termed myeloid-derived suppressor cells (MDSCs) have been described. They are suppressor myeloid cells characterized by their ability to regulate innate and adaptive immune responses and known to accumulate in the context of chronic diseases and cancer. The lack of specific markers makes their classification difficult and requires functional studies to distinguish them from other myeloid cells. In this sense, the in vitro analysis of the proliferation of T lymphocytes cultured with MDSCs provides information about the regulatory function of these cells. Here, we provide a detailed protocol to assess the ability of human Mo-MDSCs to suppress T cell proliferation in vitro after obtaining Mo-MDSCs and CD4+T cell from peripheral blood.
Collapse
Affiliation(s)
| | - David San Segundo
- Transplant and Autoimmunity Group, Research Institute-IDIVAL, Santander, Spain; Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain
| | - Marcos López-Hoyos
- Transplant and Autoimmunity Group, Research Institute-IDIVAL, Santander, Spain; Universitary Hospital Marqués de Valdecilla-IDIVAL, Santander, Spain; Molecular Biology Department, University of Cantabria, Santander, Spain.
| |
Collapse
|
24
|
Parackova Z, Zentsova I, Bloomfield M, Klocperk A, Horvath R, Malcova H, Cebecauerova D, Sediva A. Expanded population of low-density neutrophils in juvenile idiopathic arthritis. Front Immunol 2023; 14:1229520. [PMID: 37915575 PMCID: PMC10616245 DOI: 10.3389/fimmu.2023.1229520] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 10/05/2023] [Indexed: 11/03/2023] Open
Abstract
Introduction Juvenile idiopathic arthritis (JIA), a clinically variable disease characterized by autoimmune arthritis, affects children, and its immunopathology remains elusive. Alterations in neutrophil biology play an important role in this disease. In the present study, we aimed to explore the features of low-density neutrophils (LDNs) in patients with JIA. Methods Gene expression of peripheral blood mononuclear cells (PBMCs) from children with distinct subtypes of JIA was analyzed by NanoString Immunology panel. Presence of LDNs was ascertained by flow cytometry and the release of neutrophil-associated products were analyzed by LUMINEX. Results LDNs were detected in patients' peripheral blood mononuclear cells (PBMCs) after density gradient centrifugation. Transcriptomic analysis of JIA PBMCs revealed that genes related to neutrophil degranulation were markedly upregulated. The number of LDNs and level of their degranulation products increased in patients' PBMCs and correlated with serum calprotectin, but not with disease activity, sedimentation rate and C-reactive protein (CRP) levels. The phenotypes of LDNs varied from those of normal-density neutrophils and healthy donor LDNs. Phenotypical analysis revealed LDNs are immature and primed population with decreased suppressive capacity. A negative correlation between surface proteins CD62L, CD66b, and CD11b and the number of inflamed joints/JADAS was established. Conclusion Our results describe LDNs as primed, degranulated, immature cells with impaired suppressive activities. This work thus contributes to the increasing body of evidence that LDNs in JIA are altered and their role in the disease immunopathogenesis and possible clinical associations should be investigated further.
Collapse
Affiliation(s)
- Zuzana Parackova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Irena Zentsova
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Marketa Bloomfield
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Adam Klocperk
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| | - Rudolf Horvath
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Hana Malcova
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Dita Cebecauerova
- Department of Paediatric and Adult Rheumatology, University Hospital in Motol, Prague, Czechia
| | - Anna Sediva
- Department of Immunology, 2nd Faculty of Medicine Charles University, University Hospital in Motol, Prague, Czechia
| |
Collapse
|
25
|
Yazdanbakhsh K, Provan D, Semple JW. The role of T cells and myeloid-derived suppressor cells in refractory immune thrombocytopenia. Br J Haematol 2023; 203:54-61. [PMID: 37735552 PMCID: PMC11493757 DOI: 10.1111/bjh.19079] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2023] [Accepted: 07/31/2023] [Indexed: 09/23/2023]
Abstract
Immune thrombocytopenia (ITP) is characterized by a dysregulated immune response against platelets, affecting both their destruction and production. A role for an abnormal T-cell compartment has been established in ITP pathogenesis and treatments that increase platelet counts in patients with ITP have shown improvements in T-cell profiles. On the other hand, patients who were refractory to treatment appear to retain the T-cell abnormalities as before. Myeloid-derived suppressive cells (MDSCs) are also emerging as key contributors to the immune pathology of ITP and response to treatment. In this review, we will discuss how various treatments affect the T-cell and MDSC compartments in ITP. The review will focus on studies that have examined the underlying mechanisms and/or genetic basis responsible for refractoriness to a given treatment and highlight remaining challenges in identifying factors and mechanisms to predict response to treatment.
Collapse
Affiliation(s)
- Karina Yazdanbakhsh
- Laboratory of Complement Biology, Lindsley F. Kimball Research Institute, New York Blood Center, New York, New York, USA
| | - Drew Provan
- Department of Haematology, Blizard Institute, Barts and The London School of Medicine and Dentistry, Queen Mary University of London, London, UK
| | - John W. Semple
- Division of Hematology and Transfusion Medicine, Lund University, Lund, Sweden
- Clinical Immunology and Transfusion Medicine, Office of Medical Services, Region Skane, Lund, Sweden
- Department of Pharmacology, University of Toronto, Toronto, Ontario, Canada
| |
Collapse
|
26
|
Krumm J, Petrova E, Lechner S, Mergner J, Boehm HH, Prestipino A, Steinbrunn D, Deline ML, Koetzner L, Schindler C, Helming L, Fromme T, Klingenspor M, Hahne H, Pieck JC, Kuster B. High-Throughput Screening and Proteomic Characterization of Compounds Targeting Myeloid-Derived Suppressor Cells. Mol Cell Proteomics 2023; 22:100632. [PMID: 37586548 PMCID: PMC10518717 DOI: 10.1016/j.mcpro.2023.100632] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 08/09/2023] [Accepted: 08/11/2023] [Indexed: 08/18/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous cell population of incompletely differentiated immune cells. They are known to suppress T cell activity and are implicated in multiple chronic diseases, which make them an attractive cell population for drug discovery. Here, we characterized the baseline proteomes and phospho-proteomes of mouse MDSC differentiated from a progenitor cell line to a depth of 7000 proteins and phosphorylation sites. We also validated the cellular system for drug discovery by recapitulating and identifying known and novel molecular responses to the well-studied MDSC drugs entinostat and mocetinostat. We established a high-throughput drug screening platform using a MDSC/T cell coculture system and assessed the effects of ∼21,000 small molecule compounds on T cell proliferation and IFN-γ secretion to identify novel MDSC modulator. The most promising candidates were validated in a human MDSC system, and subsequent proteomic experiments showed significant upregulation of several proteins associated with the reduction of reactive oxygen species (ROS). Proteome-wide solvent-induced protein stability assays identified Acyp1 and Cd74 as potential targets, and the ROS-reducing drug phenotype was validated by measuring ROS levels in cells in response to compound, suggesting a potential mode of action. We anticipate that the data and chemical tools developed in this study will be valuable for further research on MDSC and related drug discovery.
