1
|
Li G, Che X, Wang S, Liu D, Xie D, Jiang B, Zheng Z, Zheng X, Wu G. The role of cisplatin in modulating the tumor immune microenvironment and its combination therapy strategies: a new approach to enhance anti-tumor efficacy. Ann Med 2025; 57:2447403. [PMID: 39757995 PMCID: PMC11705547 DOI: 10.1080/07853890.2024.2447403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/27/2024] [Accepted: 11/23/2024] [Indexed: 01/07/2025] Open
Abstract
Cisplatin is a platinum-based drug that is frequently used to treat multiple tumors. The anti-tumor effect of cisplatin is closely related to the tumor immune microenvironment (TIME), which includes several immune cell types, such as the tumor-associated macrophages (TAMs), cytotoxic T-lymphocytes (CTLs), dendritic cells (DCs), myeloid-derived suppressor cells (MDSCs), regulatory T cells (Tregs), and natural killer (NK) cells. The interaction between these immune cells can promote tumor survival and chemoresistance, and decrease the efficacy of cisplatin monotherapy. Therefore, various combination treatment strategies have been devised to enhance patient responsiveness to cisplatin therapy. Cisplatin can augment anti-tumor immune responses in combination with immune checkpoint blockers (such as PD-1/PD-L1 or CTLA4 inhibitors), lipid metabolism disruptors (like FASN inhibitors and SCD inhibitors) and nanoparticles (NPs), resulting in better outcomes. Exploring the interaction between cisplatin and the TIME will help identify potential therapeutic targets for improving the treatment outcomes in cancer patients.
Collapse
Affiliation(s)
- Guandu Li
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xiangyu Che
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Shijin Wang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Dequan Liu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Deqian Xie
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Bowen Jiang
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Zunwen Zheng
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| | - Xu Zheng
- Department of Cell Biology, College of Basic Medical Science, Dalian Medical University, Dalian, Liaoning, China
| | - Guangzhen Wu
- Department of Urology, the First Affiliated Hospital of Dalian Medical University, Dalian, Liaoning, China
| |
Collapse
|
2
|
Salminen A. Cooperation between inhibitory immune checkpoints of senescent cells with immunosuppressive network to promote immunosenescence and the aging process. Ageing Res Rev 2025; 106:102694. [PMID: 39984130 DOI: 10.1016/j.arr.2025.102694] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2024] [Revised: 12/30/2024] [Accepted: 02/14/2025] [Indexed: 02/23/2025]
Abstract
The accumulation of senescent cells within tissues promotes the aging process by remodelling the functions of the immune system. For many years, it has been known that senescent cells secrete pro-inflammatory cytokines and chemokines, a phenotype called the senescence-associated secretory phenotype (SASP). Chemokines and colony-stimulating factors stimulate myelopoiesis and recruit myeloid cells into aging tissues. Interestingly, recent studies have demonstrated that senescent cells are not only secretory but they also express an increased level of ligand proteins for many inhibitory immune checkpoint receptors. These ligands represent "don't eat me" markers in senescent cells and moreover, they are able to induce an exhaustion of many immune cells, such as surveying natural killer (NK) cells, cytotoxic CD8+ T cells, and macrophages. The programmed cell death protein-1 (PD-1) and its ligand PD-L1 represent the best known inhibitory immune checkpoint pathway. Importantly, the activation of inhibitory checkpoint receptors, e.g., in chronic inflammatory states, can also induce certain immune cells to differentiate toward their immunosuppressive phenotype. This can be observed in myeloid derived suppressor cells (MDSC), tissue regulatory T cells (Treg), and M2 macrophages. Conversely, these immunosuppressive cells stimulate in senescent cells the expression of many ligand proteins for inhibitory checkpoint receptors. Paradoxically, senescent cells not only promote the pro-inflammatory state but they maintain it at a low-grade level by expressing ligands for inhibitory immune checkpoint receptors. Thus, the cooperation between senescent cells and immunosuppressive cells enhances the senescence state of immune cells, i.e., immune senescence/exhaustion, and cellular senescence within tissues via bystander effects.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, Kuopio FI-70211, Finland.
| |
Collapse
|
3
|
Borges F, Laureano RS, Vanmeerbeek I, Sprooten J, Demeulenaere O, Govaerts J, Kinget L, Saraswat S, Beuselinck B, De Vleeschouwer S, Clement P, De Smet F, Sorg RV, Datsi A, Vigneron N, Naulaerts S, Garg AD. Trial watch: anticancer vaccination with dendritic cells. Oncoimmunology 2024; 13:2412876. [PMID: 39398476 PMCID: PMC11469433 DOI: 10.1080/2162402x.2024.2412876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2024] [Revised: 09/30/2024] [Accepted: 10/01/2024] [Indexed: 10/15/2024] Open
Abstract
Dendritic cells (DCs) are critical players at the intersection of innate and adaptive immunity, making them ideal candidates for anticancer vaccine development. DC-based immunotherapies typically involve isolating patient-derived DCs, pulsing them with tumor-associated antigens (TAAs) or tumor-specific antigens (TSAs), and utilizing maturation cocktails to ensure their effective activation. These matured DCs are then reinfused to elicit tumor-specific T-cell responses. While this approach has demonstrated the ability to generate potent immune responses, its clinical efficacy has been limited due to the immunosuppressive tumor microenvironment. Recent efforts have focused on enhancing the immunogenicity of DC-based vaccines, particularly through combination therapies with T cell-targeting immunotherapies. This Trial Watch summarizes recent advances in DC-based cancer treatments, including the development of new preclinical and clinical strategies, and discusses the future potential of DC-based vaccines in the evolving landscape of immuno-oncology.
Collapse
Affiliation(s)
- Francisca Borges
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Raquel S. Laureano
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Isaure Vanmeerbeek
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jenny Sprooten
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Octavie Demeulenaere
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jannes Govaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Lisa Kinget
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Saurabh Saraswat
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Benoit Beuselinck
- Department of Medical Oncology, University Hospitals Leuven, KU Leuven, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, Department of Neurosciences, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, University Hospitals Leuven, Leuven, Belgium
- Leuven Brain Institute (LBI), KU Leuven, Leuven, Belgium
| | - Paul Clement
- Department of Oncology, KU Leuven, Leuven, Belgium
| | - Frederik De Smet
- Laboratory for Precision Cancer Medicine, Translational Cell and Tissue Unit, Department of Imaging and Pathology, KU Leuven, Leuven, Belgium
- Leuven Institute for Single-Cell Omics (LISCO), KU Leuven, Leuven, Belgium
- Leuven Cancer Institute, KU Leuven, Leuven, Belgium
| | - Rüdiger V. Sorg
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Angeliki Datsi
- Institute for Transplantation Diagnostics and Cell Therapeutics, Medical Faculty, Heinrich Heine University Hospital, Düsseldorf, Germany
| | - Nathalie Vigneron
- Ludwig Institute for Cancer Research and Cellular Genetics Unit, Université de Louvain, Brussels, Belgium
| | - Stefan Naulaerts
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Abhishek D. Garg
- Cell Stress & Immunity, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
4
|
Bizymi N, Damianaki A, Aresti N, Karasachinidis A, Vlata Z, Lavigne M, Dialynas E, Gounalaki N, Stratidaki I, Tsaknakis G, Batsali A, Mavroudi I, Velegraki M, Sperelakis I, Pontikoglou C, Verginis P, Papadaki HA. Characterization of myeloid-derived suppressor cells in the peripheral blood and bone marrow of patients with chronic idiopathic neutropenia. Hemasphere 2024; 8:e70005. [PMID: 39315322 PMCID: PMC11417472 DOI: 10.1002/hem3.70005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 08/11/2024] [Accepted: 08/15/2024] [Indexed: 09/25/2024] Open
Affiliation(s)
- Nikoleta Bizymi
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Athina Damianaki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Nikoletta Aresti
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Anastasios Karasachinidis
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Zacharenia Vlata
- Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Matthieu Lavigne
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Emmanuel Dialynas
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Niki Gounalaki
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Irene Stratidaki
- Genomics Facility, Institute of Molecular Biology and BiotechnologyFoundation for Research and Technology Hellas (IMBB‐FORTH)HeraklionGreece
| | - Grigorios Tsaknakis
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Aristea Batsali
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Irene Mavroudi
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Maria Velegraki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Ioannis Sperelakis
- Department of OrthopedicsUniversity Hospital of HeraklionHeraklionGreece
| | - Charalampos Pontikoglou
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Panayotis Verginis
- Laboratory of Immune Regulation and Tolerance, School of MedicineUniversity of CreteHeraklionGreece
- Department of Laboratory HematologyUniversity Hospital of HeraklionHeraklionGreece
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of MedicineUniversity of CreteHeraklionGreece
- Department of HematologyUniversity Hospital of HeraklionHeraklionGreece
| |
Collapse
|
5
|
Siemińska I, Arent Z. What we know about alterations in immune cells during sepsis in veterinary animals? Vet Immunol Immunopathol 2024; 274:110804. [PMID: 39002363 DOI: 10.1016/j.vetimm.2024.110804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Revised: 06/30/2024] [Accepted: 07/02/2024] [Indexed: 07/15/2024]
Abstract
Sepsis is still one of the most common causes of death of animals and humans. It is marked by an aberrant immune response to infection, resulting in extensive inflammation, organ dysfunction, and, in severe instances, organ failure. Recognizable symptoms and markers of sepsis encompass substantial elevations in body temperature, respiratory rate, hemoglobin levels, and alterations in immune cell counts, including neutrophils, monocytes, and basophils, along with increases in certain acute-phase proteins. In contrast to human medicine, veterinarians must take into account some species differences. This article provides a comprehensive overview of changes in the immune system during sepsis, placing particular emphasis on species variations and exploring potential future drugs and interventions. Hence, understanding the intricate balance of the immune responses during sepsis is crucial to develop effective treatments and interventions to improve the chances of recovery in animals suffering from this serious condition.
Collapse
Affiliation(s)
- Izabela Siemińska
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland.
| | - Zbigniew Arent
- Center of Experimental and Innovative Medicine, University Centre of Veterinary Medicine JU-UA, University of Agriculture in Krakow, Redzina 1C, Krakow 30-248, Poland
| |
Collapse
|
6
|
Miedema IHC, Pouw JEE, Kwakman A, Zwezerijnen GJC, Huisman MC, Timmer FEF, van de Ven R, de Gruijl TD, Hospers GAP, de Langen AJ, Menke-van der Houven van Oordt CW. Exploring the predictive potential of programmed death ligand 1 expression in healthy organs and lymph nodes as measured by 18F-BMS986-192 PET: pooled analysis of data from four solid tumor types. J Immunother Cancer 2024; 12:e008899. [PMID: 38886117 PMCID: PMC11184194 DOI: 10.1136/jitc-2024-008899] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/28/2024] [Indexed: 06/20/2024] Open
Abstract
INTRODUCTION Immune checkpoint inhibitors (ICIs) can elicit anticancer immune responses, but predictive biomarkers are needed. We measured programmed death ligand 1 (PD-L1) expression in organs and lymph nodes using 18F-BMS-986192 positron emission tomography (PET)-imaging and looked for correlations with response and immune-related adverse events. METHODS Four 18F-BMS-986192 PET studies in patients with melanoma, lung, pancreatic and oral cancer, receiving ICI treatment, were combined. Imaging data (organ standardized uptake value (SUV)mean, lymph node SUVmax) and clinical data (response to treatment and incidence of immune-related adverse events) were extracted. RESULTS Baseline PD-L1 uptake in the spleen was on average higher in non-responding patients than in responders (spleen SUVmean 16.1±4.4 vs 12.5±3.4, p=0.02). This effect was strongest in lung cancer, and not observed in oral cancer. In the oral cancer cohort, benign tumor-draining lymph nodes (TDLNs) had higher PD-L1 uptake (SUVmax 3.3 IQR 2.5-3.9) compared with non-TDLNs (SUVmax 1.8, IQR 1.4-2.8 p=0.04). Furthermore, in the same cohort non-responders showed an increase in PD-L1 uptake in benign TDLNs on-treatment with ICIs (+15%), while for responders the PD-L1 uptake decreased (-11%). PD-L1 uptake did not predict immune-related adverse events, though elevated thyroid uptake on-treatment correlated with pre-existing thyroid disease or toxicity. CONCLUSION PD-L1 PET uptake in the spleen is a potential negative predictor of response to ICIs. On-treatment with ICIs, PD-L1 uptake in benign TDLNs increases in non-responders, while it decreases in responders, potentially indicating a mechanism for resistance to ICIs in patients with oral cancer.
