1
|
Tu X, Lin W, Zhai X, Liang S, Huang G, Wang J, Jia W, Li S, Li B, Cheng B. Oleanolic acid inhibits M2 macrophage polarization and potentiates anti-PD-1 therapy in hepatocellular carcinoma by targeting miR-130b-3p-PTEN-PI3K-Akt signaling and glycolysis. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156750. [PMID: 40250003 DOI: 10.1016/j.phymed.2025.156750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/26/2025] [Accepted: 04/08/2025] [Indexed: 04/20/2025]
Abstract
BACKGROUND Hypoxia promotes M2 polarization of macrophages and the formation of the immunosuppressive tumor microenvironment (TME) in hepatocellular carcinoma (HCC). Oleanolic acid (OA) has shown great potential in the treatment of HCC. However, the mechanisms of macrophage M2 polarization in hypoxic tumor TME and the regulating effect of OA is still unclear. OBJECTIVE To investigate the mechanisms of macrophage M2 polarization induced by hypoxic HCC cells-derived exosomes and examine the efficacy of OA in remedying the immunosuppressive TME and the anti-PD1 therapy potential. METHODS Hypoxic and normoxic HCC-derived exosomes (H-Exo and N-Exo) were collected by centrifugation. The microRNAs (miRNA) carried by the exosomes were sequenced and then screened to identify the functional miRNA. THP-1-induced macrophages were treated with exosomes or miRNAs to induce the M2 polarization of macrophages. Real-time RT-PCR and Western blotting were used to identify the direct target of miR-130b-3p and its downstream molecules. Hepa1-6 hepatoma-bearing mice were subjected to determine the efficacy of OA in regulating the TME and the anti-PD1 therapy potential. RESULTS H-Exo promotes macrophage M2 polarization, and thereby accelerates the migration and epithelial-mesenchymal transition (EMT) of HCC cells. Exosomal miRNA sequencing and subsequent functional validation showed that miR-130b-3p was the mediator of H-Exo-induced macrophage M2 polarization. PTEN was identified as the target of miR-130b-3p, and downregulation of PTEN by miR-130b-3p led to the activation of PI3K/Akt signaling and macrophage M2 polarization. In addition, miR-130b-3p also enhanced the glycolysis. OA suppressed H-Exo and miR-130b-3p-induced macrophage M2 polarization, also inhibited miR-130b-3p-induced glycolysis. In vivo, OA treatment enhanced the efficacy of anti-PD1 antibody by decreasing the number of M2 macrophages and increasing the number of CD8+ T cells. CONCLUSION Our findings uncover a new mechanism of hypoxic HCC cells-induced M2 polarization of macrophages through exosomal miR-130b-3p-PTEN-PI3K-Akt signaling. The combination therapy of OA with anti-PD1 antibody may lead to substantial improvements of the immunotherapy efficacy and expand the beneficiaries.
Collapse
Affiliation(s)
- Xiaoyu Tu
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Department of Rehabilitation Medicine and Physiotherapy, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Wanfu Lin
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Xiaofeng Zhai
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Shufang Liang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Guokai Huang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Jingfang Wang
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Wentao Jia
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China
| | - Shu Li
- Department of Gastroenterology, Shanghai Municipal Hospital of Traditional Chinese Medicine, Shanghai University of Traditional Chinese Medicine, Shanghai 200071, China.
| | - Bai Li
- Department of Rehabilitation Medicine and Physiotherapy, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| | - Binbin Cheng
- Faculty of Traditional Chinese Medicine, Naval Medical University (Second Military Medical University), Shanghai 200433, China; Oncology Department of Traditional Chinese Medicine, the First Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai 200433, China.
