1
|
Bae SU, Lee HW, Park JY, Seo I, Cho JM, Kim JY, Lee JY, Lee YJ, Baek SK, Kim NK, Byun SJ, Kim S. Neoadjuvant chemoradiotherapy up-regulates PD-L1 in radioresistant colorectal cancer. Clin Transl Radiat Oncol 2025; 51:100906. [PMID: 39811542 PMCID: PMC11732604 DOI: 10.1016/j.ctro.2024.100906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 12/14/2024] [Accepted: 12/20/2024] [Indexed: 01/16/2025] Open
Abstract
Background Combining radiotherapy (RT) with immune checkpoint inhibitors (ICIs) is a promising strategy that can enhance the therapeutic efficacy of ICIs. However, little is known about RT-induced changes in the expression of immune checkpoints, such as PD-L1, and their clinical implications in colorectal cancer (CRC). This study aimed to investigate the association between responsiveness to RT and changes in PD-L1 expression in human CRC tissue and cell lines. Methods Tissue specimens from preoperative biopsy via sigmoidoscopy and surgical resection were obtained from 24 patients with locally advanced rectal cancer (LARC) who underwent neoadjuvant chemoradiation therapy (CRT) between August 2016 and December 2017. Immunohistochemistry for PD-L1 in formalin-fixed paraffin-embedded tissue was performed from the endoscopic biopsy and surgical specimens. RNA sequencing was performed using 11 pairs of human LARC tissues before and after irradiation. After exposing human CRC cells to radiation, we investigated changes in the expression levels of PD-L1 and its regulatory signaling pathways. Results Patients were classified by tumor regression grade into responders (grade 2; 9 patients, 37.5 %) and non-responders (grades 3, 4, or 5; 15 patients, 62.5 %). In the non-responder group, 13 patients had low PD-L1 expression, but neoadjuvant CRT increased PD-L1 expression in 7 patients (53.9 %) (McNemar's test, p=0.034). CRT up-regulated PD-L1 in non-responder LARC tissues. Similarly, radiation increased PD-L1 in radioresistant DLD-1 cells more than in radiosensitive HCT116 cells, also affecting PD-L1-regulating genes and immune checkpoints in CRC cells. Conventional fractionated radiation treatment further increased PD-L1 in DLD-1 cells compared to HCT116 cells. Conclusions This study demonstrated that radiation induces an increase in PD-L1 expression, which is more pronounced in radioresistant CRC, proving the theoretical framework for a combined treatment strategy with a PD-L1 blockade for locally advanced rectal cancer.
Collapse
Affiliation(s)
- Sung Uk Bae
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Medicine, The Graduate School, Yonsei University, Seoul, Republic of Korea
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
| | - Hye Won Lee
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Jee Young Park
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Radiation Oncology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| | - Incheol Seo
- Department of Immunology, Kyungpook National University School of Medicine, Daegu, Republic of Korea
| | - Jae-Min Cho
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
- Department of Pathology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Jin Young Kim
- Division of Hematology and Oncology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Ju Yup Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Yoo Jin Lee
- Division of Gastroenterology and Hepatology, Department of Internal Medicine, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Seong Kyu Baek
- Department of Surgery, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Nam Kyu Kim
- Division of Colorectal Surgery, Department of Surgery, Severance Hospital, Colorectal Cancer Clinic, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Sang Jun Byun
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Radiation Oncology, School of Medicine, Keimyung University and Dongsan Hospital, Daegu, Republic of Korea
| | - Shin Kim
- Institute of Medical Science & Institute for Cancer Research, Keimyung University, Daegu, Republic of Korea
- Department of Immunology, School of Medicine, Keimyung University, Daegu, Republic of Korea
| |
Collapse
|
2
|
Azizi M, Mokhtari Z, Tavana S, Bemani P, Heidari Z, Ghazavi R, Rezaei M. A Comprehensive Study on the Prognostic Value and Clinicopathological Significance of Different Immune Checkpoints in Patients With Colorectal Cancer: A Systematic Review and Meta-Analysis. CURRENT THERAPEUTIC RESEARCH 2024; 101:100760. [PMID: 39434898 PMCID: PMC11492099 DOI: 10.1016/j.curtheres.2024.100760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/16/2023] [Accepted: 08/30/2024] [Indexed: 10/23/2024]
Abstract
Background The prognostic significance of immune checkpoint expression in the tumor microenvironment has been widely investigated in colorectal cancers. However, the results of these studies are inconsistent and limited to some immune checkpoints. Objective The study aimed to investigate the correlation between different immune checkpoint expression and clinicopathological features and prognostic parameters. Methods We conducted a systematic review and meta-analysis of the published literature in PubMed, Web of Science-Core Collection, Scopus, Embase, and Cochrane databases to summarize the association between various immune checkpoints expression on both tumor cells and immune cells with clinicopathological features and prognostic parameters in patients with colorectal cancer. Results One hundred four studies incorporating 22,939 patients were included in our meta-analysis. Our results showed that among the B7 family, the high expression of B7H3, B7H4, PD-1, and PD-L1 on tumor cells and tumor tissue was significantly associated with higher T stage, advanced tumor, node, metastasis (TNM) stage, presence of vascular invasion, and lymphatic invasion. In addition, patients with high expression of B7H3, B7H4, PD-1, PD-L1, and PD-L2 were associated with shorter overall survival. High expression of PD-1 and PD-L1 in immune cells correlated with the absence of lymph node metastasis, lower TNM stage, early T stage, poor overall survival, and disease-free survival, respectively. Moreover, we found significant positive correlations between CD70 and Galectin-3 expression with advanced T stage. HLA-II overexpression was correlated with the absence of lymph node metastasis (odds ratio = 0.21, 95% CI = 0.11-0.38, P < 0.001) and early TNM stage (odds ratio = 0.35, 95% CI = 0.26-0.47, P < 0.001). Conclusions Overexpression of B7H3, B7H4, PD-1, PD-L1, PD-L2, CD70, and Galectin-3 on tumors is significantly associated with unfavorable clinicopathological characteristics and poor prognostic factors. Hence, these immune checkpoints can serve as predictive biomarkers for prognosis and the clinicopathological features of colorectal cancer because this is essential to identify patients suitable for anticancer therapy with immune checkpoint inhibitors.
Collapse
Affiliation(s)
- Mahdieh Azizi
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Mokhtari
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Shirin Tavana
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Peyman Bemani
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Zahra Heidari
- Department of Biostatistics and Epidemiology, Faculty of Health, Isfahan University of Medical Sciences, Isfahan, Iran
| | - Roghayeh Ghazavi
- Department of Knowledge and Information Science, Faculty of Education and Psychology, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Marzieh Rezaei
- Department of Immunology, Faculty of Medicine, Isfahan University of Medical Sciences, Isfahan, Iran
| |
Collapse
|
3
|
Coussement M, Fazio R, Audisio A, El Khoury R, Abbassi FZ, Assaf I, Conti C, Gallio C, Benhima N, Bregni G, Gkolfakis P, Spagnolo V, Anthoine G, Liberale G, Moretti L, Martinive P, Hendlisz A, Demetter P, Sclafani F. PD-L1 Expression in Paired Samples of Rectal Cancer. Cancers (Basel) 2024; 16:2606. [PMID: 39061244 PMCID: PMC11275196 DOI: 10.3390/cancers16142606] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 07/28/2024] Open
Abstract
Immune checkpoint inhibitors and immune-related biomarkers are increasingly investigated in rectal cancer (RC). We retrospectively analysed PD-L1 expression in diagnostic biopsy and resection samples from RC patients treated at our centre between 2000 and 2020. PD-L1 immunostaining (22C3 clone) was evaluated according to tumour proportion (TPS), immune cell (ICS), and the combined positive score (CPS). Eighty-three patients were included. At diagnosis, PD-L1 expression ≥1%/≥5% was observed in 15.4%/0%, 80.7%/37.4%, and 69.2%/25.6% of patients based on TPS, ICS, and CPS, respectively. At surgery, the respective figures were 4.6%/1.5%, 60.2%/32.5%, and 50.7%/26.2%. Using the 1% cut-off and regardless of the scoring system, PD-L1 was less expressed in surgery than biopsy samples (p ≤ 0.04). In paired specimens, PD-L1-ICS reduction was especially observed following neoadjuvant long-course (chemo)radiotherapy (p = 0.03). PD-L1-ICS of ≥5% in surgical samples (HR: 0.17; p = 0.02), and a biopsy-to-surgery increase in PD-L1-ICS (HR: 0.19; p = 0.04) was predictive for longer disease-free survival, while the PD-L1-ICS of either ≥1% (HR 0.28; p = 0.04) or ≥5% (HR 0.19; p = 0.03) in surgical samples and the biopsy-to-surgery increase in PD-L1-ICS (HR: 0.20; p = 0.04) were associated with better overall survival. Our study suggests that PD-L1 expression in RC is largely reflective of immune cell infiltration, and its presence/increase in surgical samples predicts better outcomes.
Collapse
Affiliation(s)
- Mina Coussement
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Roberta Fazio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alessandro Audisio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Reem El Khoury
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Fatima-Zahra Abbassi
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Irene Assaf
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Conti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Chiara Gallio
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Nada Benhima
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Giacomo Bregni
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Paraskevas Gkolfakis
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Valentina Spagnolo
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Geraldine Anthoine
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Gabriel Liberale
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Luigi Moretti
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Philippe Martinive
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Alain Hendlisz
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| | - Pieter Demetter
- Cerba Path, Division CMP, 1070 Brussels, Belgium
- Laboratory for Experimental Gastroenterology, Université Libre de Bruxelles (ULB), 1070 Brussels, Belgium
| | - Francesco Sclafani
- Institut Jules Bordet, Université Libre de Bruxelles (ULB), Hôpital Universitaire de Bruxelles (HUB), 1070 Brussels, Belgium; (M.C.); (R.F.); (V.S.)
| |
Collapse
|
4
|
Nguyen NP, Mohammadianpanah M, SunMyint A, Page BR, Vinh-Hung V, Gorobets O, Arenas M, Mazibuko T, Giap H, Vasileiou M, Dutheil F, Tuscano C, Karlsson ULFL, Dahbi Z, Natoli E, Li E, Kim L, Oboite J, Oboite E, Bose S, Vuong T. Immunotherapy and radiotherapy for older patients with locally advanced rectal cancer unfit for surgery or decline surgery: a practical proposal by the International Geriatric Radiotherapy Group. Front Oncol 2024; 14:1325610. [PMID: 38463223 PMCID: PMC10921228 DOI: 10.3389/fonc.2024.1325610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2023] [Accepted: 01/16/2024] [Indexed: 03/12/2024] Open
Abstract
The standard of care for locally advanced rectal cancer is total neoadjuvant therapy followed by surgical resection. Current evidence suggests that selected patients may be able to delay or avoid surgery without affecting survival rates if they achieve a complete clinical response (CCR). However, for older cancer patients who are too frail for surgery or decline the surgical procedure, local recurrence may lead to a deterioration of patient quality of life. Thus, for clinicians, a treatment algorithm which is well tolerated and may improve CCR in older and frail patients with rectal cancer may improve the potential for prolonged remission and potential cure. Recently, immunotherapy with check point inhibitors (CPI) is a promising treatment in selected patients with high expression of program death ligands receptor 1 (PD- L1). Radiotherapy may enhance PD-L1 expression in rectal cancer and may improve response rate to immunotherapy. We propose an algorithm combining immunotherapy and radiotherapy for older patients with locally advanced rectal cancer who are too frail for surgery or who decline surgery.