Collapse
Affiliation(s)
- Iris H C Miedema
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Johanna E E Pouw
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Anne Kwakman
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Gerben J C Zwezerijnen
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Marc C Huisman
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Florentine E F Timmer
- Imaging and Biomarkers, Cancer Centre Amsterdam, Amsterdam, The Netherlands
- Department of Radiology and Nuclear Medicine, Amsterdam UMC Location VUmc, Amsterdam, The Netherlands
| | - Rieneke van de Ven
- Otolaryngology / Head and Neck Surgery, Amsterdam UMC - Locatie VUMC, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Tanja D de Gruijl
- Department of Medical Oncology, Amsterdam UMC Locatie VUmc, Amsterdam, The Netherlands
- Cancer Biology and Immunology, Cancer Centre Amsterdam, Amsterdam, The Netherlands
| | - Geke A P Hospers
- Medical Oncology, University Medical Centre Groningen, Groningen, The Netherlands
| | | | | |
Collapse
|
7
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Dillemans L, Siddiquei M, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G, Struyf S. CD40 Ligand-CD40 Interaction Is an Intermediary between Inflammation and Angiogenesis in Proliferative Diabetic Retinopathy. Int J Mol Sci 2023; 24:15582. [PMID: 37958563 PMCID: PMC10648257 DOI: 10.3390/ijms242115582] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 10/18/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
We aimed to investigate the role of the CD40-CD40 ligand (CD40L) pathway in inflammation-mediated angiogenesis in proliferative diabetic retinopathy (PDR). We analyzed vitreous fluids and epiretinal fibrovascular membranes from PDR and nondiabetic patients, cultures of human retinal microvascular endothelial cells (HRMECs) and Müller glial cells and rat retinas with ELISA, immunohistochemistry, flow cytometry and Western blot analysis. Functional tests included measurement of blood-retinal barrier breakdown, in vitro angiogenesis and assessment of monocyte-HRMEC adherence. CD40L and CD40 levels were significantly increased in PDR vitreous samples. We demonstrated CD40L and CD40 expression in vascular endothelial cells, leukocytes and myofibroblasts in epiretinal membranes. Intravitreal administration of soluble (s)CD40L in normal rats significantly increased retinal vascular permeability and induced significant upregulation of phospho-ERK1/2, VEGF, intercellular adhesion molecule-1 (ICAM-1) and vascular cell adhesion molecule-1 (VCAM-1). sCD40L induced upregulation of VEGF, MMP-9, MCP-1 and HMGB1 in cultured Müller cells and phospo-ERK1/2, p65 subunit of NF-ĸB, VCAM-1 and VEGF in cultured HRMECS. TNF-α induced significant upregulation of CD40 in HRMECs and Müller cells and VEGF induced significant upregulation of CD40 in HRMECs. sCD40L induced proliferation and migration of HRMECs. We provide experimental evidence supporting the involvement of the CD40L-CD40 pathway and how it regulates inflammatory angiogenesis in PDR.
Collapse
Affiliation(s)
- Ahmed M. Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia
| | - Mohd I. Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Luna Dillemans
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.D.); (S.S.)
| | - Mairaj Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Priscilla W. Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, 3000 Leuven, Belgium; (E.A.); (G.D.H.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
| | - Ghislain Opdenakker
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh 11411, Saudi Arabia; (M.I.N.); (A.A.); (M.S.); (P.W.G.); (G.O.)
- University Hospitals UZ Gasthuisberg, 3000 Leuven, Belgium
- Laboratory of Immunobiology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium
| | - Sofie Struyf
- Laboratory of Molecular Immunology, Department of Microbiology, Immunology and Transplantation, Rega Institute, University of Leuven, 3000 Leuven, Belgium; (L.D.); (S.S.)
| |
Collapse
|
8
|
Yao Y, Zhan R, Gong C, Lv J, Lu X. Clinicopathological and prognostic values of MET expression in pancreatic adenocarcinoma based on bioinformatics analysis. Medicine (Baltimore) 2023; 102:e34656. [PMID: 37832054 PMCID: PMC10578750 DOI: 10.1097/md.0000000000034656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Accepted: 07/18/2023] [Indexed: 10/15/2023] Open
Abstract
Pancreatic adenocarcinoma (PAAD) is regarded as one of the most lethiferous cancers worldwide because treatment of pancreatic cancer remains challenging and mostly palliative. Little progress had been made to select certain reliable biomarkers as clinical prognosis. In this context, GSE28735 and GSE16515 were obtained from the Gene Expression Omnibus (GEO). GEO2R tool was used to recognize differentially expressed genes (DEGs). 351 DEGs were screened which included 230 up-regulated genes and 121 down-regulated genes. Gene ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) analyses were performed to analyze the DEGs and associated signal pathways in the DAVID database. A protein-protein interaction (PPI) network was then constructed to screen 10 hub genes by STRING database and Cityscape software. Analyses of 10 hub genes were performed on GEPIA database and GSCA database, which revealed that MET was high expressed and significantly associated with survival of PAAD patients. Immunohistochemical staining showed that MET was higher expressed in PAAD tissues than adjacent tissues in 20 samples. The clinicopathological analysis revealed that high expression of MET was associated with the degree of differentiation, lymph node metastasis, vascular cancer thrombus and nerve invasion in PAAD tissues (P < .05). Furthermore, the Tumor Immune Estimation Resource (TIMER) database analyzed the correlation between the MET expression level and immune infiltration levels, which elucidated that MET expression was appreciably positively correlated with the infiltration levels of myeloid-derived suppressor cells (MDSCs). Here, these results strongly indicate MET is an unique prognostic biomarker. Its expression level is correlated with certain clinicopathological features and immune cell infiltration.
Collapse
Affiliation(s)
- Yixing Yao
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Rui Zhan
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Chanchan Gong
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Jiaying Lv
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| | - Xialiang Lu
- Department of Pathology, Suzhou Ninth Hospital Affiliated to Soochow University, Suzhou, China
| |
Collapse
|
9
|
Wyrwicz L, Saunders M, Hall M, Ng J, Hong T, Xu S, Lucas J, Lu X, Lautermilch N, Formenti S, Glynne-Jones R. AN0025, a novel antagonist of PGE2-receptor E-type 4 (EP4), in combination with total neoadjuvant treatment of advanced rectal cancer. Radiother Oncol 2023; 185:109669. [PMID: 37054987 DOI: 10.1016/j.radonc.2023.109669] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 03/29/2023] [Accepted: 04/03/2023] [Indexed: 04/15/2023]
Abstract
PURPOSE To assess the safety and efficacy of AN0025 in combination with preoperative radiotherapy and chemotherapy in either short course (SCRT) or long course radiotherapy (LCRT) settings for those with locally advanced rectal cancer. PATIENTS AND METHODS Twenty-eight subjects with locally advanced rectal cancer participated in this multicenter, open-label, Phase Ib trial. Enrolled subjects received either 250 mg or 500 mg of AN0025 once daily for 10 weeks with either LCRT or SCRT with chemotherapy (7 subjects/group). Participants were assessed for safety/efficacy starting from the first dose of study drug administration and were followed for 2 years. RESULTS No treatment-emergent adverse or serious adverse events meeting dose-limiting criteria were observed, with only 3 subjects discontinuing AN0025 treatment due to adverse events. Twenty-five of 28 subjects completed 10 weeks of AN0025 and adjuvant therapy and were evaluated for efficacy. Overall, 36.0% of subjects (9/25 subjects) achieved a pathological complete response or a complete clinical response, including 26.7% of subjects (4/15 subjects who underwent surgery) who achieved a pathological complete response. A total of 65.4% of subjects had magnetic resonance imaging-confirmed down-staging ≤ stage 3 following completion of treatment. With a median follow-up of 30 months. The 12-month disease-free survival and overall survival were 77.5% (95% confidence interval [CI]: 56.6, 89.2) and 96.3% (95% CI: 76.5, 99.5), respectively. CONCLUSIONS Treatment with AN0025 administered for 10 weeks along with preoperative SCRT or LCRT did not appear to worsen the toxicity in subjects with locally advanced rectal cancer, was well-tolerated and showed promise in inducing both a pathological and complete clinical response. These findings suggest its activity deserves further investigation in larger clinical trials.
Collapse
Affiliation(s)
- Lucjan Wyrwicz
- Maria Sklodowska-Curie National Research Institute of Oncology, Warsaw, Poland.
| | - Mark Saunders
- Clinical Oncology, The Christie NHS Foundation Trust, Manchester, United Kingdom
| | - Marcia Hall
- Medical Oncology, Mount Vernon Cancer Centre, Northwood, United Kingdom
| | - John Ng
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | - Theodore Hong
- Massachusetts General Hospital, Harvard Medical School, Hatfield, United Kingdom
| | - Sherry Xu
- Adlai Nortye USA, North Brunswick, NJ, United States
| | - Justin Lucas
- Adlai Nortye USA, North Brunswick, NJ, United States
| | - Xuyang Lu
- Adlai Nortye USA, North Brunswick, NJ, United States
| | | | - Silvia Formenti
- Department of Radiation Oncology, Weill Cornell Medicine, New York, NY, United States
| | | |
Collapse
|
10
|
Dart SJ, Prosser AC, Huang WH, Liu L, Lucas AD, Delriviere L, Gaudieri S, Jeffrey GP, Lucas M. Subset-specific Retention of Donor Myeloid Cells After Major Histocompatibility Complex-matched and Mismatched Liver Transplantation. Transplantation 2023; 107:1502-1512. [PMID: 36584373 PMCID: PMC10508270 DOI: 10.1097/tp.0000000000004481] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 10/14/2022] [Accepted: 11/03/2022] [Indexed: 12/31/2022]
Abstract
BACKGROUND During solid organ transplantation, donor leukocytes, including myeloid cells, are transferred within the organ to the recipient. Both tolerogenic and alloreactive roles have been attributed to donor myeloid cells; however, their subset-specific retention posttransplantation has not been investigated in detail. METHODS Major histocompatibility complex (MHC)-matched and mismatched liver transplants were performed in mice, and the fate of donor and recipient myeloid cells was assessed. RESULTS Following MHC-matched transplantation, a proportion of donor myeloid cells was retained in the graft, whereas others egressed and persisted in the blood, spleen, and bone marrow but not the lymph nodes. In contrast, after MHC-mismatched transplantation, all donor myeloid cells, except Kupffer cells, were depleted. This depletion was caused by recipient T and B cells because all donor myeloid subsets were retained in MHC-mismatched grafts when recipients lacked T and B cells. Recipient myeloid cells rapidly infiltrated MHC-matched and, to a greater extent, MHC-mismatched liver grafts. MHC-mismatched grafts underwent a transient rejection episode on day 7, coinciding with a transition in macrophages to a regulatory phenotype, after which rejection resolved. CONCLUSIONS Phenotypic and kinetic differences in the myeloid cell responses between MHC-matched and mismatched grafts were identified. A detailed understanding of the dynamics of immune responses to transplantation is critical to improving graft outcomes.
Collapse
Affiliation(s)
- Sarah J. Dart
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Amy C. Prosser
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Wen Hua Huang
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Liu Liu
- Medical School, The University of Western Australia, Perth, WA, Australia
| | - Andrew D. Lucas
- School of Biomedical Sciences, The University of Western Australia, Perth, WA, Australia
| | - Luc Delriviere
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Silvana Gaudieri
- School of Human Sciences, The University of Western Australia, Perth, WA, Australia
| | - Gary P. Jeffrey
- Medical School, The University of Western Australia, Perth, WA, Australia
- Western Australian Liver Transplant Service, Sir Charles Gairdner Hospital, Perth, WA, Australia
- Department of Hepatology, Sir Charles Gairdner Hospital, Perth, WA, Australia
| | - Michaela Lucas
- Medical School, The University of Western Australia, Perth, WA, Australia
- Department of Immunology, Sir Charles Gairdner Hospital and PathWest Laboratory Medicine, Perth, WA, Australia
| |
Collapse
|
11
|
Tomela K, Pietrzak B, Galus Ł, Mackiewicz J, Schmidt M, Mackiewicz AA, Kaczmarek M. Myeloid-Derived Suppressor Cells (MDSC) in Melanoma Patients Treated with Anti-PD-1 Immunotherapy. Cells 2023; 12:cells12050789. [PMID: 36899926 PMCID: PMC10000540 DOI: 10.3390/cells12050789] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2022] [Revised: 02/18/2023] [Accepted: 02/27/2023] [Indexed: 03/06/2023] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a subset of immature myeloid cells with suppressive activity well described in the context of cancer. They inhibit anti-tumour immunity, promote metastasis formation and can lead to immune therapy resistance. In a retrospective study, blood probes of 46 advanced melanoma patients were analysed before the first administration of anti-PD-1 immunotherapy and in the third month of treatment for MDSC, immature monocytic (ImMC), monocytic MDSC (MoMDSC) and granulocytic MDSC (GrMDSC) by multi-channel flow cytometry. Cell frequencies were correlated with response to immunotherapy, progression-free survival (PFS) and lactate dehydrogenase (LDH) serum level. Responders to anti-PD-1 therapy had higher MoMDSC levels (4.1 ± 1.2%) compared to non-responders (3.0 ± 1.2%) (p = 0.0333) before the first administration of anti-PD-1. No significant changes in MDSCs frequencies were observed in the groups of patients before and in the third month of therapy. The cut-off values of MDSCs, MoMDSCs, GrMDSCs and ImMCs for favourable 2- and 3-year PFS were established. Elevated LDH level is a negative prognostic factor of response to the treatment and is related to an elevated ratio of GrMDSCs and ImMCs level compared to patients' LDH level below the cut-off. Our data may provide a new perspective for more careful consideration of MDSCs, and specially MoMDSCs, as a tool for monitoring the immune status of melanoma patients. Changes in MDSC levels may have a potential prognostic value, however a correlation with other parameters must be established.