| |
Collapse
|
2
|
Zhou M, Li R, Lian G, Yang M, Li L, Yin Z, Li G, Zhao J, Tan R. Tetrahydrocurcumin alleviates colorectal tumorigenesis by modulating the SPP1/CD44 axis and preventing M2 tumor-associated macrophage polarization. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 141:156674. [PMID: 40220425 DOI: 10.1016/j.phymed.2025.156674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2025] [Revised: 03/13/2025] [Accepted: 03/19/2025] [Indexed: 04/14/2025]
Abstract
BACKGROUND Recent studies show that secreted phosphoprotein 1 (SPP1) is linked to the progression of various cancers, including colorectal cancer (CRC). SPP1 also promotes M2 macrophage polarization, contributing to immune evasion in the tumor microenvironment. Tetrahydrocurcumin (THC) has been reported to alleviate CRC, but the mechanism remains unclear. PURPOSE The study aimed to explore how THC modulated the SPP1/CD44 axis to inhibit M2 polarization and suppress CRC development. METHODS Azoxymethane/dextran sulfate sodium (AOM/DSS)-induced mouse model was used to assess the anti-CRC effects of THC. Transcriptome sequencing was conducted to identify the key targets of THC in CRC. The effects of THC on CRC cells were evaluated by CCK-8, colony formation, migration assays, immunofluorescence staining and flow cytometry. Human monocytic cells, THP-1, and colon cancer cell line, HCT116, were co-cultured, both directly or indirectly, to mimic the tumor-macrophage interactions, and investigate the role of SPP1/CD44 axis and the intervention effect of THC. RESULTS THC significantly inhibited CRC carcinogenesis in mice and improved pathologic symptoms, serum inflammatory markers, and intestinal barrier integrity. THC inhibited CRC cell proliferation, migration and colony formation, while promoting apoptosis. Transcriptome analysis identified SPP1 as a key target of THC against CRC. SPP1 facilitated CRC progression by activating the ERK signaling pathway and maintaining the M2-like phenotype of macrophage, which further exacerbated this response. THC inhibited CRC development by targeting the SPP1/CD44 axis, rather than the integrin pathway. CONCLUSIONS SPP1 played a crucial role in maintaining the M2 phenotype of macrophage and promoting CRC cells proliferation. THC inhibited the activation of ERK signals in CRC cells and phenotypic transformation of M2-like macrophages through the SPP1/CD44 axis, thereby regulating the tumor immune microenvironment to exert anti-CRC effect.
Collapse
Affiliation(s)
- Mengting Zhou
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Rui Li
- Sichuan Cancer Hospital and Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu 610000, China.
| | - Guiyun Lian
- Xiangya School of Pharmaceutical Sciences, Central South University, Changsha 410013, China
| | - Mengni Yang
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China
| | - Li Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Zhujun Yin
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Guiyu Li
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China
| | - Junning Zhao
- School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China; Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; National Key Laboratory of Drug Regulatory Science, National Medical Products Administration (NMPA), Beijing 100038, China; National Center for Nanoscience and Technology, Beijing 100190, China.
| | - Ruirong Tan
- Translational Chinese Medicine Key Laboratory of Sichuan, Sichuan-Chongqing Joint Key Laboratory of Innovation of New Drugs of Traditional Chinese Medicine, Sichuan Institute for Translational Chinese Medicine, Sichuan Academy of Chinese Medicine Sciences, Chengdu, 610041, China; Translational Medical College, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China.