Collapse
Affiliation(s)
- Nam P. Nguyen
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Mohammad Mohammadianpanah
- Colorectal Research Center, Department of Radiation Oncology, Namazi Hospital, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Arthur SunMyint
- Department of Radiation Oncology, Clatterbridge Cancer Center, Liverpool, United Kingdom
| | - Brandi R. Page
- Department of Radiation Oncology, Johns Hopkins University, Bethesda, MD, United States
| | - Vincent Vinh-Hung
- Department of Radiation Oncology, Institut Bergonie, Bordeaux, France
| | - Olena Gorobets
- Department of Oral Surgery, Martinique University, Fort de France, France
| | - Meritxell Arenas
- Department of Radiation Oncology, Sant Joan de Reus University, University of Rovira, I Virgili, Tarragona, Spain
| | - Thandeka Mazibuko
- Department of Radiation Oncology, International Geriatric Radiotherapy Group, Washington, DC, United States
| | - Huan Giap
- Department of Radiation Oncology, Medical University of South Carolina, Charleston, SC, United States
| | - Maria Vasileiou
- Department of Pharmacy, School of Health Sciences, National and Kapodistrian University of Athens, Athens, Greece
| | - Fabien Dutheil
- Department of Radiation Oncology, Clinique Sainte Clotilde, Saint Denis, La Reunion, Saint Denis, France
| | - Carmelo Tuscano
- Department of Radiation Oncology, A.O Bianchi Melacrino, Reggio Calabria, Italy
| | - ULF Lennart Karlsson
- Department of Radiation Oncology, International Geriatric Radiotherapy Group, Washington, DC, United States
| | - Zineb Dahbi
- Department of Radiation Oncology, Mohammed VI University of Health Sciences, Casablanca, Morocco
| | - Elena Natoli
- Department of Radiation Oncology, University of Bologna, Bologna, Italy
| | - Eric Li
- Department of Pathology, Howard University, Washington, DC, United States
| | - Lyndon Kim
- Division of Neurooncology, Mt Sinai Hospital, New York, NY, United States
| | - Joan Oboite
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Eromosele Oboite
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Satya Bose
- Department of Radiation Oncology, Howard University, Washington, DC, United States
| | - Te Vuong
- Department of Radiation Oncology, Mc Gill University, Montreal, Canada
| |
Collapse
|
5
|
Huang KCY, Ke TW, Chen JY, Hong WZ, Chiang SF, Lai CY, Chen TW, Yang PC, Chen LC, Liang JA, Chen WTL, Chao KSC. Dysfunctional TLR1 reduces the therapeutic efficacy of chemotherapy by attenuating HMGB1-mediated antitumor immunity in locally advanced colorectal cancer. Sci Rep 2023; 13:19440. [PMID: 37945630 PMCID: PMC10636035 DOI: 10.1038/s41598-023-46254-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 10/30/2023] [Indexed: 11/12/2023] Open
Abstract
Regional lymph node metastasis is an important predictor for survival outcome and an indicator for postoperative adjuvant chemotherapy in patients with colorectal cancer. Even with advances in adjuvant chemotherapeutic regimens, 5-year distant metastasis and survival rates are still unsatisfactory. Here, we evaluate the clinical significance of polymorphisms in receptors for HMGB1, which is the hallmark of chemotherapy-induced immunogenic cell death, in patients with stage II-III colon carcinoma (COAD). We found that high cytosolic HMGB1 is elicited in stage III COAD patients who received adjuvant chemotherapy. Patients with the TLR1-N248S polymorphism (rs4833095), which causes loss-of-function in HMGB1-mediated TLR1-TLR2 signaling, may influence the therapeutic efficacy of adjuvant chemotherapy, leading to a high risk of distant metastasis within 5 years [HR = 1.694, 95% CI = 1.063-2.698, p = 0.027], suggesting that TLR1-N248S is an independent prognostic factor for locally advanced colon carcinoma patients. We found that defective TLR1 impaired TLR1/2 signaling during dendritic cell (DC) maturation for the antitumor immune response under immunogenic chemotherapy oxaliplatin (OXP) treatment. Defective TLR1 on DCs impaired their maturation ability by HMGB1 and reduced the secretion of IFNγ from T cells to eradicate tumor cells in vitro. Moreover, systemic inhibition of TLR1/2 dramatically reduced the tumor-infiltrating immune cells by OXP treatment, leading to poor therapeutic response to OXP. In contrast, administration of a TLR1/2 agonist synergistically increased the benefit of OXP treatment and triggered a high density of tumor-infiltrating immune cells. We also observed that fewer tumor-infiltrating cytotoxic T lymphocytes were located within the tumor microenvironment in patients bearing the TLR1-N248S polymorphism. Overall, our results suggest that dysfunctional TLR1 may reduce the therapeutic response to adjuvant chemotherapy by impairing HMGB1-mediated DC maturation and attenuating the antitumor immune response in locally advanced colon carcinoma patients.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Cancer Biology and Precision Therapeutics Center, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- School of Chinese Medicine and Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Jia-Yi Chen
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Wei-Ze Hong
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan, ROC
| | - Chia-Ying Lai
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan, ROC
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, Taichung, 41354, Taiwan, ROC
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Liang-Chi Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan, ROC.
- Department of Surgery, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC.
| | - K S Clifford Chao
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan, ROC.
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan, ROC.
- Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan, ROC.
| |
Collapse
|
6
|
Koukourakis IM, Xanthopoulou E, Sgouras TI, Kouroupi M, Giatromanolaki A, Kouloulias V, Tiniakos D, Zygogianni A. Preoperative chemoradiotherapy induces multiple pathways related to anti-tumour immunity in rectal cancer. Br J Cancer 2023; 129:1852-1862. [PMID: 37838813 PMCID: PMC10667544 DOI: 10.1038/s41416-023-02459-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 09/19/2023] [Accepted: 09/29/2023] [Indexed: 10/16/2023] Open
Abstract
BACKGROUND Rectal cancer treated with preoperative radiotherapy (RT) provides an interesting model to study changes induced on cancer cell immuno-phenotype that could be exploited by immunotherapy interventions to improve prognosis. MATERIALS AND METHODS We assessed the expression of HLA-class-I, β2-microglobulin, TAP1, PD-L1 and STING/IFNβ in preoperative biopsies and respective post-RT surgical specimens from patients with rectal cancer (n = 27). The effect of radiation was further investigated in colorectal adenocarcinoma cell lines HT-29 and Caco-2. RESULTS Rectal carcinomas exhibited extensive loss of expression of HLA-Class-I related molecules, which was restored in post-irradiation surgical specimens (P < 0.0001). RT induced the expression of IFNβ and STING in cancer cells and tumour-infiltrating lymphocytes (P < 0.0001). In in vitro experiments, irradiation with 4 Gy or 10 Gy induced the expression of HLA-class-I protein (P < 0.001). PD-L1 levels were transiently induced for two days (P < 0.001). cGAS, STING, IFNβ and the downstream genes (MX1, MX2, UBE2L6v2, IFI6v2 and IFI44) mRNA levels significantly increased after 3 × 8 Gy or 1 × 20 Gy irradiation (P < 0.001). TREX1 mRNA levels remained unaltered. CONCLUSIONS RT induces the IFN-type-I pathway and the expression of HLA-class-I molecules on rectal carcinoma. The transient induction of PD-L1 expression suggests that long-course daily RT may sustain increased PD-L1 levels. Anti-PD-L1/PD-1 immunotherapy could block this immunosuppressive pathway.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece.
| | - Erasmia Xanthopoulou
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Theologos I Sgouras
- Department of Radiotherapy/Oncology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Maria Kouroupi
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Alexandra Giatromanolaki
- Department of Pathology, Medical School, Democritus University of Thrace, Alexandroupolis, Greece
| | - Vassilios Kouloulias
- Radiation Oncology Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne, UK
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, Aretaieion University Hospital, School of Medicine, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
7
|
Sartorius D, Blume ML, Fleischer JR, Ghadimi M, Conradi LC, De Oliveira T. Implications of Rectal Cancer Radiotherapy on the Immune Microenvironment: Allies and Foes to Therapy Resistance and Patients' Outcome. Cancers (Basel) 2023; 15:5124. [PMID: 37958298 PMCID: PMC10650490 DOI: 10.3390/cancers15215124] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2023] [Revised: 10/16/2023] [Accepted: 10/19/2023] [Indexed: 11/15/2023] Open
Abstract
Aside from surgical resection, locally advanced rectal cancer is regularly treated with neoadjuvant chemoradiotherapy. Since the concept of cancer treatment has shifted from only focusing on tumor cells as drivers of disease progression towards a broader understanding including the dynamic tumor microenvironment (TME), the impact of radiotherapy on the TME and specifically the tumor immune microenvironment (TIME) is increasingly recognized. Both promoting as well as suppressing effects on anti-tumor immunity have been reported in response to rectal cancer (chemo-)radiotherapy and various targets for combination therapies are under investigation. A literature review was conducted searching the PubMed database for evidence regarding the pleiotropic effects of (chemo-)radiotherapy on the rectal cancer TIME, including alterations in cytokine levels, immune cell populations and activity as well as changes in immune checkpoint proteins. Radiotherapy can induce immune-stimulating and -suppressive alterations, potentially mediating radioresistance. The response is influenced by treatment modalities, including the dosage administered and the highly individual intrinsic pre-treatment immune status. Directly addressing the main immune cells of the TME, this review aims to highlight therapeutical implications since efficient rectal cancer treatment relies on personalized strategies combining conventional therapies with immune-modulating approaches, such as immune checkpoint inhibitors.