Collapse
Affiliation(s)
- Katarzyna Tomela
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Doctoral School, Poznan University of Medical Sciences, 60-812 Poznan, Poland
- Correspondence:
| | - Bernadeta Pietrzak
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Łukasz Galus
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Jacek Mackiewicz
- Department of Medical and Experimental Oncology, Institute of Oncology, University of Medical Sciences, 60-355 Poznan, Poland
| | - Marcin Schmidt
- Department of Food Biotechnology and Microbiology, Poznan University of Life Sciences, 60-627 Poznan, Poland
| | - Andrzej Adam Mackiewicz
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| | - Mariusz Kaczmarek
- Department of Cancer Immunology, Poznan University of Medical Sciences, 61-866 Poznan, Poland
- Department of Diagnostics and Cancer Immunology, Greater Poland Cancer Centre, 61-866 Poznan, Poland
| |
Collapse
|
12
|
Behrens LM, van Egmond M, van den Berg TK. Neutrophils as immune effector cells in antibody therapy in cancer. Immunol Rev 2022; 314:280-301. [PMID: 36331258 DOI: 10.1111/imr.13159] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Tumor-targeting monoclonal antibodies are available for a number of cancer cell types (over)expressing the corresponding tumor antigens. Such antibodies can limit tumor progression by different mechanisms, including direct growth inhibition and immune-mediated mechanisms, in particular complement-dependent cytotoxicity, antibody-dependent cellular phagocytosis, and antibody-dependent cellular cytotoxicity (ADCC). ADCC can be mediated by various types of immune cells, including neutrophils, the most abundant leukocyte in circulation. Neutrophils express a number of Fc receptors, including Fcγ- and Fcα-receptors, and can therefore kill tumor cells opsonized with either IgG or IgA antibodies. In recent years, important insights have been obtained with respect to the mechanism(s) by which neutrophils engage and kill antibody-opsonized cancer cells and these findings are reviewed here. In addition, we consider a number of additional ways in which neutrophils may affect cancer progression, in particular by regulating adaptive anti-cancer immunity.
Collapse
Affiliation(s)
- Leonie M. Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
- Cancer Center Amsterdam, Cancer Biology and Immunology HV Amsterdam The Netherlands
- Amsterdam institute for Infection and Immunity, Cancer Immunology HV Amsterdam The Netherlands
- Department of Surgery, Amsterdam UMC Vrije Universiteit Amsterdam HV Amsterdam The Netherlands
| | | |
Collapse
|
13
|
Bizymi N, Matthaiou AM, Matheakakis A, Voulgari I, Aresti N, Zavitsanou K, Karasachinidis A, Mavroudi I, Pontikoglou C, Papadaki HA. New Perspectives on Myeloid-Derived Suppressor Cells and Their Emerging Role in Haematology. J Clin Med 2022; 11:jcm11185326. [PMID: 36142973 PMCID: PMC9504532 DOI: 10.3390/jcm11185326] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/05/2022] [Accepted: 09/08/2022] [Indexed: 12/03/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSCs) are immature cells of myeloid origin that have gained researchers’ attention, as they constitute promising biomarkers and targets for novel therapeutic strategies (i.e., blockage of development, differentiation, depletion, and deactivation) in several conditions, including neoplastic, autoimmune, infective, and inflammatory diseases, as well as pregnancy, obesity, and graft rejection. They are characterised in humans by the typical immunophenotype of CD11b+CD33+HLA-DR–/low and immune-modulating properties leading to decreased T-cell proliferation, induction of T-regulatory cells (T-regs), hindering of natural killer (NK) cell functionality, and macrophage M2-polarisation. The research in the field is challenging, as there are still difficulties in defining cell-surface markers and gating strategies that uniquely identify the different populations of MDSCs, and the currently available functional assays are highly demanding. There is evidence that MDSCs display altered frequency and/or functionality and could be targeted in immune-mediated and malignant haematologic diseases, although there is a large variability of techniques and results between different laboratories. This review presents the current literature concerning MDSCs in a clinical point of view in an attempt to trigger future investigation by serving as a guide to the clinical haematologist in order to apply them in the context of precision medicine as well as the researcher in the field of experimental haematology.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Andreas M. Matthaiou
- Laboratory of Molecular and Cellular Pneumonology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Respiratory Physiology Laboratory, Medical School, University of Cyprus, 2029 Nicosia, Cyprus
| | - Angelos Matheakakis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Ioanna Voulgari
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Nikoletta Aresti
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Konstantina Zavitsanou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Anastasios Karasachinidis
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Irene Mavroudi
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Charalampos Pontikoglou
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
| | - Helen A. Papadaki
- Department of Haematology, University Hospital of Heraklion, 71500 Heraklion, Crete, Greece
- Haemopoiesis Research Laboratory, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece
- Correspondence: ; Tel.: +30-2810394637
| |
Collapse
|
14
|
Abu El-Asrar AM, Nawaz MI, Ahmad A, Siddiquei MM, Allegaert E, Gikandi PW, De Hertogh G, Opdenakker G. Proprotein convertase furin is a driver and potential therapeutic target in proliferative diabetic retinopathy. Clin Exp Ophthalmol 2022; 50:632-652. [PMID: 35322530 DOI: 10.1111/ceo.14077] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 03/01/2022] [Accepted: 03/03/2022] [Indexed: 01/20/2023]
Abstract
BACKGROUND Furin converts inactive proproteins into bioactive forms. By activating proinflammatory and proangiogenic factors, furin might play a role in pathophysiology of proliferative diabetic retinopathy (PDR). METHODS We studied vitreous samples from PDR and nondiabetic patients, epiretinal membranes from PDR patients, retinal microvascular endothelial cells (HRMECs), retinal Müller cells and rat retinas by ELISA, Western blot analysis, immunohistochemistry and immunofluorescence microscopy. We performed in vitro angiogenesis assays and assessed adherence of monocytes to HRMECs. RESULTS Furin levels were significantly increased in PDR vitreous samples. In epiretinal membranes, immunohistochemistry analysis revealed furin expression in monocytes/macrophages, vascular endothelial cells and myofibroblasts. Furin was significantly upregulated in diabetic rat retinas. Hypoxia and TNF-α induced significant upregulation of furin in Müller cells and HRMECs. Furin induced upregulation of phospho-ERK1/2, p65 subunit of NF-κB, ADAM17 and MCP-1 in cultured Müller cells and phospho-ERK1/2 in cultured HRMECs and induced HRMECs migration. Treatment of monocytes with furin significantly increased their adhesion to HRMECs. Intravitreal administration of furin in normal rats induced significant upregulation of p65 subunit of NF-κB, phospho-ERK1/2 and ICAM-1 in the retina. Inhibition of furin with dec-CMK significantly decreased levels of MCP-1 in culture medium of Müller cells and HRMECs and significantly attenuated TNF-α-induced upregulation of p65 subunit of NF-κB, ICAM-1 and VCAM-1 in HRMECs. Dec-CMK significantly decreased adherence of monocytes to HRMECs and TNF-α-induced upregulation of adherence of monocytes to HRMECs. Treatment of HRMECs with dec-CMK significantly attenuated migration of HRMECs. CONCLUSIONS Furin is a potential driver molecule of PDR-associated inflammation and angiogenesis.
Collapse
Affiliation(s)
- Ahmed M Abu El-Asrar
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia.,Dr. Nasser Al-Rashid Research Chair in Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohd I Nawaz
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Ajmal Ahmad
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Mohammad M Siddiquei
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Eef Allegaert
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Priscilla W Gikandi
- Department of Ophthalmology, College of Medicine, King Saud University, Riyadh, Saudi Arabia
| | - Gert De Hertogh
- Laboratory of Histochemistry and Cytochemistry, University of Leuven, KU Leuven, Leuven, Belgium.,University Hospitals UZ Gasthuisberg, Leuven, Belgium
| | - Ghislain Opdenakker
- University Hospitals UZ Gasthuisberg, Leuven, Belgium.,Rega Institute for Medical Research, Department of Microbiology and Immunology and Transplantation, University of Leuven, KU Leuven, Leuven, Belgium
| |
Collapse
|
15
|
Ding J, Zheng Y, Wang G, Zheng J, Chai D. The performance and perspectives of dendritic cell vaccines modified by immune checkpoint inhibitors or stimulants. Biochim Biophys Acta Rev Cancer 2022; 1877:188763. [PMID: 35872287 DOI: 10.1016/j.bbcan.2022.188763] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Revised: 07/05/2022] [Accepted: 07/18/2022] [Indexed: 11/30/2022]
Abstract
Therapeutic dendritic cell (DC) vaccines stimulate the elimination of tumor cells by the immune system. However, while antigen-specific T cell responses induced by DC vaccines are commonly observed, the clinical response rate is relatively poor, necessitating vaccine optimization. There is evidence that the suppression of DC function by immune checkpoints hinders the anti-tumor immune responses mediated by DC vaccines, ultimately leading to the immune escape of the tumor cells. The use of immune checkpoint inhibitors (ICIs) and immune checkpoint activators (ICAs) has extended the immunotherapeutic range. It is known that both inhibitory and stimulatory checkpoint molecules are expressed by most DC subsets and can thus be used to manipulate the effectiveness of DC vaccines. Such manipulation has been investigated using strategies such as chemotherapy, agonistic or antagonistic antibodies, siRNA, shRNA, CRISPR-Cas9, soluble antibodies, lentiviruses, and adenoviruses to maximize the efficacy of DC vaccines. Thus, a deeper understanding of immune checkpoints may assist in the development of improved DC vaccines. Here, we review the actions of various ICIs or ICAs shown by preclinical studies, as well as their potential application in DC vaccines. New therapeutic interventional strategies for blocking and stimulating immune checkpoint molecules in DCs are also described in detail.
Collapse
Affiliation(s)
- Jiage Ding
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Yanyan Zheng
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China
| | - Gang Wang
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Junnian Zheng
- Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| | - Dafei Chai
- Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Center of Clinical Oncology, Affiliated Hospital of Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China; Jiangsu Center for the Collaboration and Innovation of Cancer Biotherapy, Cancer Institute, Xuzhou Medical University, Xuzhou, Jiangsu 221002, PR China.
| |
Collapse
|
16
|
Sewnath CA, Behrens LM, van Egmond M. Targeting myeloid cells with bispecific antibodies as novel immunotherapies of cancer. Expert Opin Biol Ther 2022; 22:983-995. [PMID: 35854649 DOI: 10.1080/14712598.2022.2098675] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
INTRODUCTION Most bispecific antibody (BsAb) therapies focus on stimulating the adaptive immune system, in particular T cells, to promote tumor cell killing. Another method to promote tumor eradication is through the engagement of myeloid cells, including macrophages and neutrophils, which are abundantly present and possess intrinsic cytotoxic mechanisms for tumor cell killing, making them interesting effector cells to recruit for BsAb therapy. AREAS COVERED In this review, we describe the evolving knowledge of the role of macrophages and neutrophils in cancer in scientific literature. Moreover, we address the BsAbs that have been developed over the years to recruit these cell types as effector cells in immunotherapy of cancer. This includes the discussion of BsAbs that target Fc receptors (i.e. FcγR and FcαRI) to induce antibody-dependent cellular phagocytosis (ADCP) by macrophages or trogoptosis via neutrophils, as well as BsAbs that interfere with checkpoint inhibition, including the SIRPα-CD47 pathway. EXPERT OPINION Elucidating the complexity of macrophage and neutrophil heterogeneity in cancer may help to specifically enlist the cytotoxic ability of these cells through targeting Fc receptors and checkpoint pathways, which may further enhance anti-cancer immunity.