Collapse
Affiliation(s)
- Johannes Krumm
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Elissaveta Petrova
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Severin Lechner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany
| | - Julia Mergner
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Center for Biomolecular Mass Spectrometry at Klinikum rechts der Isar (BayBioMS@MRI), Technical University of Munich, Munich, Germany
| | - Hans-Henning Boehm
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Alessandro Prestipino
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | | | - Marshall L Deline
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany
| | - Lisa Koetzner
- Global Research & Development, Discovery and Development Technologies, Global Medicinal Chemistry, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Christina Schindler
- Global Research & Development, Discovery Technologies, Computational Chemistry & Biologics, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Laura Helming
- Global Research & Development, TIP-Oncology & Immunooncology, Myeloid Cell Research, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Tobias Fromme
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | - Martin Klingenspor
- Chair of Molecular Nutritional Medicine, TUM School of Life Sciences, Technical University of Munich, Freising, Germany; Else Kröner Fresenius Center for Nutritional Medicine, Technical University of Munich, Freising, Germany; ZIEL Institute for Food & Health, Technical University of Munich, Freising, Germany
| | | | - Jan-Carsten Pieck
- Global Research & Development, Discovery and Development Technologies, Discovery Pharmacology, Healthcare Business of Merck KGaA, Darmstadt, Germany
| | - Bernhard Kuster
- Chair of Proteomics and Bioanalytics, Technical University of Munich, Freising, Germany; Bavarian Biomolecular Mass Spectrometry Center (BayBioMS), Technical University of Munich, Freising, Germany.
| |
Collapse
|
27
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [PMID: 37169182 DOI: 10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 55] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 04/18/2023] [Accepted: 04/23/2023] [Indexed: 05/13/2023]
Abstract
BACKGROUND & AIMS Immune checkpoint blockade therapy benefits only a small subset of patients with colorectal cancer (CRC), and identification of CRC-intrinsic events modulating immune checkpoint blockade efficacy is an unmet need. We found that AlkB homolog 5 (ALKBH5), an RNA N6-methyladenosine eraser, drives immunosuppression and is a molecular target to boost immune checkpoint blockade therapy in CRC. METHODS Clinical significance of ALKBH5 was evaluated in human samples (n = 205). Function of ALKBH5 was investigated in allografts, CD34+ humanized mice, and Alkbh5 knockin mice. Immunity change was determined by means of flow cytometry, immunofluorescence, and functional investigation. Methylated RNA immunoprecipitation sequencing and RNA sequencing were used to identify ALKBH5 targets. Vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA was constructed for targeting ALKBH5 in vivo. RESULTS High ALKBH5 expression predicts poor prognosis in CRC. ALKBH5 induced myeloid-derived suppressor cell accumulation but reduced natural killer cells and cytotoxic CD8+ T cells to induce colorectal tumorigenesis in allografts, CD34+ humanized mice, and intestine-specific Alkbh5 knockin mice. Mechanistically, AXIN2, a Wnt suppressor, was identified as a target of ALKBH5. ALKBH5 binds and demethylates AXIN2 messenger RNA, which caused its dissociation from N6-methyladenosine reader IGF2BP1 and degradation, resulting in hyperactivated Wnt/β-catenin. Subsequently, Wnt/β-catenin targets, including Dickkopf-related protein 1 (DKK1) were induced by ALKBH5. ALKBH5-induced DKK1 recruited myeloid-derived suppressor cells to drive immunosuppression in CRC, and this effect was abolished by anti-DKK1 in vitro and in vivo. Finally, vesicle-like nanoparticle-encapsulated ALKBH5-small interfering RNA, or anti-DKK1 potentiated anti-PD1 treatment in suppressing CRC growth by enhancing antitumor immunity. CONCLUSIONS This study identified an ALKBH5-N6-methyladenosine-AXIN2-Wnt-DKK1 axis in CRC, which drives immune suppression to facilitate tumorigenesis. Targeting of ALKBH5 is a promising strategy for sensitizing CRC to immunotherapy.
Collapse
Affiliation(s)
- Jianning Zhai
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Huarong Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Anesthesia and Intensive Care and Peter Hung Pain Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Chi Chun Wong
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yao Peng
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Hongyan Gou
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Jingwan Zhang
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yasi Pan
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Danyu Chen
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Yufeng Lin
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong
| | - Shiyan Wang
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Wei Kang
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Ka Fai To
- Department of Anatomical and Cellular Pathology, State Key Laboratory of Oncology in South China, Prince of Wales Hospital, The Chinese University of Hong Kong, Hong Kong
| | - Zhiwei Chen
- AIDS Institute and Department of Microbiology, State Key Laboratory of Emerging Infectious Disease, Li Ka Shing Faculty of Medicine, The University of Hong Kong, Hong Kong
| | - Yuqiang Nie
- Department of Gastroenterology, Guangzhou First People's Hospital, Guangzhou Medical University, Guangzhou, China
| | - Housheng Hansen He
- Princess Margaret Cancer Centre, University Health Network, Department of Medical Biophysics, University of Toronto, Toronto, Ontario, Canada
| | - Joseph Jao-Yiu Sung
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong; Lee Kong Chian School of Medicine, Nanyang Technology University, Singapore
| | - Jun Yu
- Institute of Digestive Disease and Department of Medicine and Therapeutics, State Key Laboratory of Digestive Disease, Li Ka Shing Institute of Health Sciences, Chinese University of Hong Kong-Shenzhen Research Institute, The Chinese University of Hong Kong, Hong Kong.
| |
Collapse
|
28
|
Zhai J, Chen H, Wong CC, Peng Y, Gou H, Zhang J, Pan Y, Chen D, Lin Y, Wang S, Kang W, To KF, Chen Z, Nie Y, He HH, Sung JJY, Yu J. ALKBH5 Drives Immune Suppression Via Targeting AXIN2 to Promote Colorectal Cancer and Is a Target for Boosting Immunotherapy. Gastroenterology 2023; 165:445-462. [DOI: https:/doi.org/10.1053/j.gastro.2023.04.032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/06/2023]
|
29
|
Liu H, Wang Z, Zhou Y, Yang Y. MDSCs in breast cancer: an important enabler of tumor progression and an emerging therapeutic target. Front Immunol 2023; 14:1199273. [PMID: 37465670 PMCID: PMC10350567 DOI: 10.3389/fimmu.2023.1199273] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Accepted: 06/19/2023] [Indexed: 07/20/2023] Open
Abstract
Women worldwide are more likely to develop breast cancer (BC) than any other type of cancer. The treatment of BC depends on the subtype and stage of the cancer, such as surgery, radiotherapy, chemotherapy, and immunotherapy. Although significant progress has been made in recent years, advanced or metastatic BC presents a poor prognosis, due to drug resistance and recurrences. During embryonic development, myeloid-derived suppressor cells (MDSCs) develop that suppress the immune system. By inhibiting anti-immune effects and promoting non-immune mechanisms such as tumor cell stemness, epithelial-mesenchymal transformation (EMT) and angiogenesis, MDSCs effectively promote tumor growth and metastasis. In various BC models, peripheral tissues, and tumor microenvironments (TME), MDSCs have been found to amplification. Clinical progression or poor prognosis are strongly associated with increased MDSCs. In this review, we describe the activation, recruitment, and differentiation of MDSCs production in BC, the involvement of MDSCs in BC progression, and the clinical characteristics of MDSCs as a potential BC therapy target.