Collapse
Affiliation(s)
| | | | | | | | - Lena-Christin Conradi
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| | - Tiago De Oliveira
- Department of General, Visceral and Pediatric Surgery, University Medical Center Göttingen, Robert-Koch-Straβe 40, 37075 Göttingen, Germany; (D.S.); (M.L.B.); (J.R.F.); (M.G.)
| |
Collapse
|
8
|
Stepanyan A, Fassan M, Spolverato G, Castagliuolo I, Scarpa M, Scarpa M. IMMUNOREACT 0: Biopsy-based immune biomarkers as predictors of response to neoadjuvant therapy for rectal cancer-A systematic review and meta-analysis. Cancer Med 2023; 12:17878-17890. [PMID: 37537787 PMCID: PMC10523971 DOI: 10.1002/cam4.6423] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2023] [Revised: 07/03/2023] [Accepted: 07/26/2023] [Indexed: 08/05/2023] Open
Abstract
BACKGROUND The main therapy for rectal cancer patients is neoadjuvant therapy (NT) followed by surgery. Immune biomarkers are emerging as potential predictors of the response to NT. We performed a meta-analysis to estimate their predictive significance. METHODS A systematic literature search of PubMed, Ovid MEDLINE and EMBASE databases was performed to identify eligible studies. Studies on patients with rectal cancer undergoing NT in which the predictive significance of at least one of the immunological markers of interest was assessed by immunohistochemistry (IHC) in pretreatment biopsies were included. RESULTS Seventeen studies reporting sufficient data met the inclusion criteria for meta-analysis. High levels of total CD3+, CD4+ and CD8+ tumor infiltrating lymphocytes (TILs), as well as stromal and intraepithelial CD8+ compartments, significantly predicted good pathological response to NT. Moreover, high levels of total (tumoral and immune cell expression) PD-L1 resulted associated to a good pathological response. On the contrary, high levels of intraepithelial CD4+ TILs were correlated with poor pathological response. FoxP3+ TILs, tumoral PD-L1 and CTLA-4 were not correlated to the treatment response. CONCLUSION This meta-analysis indicated that high-density TILs might be predictive biomarkers of pathological response in patients that underwent NT for rectal cancer.
Collapse
Affiliation(s)
- Astghik Stepanyan
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | - Matteo Fassan
- Department of Medicine DIMEDUniversity of PaduaPaduaItaly
- Veneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Gaya Spolverato
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| | | | - Melania Scarpa
- Immunology and Molecular Oncology Diagnostics UnitVeneto Institute of Oncology IOV‐IRCCSPaduaItaly
| | - Marco Scarpa
- UOC Chirurgia Generale 3Azienda Ospedale‐Università PadovaPaduaItaly
| |
Collapse
|
9
|
Koukourakis IM, Platoni K, Tiniakos D, Kouloulias V, Zygogianni A. Immune Response and Immune Checkpoint Molecules in Patients with Rectal Cancer Undergoing Neoadjuvant Chemoradiotherapy: A Review. Curr Issues Mol Biol 2023; 45:4495-4517. [PMID: 37232754 DOI: 10.3390/cimb45050285] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 05/17/2023] [Accepted: 05/18/2023] [Indexed: 05/27/2023] Open
Abstract
It is well-established that tumor antigens and molecules expressed and secreted by cancer cells trigger innate and adaptive immune responses. These two types of anti-tumor immunity lead to the infiltration of the tumor's microenvironment by immune cells with either regulatory or cytotoxic properties. Whether this response is associated with tumor eradication after radiotherapy and chemotherapy or regrowth has been a matter of extensive research through the years, mainly focusing on tumor-infiltrating lymphocytes and monocytes and their subtypes, and the expression of immune checkpoint and other immune-related molecules by both immune and cancer cells in the tumor microenvironment. A literature search has been conducted on studies dealing with the immune response in patients with rectal cancer treated with neoadjuvant radiotherapy or chemoradiotherapy, assessing its impact on locoregional control and survival and underlying the potential role of immunotherapy in the treatment of this cancer subtype. Here, we provide an overview of the interactions between local/systemic anti-tumor immunity, cancer-related immune checkpoint, and other immunological pathways and radiotherapy, and how these affect the prognosis of rectal cancer patients. Chemoradiotherapy induces critical immunological changes in the tumor microenvironment and cancer cells that can be exploited for therapeutic interventions in rectal cancer.
Collapse
Affiliation(s)
- Ioannis M Koukourakis
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| | - Kalliopi Platoni
- Medical Physics Unit, 2nd Department of Radiology, School of Medicine, Attikon University Hospital, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Dina Tiniakos
- Department of Pathology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens, 11528 Athens, Greece
- Translational and Clinical Research Institute, Faculty of Medical Sciences, Newcastle University, Newcastle upon Tyne NE2 4HH, UK
| | - Vassilis Kouloulias
- Radiotherapy Unit, 2nd Department of Radiology, School of Medicine, National and Kapodistrian University of Athens, 12462 Athens, Greece
| | - Anna Zygogianni
- Radiation Oncology Unit, 1st Department of Radiology, School of Medicine, Aretaieion University Hospital, National and Kapodistrian University of Athens (NKUOA), 11528 Athens, Greece
| |
Collapse
|
10
|
Li T, Liu T, Zhao L, Liu L, Zheng X, Wang J, Zhang F, Hu Y. Effectiveness and safety of anti-PD-1 monotherapy or combination therapy in Chinese advanced gastric cancer: A real-world study. Front Oncol 2023; 12:976078. [PMID: 36686795 PMCID: PMC9850086 DOI: 10.3389/fonc.2022.976078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/19/2022] [Indexed: 01/07/2023] Open
Abstract
Purpose Gastric cancer (GC) is one of the most frequently diagnosed cancers and one of the leading causes of cancer deaths worldwide, especially in eastern Asia and China. Anti-PD-1 immune checkpoint inhibitors, Pembrolizumab and Nivolumab, have been approved for the treatment of locally advanced or metastatic gastric or gastroesophageal junction cancer (GC/GEJC). Our study evaluated the effectiveness and safety of anti-PD-1-based treatment (monotherapy or combination therapy) in Chinese patients with advanced or metastatic GC/GEJCs in a real-world setting. Methods A retrospective cohort study was conducted, and 54 patients from May 31, 2015, to May 31, 2021, were included in our analysis, including 19 patients treated with anti-PD-1 monotherapy and 35 patients treated with anti-PD-1 combination therapy. Demographic and clinical information were evaluated. Clinical response, survival outcomes, and safety profile were measured and analyzed. Results Overall, the median overall survival (mOS) was 11.10 months (95% CI, 7.05-15.15), and the median progression-free survival (mPFS) was 3.93 months (95% CI, 2.47-5.39). Of the patients, 16.7% achieved a clinical response, and 72.2% achieved disease control. Prolonged overall survival (OS) and progression-free survival (PFS) and increased clinical response were observed in the combination group compared with the monotherapy group, although statistical significance was not reached. In subgroups with live metastases or elevated baseline neutrophil-to-lymphocyte ratio (NLR) levels, combination therapy outperformed anti-PD-1 alone in survival outcomes. Patients treated with anti-PD-1 monotherapy (n = 5, 26.3%) had fewer treatment-related adverse events (TRAEs) than those in the combination group (n = 22, 62.9%). There were also fewer patients with TRAEs of grades 3-5 with monotherapy (n = 2, 10.5%) than with combination therapy (n = 7, 20.0%). Pneumonitis in three patients was the only potential immune-related adverse event reported. Conclusions Anti-PD-1-based monotherapy and combination therapy showed favorable survival outcomes and manageable safety profiles in advanced or metastatic GC/GEJCs. In clinical treatment, immunotherapy should be an indispensable choice in the treatment strategy for GC/GEJC. Patients with a heavy tumor burden and more metastatic sites might benefit more from combination therapy. Elderly patients and patients with more treatment lines or high Eastern Cooperative Oncology Group (ECOG) performance scores might be more suitable for immune monotherapy, and some clinical benefits have been observed.
Collapse
Affiliation(s)
- Tao Li
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,Chinese People's Liberation Army (PLA) Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs, Ministry of Education, Beijing, China
| | - Tingting Liu
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Pulmonary and Critical Care Medicine, the Second Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lei Zhao
- Institute of Translational Medicine, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Lu Liu
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Nutrition, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Xuan Zheng
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,Chinese People's Liberation Army (PLA) Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs, Ministry of Education, Beijing, China
| | - Jinliang Wang
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Oncology, The Fifth Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,*Correspondence: Jinliang Wang, ; Fan Zhang, ; Yi Hu,
| | - Fan Zhang
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,Chinese People's Liberation Army (PLA) Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs, Ministry of Education, Beijing, China,*Correspondence: Jinliang Wang, ; Fan Zhang, ; Yi Hu,
| | - Yi Hu
- Graduate School, Medical School of Chinese People's Liberation Army (PLA), Beijing, China,Department of Oncology, The First Medical Center, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China,Chinese People's Liberation Army (PLA) Key Laboratory of Oncology, Key Laboratory for Tumor Targeting Therapy and Antibody Drugs, Ministry of Education, Beijing, China,*Correspondence: Jinliang Wang, ; Fan Zhang, ; Yi Hu,
| |
Collapse
|
11
|
Chemotherapy to potentiate the radiation-induced immune response. INTERNATIONAL REVIEW OF CELL AND MOLECULAR BIOLOGY 2023; 376:143-173. [PMID: 36997268 DOI: 10.1016/bs.ircmb.2023.01.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/13/2023]
Abstract
Chemoradiation (CRT) is a conventional therapy used in local cancers, especially when they are locally advanced. Studies have shown that CRT induces strong anti-tumor responses involving several immune effects in pre-clinical models and humans. In this review, we have described the various immune effects involved in CRT efficacy. Indeed, effects such as immunological cell death, activation and maturation of antigen-presenting cells, and activation of an adaptive anti-tumor immune response are attributed to CRT. As often described in other therapies, various immunosuppressive mechanisms mediated, in particular, by Treg and myeloid populations may reduce the CRT efficacy. We have therefore discussed the relevance of combining CRT with other therapies to potentiate the CRT-induced anti-tumor effects.
Collapse
|
12
|
Yin XK, Wang C, Feng LL, Bai SM, Feng WX, Ouyang NT, Chu ZH, Fan XJ, Qin QY. Expression Pattern and Prognostic Value of CTLA-4, CD86, and Tumor-Infiltrating Lymphocytes in Rectal Cancer after Neoadjuvant Chemo(radio)therapy. Cancers (Basel) 2022; 14:cancers14225573. [PMID: 36428666 PMCID: PMC9688334 DOI: 10.3390/cancers14225573] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/04/2022] [Accepted: 11/08/2022] [Indexed: 11/16/2022] Open
Abstract
The synergistic effect of combining immune checkpoint inhibitors (ICIs) with neoadjuvant chemo(radio)therapy (nCRT) in colorectal cancer is still limited. We aimed to understand the impact of nCRT on the tumor microenvironment and to explore favorable immune markers of this combination. Herein, we investigated the expression of cytotoxic T lymphocyte-associated antigen 4 (CTLA-4), CD86, CD4, and CD8 after nCRT and its association with clinicopathological characteristics. Immunostaining of immune-related molecules was performed in 255 surgically resected specimens from rectal cancer patients treated with nCRT. CD4 and CD8 expression on the tumor (tCD4/CD8), stroma (sCD4/CD8), and invasive front (iCD4/CD8) was evaluated. The expression levels of immune-related molecules were significantly lower in the nCRT-treated group, except for CTLA-4 and sCD8. However, patients with higher sCD8+ cell density and CTLA-4 expression had better progression-free survival (PFS) and distant metastasis-free survival (DMFS). In addition, higher CD86 expression was associated with poorer overall survival (OS). Higher CTLA-4 expression was associated with higher tCD8+ cell density, whereas CD86 expression was correlated with the cell density of t/sCD8. Prognostic analysis confirmed that the relationships between CTLA-4 and DMFS as well as CD86 and OS were significantly correlated in low rather than high CD8+ cell density. Further the combination of CD8+ cell density and CD86 expression was shown to be an independent prognostic factor of OS, whereas the combination of CTLA-4 was not for DMFS. Together, these results demonstrate significant correlations between CD86 expression and t/sCD8+ cell density in rectal cancer after nCRT and could potentially have clinical implications for combining ICIs and nCRT.