Collapse
Affiliation(s)
- Celine An Sewnath
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Leonie M Behrens
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands
| | - Marjolein van Egmond
- Department of Molecular Cell Biology and Immunology, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands.,Cancer Biology and Immunology Program, Cancer Centre Amsterdam, Amsterdam, The Netherlands.,Cancer Immunology Program, Amsterdam Institute for Infection and Immunity, Amsterdam, The Netherlands.,Department of Surgery, Amsterdam UMC, Vrije Universiteit Amsterdam De Boelelaan, Amsterdam, The Netherlands
| |
Collapse
|
17
|
Fang F, Zhang T, Li Q, Chen X, Jiang F, Shen X. The tumor immune-microenvironment in gastric cancer. TUMORI JOURNAL 2022; 108:541-551. [PMID: 35196917 DOI: 10.1177/03008916211070051] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
AIMS AND BACKGROUND The tumor microenvironment significantly influences malignant behavior and progression. Many components are involved in the tumor microenvironment, including extracellular matrix, stromal cells, immune and inflammatory cells, as well as cytokines that promote tumor development with complex interactions through the exchange of molecular information. It is now known that tumor immune escape may be influenced by the tumor microenvironment. The aim of this work is to conduct a review of the tumor immune-microenvironment in gastric cancer. METHODS We review the current knowledge of several immune cells involved in the gastric tumor microenvironment. In addition, a brief description of immunotherapy strategies for gastric cancer is also reviewed. CONCLUSIONS Among immune cell populations, lymphocytes, macrophages, dendritic cells and myeloid-derived suppressor cells are revealed to make the difference in promoting or suppressing gastric tumorigenesis, either directly or indirectly, via regulating the immune responses. Understanding these interactions in detail within the tumor immune-microenvironment will contribute to unraveling new therapeutic targets.
Collapse
Affiliation(s)
- Fujin Fang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Tiantian Zhang
- Department of Clinical Laboratory, The Third People's Hospital of Bengbu, Bengbu, China
| | - Qiong Li
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Xiaowei Chen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Fei Jiang
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| | - Xiaobing Shen
- Key Laboratory of Environmental Medical Engineering and Education Ministry, School of Public Health, Southeast University, Nanjing, Jiangsu, China.,Department of Preventive Medicine, School of Public Health, Southeast University, Nanjing, China
| |
Collapse
|
18
|
Regulation of prognosis-related Siglecs in the glioma microenvironment. J Cancer Res Clin Oncol 2021; 147:3343-3357. [PMID: 34472004 DOI: 10.1007/s00432-021-03762-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2021] [Accepted: 08/09/2021] [Indexed: 12/21/2022]
Abstract
PURPOSE The anti-inflammatory environment of glioma reduces the efficacy of immunotherapies. Therefore, it is vital to transform the immunosuppressive microenvironment of glioma into a pro-inflammatory environment. Sialic acid-binding immunoglobulin-type lectins (Siglecs) can serve as immune checkpoint targets that enhance the anti-tumor immune response. However, the roles of Siglecs in the glioma microenvironment are unknown. This study was conducted to identify targets to inhibit the anti-inflammatory environment to improve therapeutic outcomes in patients with glioma. METHODS We analyzed the regulatory effect of prognosis-related Siglecs identified from data available in The Cancer Genome Atlas database (TCGA) and China Glioma Genome Atlas Data portal on the immunosuppressive microenvironment of glioma. The effects of prognosis-related Siglecs on the glioma microenvironment were investigated by determining the Pearson correlation coefficients of the Siglecs in transcriptome data from the TCGA database. RESULTS Siglec-1, -9, -10, and -14 were closely associated with the prognosis of patients with glioma. The expression of these four Siglecs was significantly increased in the high-risk group and positively correlated with anti-inflammatory cytokine levels in the glioma microenvironment. CONCLUSION Our study provides insights into the effects of prognosis-related Siglecs in glioma immunotherapy, suggesting that targeted prognosis-related Siglecs can modify the microenvironment of glioma and improve the sensitivity of patients with glioma to immunotherapy.
Collapse
|
19
|
Neutrophils in Tumorigenesis: Missing Targets for Successful Next Generation Cancer Therapies? Int J Mol Sci 2021; 22:ijms22136744. [PMID: 34201758 PMCID: PMC8268516 DOI: 10.3390/ijms22136744] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Revised: 06/15/2021] [Accepted: 06/16/2021] [Indexed: 12/14/2022] Open
Abstract
Neutrophils—once considered as simple killers of pathogens and unexciting for cancer research—are now acknowledged for their role in the process of tumorigenesis. Neutrophils are recruited to the tumor microenvironment where they turn into tumor-associated neutrophils (TANs), and are able to initiate and promote tumor progression and metastasis. Conversely, anti-tumorigenic properties of neutrophils have been documented, highlighting the versatile nature and high pleiotropic plasticity of these polymorphonuclear leukocytes (PMN-L). Here, we dissect the ambivalent roles of TANs in cancer and focus on selected functional aspects that could be therapeutic targets. Indeed, the critical point of targeting TAN functions lies in the fact that an immunosuppressive state could be induced, resulting in unwanted side effects. A deeper knowledge of the mechanisms linked to diverse TAN functions in different cancer types is necessary to define appropriate therapeutic strategies that are able to induce and maintain an anti-tumor microenvironment.
Collapse
|
20
|
van den Bijgaart RJE, Schuurmans F, Fütterer JJ, Verheij M, Cornelissen LAM, Adema GJ. Immune Modulation Plus Tumor Ablation: Adjuvants and Antibodies to Prime and Boost Anti-Tumor Immunity In Situ. Front Immunol 2021; 12:617365. [PMID: 33936033 PMCID: PMC8079760 DOI: 10.3389/fimmu.2021.617365] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 03/22/2021] [Indexed: 12/11/2022] Open
Abstract
In situ tumor ablation techniques, like radiotherapy, cryo- and heat-based thermal ablation are successfully applied in oncology for local destruction of tumor masses. Although diverse in technology and mechanism of inducing cell death, ablative techniques share one key feature: they generate tumor debris which remains in situ. This tumor debris functions as an unbiased source of tumor antigens available to the immune system and has led to the concept of in situ cancer vaccination. Most studies, however, report generally modest tumor-directed immune responses following local tumor ablation as stand-alone treatment. Tumors have evolved mechanisms to create an immunosuppressive tumor microenvironment (TME), parts of which may admix with the antigen depot. Provision of immune stimuli, as well as approaches that counteract the immunosuppressive TME, have shown to be key to boost ablation-induced anti-tumor immunity. Recent advances in protein engineering have yielded novel multifunctional antibody formats. These multifunctional antibodies can provide a combination of distinct effector functions or allow for delivery of immunomodulators specifically to the relevant locations, thereby mitigating potential toxic side effects. This review provides an update on immune activation strategies that have been tested to act in concert with tumor debris to achieve in situ cancer vaccination. We further provide a rationale for multifunctional antibody formats to be applied together with in situ ablation to boost anti-tumor immunity for local and systemic tumor control.
Collapse
Affiliation(s)
- Renske J E van den Bijgaart
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Fabian Schuurmans
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Jurgen J Fütterer
- Department of Medical Imaging, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Robotics and Mechatronics, University of Twente, Enschede, Netherlands
| | - Marcel Verheij
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Lenneke A M Cornelissen
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| | - Gosse J Adema
- Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Nijmegen, Netherlands
| |
Collapse
|
21
|
Siemińska I, Poljańska E, Baran J. Granulocytes and Cells of Granulocyte Origin-The Relevant Players in Colorectal Cancer. Int J Mol Sci 2021; 22:ijms22073801. [PMID: 33917620 PMCID: PMC8038777 DOI: 10.3390/ijms22073801] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2021] [Revised: 03/31/2021] [Accepted: 04/02/2021] [Indexed: 12/11/2022] Open
Abstract
Colorectal cancer (CRC) is one of the most common malignancy and cause of cancer death worldwide, and it still remains a therapeutic challenge for western medicine. There is strong evidence that, in addition to genetic predispositions, environmental factors have also a substantial impact in CRC development. The risk of CRC is attributed, among others to dietary habits, alcohol consumption, whereas physical activity, food containing dietary fiber, dairy products, and calcium supplements have a protective effect. Despite progress in the available therapies, surgery remains a basic treatment option for CRC. Implementation of additional methods of treatment such as chemo- and/or targeted immunotherapy, improved survival rates, however, the results are still far from satisfactory. One of the reasons may be the lack of deeper understanding of the interactions between the tumor and different types of cells, including tumor infiltrating granulocytes. While the role of neutrophils is quite well explored in many cancers, role of eosinophils and basophils is often underestimated. As part of this review, we focused on the function of different granulocyte subsets in CRC, emphasizing the beneficial role of eosinophils and basophils, as well as dichotomic mode of neutrophils action. In addition, we addressed the current knowledge on cells of granulocyte origin, specifically granulocytic myeloid derived suppressor cells (Gr-MDSCs) and their role in development and progression of CRC.
Collapse
Affiliation(s)
- Izabela Siemińska
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
| | - Ewa Poljańska
- Laboratory Medicine, Faculty of Pharmacy, Jagiellonian University Medical College, 30-688 Krakow, Poland;
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, 30-663 Krakow, Poland;
- Correspondence:
| |
Collapse
|
22
|
Suszczyk D, Skiba W, Jakubowicz-Gil J, Kotarski J, Wertel I. The Role of Myeloid-Derived Suppressor Cells (MDSCs) in the Development and/or Progression of Endometriosis-State of the Art. Cells 2021; 10:cells10030677. [PMID: 33803806 PMCID: PMC8003224 DOI: 10.3390/cells10030677] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2021] [Revised: 03/15/2021] [Accepted: 03/15/2021] [Indexed: 02/06/2023] Open
Abstract
Endometriosis (EMS) is a common gynecological disease characterized by the presence of endometrial tissue outside the uterus. Approximately 10% of women around the world suffer from this disease. Recent studies suggest that endometriosis has potential to transform into endometriosis-associated ovarian cancer (EAOC). Endometriosis is connected with chronic inflammation and changes in the phenotype, activity, and function of immune cells. The underlying mechanisms include quantitative and functional disturbances of neutrophils, monocytes/macrophages (MO/MA), natural killer cells (NK), and T cells. A few reports have shown that immunosuppressive cells such as regulatory T cells (Tregs) and myeloid-derived suppressor cells (MDSCs) may promote the progression of endometriosis. MDSCs are a heterogeneous population of immature myeloid cells (dendritic cells, granulocytes, and MO/MA precursors), which play an important role in the development of immunological diseases such as chronic inflammation and cancer. The presence of MDSCs in pathological conditions correlates with immunosuppression, angiogenesis, or release of growth factors and cytokines, which promote progression of these diseases. In this paper, we review the impact of MDSCs on different populations of immune cells, focusing on their immunosuppressive role in the immune system, which may be related with the pathogenesis and/or progression of endometriosis and its transformation into ovarian cancer.
Collapse
Affiliation(s)
- Dorota Suszczyk
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Wiktoria Skiba
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
| | - Joanna Jakubowicz-Gil
- Department of Functional Anatomy and Cytobiology, Maria Curie-Sklodowska University, Akademicka 19, 20-033 Lublin, Poland;
| | - Jan Kotarski
- Department of Gynaecologic Oncology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland;
| | - Iwona Wertel
- Independent Laboratory of Cancer Diagnostics and Immunology, Department of Oncological Gynaecology and Gynaecology, Medical University of Lublin, Staszica 16, 20-081 Lublin, Poland; (D.S.); (W.S.)
- Correspondence:
| |
Collapse
|
23
|
Kho VM, Mekers VE, Span PN, Bussink J, Adema GJ. Radiotherapy and cGAS/STING signaling: Impact on MDSCs in the tumor microenvironment. Cell Immunol 2021; 362:104298. [PMID: 33592541 DOI: 10.1016/j.cellimm.2021.104298] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2020] [Revised: 01/14/2021] [Accepted: 01/17/2021] [Indexed: 12/20/2022]
Abstract
Myeloid derived suppressor cells (MDSCs) are a highly heterogeneous population of immature immune cells with immunosuppressive functions that are recruited to the tumor microenvironment (TME). MDSCs promote tumor growth and progression by inhibiting immune effector cell proliferation and function. MDSCs are affected by both novel anti-cancer therapies targeting the immune system to promote anti-tumor immunity, as well as by conventional treatments such as radiotherapy. Following radiotherapy, cytoplasmic double stranded DNA stimulates the cyclic GMP-AMP synthase (cGAS)/stimulator of interferon genes (STING) pathway, resulting in type I interferon production. Effectiveness of radiotherapy and cGAS/STING signaling are closely intertwined: activation of cGAS and STING is key to generate systemic anti-tumor immunity after irradiation. This review focuses on how radiotherapy and cGAS/STING signaling in MDSCs and/or tumor cells impact MDSC recruitment, expansion and function. The influence of conventional and ablative radiotherapy treatment schedules, inflammatory response following radiotherapy, and hypoxia are discussed as MDSC modulators.