Collapse
Affiliation(s)
- Haoyu Liu
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| | - Zhicheng Wang
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yuntao Zhou
- National Health Commission (NHC) Key Laboratory of Radiobiology, School of Public Health, Jilin University, Changchun, China
| | - Yanming Yang
- Department of Radiotherapy, Second Hospital of Jilin University, Changchun, China
| |
Collapse
|
30
|
Chen X, Li Y, Xia H, Chen YH. Monocytes in Tumorigenesis and Tumor Immunotherapy. Cells 2023; 12:1673. [PMID: 37443711 PMCID: PMC10340267 DOI: 10.3390/cells12131673] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 06/07/2023] [Accepted: 06/08/2023] [Indexed: 07/15/2023] Open
Abstract
Monocytes are highly plastic innate immune cells that display significant heterogeneity during homeostasis, inflammation, and tumorigenesis. Tumor-induced systemic and local microenvironmental changes influence the phenotype, differentiation, and distribution of monocytes. Meanwhile, monocytes and their related cell subsets perform an important regulatory role in the development of many cancers by affecting tumor growth or metastasis. Thanks to recent advances in single-cell technologies, the nature of monocyte heterogeneity and subset-specific functions have become increasingly clear, making it possible to systematically analyze subset-specific roles of monocytes in tumorigenesis. In this review, we discuss recent discoveries related to monocytes and tumorigenesis, and new strategies for tumor biomarker identification and anti-tumor immunotherapy.
Collapse
Affiliation(s)
| | | | - Houjun Xia
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| | - Youhai H. Chen
- Center for Cancer Immunology, Faculty of Pharmaceutical Sciences, Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences (CAS), Shenzhen 518000, China; (X.C.); (Y.L.)
| |
Collapse
|
31
|
Hua S, Wang S, Cai J, Wu L, Cao Y. Myeloid-derived suppressor cells: Are they involved in gestational diabetes mellitus? Am J Reprod Immunol 2023:e13711. [PMID: 37157925 DOI: 10.1111/aji.13711] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 04/13/2023] [Accepted: 04/21/2023] [Indexed: 05/10/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is currently the most common metabolic complication during pregnancy, with an increasing prevalence worldwide. Maternal immune dysregulation might be partly responsible for the pathophysiology of GDM. Myeloid derived suppressor cells (MDSCs) are a heterogeneous population of cells, emerging as a new immune regulator with potent immunosuppressive capacity. Although the fate and function of these cells were primarily described in pathological conditions such as cancer and infection, accumulating evidences have spotlighted their beneficial roles in homeostasis and physiological conditions. Recently, several studies have explored the roles of MDSCs in the diabetic microenvironment. However, the fate and function of these cells in GDM are still unknown. The current review summarized the existing knowledges about MDSCs and their potential roles in diabetes during pregnancy in an attempt to highlight our current understanding of GDM-related immune dysregulation and identify areas where further study is required.
Collapse
Affiliation(s)
- Siyu Hua
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| | - Shanshan Wang
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Jinyang Cai
- State Key Laboratory of Reproductive Medicine, Nanjing Medical University, Nanjing, Jiangsu, China
| | - Lamei Wu
- Department of Perinatal Healthcare, Huai'an District Maternity and Child Health Hospital, Huai'an, Jiangsu, China
| | - Yan Cao
- Nanjing Maternity and Child Health Care Institute, Women's Hospital of Nanjing Medical University, Nanjing Maternity and Child Health Care Hospital, Nanjing, Jiangsu, China
| |
Collapse
|
32
|
Said SS, Ibrahim WN. Cancer Resistance to Immunotherapy: Comprehensive Insights with Future Perspectives. Pharmaceutics 2023; 15:pharmaceutics15041143. [PMID: 37111629 PMCID: PMC10141036 DOI: 10.3390/pharmaceutics15041143] [Citation(s) in RCA: 44] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2023] [Revised: 03/24/2023] [Accepted: 03/31/2023] [Indexed: 04/08/2023] Open
Abstract
Cancer immunotherapy is a type of treatment that harnesses the power of the immune systems of patients to target cancer cells with better precision compared to traditional chemotherapy. Several lines of treatment have been approved by the US Food and Drug Administration (FDA) and have led to remarkable success in the treatment of solid tumors, such as melanoma and small-cell lung cancer. These immunotherapies include checkpoint inhibitors, cytokines, and vaccines, while the chimeric antigen receptor (CAR) T-cell treatment has shown better responses in hematological malignancies. Despite these breakthrough achievements, the response to treatment has been variable among patients, and only a small percentage of cancer patients gained from this treatment, depending on the histological type of tumor and other host factors. Cancer cells develop mechanisms to avoid interacting with immune cells in these circumstances, which has an adverse effect on how effectively they react to therapy. These mechanisms arise either due to intrinsic factors within cancer cells or due other cells within the tumor microenvironment (TME). When this scenario is used in a therapeutic setting, the term “resistance to immunotherapy” is applied; “primary resistance” denotes a failure to respond to treatment from the start, and “secondary resistance” denotes a relapse following the initial response to immunotherapy. Here, we provide a thorough summary of the internal and external mechanisms underlying tumor resistance to immunotherapy. Furthermore, a variety of immunotherapies are briefly discussed, along with recent developments that have been employed to prevent relapses following treatment, with a focus on upcoming initiatives to improve the efficacy of immunotherapy for cancer patients.
Collapse
Affiliation(s)
- Sawsan Sudqi Said
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| | - Wisam Nabeel Ibrahim
- Department of Biomedical Sciences, College of Health Sciences, QU Health, Qatar University, Doha P.O. Box 2713, Qatar
| |
Collapse
|
33
|
Li Y, Xiang S, Pan W, Wang J, Zhan H, Liu S. Targeting tumor immunosuppressive microenvironment for pancreatic cancer immunotherapy: Current research and future perspective. Front Oncol 2023; 13:1166860. [PMID: 37064113 PMCID: PMC10090519 DOI: 10.3389/fonc.2023.1166860] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 03/20/2023] [Indexed: 03/31/2023] Open
Abstract
Pancreatic cancer is one of the most malignant tumors with increased incidence rate. The effect of surgery combined with chemoradiotherapy on survival of patients is unsatisfactory. New treatment strategy such as immunotherapy need to be investigated. The accumulation of desmoplastic stroma, infiltration of immunosuppressive cells including myeloid derived suppressor cells (MDSCs), tumor associated macrophages (TAMs), cancer‐associated fibroblasts (CAFs), and regulatory T cells (Tregs), as well as tumor associated cytokine such as TGF-β, IL-10, IL-35, CCL5 and CXCL12 construct an immunosuppressive microenvironment of pancreatic cancer, which presents challenges for immunotherapy. In this review article, we explore the roles and mechanism of immunosuppressive cells and lymphocytes in establishing an immunosuppressive tumor microenvironment in pancreatic cancer. In addition, immunotherapy strategies for pancreatic cancer based on tumor microenvironment including immune checkpoint inhibitors, targeting extracellular matrix (ECM), interfering with stromal cells or cytokines in TME, cancer vaccines and extracellular vesicles (EVs) are also discussed. It is necessary to identify an approach of immunotherapy in combination with other modalities to produce a synergistic effect with increased response rates in pancreatic cancer therapy.