Collapse
Affiliation(s)
- Xin-Ke Yin
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Chao Wang
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Li-Li Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Shao-Mei Bai
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Wei-Xing Feng
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Radiation Oncology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Neng-Tai Ouyang
- Cellular & Molecular Diagnostics Center, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510120, China
| | - Zhong-Hua Chu
- Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| | - Xin-Juan Fan
- Department of Pathology, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
| | - Qi-Yuan Qin
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Department of Colorectal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou 510655, China
- Correspondence: (Z.-H.C.); (Q.-Y.Q.)
| |
Collapse
|
13
|
Shi M, Chen Y, Ji D. The implications from the interplay of neoadjuvant chemoradiotherapy and the immune microenvironment in rectal cancer. Future Oncol 2022; 18:3229-3244. [PMID: 36017694 DOI: 10.2217/fon-2022-0061] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Neoadjuvant chemoradiotherapy (nCRT) is recommended for the treatment of locally advanced rectal cancer. Even though the combination of nCRT and immune checkpoint inhibitors (ICIs) has received much attention, the specific combination modes and dose fractions in radiotherapy (RT) are still indistinct. This review focuses on the immunological mechanism involved in nCRT, the clinical efficacy, the immunological effect of different combined strategies, concurrent or sequential nCRT plus ICIs, long-course RT and short-course RT. This review discusses the impact of nCRT on tumor immunity and summarizes the availability of different dose fractions in RT and distinct combined strategies, aiming at providing clues for optimal neoadjuvant therapy options that maximize efficacy and minimize side effects.
Collapse
Affiliation(s)
- Mengyuan Shi
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Yongkang Chen
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| | - Dengbo Ji
- Key laboratory of Carcinogenesis & Translational Research (Ministry of Education), Department of Gastrointestinal Surgery III, Peking University Cancer Hospital & Institute, No. 52 Fucheng Rd., Haidian District, Beijing, 100142, China
| |
Collapse
|
14
|
Chen Y, Bai B, Ying K, Pan H, Xie B. Anti-PD-1 combined with targeted therapy: Theory and practice in gastric and colorectal cancer. Biochim Biophys Acta Rev Cancer 2022; 1877:188775. [DOI: 10.1016/j.bbcan.2022.188775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2022] [Revised: 07/31/2022] [Accepted: 08/01/2022] [Indexed: 10/16/2022]
|
15
|
Chen TW, Hung WZ, Chiang SF, Chen WTL, Ke TW, Liang JA, Huang CY, Yang PC, Huang KCY, Chao KSC. Dual inhibition of TGFβ signaling and CSF1/CSF1R reprograms tumor-infiltrating macrophages and improves response to chemotherapy via suppressing PD-L1. Cancer Lett 2022; 543:215795. [PMID: 35718267 DOI: 10.1016/j.canlet.2022.215795] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 06/10/2022] [Accepted: 06/13/2022] [Indexed: 11/02/2022]
Abstract
TGFβ contributes to chemoresistance in advanced colorectal cancer (CRC) via diverse immune-microenvironment mechanisms. Here, we found that cancer cell autonomous TGFβ directly triggered tumor programmed cell death 1 ligand 1 (PD-L1) upregulation, resulting in resistance to chemotherapy. Inhibition of tumor PD-L1 expression sensitized cancer cells to chemotherapy, reduced lung metastasis and increased the influx of CD8+ T cells. However, chemorefractory cancer cell-derived CSF1 recruited TAMs for TGFβ-mediated PD-L1 upregulation via a vicious cycle. High infiltration of macrophages was clinically correlated with the status of tumor PD-L1 after chemotherapy treatment in CRC patients. We found that depletion of immunosuppressive CSF1R+ TAM infiltration and blockade of the TGFβ receptor resulted in an increased influx of cytotoxic CD8+ T and effector memory CD8+ cells, a reduction in regulatory T cells, and a synergistic inhibition of tumor growth when combined with chemotherapy. These findings show that CSF1R+ TAMs and TGFβ are the dominant components that regulate PD-L1 expression within the immunosuppressive tumor microenvironment, providing a therapeutic strategy for advanced CRC patients.
Collapse
Affiliation(s)
- Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Department of Pathology, Asia University Hospital, Asia University, Taichung, 41354, Taiwan
| | - Wei-Ze Hung
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, 42055, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChu, 302, Taiwan; Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Department of Surgery, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; School of Chinese Medicine & Graduate Institute of Chinese Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Radiotherapy, School of Medicine, China Medical University, Taichung, 40402, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Department of Medical Research, China Medical University Hospital, China Medical University, Taichung, Taiwan; Department of Medical Laboratory Science and Biotechnology, Asia University, Taichung, Taiwan; Center of General Education, Buddhist Tzu Chi Medical Foundation, Tzu Chi University of Science and Technology, Hualien, 970, Taiwan; Cardiovascular and Mitochondrial Related Disease Research Center, Hualien Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Hualien, 97004, Taiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan; Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - K S Clifford Chao
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan; Proton Therapy and Science Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan; Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan.
| |
Collapse
|
16
|
Chang CL, Huang K, Chen TW, Chen W, Huang HH, Liu YL, Kuo CH, Chao K, Ke TW, Chiang SF. Prognostic and clinical significance of subcellular CDC27 for patients with rectal adenocarcinoma treated with adjuvant chemotherapy. Oncol Lett 2022; 24:238. [PMID: 35720473 PMCID: PMC9185143 DOI: 10.3892/ol.2022.13358] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 05/09/2022] [Indexed: 11/13/2022] Open
Abstract
Rectal adenocarcinoma (READ) constitutes one-third of newly diagnosed colorectal cancer cases. Surgery, chemotherapy and concurrent chemoradiotherapy are the main treatments to improve patient outcomes for READ. However, patients with READ receiving these treatments eventually relapse, leading to a poor survival outcome. The present study collected surgical specimens from patients with READ and determined that cytoplasmic cell division cycle 27 (CDC27) expression was associated with the risk of lymph node metastasis and distant metastasis. Nuclear CDC27 expression was negatively associated with 5-year disease-free survival (DFS) and 5-year overall survival (OS) rates. Multivariate Cox proportional regression analysis showed that nuclear CDC27 was an independent prognostic factor in the patients with READ, especially in those treated with adjuvant chemotherapy. High nuclear CDC27 expression was significantly associated with poorer 5-year DFS (HR, 2.106; 95% CI, 1.275-3.570; P=0.003) and 5-year OS (HR, 2.369; 95% CI, 1.270-4.6810; P=0.005) rates. The data indicated that cytoplasmic CDC27 expression could affect tumor progression and that it plays an important role in metastasis. Nuclear CDC27 expression was markedly associated with poorer survival outcomes and was an independent prognostic factor in patients with postoperative adjuvant chemotherapy-treated READ. Thus, CDC27 expression serves as a potential prognostic marker for rectal tumor progression and chemotherapy treatment.
Collapse
Affiliation(s)
- Chia-Lin Chang
- Department of Hematology and Oncology, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Kevin Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - William Chen
- Department of Colorectal Surgery, Hsinchu China Medical University Hospital, Hsinchu 30272, Taiwan, R.O.C
| | - Hsuan-Hua Huang
- Department of Pathology, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Ya-Ling Liu
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - Chia-Hui Kuo
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| | - K.S. Chao
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan, R.O.C
| | - Shu-Fen Chiang
- Laboratory of Precision Medicine, Ministry of Health and Welfare Feng Yuan Hospital, Taichung 42055, Taiwan, R.O.C
| |
Collapse
|
17
|
Huang KCY, Chiang SF, Ke TW, Chen TW, Hu CH, Yang PC, Chang HY, Liang JA, Chen WTL, Chao KSC. DNMT1 constrains IFNβ-mediated anti-tumor immunity and PD-L1 expression to reduce the efficacy of radiotherapy and immunotherapy. Oncoimmunology 2021; 10:1989790. [PMID: 38283033 PMCID: PMC10813565 DOI: 10.1080/2162402x.2021.1989790] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/03/2021] [Indexed: 10/20/2022] Open
Abstract
Radiotherapy can boost the therapeutic response to immune checkpoint inhibitors (ICIs) by recruiting T lymphocytes and upregulating PD-L1 expression within the tumor microenvironment (TME). However, in some cases, tumor PD-L1 expression cannot be induced, even in the presence of abundant T lymphocytes, in locally advanced colorectal cancer patients who receive preoperative neoadjuvant concurrent chemoradiotherapy (CCRT). In this study, we found that PD-L1 promoter methylation is negatively correlated with tumor PD-L1 expression and is an independent biomarker for locally advanced colorectal cancer patients. PD-L1 methylation (mCD274) was significantly associated with shorter disease-free survival (cg15837913 loci, p = .0124). By multivariate Cox proportional hazards analyses including influent factors, mCD274 was classified as an independent prognostic factor for poor 5-year DFS [cg15837913, hazard ratio: HR = 4.06, 95% CI = 1.407-11.716, p = .01]. We found that the immunomodulatory agent DNA methyltransferase inhibitor (DNMTi) led to demethylation of the PD-L1 promoter and increased radiotherapy-induced PD-L1 upregulation via interferon β (IFNβ). DNMTi not only induced tumor PD-L1 expression but increased the expression of immune-related genes as well as intratumoral T cell infiltration in vivo. Furthermore, DNMTi strongly enhanced the response to combined treatment with radiotherapy and anti-PD-L1 inhibitors, and prolonged survival in microsatellite stability (MSS) colorectal model. Therefore, DNMTi remodeled the tumor microenvironment to improve the effect of radiotherapy and anti-PD-L1 immunotherapy by directly triggering tumor PD-L1 expression and eliciting stronger immune responses, which may provide potential clinical benefits to colorectal cancer patients in the future.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, TaichungTaiwan
- Translation Research Core, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, TaichungTaiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, TaichungTaiwan
- School of Chinese Medicine, China Medical University, TaichungTaiwan
| | - Tsung-Wei Chen
- Department of Pathology, Asia University Hospital, Asia University, TaichungTaiwan
- Graduate Institute of Biomedical Science, China Medical University, TaichungTaiwan
| | - Ching-Han Hu
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Pei-Chen Yang
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Hsin-Yu Chang
- Translation Research Core, China Medical University Hospital, China Medical University, TaichungTaiwan
| | - Ji-An Liang
- Department of Radiation Oncology, China Medical University Hospital, China Medical University, Taichung, Taiwan
- Department of Radiotherapy, School of Medicine, China Medical University, TaichungTaiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, TaichungTaiwan
- Department of Surgery, School of Medicine, China Medical University, TaichungTaiwan
- Department of Colorectal Surgery, China Medical University HsinChu Hospital, China Medical University, HsinChuTaiwan
| | - K. S. Clifford Chao
- Graduate Institute of Biomedical Science, China Medical University, TaichungTaiwan
- Proton Therapy and Science Center, China Medical University Hospital, China Medical University, TaichungTaiwan
- Department of Radiotherapy, School of Medicine, China Medical University, TaichungTaiwan
| |
Collapse
|
18
|
Zhou C, Cheng X, Tu S. Current status and future perspective of immune checkpoint inhibitors in colorectal cancer. Cancer Lett 2021; 521:119-129. [PMID: 34464671 DOI: 10.1016/j.canlet.2021.07.023] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 06/23/2021] [Accepted: 07/15/2021] [Indexed: 12/16/2022]
Abstract
Immune checkpoint inhibitors (ICIs), as a subverter of immunotherapy in oncology, are changing all aspects of therapy for malignant tumors, especially their remarkable effects on melanoma and non-small cell lung cancer (NSCLC). For colorectal cancer (CRC), only a small number of patients with high immunogenicity (microsatellite instability-high/mismatch-repair deficient (MSI-H/dMMR)) benefit greatly from ICIs treatment, and most CRC patients with low immunogenicity (microsatellite instability-low/mismatch-repair proficient (MSI-L/pMMR)) do not. Currently, numerous clinical trials are ongoing to improve CRC patients' response to ICIs immunotherapy through better patient selection and novel combination strategies. Thus, this review discusses the current status and latest progress of ICIs treatment in CRC. We expect that these studies can change the pattern of CRC immunotherapy in the future.