| |
Collapse
|
3
|
Liu J, Yu Z, Liu Q, Dou C, Cao P, Xie X. A novel 5-differentially expressed gene (DEG) signature predicting the prognosis in patients with metastatic liver malignancies and the prognostic and therapeutic potential of SPP1. Int J Clin Oncol 2025; 30:956-973. [PMID: 40014188 DOI: 10.1007/s10147-025-02723-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Accepted: 02/04/2025] [Indexed: 02/28/2025]
Abstract
BACKGROUND This study aimed to identify differentially expressed genes (DEGs) that are associated with hepatocarcinogenesis and metastasis in hepatocellular carcinoma (HCC) and to explore their value in predicting overall survival (OS). The methods used included bioinformatics analysis of gene expression datasets and in vitro experiments using HCC cell lines. METHODS Gene expression profiles from metastatic and non-metastatic liver cancer specimens were analyzed using the limma R package. Functional enrichment was performed using Metascape. A prognostic 5-gene signature was constructed using the LASSO algorithm based on TCGA-LIHC data. Kaplan-Meier survival analysis assessed the association of these genes with clinical outcomes (DFI, DSS, OS, and PFS). In vitro, Huh7 and Hep3B cells were transfected with shRNA for SPP1 knockdown. Cell viability was measured with CCK-8 assays, and migration was assessed with Transwell and wound-healing assays. Protein expression was evaluated via western blotting. RESULTS The analysis of gene expression profiles led to the identification of 11 DEGs associated with immune response, phagocytosis, and cell migration. From these DEGs, the LASSO algorithm identified a 5-DEG signature (MASP1, MASP2, MUC1, TREM1, and SPP1) that was predictive of OS in liver cancer patients. Among the five genes, SPP1 was the most upregulated in cancer samples and was significantly associated with poorer outcomes, including DFI, DSS, OS, and PFS. In vitro experiments confirmed that SPP1 knockdown in Huh7 and Hep3B cells significantly inhibited cancer cell viability and migration. Western blot analysis showed alterations in key proteins, with a reduction in vimentin and Ki-67 and an increase in E-cadherin following SPP1 knockdown. CONCLUSION This study highlights the pivotal effect of SPP1 on HCC development and underscores its potential as a biomarker for the OS of liver cancer patients. The identified DEGs may serve as predictive markers for OS and potential therapeutic targets for HCC treatment.
Collapse
Affiliation(s)
- Jing Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Zijian Yu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Qiong Liu
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Chengyun Dou
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China
| | - Peng Cao
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| | - Xia Xie
- Department of Infectious Diseases, The First Affiliated Hospital, Hengyang Medical School, University of South China, Hengyang, 421001, Hunan, China.
| |
Collapse
|
4
|
Wang T, Zhou J, Chen G, Xu X, Shen H. SPP1 is associated with glioma malignancy and immunosuppressive regulation in 916 samples. Neurol Res 2025:1-11. [PMID: 40275639 DOI: 10.1080/01616412.2025.2497471] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Accepted: 04/17/2025] [Indexed: 04/26/2025]
Abstract
BACKGROUND Glioma is a disease typically characterized by immunosuppression, which explains its poor prognosis. Therefore, it is urgent to elucidate new molecular mechanisms of immune-supervised escape to improve the efficacy of immunotherapy. Recent studies have identified secreted phosphoprotein 1(SPP1) as a pro-inflammatory and chemokine in macrophages that mediates crosstalk between the innate immune system and tumor cells. We aimed to detect the role of SPP1 in immunomodulation in glioma. METHODS We enrolled 916 patients from different ethnic groups, including 603 patients from The Cancer Genome Atlas (TCGA) database and 313 patients from the Chinese Glioma Genome Atlas (CGGA) database. We performed enrichment analysis and used GSVA to calculate the immune pathway and immune cell infiltration scores of SPP1.In addition, we investigated the correlation between SPP1 and immune checkpoint genes as well as inflammation-related genes. RESULTS The expression of SPP1 is significantly elevated in IDH wild-type gliomas and high-grade gliomas, particularly in the mesenchymal subtype, and it serves as an independent prognostic factor for overall survival (OS) in glioma patients. SPP1 influences macrophage activation, cytokine secretion, and polarization and exhibits a strong association with various lymphocytes, including T, B and NK cells. Furthermore, SPP1 is strongly correlated not only with immune checkpoint genes but also with various inflammation-related genes. CONCLUSION In conclusion, SPP1 expression is tightly linked to the molecular pathology of gliomas and is highly correlated with immune checkpoints. It contributes to glioma immune evasion, positioning SPP1 as a promising new target for immunotherapy in glioma.