Collapse
Affiliation(s)
- Ying Li
- Department of Blood Transfusion, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Shuai Xiang
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Wenjun Pan
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Jing Wang
- Department of Operating Room, the Affiliated Hospital of Qingdao University, Qingdao, China
| | - Hanxiang Zhan
- Department of General Surgery, Qilu hospital, Shandong University, Jinan, Shandong, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| | - Shanglong Liu
- Department of Gastrointestinal Surgery, the Affiliated Hospital of Qingdao University, Qingdao, China
- *Correspondence: Shanglong Liu, ; Hanxiang Zhan,
| |
Collapse
|
34
|
Liu P, Kong L, Liu Y, Li G, Xie J, Lu X. A key driver to promote HCC: Cellular crosstalk in tumor microenvironment. Front Oncol 2023; 13:1135122. [PMID: 37007125 PMCID: PMC10050394 DOI: 10.3389/fonc.2023.1135122] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 02/23/2023] [Indexed: 03/17/2023] Open
Abstract
Liver cancer is the third greatest cause of cancer-related mortality, which of the major pathological type is hepatocellular carcinoma (HCC) accounting for more than 90%. HCC is characterized by high mortality and is predisposed to metastasis and relapse, leading to a low five-year survival rate and poor clinical prognosis. Numerous crosstalk among tumor parenchymal cells, anti-tumor cells, stroma cells, and immunosuppressive cells contributes to the immunosuppressive tumor microenvironment (TME), in which the function and frequency of anti-tumor cells are reduced with that of associated pro-tumor cells increasing, accordingly resulting in tumor malignant progression. Indeed, sorting out and understanding the signaling pathways and molecular mechanisms of cellular crosstalk in TME is crucial to discover more key targets and specific biomarkers, so that develop more efficient methods for early diagnosis and individualized treatment of liver cancer. This piece of writing offers insight into the recent advances in HCC-TME and reviews various mechanisms that promote HCC malignant progression from the perspective of mutual crosstalk among different types of cells in TME, aiming to assist in identifying the possible research directions and methods in the future for discovering new targets that could prevent HCC malignant progression.
Collapse
Affiliation(s)
- Pengyue Liu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
| | - Lingyu Kong
- Department of Traditional Chinese Medicine, Affiliated Hospital of North China University of Science and Technology, Tangshan, China
| | - Ying Liu
- Department of Clinical Skills Training Center, Tangshan Gongren Hospital, Tangshan, China
| | - Gang Li
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Jianjia Xie
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| | - Xin Lu
- Clinical Medical College, North China University of Science and Technology, Tangshan, China
- Department of Clinical Laboratory, Tangshan Maternal and Child Health Care Hospital, Tangshan, China
| |
Collapse
|
35
|
Varela VA, da Silva Heinen LB, Marti LC, Caraciolo VB, Datoguia TS, Amano MT, Pereira WO. In vitro differentiation of myeloid suppressor cells (MDSC-like) from an immature myelomonocytic precursor THP-1. J Immunol Methods 2023; 515:113441. [PMID: 36848984 DOI: 10.1016/j.jim.2023.113441] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 02/27/2023]
Abstract
BACKGROUND Myeloid-derived suppressor cells (MDSCs) are a heterogeneous population with a potent suppressor profile that regulates immune responses. These cells are one of the main components of the microenvironment of several diseases, including solid and hematologic tumors, autoimmunities, and chronic inflammation. However, their wide use in studies is limited due to they comprehend a rare population, which is difficult to isolate, expand, differentiate, and maintain in culture. Additionally, this population has a complex phenotypic and functional characterization. OBJECTIVE To develop a protocol for the in vitro production of MDSC-like population from the differentiation of the immature myeloid cell line THP-1. METHODS We stimulated THP-1 with G-CSF (100 ng/mL) and IL-4 (20 ng/mL) for seven days to differentiate into the MDSC-like profile. At the end of the protocol, we characterized these cells phenotypically and functionally by immunophenotyping, gene expression analysis, cytokine release dosage, lymphocyte proliferation, and NK-mediated killing essays. RESULTS We differentiate THP-1 cells in an MDSC-like population, named THP1-MDSC-like, which presented immunophenotyping and gene expression profiles compatible with that described in the literature. Furthermore, we verified that this phenotypic and functional differentiation did not deviate to a macrophage profile of M1 or M2. These THP1-MDSC-like cells secreted several immunoregulatory cytokines into the microenvironment, consistent with the suppressor profile related to MDSC. In addition, the supernatant of these cells decreased the proliferation of activated lymphocytes and impaired the apoptosis of leukemic cells induced by NK cells. CONCLUSIONS We developed an effective protocol for MDSC in vitro production from the differentiation of the immature myeloid cell line THP-1 induced by G-CSF and IL-4. Furthermore, we demonstrated that THP1-MDSC-like suppressor cells contribute to the immune escape of AML cells. Potentially, these THP1-MDSC-like cells can be applied on a large-scale platform, thus being able to impact the course of several studies and models such as cancer, immunodeficiencies, autoimmunity, and chronic inflammation.
Collapse
Affiliation(s)
- Vanessa Araújo Varela
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | | | - Luciana Cavalheiro Marti
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Victória Bulcão Caraciolo
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Tarcila Santos Datoguia
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil
| | - Mariane Tami Amano
- Hospital Sírio Libanês, São Paulo, SP, Brazil; Department of Clinical and Experimental Oncology, Federal University of São Paulo (UNIFESP), São Paulo, SP, Brazil
| | - Welbert Oliveira Pereira
- Faculdade Israelita de Ciências da Saúde Albert Einstein (FICSAE), Hospital Israelita Albert Einstein, São Paulo, SP, Brazil.
| |
Collapse
|
36
|
Regulation of the tumor immune microenvironment by cancer-derived circular RNAs. Cell Death Dis 2023; 14:132. [PMID: 36797245 PMCID: PMC9935907 DOI: 10.1038/s41419-023-05647-w] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Revised: 02/01/2023] [Accepted: 02/02/2023] [Indexed: 02/18/2023]
Abstract
Circular RNA (circRNAs) is a covalently closed circular non-coding RNA formed by reverse back-splicing from precursor messenger RNA. It is found widely in eukaryotic cells and can be released to the surrounding environment and captured by other cell types. This, circRNAs serve as connections between different cell types for the mediation of multiple signaling pathways. CircRNAs reshape the tumor microenvironment (TME), a key factor involved in all stages of cancer development, by regulating epithelial-stromal transformation, tumor vascularization, immune cell function, and inflammatory responses. Immune cells are the most abundant cellular TME components, and they have profound toxicity to cancer cells. This review summarizes circRNA regulation of immune cells, including T cells, natural killer cells, and macrophages; highlights the impact of circRNAs on tumor progression, treatment, and prognosis; and indicates new targets for tumor immunotherapy.