Collapse
Affiliation(s)
- Cong Zhou
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Xiaojiao Cheng
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; State Key Laboratory of Oncogenesis and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China
| | - Shuiping Tu
- Department of Oncology, Renji Hospital, Shanghai Jiao Tong University, School of Medicine, Shanghai, China; State Key Laboratory of Oncogenesis and Related Genes, Renji Hospital, School of Medicine, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
19
|
Fu Y, Peng Y, Zhao S, Mou J, Zeng L, Jiang X, Yang C, Huang C, Li Y, Lu Y, Wu M, Yang Y, Kong T, Lai Q, Wu Y, Yao Y, Wang Y, Gou L, Yang J. Combination Foretinib and Anti-PD-1 Antibody Immunotherapy for Colorectal Carcinoma. Front Cell Dev Biol 2021; 9:689727. [PMID: 34307367 PMCID: PMC8298272 DOI: 10.3389/fcell.2021.689727] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Accepted: 06/11/2021] [Indexed: 02/05/2023] Open
Abstract
Immune checkpoint inhibitors have achieved unprecedented success in cancer immunotherapy. However, the overall response rate to immune checkpoint inhibitor therapy for many cancers is only between 20 and 40%, and even less for colorectal cancer (CRC) patients. Thus, there is an urgent need to develop an efficient immunotherapeutic strategy for CRC. Here, we developed a novel CRC combination therapy consisting of a multiple receptor tyrosine kinase inhibitor (Foretinib) and anti-PD-1 antibody. The combination therapy significantly inhibited tumor growth in mice, led to improved tumor regression without relapse (83% for CT26 tumors and 50% for MC38 tumors) and prolonged overall survival. Mechanistically, Foretinib caused increased levels of PD-L1 via activating the JAK2-STAT1 pathway, which could improve the effectiveness of the immune checkpoint inhibitor. Moreover, the combination therapy remodeled the tumor microenvironment and enhanced anti-tumor immunity by further increasing the infiltration and improving the function of T cells, decreasing the percentage of tumor-associated macrophages (TAMs) and inhibiting their polarization toward the M2 phenotype. Furthermore, the combination therapy inhibited the metastasis of CT26-Luc tumors to the lung in BALB/c mouse by reducing proportions of regulatory T-cells, TAMs and M2 phenotype TAMs in their lungs. This study suggests that a novel combination therapy utilizing both Foretinib and anti-PD-1 antibody could be an effective combination strategy for CRC immunotherapy.
Collapse
Affiliation(s)
- Yuyin Fu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yujia Peng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Shengyan Zhao
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jun Mou
- Laboratory of Infectious Diseases and Vaccine, West China Hospital, Sichuan University, Chengdu, China
| | - Lishi Zeng
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Xiaohua Jiang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Chengli Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Cheng Huang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yuyan Li
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yin Lu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Mengdan Wu
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yanfang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Ting Kong
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Qinhuai Lai
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Yangping Wu
- Department of Clinical Research Management, West China Hospital, Sichuan University, Chengdu, China
| | - Yuqin Yao
- West China School of Public Health and Healthy Food Evaluation Research Center/No. 4 West China Teaching Hospital, Sichuan University, Chengdu, China
| | - Yuxi Wang
- Department of Respiratory and Critical Care Medicine, West China Hospital, Sichuan University, Chengdu, China
| | - Lantu Gou
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| | - Jinliang Yang
- State Key Laboratory of Biotherapy and Cancer Center/Collaborative Innovation Center for Biotherapy, West China Hospital, Sichuan University, Chengdu, China
| |
Collapse
|
20
|
Bregni G, Vandeputte C, Pretta A, Senti C, Trevisi E, Acedo Reina E, Kehagias P, Liberale G, Moretti L, Bali MA, Demetter P, Flamen P, Carrasco J, D'Hondt L, Geboes K, Gokburun Y, Peeters M, Van den Eynde M, Van Laethem JL, Vergauwe P, Chapot CA, Buyse M, Deleporte A, Hendlisz A, Sclafani F. Rationale and design of REGINA, a phase II trial of neoadjuvant regorafenib, nivolumab, and short-course radiotherapy in stage II and III rectal cancer. Acta Oncol 2021; 60:549-553. [PMID: 33435735 DOI: 10.1080/0284186x.2020.1871067] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
Affiliation(s)
- Giacomo Bregni
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Caroline Vandeputte
- GUTS Lab, Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Andrea Pretta
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Chiara Senti
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Trevisi
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Elena Acedo Reina
- GUTS Lab, Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pashalina Kehagias
- GUTS Lab, Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Gabriel Liberale
- Department of Surgery, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Luigi Moretti
- Department of Radiotherapy, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Maria Antonietta Bali
- Department of Radiology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Pieter Demetter
- Department of Pathology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Patrick Flamen
- Department of Nuclear Medicine, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | | | | | - Karen Geboes
- Department of Gastroenterology, Universitair Ziekenhuis Gent, Ghent, Belgium
| | | | - Marc Peeters
- Department of Oncology, Universitair Ziekenhuis Antwerpen, Antwerp, Belgium
| | - Marc Van den Eynde
- Institut Roi Albert II, Cliniques Universitaires Saint-Luc, UCLouvain, Brussels, Belgium
| | | | | | - Camille Anastasia Chapot
- Clinical Trial Support Unit (CTSU), Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Marc Buyse
- International Drug Development Institute, Louvain-la-Neuve, Belgium
| | - Amelie Deleporte
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alain Hendlisz
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Francesco Sclafani
- Department of Medical Oncology, Institut Jules Bordet – Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
21
|
Emerging Trends for Radio-Immunotherapy in Rectal Cancer. Cancers (Basel) 2021; 13:cancers13061374. [PMID: 33803620 PMCID: PMC8003099 DOI: 10.3390/cancers13061374] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 03/11/2021] [Accepted: 03/13/2021] [Indexed: 02/06/2023] Open
Abstract
Rectal cancer is a heterogeneous disease at the genetic and molecular levels, both aspects having major repercussions on the tumor immune contexture. Whilst microsatellite status and tumor mutational load have been associated with response to immunotherapy, presence of tumor-infiltrating lymphocytes is one of the most powerful prognostic and predictive biomarkers. Yet, the majority of rectal cancers are characterized by microsatellite stability, low tumor mutational burden and poor T cell infiltration. Consequently, these tumors do not respond to immunotherapy and treatment largely relies on radiotherapy alone or in combination with chemotherapy followed by radical surgery. Importantly, pre-clinical and clinical studies suggest that radiotherapy can induce a complete reprograming of the tumor microenvironment, potentially sensitizing it for immune checkpoint inhibition. Nonetheless, growing evidence suggest that this synergistic effect strongly depends on radiotherapy dosing, fractionation and timing. Despite ongoing work, information about the radiotherapy regimen required to yield optimal clinical outcome when combined to checkpoint blockade remains largely unavailable. In this review, we describe the molecular and immune heterogeneity of rectal cancer and outline its prognostic value. In addition, we discuss the effect of radiotherapy on the tumor microenvironment, focusing on the mechanisms and benefits of its combination with immune checkpoint inhibitors.
Collapse
|
22
|
Chiang SF, Huang KCY, Chen WTL, Chen TW, Ke TW, Chao KSC. Polymorphism of formyl peptide receptor 1 (FPR1) reduces the therapeutic efficiency and antitumor immunity after neoadjuvant chemoradiotherapy (CCRT) treatment in locally advanced rectal cancer. Cancer Immunol Immunother 2021; 70:2937-2950. [PMID: 33713152 DOI: 10.1007/s00262-021-02894-8] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Accepted: 02/15/2021] [Indexed: 12/16/2022]
Abstract
Immunosurveillance and immunoscavenging prompted by preoperative chemoradiotherapy (CCRT) may contribute to improve local control and increase survival outcomes for patients with locally advanced rectal cancer (LARC). In this study, we investigated several genotypes of pattern recognition receptors (PRRs) and their impact on therapeutic efficacy in LARC patients treated with CCRT. We found that homozygosis of formyl peptide receptor 1 (FPR1) (E346A/rs867228) was associated with reduced 5-year overall survival (OS) by Kaplan-Meier analysis (62% vs. 81%, p = 0.014) and multivariate analysis [hazard ratio (HR) = 3.383, 95% CI = 1.374-10.239, p = 0.007]. Moreover, in an animal model, we discovered that the FPR1 antagonist, Boc-MLF (Boc-1), reduced CCRT therapeutic efficacy and decreased cytotoxic T cells and T effector memory cells after chemoradiotherapy treatment. Pharmacologic inhibition of FPR1 by Boc-1 decreased T lymphocyte migration to irradiated tumor cells. Therefore, these results revealed that the FPR1 genotype participates in CCRT-elicited anticancer immunity by reducing T lymphocytes migration and infiltration, and that the FPR1-E346A CC genotype can be considered an independent biomarker for chemo- and radiotherapy outcomes.