Collapse
Affiliation(s)
- Tong Wang
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Jialei Zhou
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Gang Chen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Xiang Xu
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| | - Haitao Shen
- Department of Neurosurgery & Brain and Nerve Research Laboratory, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu, China
| |
Collapse
|
5
|
Zhang T, Ren C, Yang Z, Zhang N, Tang H. Exploration of the role of immune cells and cell therapy in hepatocellular carcinoma. Front Immunol 2025; 16:1569150. [PMID: 40308592 PMCID: PMC12040661 DOI: 10.3389/fimmu.2025.1569150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Hepatocellular carcinoma stands as one of the foremost contributors to cancer-associated fatalities globally, and the limitations of traditional treatment methods have prompted researchers to explore new therapeutic options. Recently, cell therapy has emerged as a promising approach for HCC, showing significant potential in improving patient outcomes. This review article explores the use of cell therapy for HCC, covering different types, the mechanisms behind their effectiveness, recent advancements in clinical trials, and ongoing challenges. This article aims to provide insightful perspectives for future research and clinical applications in treating HCC by synthesizing current knowledge.
Collapse
Affiliation(s)
- Tao Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Cong Ren
- The Second Clinical College, Chongqing Medical University, Chongqing, China
| | - Zhanyu Yang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Ning Zhang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| | - Haowen Tang
- Faculty of Hepato-Pancreato-Biliary Surgery, Chinese People's Liberation Army (PLA) General Hospital, Beijing, China
| |
Collapse
|
6
|
Gao Y, Li B, Jin Y, Cheng J, Tian W, Ying L, Hong L, Xin S, Lin B, Liu C, Sun X, Zhang J, Zhang H, Xie J, Deng X, Dai X, Liu L, Zheng Y, Zhao P, Yu G, Fang W, Bao X. Spatial multi-omics profiling of breast cancer oligo-recurrent lung metastasis. Oncogene 2025:10.1038/s41388-025-03388-y. [PMID: 40234722 DOI: 10.1038/s41388-025-03388-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 03/23/2025] [Accepted: 03/31/2025] [Indexed: 04/17/2025]
Abstract
Primary breast cancer (BC) and metastatic tumors exhibit distinct tumor microenvironment (TME) ecosystems, and the heterogeneity of the TME of BC poses challenges to effective therapies. Evaluating the TME at the single-cell and spatial profiles offers potential for more precise treatments. However, due to the challenge of obtaining surgical specimens of both primary BC and oligo-recurrent lung metastasis simultaneously for high-resolution spatial analysis, the TME of lung-specific metastases using paired samples remains largely unexplored. In this study, we developed a comprehensive strategy using imaging mass cytometry (IMC), spatial proteomics, single-nucleus RNA-seq (snRNA-seq) and multiplex immunofluorescence to explore the spatial topology of lung-specific metastasis and the underlying biological mechanisms based on formalin-fixed paraffin-embedded (FFPE) samples from BC and paired lung metastasis. A total of 250,600 high-quality cells with spatial information revealed by IMC depicted the spatial differences in the TME between BC and lung metastasis. A significant increase in HLA-DR+ epithelial cells, endothelial cells and exhausted T cells was detected in lung metastases compared to primary sites, with this difference accentuated in the triple-negative subtype. Moreover, a distinct cellular hub comprising endothelial cells and HLA-DR+ epithelial cells implies the potential promising effect of anti-angiogenic therapy and immunotherapy in BC with lung metastasis, which was further validated by multiplex immunofluorescence analysis. Spatial proteomics further explored the underlying mechanism of TME components identified by IMC analysis. snRNA-seq validated the enrichment of endothelial cells in lung metastasis than that in BC at a whole FFPE slide level. In conclusion, this study determines the spatial multi-omics profiling of TME components at a single-cell resolution using paired samples of primary BC and lung oligo-metastasis. The comprehensive analysis may contribute to the development of therapeutic options.