Collapse
|
37
|
Chen C, Wang Z, Ding Y, Qin Y. Tumor microenvironment-mediated immune evasion in hepatocellular carcinoma. Front Immunol 2023; 14:1133308. [PMID: 36845131 PMCID: PMC9950271 DOI: 10.3389/fimmu.2023.1133308] [Citation(s) in RCA: 108] [Impact Index Per Article: 54.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Accepted: 02/02/2023] [Indexed: 02/12/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common primary liver malignancy and is the third leading cause of tumor-related mortality worldwide. In recent years, the emergency of immune checkpoint inhibitor (ICI) has revolutionized the management of HCC. Especially, the combination of atezolizumab (anti-PD1) and bevacizumab (anti-VEGF) has been approved by the FDA as the first-line treatment for advanced HCC. Despite great breakthrough in systemic therapy, HCC continues to portend a poor prognosis owing to drug resistance and frequent recurrence. The tumor microenvironment (TME) of HCC is a complex and structured mixture characterized by abnormal angiogenesis, chronic inflammation, and dysregulated extracellular matrix (ECM) remodeling, collectively contributing to the immunosuppressive milieu that in turn prompts HCC proliferation, invasion, and metastasis. The tumor microenvironment coexists and interacts with various immune cells to maintain the development of HCC. It is widely accepted that a dysfunctional tumor-immune ecosystem can lead to the failure of immune surveillance. The immunosuppressive TME is an external cause for immune evasion in HCC consisting of 1) immunosuppressive cells; 2) co-inhibitory signals; 3) soluble cytokines and signaling cascades; 4) metabolically hostile tumor microenvironment; 5) the gut microbiota that affects the immune microenvironment. Importantly, the effectiveness of immunotherapy largely depends on the tumor immune microenvironment (TIME). Also, the gut microbiota and metabolism profoundly affect the immune microenvironment. Understanding how TME affects HCC development and progression will contribute to better preventing HCC-specific immune evasion and overcoming resistance to already developed therapies. In this review, we mainly introduce immune evasion of HCC underlying the role of immune microenvironment, describe the dynamic interaction of immune microenvironment with dysfunctional metabolism and the gut microbiome, and propose therapeutic strategies to manipulate the TME in favor of more effective immunotherapy.
Collapse
Affiliation(s)
| | | | | | - Yanru Qin
- Department of Oncology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|
38
|
Oura K, Morishita A, Hamaya S, Fujita K, Masaki T. The Roles of Epigenetic Regulation and the Tumor Microenvironment in the Mechanism of Resistance to Systemic Therapy in Hepatocellular Carcinoma. Int J Mol Sci 2023; 24:2805. [PMID: 36769116 PMCID: PMC9917861 DOI: 10.3390/ijms24032805] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2022] [Revised: 01/29/2023] [Accepted: 01/30/2023] [Indexed: 02/05/2023] Open
Abstract
Primary liver cancer is the sixth most common cancer and the third most common cause of cancer-related deaths worldwide. Hepatocellular carcinoma (HCC) is a major histologic type with a poor prognosis owing to the difficulty in early detection, the chemotherapy resistance, and the high recurrence rate of the disease. Despite recent advancements in HCC prevention and diagnosis, over 50% of patients are diagnosed at Barcelona Clinic Liver Cancer Stage B or C. Systemic therapies are recommended for unresectable HCC (uHCC) with major vascular invasion, extrahepatic metastases, or intrahepatic lesions that have a limited response to transcatheter arterial chemoembolization, but the treatment outcome tends to be unsatisfactory due to acquired drug resistance. Elucidation of the mechanisms underlying the resistance to systemic therapies and the appropriate response strategies to solve this issue will contribute to improved outcomes in the multidisciplinary treatment of uHCC. In this review, we summarize recent findings on the mechanisms of resistance to drugs such as sorafenib, regorafenib, and lenvatinib in molecularly targeted therapy, with a focus on epigenetic regulation and the tumor microenvironment and outline the approaches to improve the therapeutic outcome for patients with advanced HCC.
Collapse
Affiliation(s)
- Kyoko Oura
- Department of Gastroenterology and Neurology, Faculty of Medicine, Kagawa University, Kita 761-0793, Kagawa, Japan
| | | | | | | | | |
Collapse
|
39
|
Falck‐Jones S, Österberg B, Smed‐Sörensen A. Respiratory and systemic monocytes, dendritic cells, and myeloid-derived suppressor cells in COVID-19: Implications for disease severity. J Intern Med 2023; 293:130-143. [PMID: 35996885 PMCID: PMC9538918 DOI: 10.1111/joim.13559] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/05/2023]
Abstract
Since the beginning of the SARS-CoV-2 pandemic in 2020, researchers worldwide have made efforts to understand the mechanisms behind the varying range of COVID-19 disease severity. Since the respiratory tract is the site of infection, and immune cells differ depending on their anatomical location, studying blood is not sufficient to understand the full immunopathogenesis in patients with COVID-19. It is becoming increasingly clear that monocytes, dendritic cells (DCs), and monocytic myeloid-derived suppressor cells (M-MDSCs) are involved in the immunopathology of COVID-19 and may play important roles in determining disease severity. Patients with mild COVID-19 display an early antiviral (interferon) response in the nasopharynx, expansion of activated intermediate monocytes, and low levels of M-MDSCs in blood. In contrast, patients with severe COVID-19 seem to lack an early efficient induction of interferons, and skew towards a more suppressive response in blood. This is characterized by downregulation of activation markers and decreased functional capacity of blood monocytes and DCs, reduced circulating DCs, and increased levels of HLA-DRlo CD14+ M-MDSCs. These suppressive characteristics could potentially contribute to delayed T-cell responses in severe COVID-19 cases. In contrast, airways of patients with severe COVID-19 display hyperinflammation with elevated levels of inflammatory monocytes and monocyte-derived macrophages, and reduced levels of tissue-resident alveolar macrophages. These monocyte-derived cells contribute to excess inflammation by producing cytokines and chemokines. Here, we review the current knowledge on the role of monocytes, DCs, and M-MDSCs in COVID-19 and how alterations and the anatomical distribution of these cell populations may relate to disease severity.
Collapse
Affiliation(s)
- Sara Falck‐Jones
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Björn Österberg
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| | - Anna Smed‐Sörensen
- Division of Immunology and AllergyDepartment of Medicine SolnaKarolinska InstitutetKarolinska University HospitalStockholmSweden
| |
Collapse
|
40
|
Borgna E, Prochetto E, Gamba JC, Marcipar I, Cabrera G. Role of myeloid-derived suppressor cells during Trypanosoma cruzi infection. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:117-163. [PMID: 36967151 DOI: 10.1016/bs.ircmb.2022.09.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Chagas disease (CD), caused by the protozoan parasite Trypanosoma cruzi, is the third largest parasitic disease burden globally. Currently, more than 6 million people are infected, mainly in Latin America, but international migration has turned CD into an emerging health problem in many nonendemic countries. Despite intense research, a vaccine is still not available. A complex parasite life cycle, together with numerous immune system manipulation strategies, may account for the lack of a prophylactic or therapeutic vaccine. There is substantial experimental evidence supporting that T. cruzi acute infection generates a strong immunosuppression state that involves numerous immune populations with regulatory/suppressive capacity. Myeloid-derived suppressor cells (MDSCs), Foxp3+ regulatory T cells (Tregs), regulatory dendritic cells and B regulatory cells are some of the regulatory populations that have been involved in the acute immune response elicited by the parasite. The fact that, during acute infection, MDSCs increase notably in several organs, such as spleen, liver and heart, together with the observation that depletion of those cells can decrease mouse survival to 0%, strongly suggests that MDSCs play a major role during acute T. cruzi infection. Accumulating evidence gained in different settings supports the capacity of MDSCs to interact with cells from both the effector and the regulatory arms of the immune system, shaping the outcome of the response in a very wide range of scenarios that include pathological and physiological processes. In this sense, the aim of the present review is to describe the main knowledge about MDSCs acquired so far, including several crosstalk with other immune populations, which could be useful to gain insight into their role during T. cruzi infection.