Collapse
Affiliation(s)
- Shu-Fen Chiang
- Laboratory of Precision Medicine, Ministry of Health & Welfare Feng Yuan Hospital, Taichung, 42055, Taiwan.,Cancer Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Department of Biomedical Imaging and Radiological Science, China Medical University, Taichung, 40402, Taiwan.,Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, Hsinchu China Medical University Hospital, Hsinchu, 40402, Taiwan
| | - Tsung-Wei Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.,Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| | - K S Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan.
| |
Collapse
|
23
|
Chen C, Liu Y, Cui B. Effect of radiotherapy on T cell and PD-1 / PD-L1 blocking therapy in tumor microenvironment. Hum Vaccin Immunother 2021; 17:1555-1567. [PMID: 33428533 DOI: 10.1080/21645515.2020.1840254] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
Cancer is a worldwide problem that threatens human health. Radiotherapy plays an important role in a variety of cancer treatment methods. The administration of radiotherapy can alter the differentiation pathways and functions of T cells, which in turn improves the immune response of T cells. Radiotherapy can also induce up-regulation of PD-L1 expression, which means that it has great potential for enhancing the therapeutic effect of anti-PD-1/PD-L1 inhibitors and reducing the risk of drug resistance toward them. At present, the combination of radiotherapy and anti-PD-1/PD-L1 inhibitors has shown significant therapeutic effects in clinical tumor research. This review focuses on the mechanism of radiotherapy on T cells reported in recent years, as well as related research progress in the application of PD-1/PD-L1 blockers. It will provide a theoretical basis for the rational clinical application of radiotherapy combined with PD-1/PD-L1 inhibitors.
Collapse
Affiliation(s)
- Chen Chen
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Yanlong Liu
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| | - Binbin Cui
- Department of Colorectal Surgery, The Tumor Hospital of Harbin Medical University, Harbin, Heilongjiang Province, P. R. China
| |
Collapse
|
24
|
Wang S, Yuan B, Wang Y, Li M, Liu X, Cao J, Li C, Hu J. Clinicopathological and prognostic significance of PD-L1 expression in colorectal cancer: a meta-analysis. Int J Colorectal Dis 2021; 36:117-130. [PMID: 32910207 PMCID: PMC7782388 DOI: 10.1007/s00384-020-03734-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 08/26/2020] [Indexed: 02/07/2023]
Abstract
PURPOSE To systematically evaluate the correlation between PD-L1 expression and clinicopathological features and prognosis of colorectal cancer (CRC). METHODS Seven databases (PubMed, Cochrane Library, EMBASE, Web of Science, CBM, Wanfang, and CNKI) were searched through May 2020. Risk of bias and quality of evidence were assessed by using the Newcastle-Ottawa scale (NOS), and meta-analysis was carried out by using the Review Manager 5.3 software on the studies with the quality evaluation scores ≥ 6. Meta-regression analysis was used to determine the independent role of PD-L1 expression on CRC prognosis after adjusting clinicopathological features and treatment methods. RESULTS A total of 8823 CRC patients in 32 eligible studies. PD-L1 expression was correlated with lymphatic metastasis (yes/no; OR = 1.24, 95% CI (1.11, 1.38)), diameter of tumor (≥ 5 cm/< 5 cm; OR = 1.34, 95% CI (1.06, 1.70)), differentiation (high-middle/low; OR = 0.68, 95% CI (0.53, 0.87)), and vascular invasion (yes/no; OR = 0.80, 95% CI (0.69, 0.92)). PD-L1 expression shortened the overall survival (hazard ratio (HR) = 1.93, 95% CI (1.66, 2.25)), disease-free survival (HR = 1.76, 95% CI (1.50, 2.07)), and progression-free survival (HR = 1.93, 95% CI (1.55, 2.41)). Meta-regression showed that PD-L1 expression played a significant role on poor CRC OS (HR = 1.95, 95% CI (1.92, 3.98)) and disease-free survival (HR = 2.14, 95% CI (0.73, 4.52)). CONCLUSION PD-L1 expression independently predicted a poor prognosis of CRC.
Collapse
Affiliation(s)
- Shuxia Wang
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Bo Yuan
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Yun Wang
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Mingyang Li
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Xibo Liu
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jing Cao
- Public Health School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Changtian Li
- Basic Medical School, Gansu University of Chinese Medicine, Lanzhou, 730000, China
| | - Jihong Hu
- Center of Research and Experiment, Gansu University of Chinese Medicine, Lanzhou, 730000, China.
| |
Collapse
|
25
|
Prognostic relevance of programmed cell death 1 ligand 2 (PDCD1LG2/PD-L2) in patients with advanced stage colon carcinoma treated with chemotherapy. Sci Rep 2020; 10:22330. [PMID: 33339860 PMCID: PMC7749140 DOI: 10.1038/s41598-020-79419-3] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2020] [Accepted: 12/09/2020] [Indexed: 12/18/2022] Open
Abstract
Colorectal cancer (CRC) is the leading cause of cancer-related mortality worldwide. Although the role of tumor programmed cell death 1 ligand 1 (PD-L1) in suppressing antitumor immunity has been validated in various malignances, the impact of PD-L2 (PD-L2/PDCD1LG2) within tumors remains elusive. Here, we examined tumor PD-L2 expression by immunohistochemical analysis and assessed its association with clinicopathological characteristics and the infiltration of intratumoral T lymphocytes in colon carcinoma patients (n = 1264). We found that tumor PD-L2 status was correlated with perineural invasion (PNI) and associated with survival outcome in colon carcinoma patients. The level of tumor PD-L2 was positively associated with tumor PD-L1 expression but inversely associated with the density of CD8+ tumor-infiltrating lymphocytes (TILs). Patients with elevated tumor PD-L2 levels had a favorable 5-year overall survival (OS) compared to patients with low PD-L2 levels (57% vs 40%, p < 0.001), especially in advanced stage colon carcinoma patients. Low tumor PD-L2 expression was associated with an increased 5-year OS risk among advanced stage colon carcinoma patients by univariate analysis [hazard ratio (HR) = 1.69, 95% CI 1.324–2.161, p < 0.001] and multivariate analysis [HR = 1.594, 95% CI 1.206–2.106, p = 0.001]. Moreover, tumor PD-L2 expression was inversely associated with the lymphocytic reaction in advanced stage colon carcinoma, suggesting that PD-L2 may be upregulated by a compensatory mechanism to inhibit T cell-mediated anticancer immunity. Taken together, these results show that tumor PD-L2 expression may be an independent prognostic factor for survival outcome in patients with advanced stage colon carcinoma.
Collapse
|
26
|
Huang KCY, Chiang SF, Ke TW, Chen WTL, Chen TW, Chao KSC. The Clinical Relevance of Frequent Germline Genetic Variants Detected by Targeted Sequencing in Patients With Rectal Adenocarcinoma (READ). Cancer Genomics Proteomics 2020; 17:291-299. [PMID: 32345670 DOI: 10.21873/cgp.20189] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2020] [Revised: 02/21/2020] [Accepted: 02/29/2020] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The progression of colorectal cancer (CRC) mainly stems from the occurrence of somatic mutation. However, there is little information that can be used to comprehensively analyse the importance of germline variants in CRC patients. PATIENTS AND METHODS The candidate germline variants between tumor relapse and cured rectal adenocarcinoma (READ) were firstly filtered by whole-exome sequencing (n=4), and validated by targeted sequencing and associated with clinical outcome in READ (n=48). RESULTS We identified 9 pathogenic germline variants that were clinically associated with survival outcome in READ, including TIPIN, TLR1, TLR10, OR4D6, IGSF3, UBBP4, OR6J1, FAM208A and DISC1. Patients carrying these germline susceptibility variants had an increased risk of poor survival outcome compared to those without these variants. CONCLUSION Not only the tumor genome, but also the germline sequence must be analysed to depict the overall genetic profile, providing potential therapeutic strategies for personalized medicine.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Department of Nutrition, HungKuang University, Taichung, Taiwan, R.O.C
| | - Shu-Fen Chiang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung, Taiwan, R.O.C
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C
| | - Tsung-Wei Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.,Graduate Institute of Biomedical Science, China Medical University, Taichung, Taiwan, R.O.C
| | - Kun-San Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, Taichung, Taiwan, R.O.C.
| |
Collapse
|
27
|
Huemer F, Klieser E, Neureiter D, Schlintl V, Rinnerthaler G, Pagès F, Kirilovsky A, El Sissy C, Iglseder W, Singhartinger F, Jäger T, Dinnewitzer A, Zaborsky N, Steiner M, Greil R, Weiss L. Impact of PD-L1 Scores and Changes on Clinical Outcome in Rectal Cancer Patients Undergoing Neoadjuvant Chemoradiotherapy. J Clin Med 2020; 9:E2775. [PMID: 32867256 PMCID: PMC7563312 DOI: 10.3390/jcm9092775] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2020] [Revised: 08/16/2020] [Accepted: 08/24/2020] [Indexed: 12/24/2022] Open
Abstract
Reports on the prognostic role of programmed death-ligand 1 (PD-L1) expression in rectal cancer are controversial. We investigated expression patterns and changes of PD-L1 in rectal cancer patients undergoing neoadjuvant chemoradiotherapy (CRT). Seventy-two patients diagnosed with rectal cancer and/or treated with fluorouracil-based neoadjuvant CRT at the Department of Internal Medicine III of the Paracelsus Medical University Salzburg (Austria) between January 2003 and October 2012 were included. PD-L1 scoring was performed according to the tumor proportion score (TPS), combined positive score (CPS), and immune cell score (IC). PD-L1 TPS prior to neoadjuvant CRT had a statistically significant impact on survival (median: ≤1%: 95.4 months (95% CI: 51.8-not reached) vs. >1%: not reached, p = 0.03, log-rank). Patients with a PD-L1 TPS ≤1% prior to and after CRT showed an inferior survival compared to all other patients (median: 56.7 months (95% CI: 51.4-not reached) vs. not reached, p = 0.005, log-rank). In multivariate analysis, PD-L1 TPS prior to neoadjuvant CRT (>1% vs. ≤1%, hazard ratio: 0.29 (95% CI: 0.11-0.76), p = 0.01) remained independently associated with survival. In conclusion, low PD-L1 TPS was associated with inferior survival in rectal cancer patients undergoing neoadjuvant CRT. A prospective validation of the prognostic value of PD-L1 expression in rectal cancer patients within a clinical trial is necessitated.
Collapse
Affiliation(s)
- Florian Huemer
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
| | - Eckhard Klieser
- Institute of Pathology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.K.); (D.N.)
| | - Daniel Neureiter
- Institute of Pathology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (E.K.); (D.N.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Verena Schlintl
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
| | - Gabriel Rinnerthaler
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Franck Pagès
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Immunology and Cancer Department, Cordeliers Research Center, 75006 Paris, France; (F.P.); (A.K.); (C.E.S.)
- Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de santé, 75015 Paris, France
| | - Amos Kirilovsky
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Immunology and Cancer Department, Cordeliers Research Center, 75006 Paris, France; (F.P.); (A.K.); (C.E.S.)
- Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de santé, 75015 Paris, France
| | - Carine El Sissy
- Laboratory of Integrative Cancer Immunology, INSERM UMRS1138, Immunology and Cancer Department, Cordeliers Research Center, 75006 Paris, France; (F.P.); (A.K.); (C.E.S.)
- Hôpital Européen Georges Pompidou, Assistance Publique-Hôpitaux de Paris, Université de Paris, Faculté de santé, 75015 Paris, France
| | - Wolfgang Iglseder
- Department of Radiation Oncology, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria;
| | - Franz Singhartinger
- Department of Surgery, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (F.S.); (T.J.); (A.D.)
| | - Tarkan Jäger
- Department of Surgery, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (F.S.); (T.J.); (A.D.)
| | - Adam Dinnewitzer
- Department of Surgery, Paracelsus Medical University Salzburg, 5020 Salzburg, Austria; (F.S.); (T.J.); (A.D.)
| | - Nadja Zaborsky
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
| | - Markus Steiner
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
| | - Richard Greil
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| | - Lukas Weiss
- Department of Internal Medicine III with Haematology, Medical Oncology, Haemostaseology, Infectiology and Rheumatology, Oncologic Center, Salzburg Cancer Research Institute-Laboratory for Immunological and Molecular Cancer Research (SCRI-LIMCR), Paracelsus Medical University, 5020 Salzburg, Austria; (F.H.); (V.S.); (G.R.); (N.Z.); (M.S.); (R.G.)
- Cancer Cluster Salzburg, 5020 Salzburg, Austria
| |
Collapse
|
28
|
Yao L, Feng L, Tao D, Tao H, Zhong X, Liang C, Zhu Y, Hu B, Liu Z, Zheng Y. Perfluorocarbon nanodroplets stabilized with cisplatin-prodrug-constructed lipids enable efficient tumor oxygenation and chemo-radiotherapy of cancer. NANOSCALE 2020; 12:14764-14774. [PMID: 32627775 DOI: 10.1039/d0nr01476a] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Concurrent chemo-radiotherapy has been widely applied for the treatment of a wide range of cancers, but its therapeutic efficacy against most solid tumors is severely impaired by their intrinsic hypoxic microenvironments. Utilizing the high oxygen loading capacity of perfluoro-15-crown-5-ether (PFCE), herein, we prepare PFCE nanodroplets with cisplatin prodrug (cisPt(iv)) conjugated phospholipids and other commercial lipids as the stabilizer to enable tumor targeted oxygen shuttling. The obtained PFCE@cisPt(iv)-Lip shows high physiological stability and efficient oxygen loading capacity. As vividly visualized under an in vivo photoacoustic imaging system, tumors on the mice with intravenous injection of such PFCE@cisPt(iv)-Lip show effective tumor oxygenation. Together with X-ray exposure, such PFCE@cisPt(iv)-Lip upon intravenous injection could induce severe DNA damage of cells, thereby remarkably suppressing the tumor growth and significantly prolonging their survival time without causing obvious toxic side effects. This work highlights PFCE@cisPt(iv)-Lip as an adjuvant nanomedicine for enhanced chemo-radiotherapy of tumors by attenuating hostile tumor hypoxia, indicating its promising potential for future clinical translation ascribed to its straightforward synthesis and notable tumor growth inhibition at a safe dose.
Collapse
Affiliation(s)
- Li Yao
- Department of Ultrasound in Medicine, Shanghai Jiao Tong University Affiliated Sixth People's Hospital, Shanghai Institute of Ultrasound in Medicine, Shanghai 200233, P.R. China.
| | | | | | | | | | | | | | | | | | | |
Collapse
|
29
|
Jiao R, Zheng X, Sun Y, Feng Z, Song S, Ge H. IDO1 Expression Increased After Neoadjuvant Therapy Predicts Poor Pathologic Response and Prognosis in Esophageal Squamous Cell Carcinoma. Front Oncol 2020; 10:1099. [PMID: 32733806 PMCID: PMC7358399 DOI: 10.3389/fonc.2020.01099] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2020] [Accepted: 06/02/2020] [Indexed: 12/12/2022] Open
Abstract
Indoleamine 2,3-dioxygenase (IDO1) plays an important role in tumor immune evasion. In this study, we investigated the changes of tumor IDO1 expression and CD8+ tumor-infiltrating lymphocytes (TILs) status in tumor microenvironment (TME) after neoadjuvant chemoradiotherapy (NCRT) or neoadjuvant chemotherapy (NCT) in esophageal squamous cell carcinoma (ESCC), respectively. Moreover, the potential predictive value of the changes of tumor IDO1 expression and CD8+TILs status on pathologic response and clinical outcome was further evaluated. By matching propensity scores in 295 patients, a total of 85 ESCC patients with neoadjuvant therapy followed by surgery were recruited, including 17 patients with NCRT and 68 patients with NCT. Tumor IDO1 expression and CD8+TILs within TME in paired specimens were evaluated by immunohistochemistry, and the changes of tumor IDO1 expression and CD8+TILs between the paired specimens were estimated. Tumor IDO1 expression significantly increased from baseline to postoperative tumor tissue after NCT (p = 0.002), whereas no significant difference was detected after NCRT (p = 0.44). The density of CD8+TILs in the tumor-invasive margin increased significantly after neoadjuvant therapy, and there was no significant difference in density changes of CD8+TILs between the NCRT and NCT groups (p = 0.118). Upregulation of tumor IDO1 expression after neoadjuvant therapy was associated with poor pathologic response (p = 0.002). Lastly, multivariate Cox analysis showed that IDO1-rise patients after neoadjuvant therapy were related to poor prognosis (p = 0.047). These results indicated that chemotherapy could promote tumor IDO1 expression, and the increased tumor IDO1 expression after neoadjuvant therapy predicted poor pathologic response and prognosis in ESCC.
Collapse
Affiliation(s)
- Ruidi Jiao
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China
| | - Xiaoli Zheng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China
| | - Yanan Sun
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China
| | - Zhuo Feng
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China
| | - Shuai Song
- The School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, China
| | - Hong Ge
- Department of Radiation Oncology, The Affiliated Cancer Hospital of Zhengzhou University, Henan Tumor Hospital, Zhengzhou, China
| |
Collapse
|
30
|
Priming the tumor immune microenvironment with chemo(radio)therapy: A systematic review across tumor types. Biochim Biophys Acta Rev Cancer 2020; 1874:188386. [PMID: 32540465 DOI: 10.1016/j.bbcan.2020.188386] [Citation(s) in RCA: 78] [Impact Index Per Article: 15.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/05/2020] [Accepted: 06/08/2020] [Indexed: 12/23/2022]
Abstract
BACKGROUND Chemotherapy (CT), radiotherapy (RT), and chemoradiotherapy (CRT) are able to alter the composition of the tumor immune microenvironment (TIME). Understanding the effect of these modalities on the TIME could aid in the development of improved treatment strategies. Our aim was to systematically review studies investigating the influence of CT, RT or CRT on different TIME markers. METHODS The EMBASE (Ovid) and PubMed databases were searched until January 2019 for prospective or retrospective studies investigating the dynamics of the local TIME in cancer patients (pts) treated with CT, RT or CRT, with or without targeted agents. Studies could either compare baseline and follow-up specimens - before and after treatment - or a treated versus an untreated cohort. Studies were included if they used immunohistochemistry and/or flow cytometry to assess the TIME. RESULTS In total we included 110 studies (n = 8850 pts), of which n = 89 (n = 6295 pts) compared pre-treatment to post-treatment specimens and n = 25 (n = 2555 pts) a treated versus an untreated cohort (4 studies conducted both comparisons). For several tumor types (among others; breast, cervical, esophageal, ovarian, rectal, lung mesothelioma and pancreatic cancer) remodeling of the TIME was observed, leading to a potentially more immunologically active microenvironment, including one or more of the following: an increase in CD3 or CD8 lymphocytes, a decrease in FOXP3 Tregs and increased PD-L1 expression. Both CT and CRT were able to immunologically alter the TIME. CONCLUSION The TIME of several tumor types is significantly altered after conventional therapy creating opportunities for concurrent or sequential immunotherapy.
Collapse
|
31
|
Liang T, Tong W, Ma S, Chang P. Standard therapies: solutions for improving therapeutic effects of immune checkpoint inhibitors on colorectal cancer. Oncoimmunology 2020; 9:1773205. [PMID: 32934878 PMCID: PMC7466849 DOI: 10.1080/2162402x.2020.1773205] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Immunotherapy using immune checkpoint inhibitors has opened a new era for cancer management. In colorectal cancer, patients with a phenotype of deficient mismatch repair or high microsatellite instability benefit from immunotherapy. However, the response of rest cases to immunotherapy alone is still poor. Nevertheless, preclinical data have revealed that either ionizing irradiation or chemotherapy can improve the tumoral immune milieu, because these approaches can induce immunogenic cell death among cancer cells. In this regard, combination use of standard therapy plus immunotherapy should be feasible. In this review, we will introduce the specific roles of standard therapies, including radiotherapy, chemotherapy, antiangiogenic and anti-EGFR therapy, in improving therapeutic effect of immune checkpoint inhibitors on colorectal cancer.
Collapse
Affiliation(s)
- Tingting Liang
- Oncology Department, The First Hospital of Jilin University, Changchun, P.R. China
| | - Weihua Tong
- Department of Gastrointestinal and Colorectal Surgery, The First Hospital of Jilin University, Changchun, P.R. China
| | - Siyang Ma
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| | - Pengyu Chang
- Department of Radiation Oncology & Therapy, Jilin Provincial Key Laboratory of Radiation Oncology & Therapy, The First Hospital of Jilin University, Changchun, P.R. China
| |
Collapse
|
32
|
Sato H, Okonogi N, Nakano T. Rationale of combination of anti-PD-1/PD-L1 antibody therapy and radiotherapy for cancer treatment. Int J Clin Oncol 2020; 25:801-809. [PMID: 32246277 PMCID: PMC7192886 DOI: 10.1007/s10147-020-01666-1] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2019] [Accepted: 03/18/2020] [Indexed: 12/20/2022]
Abstract
Significant technological advances in radiotherapy have been made in the past few decades. High-precision radiotherapy has recently become popular and is contributing to improvements in the local control of the irradiated target lesions and the reduction of adverse effects. Accordingly, for long-term survival, the importance of systemic cancer control, including at non-irradiated sites, is growing. Toward this challenge, the treatment methods in which anti-PD-1/PD-L1 antibodies that exert systemic effects by restoring anti-tumour immunity are combined with radiotherapy has attracted attention in recent years. Previous studies have reported the activation of anti-tumour immunity by radiotherapy, which simultaneously elevates PD-L1 expression, suggesting a potential for combination therapy. Radiotherapy induces so-called ‘immunogenic cell death’, which involves cell surface translocation of calreticulin and extracellular release of high-mobility group protein box 1 (HMGB-1) and adenosine-5′-triphosphate (ATP). Furthermore, radiotherapy causes immune activation via MHC class I upregulation and cGAS–STING pathway. In contrast, induction of immunosuppressive lymphocytes and the release of immunosuppressive cytokines and chemokines by radiotherapy contribute to immunosuppressive reactions. In this article, we review immune responses induced by radiotherapy as well as previous reports to support the rationale of combination of radiotherapy and anti-PD-1/PD-L1 antibodies. A number of preclinical and clinical studies have shown the efficacy of radiotherapy combined with immune checkpoint inhibition, hence combination therapy is considered to be an important future strategy for cancer treatment.