Collapse
Affiliation(s)
- Vera M Kho
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands
| | - Vera E Mekers
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands
| | - Paul N Span
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands
| | - Johan Bussink
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA Nijmegen, The Netherlands.
| |
Collapse
|
24
|
Yang B, Gao J, Pei Q, Xu H, Yu H. Engineering Prodrug Nanomedicine for Cancer Immunotherapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2020; 7:2002365. [PMID: 33304763 PMCID: PMC7709995 DOI: 10.1002/advs.202002365] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 08/16/2020] [Indexed: 12/11/2022]
Abstract
Immunotherapy has shifted the clinical paradigm of cancer management. However, despite promising initial progress, immunotherapeutic approaches to cancer still suffer from relatively low response rates and the possibility of severe side effects, likely due to the low inherent immunogenicity of tumor cells, the immunosuppressive tumor microenvironment, and significant inter- and intratumoral heterogeneity. Recently, nanoformulations of prodrugs have been explored as a means to enhance cancer immunotherapy by simultaneously eliciting antitumor immune responses and reversing local immunosuppression. Prodrug nanomedicines, which integrate engineering advances in chemistry, oncoimmunology, and material science, are rationally designed through chemically modifying small molecule drugs, peptides, or antibodies to yield increased bioavailability and spatiotemporal control of drug release and activation at the target sites. Such strategies can help reduce adverse effects and enable codelivery of multiple immune modulators to yield synergistic cancer immunotherapy. In this review article, recent advances and translational challenges facing prodrug nanomedicines for cancer immunotherapy are overviewed. Last, key considerations are outlined for future efforts to advance prodrug nanomedicines aimed to improve antitumor immune responses and combat immune tolerogenic microenvironments.
Collapse
Affiliation(s)
- Bin Yang
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Jing Gao
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Qing Pei
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| | - Huixiong Xu
- Department of Medical UltrasoundShanghai Tenth People's HospitalUltrasound Research and Education InstituteTongji University School of MedicineTongji University Cancer CenterShanghai200072China
| | - Haijun Yu
- State Key Laboratory of Drug Research & Center of PharmaceuticsShanghai Institute of Materia MedicaChinese Academy of SciencesShanghai201203China
| |
Collapse
|
25
|
Increased immunosuppression impairs tissue homeostasis with aging and age-related diseases. J Mol Med (Berl) 2020; 99:1-20. [PMID: 33025106 PMCID: PMC7782450 DOI: 10.1007/s00109-020-01988-7] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 01/10/2023]
Abstract
Abstract Chronic low-grade inflammation is a common hallmark of the aging process and many age-related diseases. There is substantial evidence that persistent inflammation is associated with a compensatory anti-inflammatory response which prevents excessive tissue damage. Interestingly, the inflammatory state encountered with aging, called inflammaging, is associated with the anti-inflammaging process. The age-related activation of immunosuppressive network includes an increase in the numbers of myeloid-derived suppressor cells (MDSC), regulatory T cells (Treg), and macrophages (Mreg/M2c). Immunosuppressive cells secrete several anti-inflammatory cytokines, e.g., TGF-β and IL-10, as well as reactive oxygen and nitrogen species (ROS/RNS). Moreover, immunosuppressive cells suppress the function of effector immune cells by catabolizing l-arginine and tryptophan through the activation of arginase 1 (ARG1) and indoleamine 2,3-dioxygenase (IDO), respectively. Unfortunately, the immunosuppressive armament also induces harmful bystander effects in neighboring cells by impairing host tissue homeostasis. For instance, TGF-β signaling can trigger many age-related degenerative changes, e.g., cellular senescence, fibrosis, osteoporosis, muscle atrophy, and the degeneration of the extracellular matrix. In addition, changes in the levels of ROS, RNS, and the metabolites of the kynurenine pathway can impair tissue homeostasis. This review will examine in detail the harmful effects of the immunosuppressive cells on host tissues. It seems that this age-related immunosuppression prevents inflammatory damage but promotes the tissue degeneration associated with aging and age-related diseases. Key messages • Low-grade inflammation is associated with the aging process and age-related diseases. • Persistent inflammation activates compensatory immunosuppression with aging. • The numbers of immunosuppressive cells increase with aging and age-related diseases. • Immunosuppressive mechanisms evoke harmful bystander effects in host tissues. • Immunosuppression promotes tissue degeneration with aging and age-related diseases.
Collapse
|
26
|
Hofman P. New insights into the interaction of the immune system with non-small cell lung carcinomas. Transl Lung Cancer Res 2020; 9:2199-2213. [PMID: 33209644 PMCID: PMC7653157 DOI: 10.21037/tlcr-20-178] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The basis of current and future lung cancer immunotherapy depends mainly on our knowledge of the molecular mechanisms of interactions between cancer and immune cells (ICs), as well as on interactions occurring between the different populations of intra-tumor ICs. These interactions are very complex, as virtually all immune cell types, including macrophages, neutrophils, mast cells, natural killer (NK) cells, dendritic cells and T and B lymphocytes can infiltrate lung cancer tissues at the same time. Moreover these interactions lead to progressive emergence of an imbalance in ICs. Initially ICs have an anti-tumor effect but then induce immune tolerance and eventually tumor progression and dissemination. All the cells of innate and adaptive intra-tumor immunity engage in this progressive phenotypic switch. A majority of non-small cell lung carcinoma (NSCLC) patients do not benefit from the expected positive responses associated with current immunotherapy. Thus, there is urgent need to better understand the different roles of the associated cancer ICs. This review summarizes some of the new insights into this domain, with particular focus on: the myeloid cell population associated with tumors, the tertiary lymphoid structures (TLSs), the role of the P2 purinergic receptors (P2R) and ATP, and the new concept of the “liquid microenvironment” implying blood circulating ICs.
Collapse
Affiliation(s)
- Paul Hofman
- CHU Nice, FHU OncoAge, Laboratory of Clinical and Experimental Pathology, Pasteur Hospital, Université Côte d'Azur, Nice, France.,CNRS, INSERM, IRCAN, FHU OncoAge, Team 4, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France.,CHU Nice, FHU OncoAge, Hospital-Integrated Biobank, Université Côte d'Azur, Nice, France
| |
Collapse
|
27
|
Cassetta L, Bruderek K, Skrzeczynska-Moncznik J, Osiecka O, Hu X, Rundgren IM, Lin A, Santegoets K, Horzum U, Godinho-Santos A, Zelinskyy G, Garcia-Tellez T, Bjelica S, Taciak B, Kittang AO, Höing B, Lang S, Dixon M, Müller V, Utikal JS, Karakoç D, Yilmaz KB, Górka E, Bodnar L, Anastasiou OE, Bourgeois C, Badura R, Kapinska-Mrowiecka M, Gotic M, Ter Laan M, Kers-Rebel E, Król M, Santibañez JF, Müller-Trutwin M, Dittmer U, de Sousa AE, Esendağlı G, Adema G, Loré K, Ersvær E, Umansky V, Pollard JW, Cichy J, Brandau S. Differential expansion of circulating human MDSC subsets in patients with cancer, infection and inflammation. J Immunother Cancer 2020; 8:jitc-2020-001223. [PMID: 32907925 PMCID: PMC7481096 DOI: 10.1136/jitc-2020-001223] [Citation(s) in RCA: 135] [Impact Index Per Article: 27.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/24/2020] [Indexed: 01/25/2023] Open
Abstract
Background Myeloid-derived suppressor cells (MDSC) are a functional myeloid cell subset that includes myeloid cells with immune suppressive properties. The presence of MDSC has been reported in the peripheral blood of patients with several malignant and non-malignant diseases. So far, direct comparison of MDSC across different diseases and Centers is hindered by technical pitfalls and a lack of standardized methodology. To overcome this issue, we formed a network through the COST Action Mye-EUNITER (www.mye-euniter.eu) with the goal to standardize and facilitate the comparative analysis of human circulating MDSC in cancer, inflammation and infection. In this manuscript, we present the results of the multicenter study Mye-EUNITER MDSC Monitoring Initiative, that involved 13 laboratories and compared circulating MDSC subsets across multiple diseases, using a common protocol for the isolation, identification and characterization of these cells. Methods We developed, tested, executed and optimized a standard operating procedure for the isolation and immunophenotyping of MDSC using blood from healthy donors. We applied this procedure to the blood of almost 400 patients and controls with different solid tumors and non-malignant diseases. The latter included viral infections such as HIV and hepatitis B virus, but also psoriasis and cardiovascular disorders. Results We observed that the frequency of MDSC in healthy donors varied substantially between centers and was influenced by technical aspects such as the anticoagulant and separation method used. Expansion of polymorphonuclear (PMN)-MDSC exceeded the expansion of monocytic MDSC (M-MDSC) in five out of six solid tumors. PMN-MDSC expansion was more pronounced in cancer compared with infection and inflammation. Programmed death-ligand 1 was primarily expressed in M-MDSC and e-MDSC and was not upregulated as a consequence of disease. LOX-1 expression was confined to PMN-MDSC. Conclusions This study provides improved technical protocols and workflows for the multi-center analysis of circulating human MDSC subsets. Application of these workflows revealed a predominant expansion of PMN-MDSC in solid tumors that exceeds expansion in chronic infection and inflammation.