Collapse
|
41
|
Lu J, Liang T, Li P, Yin Q. Regulatory effects of IRF4 on immune cells in the tumor microenvironment. Front Immunol 2023; 14:1086803. [PMID: 36814912 PMCID: PMC9939821 DOI: 10.3389/fimmu.2023.1086803] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2022] [Accepted: 01/18/2023] [Indexed: 02/09/2023] Open
Abstract
The tumor microenvironment (TME) is implicated in tumorigenesis, chemoresistance, immunotherapy failure and tumor recurrence. Multiple immunosuppressive cells and soluble secreted cytokines together drive and accelerate TME disorders, T cell immunodeficiency and tumor growth. Thus, it is essential to comprehensively understand the TME status, immune cells involved and key transcriptional factors, and extend this knowledge to therapies that target dysfunctional T cells in the TME. Interferon regulatory factor 4 (IRF4) is a unique IRF family member that is not regulated by interferons, instead, is mainly induced upon T-cell receptor signaling, Toll-like receptors and tumor necrosis factor receptors. IRF4 is largely restricted to immune cells and plays critical roles in the differentiation and function of effector cells and immunosuppressive cells, particularly during clonal expansion and the effector function of T cells. However, in a specific biological context, it is also involved in the transcriptional process of T cell exhaustion with its binding partners. Given the multiple effects of IRF4 on immune cells, especially T cells, manipulating IRF4 may be an important therapeutic target for reversing T cell exhaustion and TME disorders, thus promoting anti-tumor immunity. This study reviews the regulatory effects of IRF4 on various immune cells in the TME, and reveals its potential mechanisms, providing a novel direction for clinical immune intervention.
Collapse
Affiliation(s)
- Jing Lu
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Taotao Liang
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| | - Ping Li
- Department of Hematology, The University of Texas MD Anderson Cancer Center, Houston, TX, United States
| | - Qingsong Yin
- Department of Hematology, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, Henan, China
| |
Collapse
|
42
|
Myeloid-derived suppressor cells in head and neck squamous cell carcinoma. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 375:33-92. [PMID: 36967154 DOI: 10.1016/bs.ircmb.2022.11.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/13/2023]
Abstract
Myeloid-derived suppressor cells (MDSCs), which originated from hematopoietic stem cells, are heterogeneous population of cells that have different differentiation patterns and widely presented in tumor microenvironment. For tumor research, myeloid suppressor cells have received extensive attention since their discovery due to their specific immunosuppressive properties, and the mechanisms of immunosuppression and therapeutic approaches for MDSCs have been investigated in a variety of different types of malignancies. To improve the efficacy of treatment for head and neck squamous cell carcinoma (HNSCC), a disease with a high occurrence, immunotherapy has gradually emerged in after traditional surgery and subsequent radiotherapy and chemotherapy, and has made some progress. In this review, we introduced the mechanisms on the development, differentiation, and elimination of MDSCs and provided a detailed overview of the mechanisms behind the immunosuppressive properties of MDSCs. We summarized the recent researches on MDSCs in HNSCC, especially for targeting-MDSCs therapy and combination with other types of therapy such as immune checkpoint blockade (ICB). Furthermore, we looked at drug delivery patterns and collected the current diverse drug delivery systems for the improvement that contributed to therapy against MDSCs in HNSCC. Most importantly, we made possible outlooks for the future research priorities, which provide a basis for further study on the clinical significance and therapeutic value of MDSCs in HNSCC.
Collapse
|
43
|
Zulaziz N, Chai SJ, Lim KP. The origins, roles and therapies of cancer associated fibroblast in liver cancer. Front Oncol 2023; 13:1151373. [PMID: 37035187 PMCID: PMC10076538 DOI: 10.3389/fonc.2023.1151373] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/26/2023] [Accepted: 03/03/2023] [Indexed: 04/11/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is the most common form of liver cancer. It is often preceded by chronic inflammation such as liver fibrosis and cirrhosis. Different cell types are believed to give rise to liver-specific cancer associated fibroblast (CAF), these include resident fibroblast, hepatic stellate cell, liver cancer cell, hepatic sinusoidal endothelial cell and mesenchymal stromal cell. The abundance of fibroblasts has contributed to the cancer progression, immune modulation and treatment resistance in HCC. In this review, we discussed the origins, subtypes and roles of cancer associated fibroblasts in HCC. Their specific roles in shaping the tumor microenvironment, facilitating cancer growth, and modulating different immune cell types to confer a permissive environment for cancer growth. CAF is now an attractive therapeutic target for cancer treatment, however specific therapeutic development in HCC is still lacking. Hence, we have included preclinical and clinical development of CAF-specific interventions for other cancer types in this review. However, most CAF-specific therapies have resulted in disappointing clinical outcomes, likely due to the difficulties in differentiating CAF from normal fibroblast. A thorough understanding of the characteristics and functionalities of CAF is warranted to further improve the therapeutic efficacy of anti-CAF therapies.
Collapse
|
44
|
Wan S, Moure UAE, Liu R, Liu C, Wang K, Deng L, Liang P, Cui H. Combined bulk RNA-seq and single-cell RNA-seq identifies a necroptosis-related prognostic signature associated with inhibitory immune microenvironment in glioma. Front Immunol 2022; 13:1013094. [PMID: 36466844 PMCID: PMC9713702 DOI: 10.3389/fimmu.2022.1013094] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Accepted: 10/19/2022] [Indexed: 08/20/2023] Open
Abstract
Necroptosis is a programmed cell death playing a significant role in cancer. Although necroptosis has been related to tumor immune environment (TIME) remodeling and cancer prognosis, however, the role of necroptosis-related genes (NRGs) in glioma is still elusive. In this study, a total of 159 NRGs were obtained, and parameters such as mutation rate, copy number variation (CNV), and relative expression level were assessed. Then, we constructed an 18-NRGs-based necroptosis-related signature (NRS) in the TCGA dataset, which could predict the patient's prognosis and was validated in two external CGGA datasets. We also explored the correlation between NRS and glioma TIME, chemotherapy sensitivity, and certain immunotherapy-related factors. The two necroptosis-related subtypes were discovered and could also distinguish the patients' prognosis. Through the glioblastoma (GBM) scRNA-seq data analysis, NRGs' expression levels in different GBM patient tissue cell subsets were investigated and the relative necroptosis status of different cell subsets was assessed, with the microglia score culminating among all. Moreover, we found a high infiltration level of immunosuppressive cells in glioma TIME, which was associated with poor prognosis in the high-NRS glioma patient group. Finally, the necroptosis suppressor CASP8 exhibited a high expression in glioma and was associated with poor prognosis. Subsequent experiments were performed in human glioma cell lines and patients' tissue specimens to verify the bioinformatic analytic findings about CASP8. Altogether, this study provides comprehensive evidence revealing a prognostic value of NRGs in glioma, which is associated with TIME regulation.