Collapse
Affiliation(s)
- Hiro Sato
- Department of Radiation Oncology, Graduate School of Medicine, Gunma University, Maebashi, Gunma, 371-8511, Japan.
| | - Noriyuki Okonogi
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| | - Takashi Nakano
- National Institute of Radiological Sciences, National Institute for Quantum and Radiological Science and Technology, Inage, Chiba, 263-8555, Japan
| |
Collapse
|
33
|
Oronsky B, Reid T, Larson C, Knox SJ. Locally advanced rectal cancer: The past, present, and future. Semin Oncol 2020; 47:85-92. [PMID: 32147127 DOI: 10.1053/j.seminoncol.2020.02.001] [Citation(s) in RCA: 58] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/02/2020] [Revised: 01/29/2020] [Accepted: 02/03/2020] [Indexed: 12/20/2022]
Abstract
From a series of clinical trials in the last several decades, current treatment paradigms for locally advanced rectal cancer include: (1) preoperative long-course radiotherapy (RT) combined with radiosensitizing chemotherapy; (2) preoperative short-course RT alone followed by adjuvant postoperative chemotherapy; and (3) total neoadjuvant therapy with induction chemotherapy followed by chemoradiotherapy. Other strategies under active investigation in both institutional and cooperative trials include neoadjuvant chemotherapy alone without RT in select patients, total neoadjuvant therapy, watchful waiting after a clinical complete response as an alternative to surgical resection, and the use of different chemotherapeutic and targeted agents. The focus of this review is on established and novel therapeutic strategies for locally advanced rectal cancer.
Collapse
Affiliation(s)
| | - Tony Reid
- Department of Medical Oncology, UC San Diego School of Medicine, San Diego, CA
| | | | - Susan J Knox
- Department of Radiation Oncology, Stanford University School of Medicine, Stanford, CA.
| |
Collapse
|
34
|
Huang KCY, Chiang SF, Chen WTL, Chen TW, Hu CH, Yang PC, Ke TW, Chao KSC. Decitabine Augments Chemotherapy-Induced PD-L1 Upregulation for PD-L1 Blockade in Colorectal Cancer. Cancers (Basel) 2020; 12:cancers12020462. [PMID: 32079180 PMCID: PMC7072566 DOI: 10.3390/cancers12020462] [Citation(s) in RCA: 68] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2020] [Revised: 02/11/2020] [Accepted: 02/14/2020] [Indexed: 01/26/2023] Open
Abstract
Programmed cell death-1 (PD-1) has demonstrated impressive clinical outcomes in several malignancies, but its therapeutic efficacy in the majority of colorectal cancers is still low. Therefore, methods to improve its therapeutic efficacy in colorectal cancer (CRC) patients need further investigation. Here, we demonstrate that immunogenic chemotherapeutic agents trigger the induction of tumor PD-L1 expression in vitro and in vivo, a fact which was validated in metastatic CRC patients who received preoperatively neoadjuvant chemotherapy (neoCT) treatment, suggesting that tumor PD-L1 upregulation by chemotherapeutic regimen is more feasible via PD-1/PD-L1 immunotherapy. However, we found that the epigenetic control of tumor PD-L1 via DNA methyltransferase 1 (DNMT1) significantly influenced the response to chemotherapy. We demonstrate that decitabine (DAC) induces DNA hypomethylation, which not only directly enhances tumor PD-L1 expression but also increases the expression of immune-related genes and intratumoral T cell infiltration in vitro and in vivo. DAC was found to profoundly enhance the therapeutic efficacy of PD-L1 immunotherapy to inhibit tumor growth and prolong survival in vivo. Therefore, it can be seen that DAC remodels the tumor microenvironment to improve the effect of PD-L1 immunotherapy by directly triggering tumor PD-L1 expression and eliciting stronger anti-cancer immune responses, providing potential clinical benefits to CRC patients in the future.
Collapse
Affiliation(s)
- Kevin Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
- Department of Nutrition, HungKuang University, Taichung 43302, Taiwan
| | - Shu-Fen Chiang
- Lab of Precision Medicine, Feng-Yuan Hospital, Ministry of Health and Welfare, Taichung 42055, Taiwan;
- Cancer Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; (C.-H.H.); (P.-C.Y.)
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
| | - Tsung-Wei Chen
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
- Graduate Institute of Biomedical Science, China Medical University, Taichung 40402, Taiwan
| | - Ching-Han Hu
- Cancer Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; (C.-H.H.); (P.-C.Y.)
| | - Pei-Chen Yang
- Cancer Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; (C.-H.H.); (P.-C.Y.)
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan;
- Correspondence: (T.-W.K.); (K.S.C.C.); Tel.: +886-4-22052121 (ext. 2976) (K.S.C.C.); Fax: +886-4-22075011 (K.S.C.C.)
| | - K. S. Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, Taichung 40402, Taiwan; (C.-H.H.); (P.-C.Y.)
- Correspondence: (T.-W.K.); (K.S.C.C.); Tel.: +886-4-22052121 (ext. 2976) (K.S.C.C.); Fax: +886-4-22075011 (K.S.C.C.)
| |
Collapse
|
35
|
Immune Checkpoints as Promising Targets for the Treatment of Idiopathic Pulmonary Fibrosis? J Clin Med 2019; 8:jcm8101547. [PMID: 31561518 PMCID: PMC6833050 DOI: 10.3390/jcm8101547] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2019] [Revised: 09/16/2019] [Accepted: 09/24/2019] [Indexed: 12/21/2022] Open
Abstract
Idiopathic pulmonary fibrosis is a rare, progressive and fatal lung disease which affects approximately 5 million persons worldwide. Although pirfenidone and/or nintedanib treatment improves patients’ wellbeing, the prognosis of IPF remains poor with 5-year mortality rates still ranging from 70 to 80%. The promise of the anti-cancer agent nintedanib in IPF, in combination with the recent notion that IPF shares several pathogenic pathways with cancer, raised hope that immune checkpoint inhibitors, the novel revolutionary anticancer agents, could also be the eagerly awaited ground-breaking and unconventional novel treatment modality limiting IPF-related morbidity/mortality. In the current review, we analyse the available literature on immune checkpoint proteins in IPF to explore whether immune checkpoint inhibition may be as promising in IPF as it is in cancer. We conclude that despite several promising papers showing that inhibiting specific immune checkpoint proteins limits pulmonary fibrosis, overall the data seem to argue against a general role of immune checkpoint inhibition in IPF and suggest that only PD-1/PD-L1 inhibition may be beneficial.
Collapse
|
36
|
Chen TW, Huang KCY, Chiang SF, Chen WTL, Ke TW, Chao KSC. Prognostic relevance of programmed cell death-ligand 1 expression and CD8+ TILs in rectal cancer patients before and after neoadjuvant chemoradiotherapy. J Cancer Res Clin Oncol 2019; 145:1043-1053. [PMID: 30874889 DOI: 10.1007/s00432-019-02874-7] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2018] [Accepted: 02/21/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE/BACKGROUND Radiotherapy has been recently reported to boost the therapeutic response of immune checkpoint blockade (ICB); however, few studies have focused on programmed cell death-ligand 1 (PD-L1) expression in locally advanced rectal cancer (LARC) patients who receive preoperative neoadjuvant chemoradiotherapy (neoCRT). The aim of the present study was to investigate the PD-L1 expression status and CD8+ intra-tumoral infiltrating lymphocytes (TILs) before and after neoCRT and its association with clinicopathological characteristics in rectal cancer. MATERIALS AND METHODS Immunostainings of PD-L1 and CD8+ TILs were performed in 112 pair-matched LARC patients treated by neoCRT. Tumor PD-L1 expression and CD8+ TILs within the tumor microenvironment before and after neoCRT were evaluated via immunohistochemistry. RESULTS High tumor PD-L1 expression was significantly increased from 50 to 63%, and high CD8+ TILs counts were also slightly increased from 32 to 35% after neoCRT treatment. High tumor PD-L1 before and after neoCRT was associated with improved disease-free survival (DFS, pre-neoCRT: p = 0.003 and post-neoCRT: p = 0.003) and overall survival (OS, pre-neoCRT: p = 0.045 and post-neoCRT: p = 0.0001). High CD8+ TILs before neoCRT was associated with improved DFS (p = 0.057), and it was significantly associated with improved DFS after neoCRT (p = 0.039). Patients with high tumor PD-L1 and CD8+ TILs before and after neoCRT were significantly associated with improved DFS (pre-neoCRT: p = 0.004 and post-neoCRT: p = 0.006). CONCLUSION The present results provide evidence that tumor PD-L1 expression and recruitment of CD8+ TILs within the tumor microenvironment were increased by neoCRT treatment. Tumor PD-L1 and CD8+ TILs are prognostic biomarkers for the survival of LARC patients treated with neoCRT.
Collapse
Affiliation(s)
- Tsung-Wei Chen
- Graduate Institute of Biomedical Science, China Medical University, Taichung, 40402, Taiwan
- Department of Pathology, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
| | - Kevin Chih-Yang Huang
- Translation Research Core, China Medical University Hospital, China Medical University, Taichung, 40402, Taiwan
- Department of Nutrition, HungKuang University, Taichung, 43302, Taiwan
| | - Shu-Fen Chiang
- Cancer Center, China Medical University Hospital, China Medical University, 9F, Rehab Building, No.2 Rude Rd., Taichung, 40402, Taiwan
| | - William Tzu-Liang Chen
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, 7F First Medical Building, No.2 Rude Rd., Taichung, 40402, Taiwan
| | - Tao-Wei Ke
- Department of Colorectal Surgery, China Medical University Hospital, China Medical University, 7F First Medical Building, No.2 Rude Rd., Taichung, 40402, Taiwan
| | - K S Clifford Chao
- Cancer Center, China Medical University Hospital, China Medical University, 9F, Rehab Building, No.2 Rude Rd., Taichung, 40402, Taiwan.
| |
Collapse
|