Collapse
Affiliation(s)
- Luca Cassetta
- MRC Centre for Reproductive Health, The University of Edinburgh The Queen's Medical Research Institute, Edinburgh, Edinburgh, UK
| | - Kirsten Bruderek
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Joanna Skrzeczynska-Moncznik
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Małopolska, Poland
| | - Oktawia Osiecka
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Małopolska, Poland
| | - Xiaoying Hu
- Clinical Cooperation Unit Dermato-Oncology, DKFZ, Heidelberg, Baden-Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Mannheim, Baden-Württemberg, Germany
| | - Ida Marie Rundgren
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Hordaland, Norway
| | - Ang Lin
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institute, Stockholm, Stockholm, Sweden
| | - Kim Santegoets
- Medical Center, Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Utku Horzum
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Ankara, Turkey
| | - Ana Godinho-Santos
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, University of Lisbon, Lisboa, Lisboa, Portugal
| | - Gennadiy Zelinskyy
- Institute for Virology, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Thalia Garcia-Tellez
- HIV Inflammation and Persistence, Pasteur Institute, Paris, Île-de-France, France
| | - Sunčica Bjelica
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Beograd, Beograd, Serbia
| | - Bartłomiej Taciak
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Cellis AG, Zurich, Switzerland
| | | | - Benedikt Höing
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Stephan Lang
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany
| | - Michael Dixon
- Edinburgh Breast Unit and Breast Cancer Now Research Unit, The University of Edinburgh, Edinburgh, Edinburgh, UK
| | - Verena Müller
- Clinical Cooperation Unit Dermato-Oncology, DKFZ, Heidelberg, Baden-Württemberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Mannheim, Baden-Württemberg, Germany
| | - Jochen Sven Utikal
- Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Mannheim, Baden-Württemberg, Germany.,Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Centre, Heidelberg, Baden-Württemberg, Germany
| | - Derya Karakoç
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Ankara, Turkey.,Department of General Surgery, Faculty of Medicine, Hacettepe University, Ankara, Ankara, Turkey
| | - Kerim Bora Yilmaz
- Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Ankara, Turkey.,Department of General Surgery, Gulhane Egitim ve Arastirma Hastanesi, Ankara, Ankara, Turkey
| | - Emilia Górka
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Cellis AG, Zurich, Switzerland
| | - Lubomir Bodnar
- Department of Oncology and Immunooncology, Hospital Ministry of the Interior and Administration & Warmia and Masuria Oncology Centre, Olsztyn, Poland.,Department of Oncology, University of Warmia and Mazury in Olsztyn, Olsztyn, Poland
| | | | - Christine Bourgeois
- Center for Immunology of Viral Infections and Autoimmune Diseases, IDMIT Department, IBFJ, CEA, Université Paris-Sud, Saint-Aubin, Île-de-France, France
| | - Robert Badura
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, University of Lisbon, Lisboa, Lisboa, Portugal.,Serviço de Doenças Infecciosas, Northern Lisbon University Hospital Centre, Lisboa, Lisboa, Portugal
| | | | - Mirjana Gotic
- Clinic of Hematology, Clinical Center of Serbia, Beograd, Beograd, Serbia
| | - Mark Ter Laan
- Medical Center, Department of Neurosurgery, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Esther Kers-Rebel
- Medical Center, Radiotherapy & OncoImmunology Laboratory, Department of Radiation Oncology, Radboud University, Nijmegen, Gelderland, The Netherlands
| | - Magdalena Król
- Department of Cancer Biology, Institute of Biology, Warsaw University of Life Sciences, Warszawa, Poland.,Cellis AG, Zurich, Switzerland
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Beograd, Beograd, Serbia.,Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O'Higgins, Santiago, Chile
| | | | - Ulf Dittmer
- Institute for Virology, University Hospital Essen, Essen, Nordrhein-Westfalen, Germany
| | - Ana Espada de Sousa
- Instituto de Medicina Molecular João Lobo Antunes, Faculdade de Medicina, University of Lisbon, Lisboa, Lisboa, Portugal
| | - Güneş Esendağlı
- Department of Basic Oncology, Cancer Institute, Hacettepe University, Ankara, Ankara, Turkey.,Department of Medical and Surgical Research, Institute of Health Sciences, Hacettepe University, Ankara, Ankara, Turkey
| | - Gosse Adema
- Department of Radiation Oncology, Radboud University Radboud Institute for Molecular Life Sciences, Nijmegen, The Netherlands
| | - Karin Loré
- Division of Immunology and Allergy, Department of Medicine Solna, Karolinska Institute, Stockholm, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institute, Stockholm, Stockholm, Sweden
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education and Chemical Engineering, Faculty of Engineering and Natural Sciences, Western Norway University of Applied Sciences, Bergen, Hordaland, Norway
| | - Viktor Umansky
- Department of Dermatology, Venereology and Allergology, University Medical Centre Mannheim, Mannheim, Baden-Württemberg, Germany.,Clinical Cooperation Unit Dermato-Oncology, German Cancer Research Centre, Heidelberg, Baden-Württemberg, Germany
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, The University of Edinburgh The Queen's Medical Research Institute, Edinburgh, Edinburgh, UK
| | - Joanna Cichy
- Department of Immunology, Faculty of Biochemistry, Biophysics and Biotechnology, Jagiellonian University, Krakow, Małopolska, Poland
| | - Sven Brandau
- Department of Otorhinolaryngology, University Hospital Essen, Essen, Germany .,German Cancer Consortium, Partner Site Essen-Düsseldorf, Germany
| |
Collapse
|
28
|
Pico de Coaña Y, Wolodarski M, van der Haar Àvila I, Nakajima T, Rentouli S, Lundqvist A, Masucci G, Hansson J, Kiessling R. PD-1 checkpoint blockade in advanced melanoma patients: NK cells, monocytic subsets and host PD-L1 expression as predictive biomarker candidates. Oncoimmunology 2020; 9:1786888. [PMID: 32939320 PMCID: PMC7470181 DOI: 10.1080/2162402x.2020.1786888] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022] Open
Abstract
Blockade of the PD-1 receptor has revolutionized the treatment of metastatic melanoma, with significant increases in overall survival (OS) and a dramatic improvement in patient quality of life. Despite the success of this approach, the number of benefitting patients is limited and there is a need for predictive biomarkers as well as a deeper mechanistic analysis of the cellular populations involved in clinical responses. With the aim to find predictive biomarkers for PD-1 checkpoint blockade, an in-depth immune monitoring study was conducted in 36 advanced melanoma patients receiving pembrolizumab or nivolumab treatment at Karolinska University Hospital. Blood samples were collected before treatment and before administration of the second and fourth doses. Peripheral blood mononuclear cells were isolated and stained for flow cytometric analysis within 2 h of sample collection. Overall survival and progression-free survival (PFS) were inversely correlated with CD69 expression NK cells. In the myeloid compartment, high frequencies of non-classical monocytes and low frequencies of monocytic myeloid derived suppressor cells (MoMDSCs) correlated with response rates and OS. A deeper characterization of monocytic subsets showed that PD-L1 expression in MDSCs, non-classical and intermediate monocytes was significantly increased in patients with shorter PFS in addition to correlating inversely with OS. Our results suggest that cellular populations other than T cells can be critical in the outcome of PD-1 blockade treatment. Specifically, the frequencies of activated NK cells and monocytic subsets are inversely correlated with survival and clinical benefit, suggesting that their role as predictive biomarkers should be further evaluated.
Collapse
Affiliation(s)
- Yago Pico de Coaña
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Maria Wolodarski
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital Solna, Stockholm, Sweden
| | | | - Takahiro Nakajima
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Department of Gastrointestinal Tract Surgery, Fukushima Medical University School of Medicine, Fukushima, Japan
| | - Stamatina Rentouli
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Andreas Lundqvist
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden
| | - Giuseppe Masucci
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Johan Hansson
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital Solna, Stockholm, Sweden
| | - Rolf Kiessling
- Department of Oncology and Pathology, Karolinska Institutet, Stockholm, Sweden.,Theme Cancer, Patient Area Head and Neck, Lung, and Skin, Karolinska University Hospital Solna, Stockholm, Sweden
| |
Collapse
|
29
|
Sieminska I, Baran J. Myeloid-Derived Suppressor Cells in Colorectal Cancer. Front Immunol 2020; 11:1526. [PMID: 32849517 PMCID: PMC7426395 DOI: 10.3389/fimmu.2020.01526] [Citation(s) in RCA: 53] [Impact Index Per Article: 10.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Accepted: 06/10/2020] [Indexed: 12/24/2022] Open
Abstract
Colorectal cancer (CRC) remains one of the most common malignancies diagnosed worldwide. The pathogenesis of CRC is complex and involves, among others, accumulation of genetic predispositions and epigenetic factors, dietary habits, alterations in gut microbiota, and lack of physical activity. A growing body of evidence suggests that immune cells play different roles in CRC, comprising both pro- and anti-tumorigenic functions. Immunosuppression observed during cancer development and progression is a result of the orchestration of many cell types, including myeloid-derived suppressor cells (MDSCs). MDSCs, along with other cells, stimulate tumor growth, angiogenesis, and formation of metastases. This article focuses on MDSCs in relation to their role in the initiation and progression of CRC. Possible forms of immunotherapies targeting MDSCs in CRC are also discussed.
Collapse
Affiliation(s)
| | - Jarek Baran
- Department of Clinical Immunology, Jagiellonian University Medical College, Krakow, Poland
| |
Collapse
|
30
|
Salminen A, Kaarniranta K, Kauppinen A. ER stress activates immunosuppressive network: implications for aging and Alzheimer's disease. J Mol Med (Berl) 2020; 98:633-650. [PMID: 32279085 PMCID: PMC7220864 DOI: 10.1007/s00109-020-01904-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 03/24/2020] [Accepted: 03/26/2020] [Indexed: 12/14/2022]
Abstract
The endoplasmic reticulum (ER) contains stress sensors which recognize the accumulation of unfolded proteins within the lumen of ER, and subsequently these transducers stimulate the unfolded protein response (UPR). The ER sensors include the IRE1, PERK, and ATF6 transducers which activate the UPR in an attempt to restore the quality of protein folding and thus maintain cellular homeostasis. If there is excessive stress, UPR signaling generates alarmins, e.g., chemokines and cytokines, which activate not only tissue-resident immune cells but also recruit myeloid and lymphoid cells into the affected tissues. ER stress is a crucial inducer of inflammation in many pathological conditions. A chronic low-grade inflammation and cellular senescence have been associated with the aging process and many age-related diseases, such as Alzheimer’s disease. Currently, it is known that immune cells can exhibit great plasticity, i.e., they are able to display both pro-inflammatory and anti-inflammatory phenotypes in a context-dependent manner. The microenvironment encountered in chronic inflammatory conditions triggers a compensatory immunosuppression which defends tissues from excessive inflammation. Recent studies have revealed that chronic ER stress augments the suppressive phenotypes of immune cells, e.g., in tumors and other inflammatory disorders. The activation of immunosuppressive network, including myeloid-derived suppressor cells (MDSC) and regulatory T cells (Treg), has been involved in the aging process and Alzheimer’s disease. We will examine in detail whether the ER stress-related changes found in aging tissues and Alzheimer’s disease are associated with the activation of immunosuppressive network, as has been observed in tumors and many chronic inflammatory diseases.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.,Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, Kuopio, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
31
|
van de Wall S, Santegoets KC, van Houtum EJ, Büll C, Adema GJ. Sialoglycans and Siglecs Can Shape the Tumor Immune Microenvironment. Trends Immunol 2020; 41:274-285. [DOI: 10.1016/j.it.2020.02.001] [Citation(s) in RCA: 64] [Impact Index Per Article: 12.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2019] [Revised: 01/30/2020] [Accepted: 02/05/2020] [Indexed: 12/23/2022]
|
32
|
Takeyama Y, Kato M, Tamada S, Azuma Y, Shimizu Y, Iguchi T, Yamasaki T, Gi M, Wanibuchi H, Nakatani T. Myeloid-derived suppressor cells are essential partners for immune checkpoint inhibitors in the treatment of cisplatin-resistant bladder cancer. Cancer Lett 2020; 479:89-99. [PMID: 32200039 DOI: 10.1016/j.canlet.2020.03.013] [Citation(s) in RCA: 43] [Impact Index Per Article: 8.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 03/04/2020] [Accepted: 03/13/2020] [Indexed: 12/11/2022]
Abstract
Myeloid-derived suppressor cells (MDSCs) are one of the key players that contribute to immune evasion. The purpose of the present study was to investigate whether MDSCs could be a novel target for the treatment of cisplatin-resistant bladder cancer. We established cisplatin-resistant bladder cancer cell lines (MB49R, MBT-2R, and T24R) and evaluated chemokine expression and MDSC expansion. We also assessed the antitumor effect by depleting MDSCs with or without a α-PD-L1 antibody using MB49R xenograft models. The chemokine expression of CXCL1, CXCL2, and CCL2 increased in cisplatin-resistant cells compared to those in their parent strains. Monocytic MDSCs (Mo-MDSCs) were observed more frequently compared to polymorphonuclear MDSCs (PMN-MDSCs) in MB49R tumors. The immunosuppressive genes arginase 1 and iNOS were comparably expressed in each MDSC subtype. In vivo, combination therapy targeting both PMN- and Mo-MDSCs using α-Gr1 and α-Ly6C antibodies significantly reduced tumor volume with increased infiltration of CD8 T cells in the tumor. Finally, co-targeting pan-MDSCs and PD-L1 remarkably reduced the tumor growth. These findings suggest that targeting MDSCs might enhance the therapeutic effect of immune checkpoint inhibitors in cisplatin-resistant bladder cancers.
Collapse
Affiliation(s)
- Yuji Takeyama
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Minoru Kato
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Satoshi Tamada
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yukari Azuma
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Yasuomi Shimizu
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Taro Iguchi
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Takeshi Yamasaki
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Min Gi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Hideki Wanibuchi
- Department of Pathology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| | - Tatsuya Nakatani
- Department of Urology, Osaka City University Graduate School of Medicine, Osaka, Japan.
| |
Collapse
|
33
|
Luker AJ, Graham LJ, Smith TM, Camarena C, Zellner MP, Gilmer JJS, Damle SR, Conrad DH, Bear HD, Martin RK. The DNA methyltransferase inhibitor, guadecitabine, targets tumor-induced myelopoiesis and recovers T cell activity to slow tumor growth in combination with adoptive immunotherapy in a mouse model of breast cancer. BMC Immunol 2020; 21:8. [PMID: 32106810 PMCID: PMC7045411 DOI: 10.1186/s12865-020-0337-5] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2019] [Accepted: 02/14/2020] [Indexed: 12/14/2022] Open
Abstract
Background Myeloid derived suppressor cells (MDSCs) present a significant obstacle to cancer immunotherapy because they dampen anti-tumor cytotoxic T cell responses. Previous groups, including our own, have reported on the myelo-depletive effects of certain chemotherapy agents. We have shown previously that decitabine increased tumor cell Class I and tumor antigen expression, increased ability of tumor cells to stimulate T lymphocytes, depleted tumor-induced MDSC in vivo and augmented immunotherapy of a murine mammary carcinoma. Results In this study, we expand upon this observation by testing a next-generation DNA methyltransferase inhibitor (DNMTi), guadecitabine, which has increased stability in the circulation. Using the 4 T1 murine mammary carcinoma model, in BALB/cJ female mice, we found that guadecitabine significantly reduces tumor burden in a T cell-dependent manner by preventing excessive myeloid proliferation and systemic accumulation of MDSC. The remaining MDSC were shifted to an antigen-presenting phenotype. Building upon our previous publication, we show that guadecitabine enhances the therapeutic effect of adoptively transferred antigen-experienced lymphocytes to diminish tumor growth and improve overall survival. We also show guadecitabine’s versatility with similar tumor reduction and augmentation of immunotherapy in the C57BL/6 J E0771 murine breast cancer model. Conclusions Guadecitabine depleted and altered MDSC, inhibited growth of two different murine mammary carcinomas in vivo, and augmented immunotherapeutic efficacy. Based on these findings, we believe the immune-modulatory effects of guadecitabine can help rescue anti-tumor immune response and contribute to the overall effectiveness of current cancer immunotherapies.