Collapse
Affiliation(s)
- Sicheng Wan
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ulrich Aymard Ekomi Moure
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
- The Ninth People’s Hospital of Chongqing, Affiliated Hospital of Southwest University, Chongqing, China
| | - Ruochen Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Chaolong Liu
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Kun Wang
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Longfei Deng
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| | - Ping Liang
- Department of Neurosurgery, Chongqing Children’s Hospital, Chongqing, China
| | - Hongjuan Cui
- The State Key Laboratory of Silkworm Genome Biology, College of Biotechnology, Southwest University, Chongqing, China
- Cancer Center, Medical Research Institute, Southwest University, Chongqing, China
| |
Collapse
|
45
|
Tumino N, Fiore PF, Pelosi A, Moretta L, Vacca P. Myeloid derived suppressor cells in tumor microenvironment: Interaction with innate lymphoid cells. Semin Immunol 2022; 61-64:101668. [PMID: 36370673 DOI: 10.1016/j.smim.2022.101668] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 10/06/2022] [Accepted: 10/10/2022] [Indexed: 11/10/2022]
Abstract
Human myeloid-derived suppressor cells (MDSC) represent a stage of immature myeloid cells and two main subsets can be identified: monocytic and polymorphonuclear. MDSC contribute to the establishment of an immunosuppressive tumor microenvironment (TME). The presence and the activity of MDSC in patients with different tumors correlate with poor prognosis. As previously reported, MDSC promote tumor growth and use different mechanisms to suppress the immune cell-mediated anti-tumor activity. Immunosuppression mechanisms used by MDSC are broad and depend on their differentiation stage and on the pathological context. It is known that some effector cells of the immune system can play an important role in the control of tumor progression and metastatic spread. In particular, innate lymphoid cells (ILC) contribute to control tumor growth representing a potential, versatile and, immunotherapeutic tool. Despite promising results obtained by using new cellular immunotherapeutic approaches, a relevant proportion of patients do not benefit from these therapies. Novel strategies have been investigated to overcome the detrimental effect exerted by the immunosuppressive component of TME (i.e. MDSC). In this review, we summarized the characteristics and the interactions occurring between MDSC and ILC in different tumors discussing how a deeper knowledge on MDSC biology could represent an important target for tumor immunotherapy capable of decreasing immunosuppression and enhancing anti-tumor activity exerted by immune cells.
Collapse
Affiliation(s)
- Nicola Tumino
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy.
| | | | - Andrea Pelosi
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Lorenzo Moretta
- Tumor Immunology Unit, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| | - Paola Vacca
- Innate lymphoid cells Unit, Immunology Research Area, Bambino Gesù Children's Hospital IRCCS, Rome, Italy
| |
Collapse
|
46
|
He J, Zheng P, Chen Y, Qi J, Ye C, Li D, Yang Y, Yang Y, Liu Q, Hu Y, Zheng X, Li W, Hua L, Yang Z, Chen H, Huang W, Sun W, Yang X, Long Q, Bai H, Ma Y. A new personalized vaccine strategy based on inducing the pyroptosis of tumor cells in vivo by transgenic expression of a truncated GSDMD N-terminus. Front Immunol 2022; 13:991857. [PMID: 36189310 PMCID: PMC9521720 DOI: 10.3389/fimmu.2022.991857] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 08/29/2022] [Indexed: 12/02/2022] Open
Abstract
The variability and heterogeneity of tumor antigens and the tumor-driven development of immunosuppressive mechanisms leading to tumor escape from established immunological surveillance. Here, the tumor cells were genetically modified to achieve an inducible overexpression of the N-terminal domain of gasdermin D (GSDMD-NT) and effectively cause pyroptosis under a strict control. Pyroptotic tumor cells release damage-associated molecular patterns (DAMPs) and inflammatory cytokines to promote the maturation and migration of bone marrow-derived dendritic cells (BMDCs). Furthermore, local tumor delivery, and preventive or therapeutic subcutaneous immunization of the modified cells, followed by the induction of GSDMD-NT expression, significantly stimulated both the systemic and local responses of antitumor immunity, and reprogrammed the tumor microenvironment, leading to the dramatic suppression of tumor growth in mice. This study has explored the application potency of inducing the pyroptosis of tumor cells in the field of tumor immunotherapy, especially for developing a new and promising personalized tumor vaccine.
Collapse
Affiliation(s)
- Jinrong He
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Peng Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yongjun Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Jialong Qi
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Yunnan Digestive Endoscopy Clinical Medical Center, Department of Gastroenterology, The First People’s Hospital of Yunnan Province, Kunming, China
| | - Chao Ye
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Duo Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Department of Acute Infectious Diseases Control and Prevention, Yunnan Provincial Center for Disease Control and Prevention, Kunming, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Ying Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qingwen Liu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- Institute of Medical Biology, Kunming Medical University, Kunming, China
| | - Yongmao Hu
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Xiao Zheng
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Weiran Li
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Liangqun Hua
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- School of Life Sciences, Yunnan University, Kunming, China
| | - Zhongqian Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Haoqian Chen
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- School of Ethnic Medicine, Yunnan Minzu University, Kunming, China
| | - Weiwei Huang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Wenjia Sun
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Xu Yang
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Qiong Long
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Hongmei Bai
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
| | - Yanbing Ma
- Laboratory of Molecular Immunology, Institute of Medical Biology, Chinese Academy of Medical Sciences and Peking Union Medical College, Kunming, China
- *Correspondence: Yanbing Ma,
| |
Collapse
|
47
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
48
|
Bottomley MJ, Harden PN, Wood KJ, Hester J, Issa F. Dampened Inflammatory Signalling and Myeloid-Derived Suppressor-Like Cell Accumulation Reduces Circulating Monocytic HLA-DR Density and May Associate With Malignancy Risk in Long-Term Renal Transplant Recipients. Front Immunol 2022; 13:901273. [PMID: 35844527 PMCID: PMC9283730 DOI: 10.3389/fimmu.2022.901273] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Background Malignancy is a major cause of morbidity and mortality in transplant recipients. Identification of those at highest risk could facilitate pre-emptive intervention such as reduction of immunosuppression. Reduced circulating monocytic HLA-DR density is a marker of immune depression in the general population and associates with poorer outcome in critical illness. It has recently been used as a safety marker in adoptive cell therapy trials in renal transplantation. Despite its potential as a marker of dampened immune responses, factors that impact upon monocytic HLA-DR density and the long-term clinical sequelae of this have not been assessed in transplant recipients. Methods A cohort study of stable long-term renal transplant recipients was undertaken. Serial circulating monocytic HLA-DR density and other leucocyte populations were quantified by flow cytometry. Gene expression of monocytes was performed using the Nanostring nCounter platform, and 13-plex cytokine bead array used to quantify serum concentrations. The primary outcome was malignancy development during one-year follow-up. Risk of malignancy was calculated by univariate and multivariate proportionate hazards modelling with and without adjustment for competing risks. Results Monocytic HLA-DR density was stable in long-term renal transplant recipients (n=135) and similar to non-immunosuppressed controls (n=29), though was suppressed in recipients receiving prednisolone. Decreased mHLA-DRd was associated with accumulation of CD14+CD11b+CD33+HLA-DRlo monocytic myeloid-derived suppressor-like cells. Pathway analysis revealed downregulation of pathways relating to cytokine and chemokine signalling in monocytes with low HLA-DR density; however serum concentrations of major cytokines did not differ between these groups. There was an independent increase in malignancy risk during follow-up with decreased HLA-DR density. Conclusions Dampened chemokine and cytokine signalling drives a stable reduction in monocytic HLA-DR density in long-term transplant recipients and associates with subsequent malignancy risk. This may function as a novel marker of excess immunosuppression. Further study is needed to understand the mechanism behind this association.
Collapse
Affiliation(s)
- Matthew J. Bottomley
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
- *Correspondence: Matthew J. Bottomley,
| | - Paul N. Harden
- Oxford Kidney Unit, Churchill Hospital, Oxford University Hospitals NHS Foundation Trust, Oxford, United Kingdom
| | - Kathryn J. Wood
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Joanna Hester
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| | - Fadi Issa
- Transplantation Research and Immunology Group, Nuffield Department of Surgical Sciences, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
49
|
Irshad K, Srivastava C, Malik N, Arora M, Gupta Y, Goswami S, Sarkar C, Suri V, Mahajan S, Gupta DK, Suri A, Chattopadhyay P, Sinha S, Chosdol K. Upregulation of Atypical Cadherin FAT1 Promotes an Immunosuppressive Tumor Microenvironment via TGF-β. Front Immunol 2022; 13:813888. [PMID: 35720420 PMCID: PMC9205206 DOI: 10.3389/fimmu.2022.813888] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2021] [Accepted: 04/11/2022] [Indexed: 12/15/2022] Open
Abstract
FAT atypical cadherin 1 (FAT1) promotes glioblastoma (GBM) by promoting protumorigenic inflammatory cytokine expression in tumor cells. However, tumors also have an immunosuppressive microenvironment maintained by mediators such as transforming growth factor (TGF)-β cytokines. Here, we have studied the role of FAT1 in tumor immune suppression. Our preliminary TIMER2.0 analysis of The Cancer Genome Atlas (TCGA) database revealed an inverse correlation of FAT1 expression with infiltration of tumor-inhibiting immune cells (such as monocytes and T cells) and a positive correlation with tumor-promoting immune cells [such as myeloid-derived suppressor cells (MDSCs)] in various cancers. We have analyzed the role of FAT1 in modulating the expression of TGF-β1/2 in resected human gliomas, primary glioma cultures, and other cancer cell lines (U87MG, HepG2, Panc-1, and HeLa). Positive correlations of gene expression of FAT1 and TGF-β1/2 were observed in various cancers in TCGA, Glioma Longitudinal Analysis Consortium (GLASS), and Chinese Glioma Genome Atlas (CGGA) databases. Positive expression correlations of FAT1 were also found with TGF-β1/2 and Serpine1 (downstream target) in fresh-frozen GBM samples using q-PCR. siRNA-mediated FAT1 knockdown in cancer cell lines and in primary cultures led to decreased TGF-β1/2 expression/secretion as assessed by q-PCR, Western blotting, and ELISA. There was increased chemotaxis (transmigration) of THP-1 monocytes toward siFAT1-transfected tumor cell supernatant as a consequence of decreased TGF-β1/2 secretion. Reduced TGF-β1 expression was also observed in THP-1 cultured in conditioned media from FAT1-depleted glioma cells, thus contributing to immune suppression. In U87MG cells, decreased TGF-β1 upon FAT1 knockdown was mediated by miR-663a, a known modulator. FAT1 expression was also observed to correlate positively with the expression of surrogate markers of MDSCs [programmed death ligand-1 (PD-L1), PD-L2, and interleukin (IL)-10] in glioma tumors, suggesting a potential role of FAT1 in MDSC-mediated immunosuppression. Hence, our findings elaborate contributions of FAT1 to immune evasion, where FAT1 enables an immunosuppressive microenvironment in GBM and other cancers via TGF-β1/2.
Collapse
Affiliation(s)
- Khushboo Irshad
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitrangda Srivastava
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Nargis Malik
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Manvi Arora
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Yakhlesh Gupta
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Sanjeev Goswami
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Chitra Sarkar
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Vaishali Suri
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Swati Mahajan
- Department of Pathology, All India Institute of Medical Sciences, New Delhi, India
| | - Deepak Kumar Gupta
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | - Ashish Suri
- Department of Neurosurgery, All India Institute of Medical Sciences, New Delhi, India
| | | | - Subrata Sinha
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| | - Kunzang Chosdol
- Department of Biochemistry, All India Institute of Medical Sciences, New Delhi, India
| |
Collapse
|
50
|
Roberts LM, Perez MJ, Balogh KN, Mingledorff G, Cross JV, Munson JM. Myeloid Derived Suppressor Cells Migrate in Response to Flow and Lymphatic Endothelial Cell Interaction in the Breast Tumor Microenvironment. Cancers (Basel) 2022; 14:cancers14123008. [PMID: 35740673 PMCID: PMC9221529 DOI: 10.3390/cancers14123008] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2022] [Revised: 05/26/2022] [Accepted: 06/07/2022] [Indexed: 12/07/2022] Open
Abstract
At the site of the tumor, myeloid derived suppressor cells (MDSCs) infiltrate and interact with elements of the tumor microenvironment in complex ways. Within the invading tumor, MDSCs are exposed to interstitial fluid flow (IFF) that exists within the chronic inflammatory tumor microenvironment at the tumor-lymphatic interface. As drivers of cell migration and invasion, the link between interstitial fluid flow, lymphatics, and MDSCs have not been clearly established. Here, we hypothesized that interstitial fluid flow and cells within the breast tumor microenvironment modulate migration of MDSCs. We developed a novel 3D model to mimic the breast tumor microenvironment and incorporated MDSCs harvested from 4T1-tumor bearing mice. Using live imaging, we found that sorted GR1+ splenocytes had reduced chemotactic index compared to the unsorted population, but their speed and displacement were similar. Using our adapted tissue culture insert assay, we show that interstitial fluid flow promotes MDSC invasion, regardless of absence or presence of tumor cells. Coordinating with lymphatic endothelial cells, interstitial fluid flow further enhanced invasion of MDSCs in the presence of 4T1 cells. We also show that VEGFR3 inhibition reduced both MDSC and 4T1 flow response. Together, these findings indicate a key role of interstitial fluid flow in MDSC migration as well as describe a tool to explore the immune microenvironment in breast cancer.
Collapse
Affiliation(s)
- LaDeidra Monét Roberts
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
| | - Matthew J. Perez
- Department of Biomedical Engineering, University of Virginia, Charlottesville, VA 22904, USA;
| | - Kristen N. Balogh
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Garnett Mingledorff
- Department of Microbiology, Immunology, and Cancer Biology, University of Virginia, Charlottesville, VA 22904, USA;
| | - Janet V. Cross
- Department of Pathology, University of Virginia, Charlottesville, VA 22904, USA; (K.N.B.); (J.V.C.)
| | - Jennifer M. Munson
- Department of Biomedical Engineering and Mechanics, Fralin Biomedical Research Institute, Virginia Tech, Roanoke, VA 24016, USA;
- Correspondence:
| |
Collapse
|