Collapse
Affiliation(s)
- Andrea J Luker
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Laura J Graham
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Timothy M Smith
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Carmen Camarena
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Matt P Zellner
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Jamie-Jean S Gilmer
- Department of Biology, College of Humanities and Sciences, VCU, Richmond, VA, USA
| | - Sheela R Damle
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Daniel H Conrad
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA
| | - Harry D Bear
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA.,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.,Division of Surgical Oncology, Department of Surgery, VCU, Richmond, VA, USA
| | - Rebecca K Martin
- Department of Microbiology and Immunology, School of Medicine, VCU, Box 980678, Richmond, VA, 23298, USA. .,Massey Cancer Center, VCU, Box 980678, Richmond, VA, 23298, USA.
| |
Collapse
|
34
|
Salminen A. Activation of immunosuppressive network in the aging process. Ageing Res Rev 2020; 57:100998. [PMID: 31838128 DOI: 10.1016/j.arr.2019.100998] [Citation(s) in RCA: 103] [Impact Index Per Article: 20.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2019] [Revised: 11/29/2019] [Accepted: 12/09/2019] [Indexed: 12/19/2022]
Abstract
Chronic low-grade inflammation has a key role in the aging process, a state called inflammaging. It is known that the chronic inflammatory condition generates counteracting immunosuppressive state in many diseases. Inflammaging is also associated with an immune deficiency; generally termed as immunosenescence, although it is not known whether it represents the senescence of immune cells or the active remodeling of immune system. Evidence has accumulated since the 1970's indicating that immunosenescence might be caused by an increased activity of immunosuppressive cells rather than cellular senescence. Immune cells display remarkable plasticity; many of these cells can express both proinflammatory and immunosuppressive phenotypes in a context-dependent manner. The immunosuppressive network involves the regulatory subtypes of T (Treg) and B (Breg) cells as well as regulatory phenotypes of macrophages (Mreg), dendritic (DCreg), natural killer (NKreg), and type II natural killer T (NKT) cells. The immunosuppressive network also includes monocytic (M-MDSC) and polymorphonuclear (PMN-MDSC) myeloid-derived suppressor cells which are immature myeloid cells induced by inflammatory mediators. This co-operative network is stimulated in chronic inflammatory conditions preventing excessive inflammatory responses but at the same time they exert harmful effects on the immune system and tissue homeostasis. Recent studies have revealed that the aging process is associated with the activation of immunosuppressive network, especially the functions of MDSCs, Tregs, and Mregs are increased. I will briefly review the properties of the regulatory phenotypes of immune cells and examine in detail the evidences for an activation of immunosuppressive network with aging.
Collapse
|
35
|
Austin M, Burschowsky D, Chan DT, Jenkinson L, Haynes S, Diamandakis A, Seewooruthun C, Addyman A, Fiedler S, Ryman S, Whitehouse J, Slater LH, Hadjinicolaou AV, Gileadi U, Gowans E, Shibata Y, Barnard M, Kaserer T, Sharma P, Luheshi NM, Wilkinson RW, Vaughan TJ, Holt SV, Cerundolo V, Carr MD, Groves MAT. Structural and functional characterization of C0021158, a high-affinity monoclonal antibody that inhibits Arginase 2 function via a novel non-competitive mechanism of action. MAbs 2020; 12:1801230. [PMID: 32880207 PMCID: PMC7531564 DOI: 10.1080/19420862.2020.1801230] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2020] [Revised: 07/06/2020] [Accepted: 07/20/2020] [Indexed: 12/14/2022] Open
Abstract
Arginase 2 (ARG2) is a binuclear manganese metalloenzyme that catalyzes the hydrolysis of L-arginine. The dysregulated expression of ARG2 within specific tumor microenvironments generates an immunosuppressive niche that effectively renders the tumor 'invisible' to the host's immune system. Increased ARG2 expression leads to a concomitant depletion of local L-arginine levels, which in turn leads to suppression of anti-tumor T-cell-mediated immune responses. Here we describe the isolation and characterization of a high affinity antibody (C0021158) that inhibits ARG2 enzymatic function completely, effectively restoring T-cell proliferation in vitro. Enzyme kinetic studies confirmed that C0021158 exhibits a noncompetitive mechanism of action, inhibiting ARG2 independently of L-arginine concentrations. To elucidate C0021158's inhibitory mechanism at a structural level, the co-crystal structure of the Fab in complex with trimeric ARG2 was solved. C0021158's epitope was consequently mapped to an area some distance from the enzyme's substrate binding cleft, indicating an allosteric mechanism was being employed. Following C0021158 binding, distinct regions of ARG2 undergo major conformational changes. Notably, the backbone structure of a surface-exposed loop is completely rearranged, leading to the formation of a new short helix structure at the Fab-ARG2 interface. Moreover, this large-scale structural remodeling at ARG2's epitope translates into more subtle changes within the enzyme's active site. An arginine residue at position 39 is reoriented inwards, sterically impeding the binding of L-arginine. Arg39 is also predicted to alter the pKA of a key catalytic histidine residue at position 160, further attenuating ARG2's enzymatic function. In silico molecular docking simulations predict that L-arginine is unable to bind effectively when antibody is bound, a prediction supported by isothermal calorimetry experiments using an L-arginine mimetic. Specifically, targeting ARG2 in the tumor microenvironment through the application of C0021158, potentially in combination with standard chemotherapy regimens or alternate immunotherapies, represents a potential new strategy to target immune cold tumors.
Collapse
Affiliation(s)
- Mark Austin
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Daniel Burschowsky
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Denice T.Y. Chan
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Lesley Jenkinson
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Stuart Haynes
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Agata Diamandakis
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Chitra Seewooruthun
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Alexandra Addyman
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Sebastian Fiedler
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Stephanie Ryman
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Jessica Whitehouse
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Louise H. Slater
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Andreas V. Hadjinicolaou
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Uzi Gileadi
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Ellen Gowans
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Yoko Shibata
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Michelle Barnard
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Teresa Kaserer
- Cancer Research UK, Cancer Therapeutics Unit, The Institute of Cancer Research, London, UK
| | - Pooja Sharma
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Nadia M. Luheshi
- Early Oncology Discovery, Oncology R&D, AstraZeneca, Cambridge, UK
| | | | - Tristan J. Vaughan
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| | - Sarah V. Holt
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
| | - Vincenzo Cerundolo
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK
| | - Mark D. Carr
- Leicester Institute of Structural and Chemical Biology and the Department of Molecular and Cell Biology, University of Leicester, Leicester, UK
| | - Maria A. T. Groves
- Cancer Research UK AstraZeneca Antibody Alliance Laboratory, Cambridge, UK
- Antibody Discovery & Protein Engineering, BioPharmaceuticals R&D, AstraZeneca, Cambridge, UK
| |
Collapse
|
36
|
Bartneck M, Wang J. Therapeutic Targeting of Neutrophil Granulocytes in Inflammatory Liver Disease. Front Immunol 2019; 10:2257. [PMID: 31616430 PMCID: PMC6764082 DOI: 10.3389/fimmu.2019.02257] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2019] [Accepted: 09/06/2019] [Indexed: 12/21/2022] Open
Abstract
Neutrophil granulocytes are the most numerous type of leukocyte in humans bearing an enormous, yet largely unexplored therapeutic potential. Scientists have very recently increased their efforts to study and understand these cells which contribute to various types of inflammatory diseases and cancer. The mechanisms that regulate neutrophil recruitment to inflamed tissues and neutrophil cytotoxic activities against host tissues and pathogens require more attention. The reactive oxygen species (ROS) are a popular source of cellular stress and organ injury, and are critically expressed by neutrophils. By combating pathogens using molecular combat factors such as neutrophil extracellular traps (NETs), these are immobilized and killed i.e., by ROS. NETs and ROS are essential for the immune defense, but upon excessive activation, may also harm healthy tissue. Thus, exploring new routes for modulating their migration and activation is highly desired for creating novel anti-inflammatory treatment options. Leukocyte transmigration represents a key process for inflammatory cell infiltration to injury sites. In this review, we briefly summarize the differentiation and roles of neutrophils, with a spotlight on intravital imaging. We further discuss the potential of nanomedicines, i.e., selectin mimetics to target cell migration and influence liver disease outcome in animal models. Novel perspectives further arise from formulations of the wide array of options of small non-coding RNA such as small interfering RNA (siRNA) and micro-RNA (miR) which exhibit enzymatic functions: while siRNA binds and degrades a single mRNA based on full complementarity of binding, miR can up and down-regulate multiple targets in gene transcription and translation, mediated by partial complementarity of binding. Notably, miR is known to regulate at least 60% of the protein-coding genes and thus includes a potent strategy for a large number of targets in neutrophils. Nanomedicines can combine properties of different drugs in a single formulation, i.e., combining surface functionalization with ligands and drug delivery. Inevitably, nanomedicines accumulate in other phagocytes, a fact that should be controlled for every novel formulation to restrain activation of macrophages or modifications of the immunological synapse. Controlled drug release enabled by nanotechnological delivery systems may advance the options of modulating neutrophil activation and migration.
Collapse
Affiliation(s)
- Matthias Bartneck
- Department of Medicine III, Medical Faculty, Rheinisch-Westfälische Technische Hochschule Aachen, Aachen, Germany
| | - Jing Wang
- Shanghai Institute of Immunology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
37
|
Sprooten J, Ceusters J, Coosemans A, Agostinis P, De Vleeschouwer S, Zitvogel L, Kroemer G, Galluzzi L, Garg AD. Trial watch: dendritic cell vaccination for cancer immunotherapy. Oncoimmunology 2019; 8:e1638212. [PMID: 31646087 PMCID: PMC6791419 DOI: 10.1080/2162402x.2019.1638212] [Citation(s) in RCA: 109] [Impact Index Per Article: 18.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2019] [Accepted: 06/26/2019] [Indexed: 12/12/2022] Open
Abstract
Dendritic- cells (DCs) have received considerable attention as potential targets for the development of anticancer vaccines. DC-based anticancer vaccination relies on patient-derived DCs pulsed with a source of tumor-associated antigens (TAAs) in the context of standardized maturation-cocktails, followed by their reinfusion. Extensive evidence has confirmed that DC-based vaccines can generate TAA-specific, cytotoxic T cells. Nonetheless, clinical efficacy of DC-based vaccines remains suboptimal, reflecting the widespread immunosuppression within tumors. Thus, clinical interest is being refocused on DC-based vaccines as combinatorial partners for T cell-targeting immunotherapies. Here, we summarize the most recent preclinical/clinical development of anticancer DC vaccination and discuss future perspectives for DC-based vaccines in immuno-oncology.
Collapse
Affiliation(s)
- Jenny Sprooten
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| | - Jolien Ceusters
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
| | - An Coosemans
- Department of Oncology, Laboratory of Tumor Immunology and Immunotherapy, ImmunOvar Research Group, KU Leuven, Leuven Cancer Institute, Leuven, Belgium
- Department of Gynecology and Obstetrics, UZ Leuven, Leuven, Belgium
| | - Patrizia Agostinis
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
- Center for Cancer Biology (CCB), VIB, Leuven, Belgium
| | - Steven De Vleeschouwer
- Research Group Experimental Neurosurgery and Neuroanatomy, KU Leuven, Leuven, Belgium
- Department of Neurosurgery, UZ Leuven, Leuven, Belgium
| | - Laurence Zitvogel
- Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- INSERM, Villejuif, France
- Center of Clinical Investigations in Biotherapies of Cancer (CICBT) 1428, Villejuif, France
- Université Paris Sud/Paris XI, Le Kremlin-Bicêtre, France
| | - Guido Kroemer
- Equipe labellisée par la Ligue contre le cancer, Université de Paris, Sorbonne Université, INSERM U1138, Centre de Recherche des Cordeliers, Paris, France
- Metabolomics and Cell Biology Platforms, Gustave Roussy Comprehensive Cancer Institute, Villejuif, France
- Pôle de Biologie, Hôpital Européen Georges Pompidou, AP-HP, Paris, France
- Suzhou Institute for Systems Medicine, Chinese Academy of Sciences, Suzhou, China
- Department of Women’s and Children’s Health, Karolinska University Hospital, Stockholm, Sweden
| | - Lorenzo Galluzzi
- Department of Radiation Oncology, Weill Cornell Medical College, New York, NY, USA
- Sandra and Edward Meyer Cancer Center, New York, NY, USA
- Department of Dermatology, Yale School of Medicine, New Haven, CT, USA
- Université de Paris Descartes, Paris, France
| | - Abhishek D. Garg
- Cell Death Research & Therapy (CDRT) unit, Department of Cellular & Molecular Medicine, KU Leuven, Leuven, Belgium
| |
Collapse
|
38
|
Bruger AM, Vanhaver C, Bruderek K, Amodio G, Tavukçuoğlu E, Esendagli G, Gregori S, Brandau S, van der Bruggen P. Protocol to assess the suppression of T-cell proliferation by human MDSC. Methods Enzymol 2019; 632:155-192. [PMID: 32000895 DOI: 10.1016/bs.mie.2019.05.046] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Inhibition of T-cell proliferation is the most common approach to assess human myeloid-derived suppressor cell (MDSC) functions. However, diverse methodologies hinder the comparison of results obtained in different laboratories. In this chapter, we present a T-cell proliferation assay procedure based on allogeneic MDSC and T-cells that is potentially suitable to multi-center studies. The T-cells are isolated from non-cancerous donors and frozen for later use in different research groups. We observed that pure thawed T-cells showed poor proliferative capacities. To retain proliferation, T-cell-autologous mature dendritic cells are supplemented after thawing. MDSC are isolated from clinical samples and represent the sole variant between assays. Flow cytometry is used to assess T-cell proliferation by the dilution of a tracking dye.
Collapse
Affiliation(s)
- Annika M Bruger
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium
| | | | - Kirsten Bruderek
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Giada Amodio
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Ece Tavukçuoğlu
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Günes Esendagli
- Department of Basic Oncology, Hacettepe University Cancer Institute, Ankara, Turkey
| | - Silvia Gregori
- San Raffaele Telethon Institute for Gene Therapy (SR-Tiget), San Raffaele Scientific Institute IRCCS, Milan, Italy
| | - Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, West German Cancer Center, Essen, Germany
| | - Pierre van der Bruggen
- de Duve Institute, Université catholique de Louvain, Brussels, Belgium; WELBIO, Brussels, Belgium.
| |
Collapse
|
39
|
Santegoets KCM, Gielen PR, Büll C, Schulte BM, Kers-Rebel ED, Küsters B, Bossman SAJFH, Ter Laan M, Wesseling P, Adema GJ. Expression profiling of immune inhibitory Siglecs and their ligands in patients with glioma. Cancer Immunol Immunother 2019; 68:937-949. [PMID: 30953118 PMCID: PMC6529385 DOI: 10.1007/s00262-019-02332-w] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2018] [Accepted: 03/24/2019] [Indexed: 12/22/2022]
Abstract
Gliomas appear to be highly immunosuppressive tumors, with a strong myeloid component. This includes MDSCs, which are a heterogeneous, immature myeloid cell population expressing myeloid markers Siglec-3 (CD33) and CD11b and lacking markers of mature myeloid cells including MHC II. Siglec-3 is a member of the sialic acid-binding immunoglobulin-like lectin (Siglec) family and has been suggested to promote MDSC expansion and suppression. Siglecs form a recently defined family of receptors with potential immunoregulatory functions but only limited insight in their expression on immune regulatory cell subsets, prompting us to investigate Siglec expression on MDSCs. We determined the expression of different Siglec family members on monocytic-MDSCs (M-MDSCs) and polymorphnuclear-MDSCs (PMN-MDSCs) from blood of glioma patients and healthy donors, as well as from patient-derived tumor material. Furthermore, we investigated the presence of sialic acid ligands for these Siglecs on MDSCs and in the glioma tumor microenvironment. Both MDSC subsets express Siglec-3, -5, -7 and -9, with higher levels of Siglec-3, -7 and -9 on M-MDSCs and higher Siglec-5 levels on PMN-MDSCs. Similar Siglec expression profiles were found on MDSCs from healthy donors. Furthermore, the presence of Siglec-5 and -9 was also confirmed on PMN-MDSCs from glioma tissue. Interestingly, freshly isolated glioma cells predominantly expressed sialic acid ligands for Siglec-7 and -9, which was confirmed in situ. In conclusion, our data show a distinct Siglec expression profile for M- and PMN-MDSCs and propose possible sialic acid-Siglec interactions between glioma cells and MDSCs in the tumor microenvironment.
Collapse
Affiliation(s)
- Kim C M Santegoets
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Paul R Gielen
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Christian Büll
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Barbara M Schulte
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Esther D Kers-Rebel
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands
| | - Benno Küsters
- Department of Pathology, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Sandra A J F H Bossman
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Mark Ter Laan
- Department of Neurosurgery, Radboud University Medical Center, Nijmegen, The Netherlands
| | - Pieter Wesseling
- Department of Pathology, VU University Medical Center, Amsterdam, The Netherlands
- Prinses Máxima Center for Pediatric Oncology and University Medical Center Utrecht, Utrecht, The Netherlands
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein Zuid 32, 6525 GA, Nijmegen, The Netherlands.
| |
Collapse
|
40
|
Brandau S. MDSC and beyond: a symposium-in-writing on myeloid cells with immunoregulatory activity by members of the Mye-EUNITER network. Cancer Immunol Immunother 2019; 68:531-532. [PMID: 30887118 PMCID: PMC11028350 DOI: 10.1007/s00262-019-02325-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Sven Brandau
- Research Division, Department of Otorhinolaryngology, University Hospital Essen, Hufelandstrasse 55, 45122, Essen, Germany.
- West German Cancer Center, Essen, Germany.
- German Cancer Consortium, Partner Site Essen, Essen, Germany.
| |
Collapse
|
41
|
Bizymi N, Bjelica S, Kittang AO, Mojsilovic S, Velegraki M, Pontikoglou C, Roussel M, Ersvær E, Santibañez JF, Lipoldová M, Papadaki HA. Myeloid-Derived Suppressor Cells in Hematologic Diseases: Promising Biomarkers and Treatment Targets. Hemasphere 2019; 3:e168. [PMID: 31723807 PMCID: PMC6745940 DOI: 10.1097/hs9.0000000000000168] [Citation(s) in RCA: 42] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2018] [Accepted: 11/26/2018] [Indexed: 12/18/2022] Open
Abstract
Myeloid-derived suppressor cells (MDSC) are a heterogeneous group of immature myeloid cells that exist at very low numbers in healthy subjects but can expand significantly in malignant, infectious, and chronic inflammatory diseases. These cells are characterized as early-MDSCs, monocytic-MDSCs, and polymorphonuclear-MDSCs and can be studied on the basis of their immunophenotypic characteristics and their functional properties to suppress T-cell activation and proliferation. MDSCs have emerged as important contributors to tumor expansion and chronic inflammation progression by inducing immunosuppressive mechanisms, angiogenesis and drug resistance. Most experimental and clinical studies concerning MDSCs have been mainly focused on solid tumors. In recent years, however, the implication of MDSCs in the immune dysregulation associated with hematologic malignancies, immune-mediated cytopenias and allogeneic hemopoietic stem cell transplantation has been documented and the potential role of these cells as biomarkers and therapeutic targets has started to attract a particular interest in hematology. The elucidation of the molecular and signaling pathways associated with the generation, expansion and function of MDSCs in malignant and immune-mediated hematologic diseases and the clarification of mechanisms related to the circulation and the crosstalk of MDSCs with malignant cells and other components of the immune system are anticipated to lead to novel therapeutic strategies. This review summarizes all available evidence on the implication of MDSCs in hematologic diseases highlighting the challenges and perspectives arising from this novel field of research.
Collapse
Affiliation(s)
- Nikoleta Bizymi
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Graduate Program Molecular Basis of Human Disease, School of Medicine, University of Crete, Heraklion, Greece
| | - Sunčica Bjelica
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
| | - Astrid Olsnes Kittang
- Department of Clinical Science, University of Bergen, Bergen, Norway
- Division of Hematology, Department of Medicine, Haukeland University Hospital, Bergen, Norway
| | - Slavko Mojsilovic
- Laboratory of Experimental Hematology and Stem Cells, Institute for Medical Research, University of Belgrade, Belgrade, Serbia
| | - Maria Velegraki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
- Department of Immunology and Microbiology, Hollings Cancer Center, Medical University of South Carolina, Charleston, SC, USA
| | - Charalampos Pontikoglou
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| | - Mikael Roussel
- CHU de Rennes, Pole de Biologie, Rennes, France
- INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Equipe Labellisée Ligue Contre le Cancer, Rennes, France
- Laboratoire d’Hématologie, CHU Pontchaillou, Rennes Cedex, France
| | - Elisabeth Ersvær
- Department of Biomedical Laboratory Scientist Education, Western Norway University of Applied Sciences, Bergen, Norway
| | - Juan Francisco Santibañez
- Department of Molecular Oncology, Institute for Medical Research, University of Belgrade, Belgrade, Republic of Serbia
- Centro Integrativo de Biología y Química Aplicada (CIBQA), Universidad Bernardo O’Higgins, Santiago, Chile
| | - Marie Lipoldová
- Laboratory of Molecular and Cellular Immunology, Institute of Molecular Genetics AS CR, Prague, Czech Republic
| | - Helen A. Papadaki
- Hemopoiesis Research Laboratory, School of Medicine, University of Crete and Department of Hematology, University Hospital of Heraklion, Heraklion, Greece
| |
Collapse
|
42
|
Cassetta L, Baekkevold ES, Brandau S, Bujko A, Cassatella MA, Dorhoi A, Krieg C, Lin A, Loré K, Marini O, Pollard JW, Roussel M, Scapini P, Umansky V, Adema GJ. Deciphering myeloid-derived suppressor cells: isolation and markers in humans, mice and non-human primates. Cancer Immunol Immunother 2019; 68:687-697. [PMID: 30684003 PMCID: PMC6447515 DOI: 10.1007/s00262-019-02302-2] [Citation(s) in RCA: 168] [Impact Index Per Article: 28.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2018] [Accepted: 01/11/2019] [Indexed: 12/12/2022]
Abstract
In cancer, infection and inflammation, the immune system's function can be dysregulated. Instead of fighting disease, immune cells may increase pathology and suppress host-protective immune responses. Myeloid cells show high plasticity and adapt to changing conditions and pathological challenges. Despite their relevance in disease pathophysiology, the identity, heterogeneity and biology of myeloid cells is still poorly understood. We will focus on phenotypical and functional markers of one of the key myeloid regulatory subtypes, the myeloid derived suppressor cells (MDSC), in humans, mice and non-human primates. Technical issues regarding the isolation of the cells from tissues and blood, timing and sample handling of MDSC will be detailed. Localization of MDSC in a tissue context is of crucial importance and immunohistochemistry approaches for this purpose are discussed. A minimal antibody panel for MDSC research is provided as part of the Mye-EUNITER COST action. Strategies for the identification of additional markers applying state of the art technologies such as mass cytometry will be highlighted. Such marker sets can be used to study MDSC phenotypes across tissues, diseases as well as species and will be crucial to accelerate MDSC research in health and disease.
Collapse
Affiliation(s)
- Luca Cassetta
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK.
| | - Espen S Baekkevold
- Centre for Immune Regulation, Department of Pathology, University of Oslo, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Sven Brandau
- West German Cancer Center, University Hospital Essen, University of Duisburg-Essen, Essen, Germany
| | - Anna Bujko
- Centre for Immune Regulation, Department of Pathology, University of Oslo, Oslo University Hospital, Rikshospitalet, Oslo, Norway
| | - Marco A Cassatella
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Anca Dorhoi
- Friedrich-Loeffler-Institut, Federal Research Institute for Animal Health, Greifswald, Insel Riems, Germany.,Faculty of Mathematics and Natural Sciences, University of Greifswald, Greifswald, Germany.,Department of Immunology, Max Planck Institute for Infection Biology, Berlin, Germany
| | - Carsten Krieg
- Department of Microbiology and Immunology, Hollings Cancer Center, Medical University of South Carolina, Charleston, USA
| | - Ang Lin
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Karin Loré
- Department of Medicine Solna, Immunology and Allergy Unit, Karolinska Institutet, Stockholm, Sweden.,Center for Molecular Medicine, Karolinska Institutet, Stockholm, Sweden
| | - Olivia Marini
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Jeffrey W Pollard
- MRC Centre for Reproductive Health, Queen's Medical Research Institute, The University of Edinburgh, 47 Little France Crescent, EH16 4TJ, Edinburgh, UK
| | - Mikael Roussel
- Centre Hospitalier Universitaire, Pôle Biologie, INSERM, UMR U1236, Université Rennes 1, EFS Bretagne, Rennes, France
| | - Patrizia Scapini
- Division of General Pathology, Department of Medicine, University of Verona, Verona, Italy
| | - Viktor Umansky
- Skin Cancer Unit, German Cancer Research Center (DKFZ), Heidelberg, Germany.,Department of Dermatology, Venereology and Allergology, University Medical Center Mannheim, Ruprecht-Karl University of Heidelberg, Mannheim, Germany
| | - Gosse J Adema
- Radiotherapy and OncoImmunology Laboratory, Department of Radiation Oncology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Geert Grooteplein 28, 6500 HB, Nijmegen, The Netherlands.
| |
Collapse
|