Collapse
Affiliation(s)
- Yang Gao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Bin Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Weihong Tian
- Changzhou Third People's Hospital, Changzhou Medical Center, Nanjing Medical University, Changzhou, Jiangsu, 213001, China
| | - Lixiong Ying
- Department of Medical Pathology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Libing Hong
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Shan Xin
- Department of Genetics, Yale School of Medicine, New Haven, USA
| | - Bo Lin
- Innovation Centre for Information, Binjiang Institute of Zhejiang University, Hangzhou, Zhejiang, 310053, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Xuqi Sun
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Jun Zhang
- School of Life Science and Technology, China Pharmaceutical University, Nanjing, Jiangsu, 210009, China
| | - Haibo Zhang
- Cancer Center, Department of Radiation Oncology, Zhejiang Provincial People's Hospital (Affiliated People's Hospital), Hangzhou Medical College, Hangzhou, Zhejiang, 310014, China
| | - Jindong Xie
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Lulu Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Yi Zheng
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China
| | - Guangchuan Yu
- Department of Bioinformatics, School of Basic Medical Sciences, Southern Medical University, Guangzhou, Guangdong, 510515, China.
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| | - Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, 310003, China.
- National Key Laboratory of Advanced Drug Delivery and Release Systems, Zhejiang University, Hangzhou, 310058, China.
| |
Collapse
|
7
|
Sunil HS, Clemenceau J, Barnfather I, Nakkireddy SR, Grichuk A, Izzo L, Evers BM, Thomas L, Subramaniyan I, Li L, Putnam WT, Zhu J, Updegraff B, Minna JD, DeBerardinis RJ, Gao J, Hwang TH, Oliver TG, O'Donnell KA. Transmembrane Serine Protease TMPRSS11B promotes an acidified tumor microenvironment and immune suppression in lung squamous cell carcinoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.04.01.646727. [PMID: 40235980 PMCID: PMC11996519 DOI: 10.1101/2025.04.01.646727] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/17/2025]
Abstract
Lung cancer is the leading cause of cancer-related deaths worldwide. Existing therapeutic options have limited efficacy, particularly for lung squamous cell carcinoma (LUSC), underscoring the critical need for the identification of new therapeutic targets. We previously demonstrated that the Transmembrane Serine Protease TMPRSS11B promotes transformation of human bronchial epithelial cells and enhances lactate export from LUSC cells. To determine the impact of TMPRSS11B activity on the host immune system and the tumor microenvironment (TME), we evaluated the effect of Tmprss11b depletion in a syngeneic mouse model. Tmprss11b depletion significantly reduced tumor burden in immunocompetent mice and triggered an infiltration of immune cells. RNA FISH analysis and spatial transcriptomics in the autochthonous Rosa26-Sox2-Ires-Gfp LSL/LSL ; Nkx2-1 fl/fl ; Lkb 1 fl/fl (SNL) model revealed an enrichment of Tmprss11b expression in LUSC tumors, specifically in Krt13 + hillock-like cells. Ultra-pH sensitive nanoparticle imaging and metabolite analysis identified regions of acidification, elevated lactate, and enrichment of M2-like macrophages in LUSC tumors. These results demonstrate that TMPRSS11B promotes an acidified and immunosuppressive TME and nominate this enzyme as a therapeutic target in LUSC.
Collapse
|
8
|
Gu Y, Zhang Z, Huang H, Zhu W, Liu H, Zhang R, Weng N, Sun X. The dual role of CXCL9/SPP1 polarized tumor-associated macrophages in modulating anti-tumor immunity in hepatocellular carcinoma. Front Immunol 2025; 16:1528103. [PMID: 40230843 PMCID: PMC11994707 DOI: 10.3389/fimmu.2025.1528103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2024] [Accepted: 03/13/2025] [Indexed: 04/16/2025] Open
Abstract
Introduction The main challenge for cancer therapy lies in immuno-suppressive tumor micro-environment. Reprogramming tumor-associated macrophages (TAMs) into an anti-tumor phenotype is a promising strategy. Methods A comprehensive analysis by combing multi-regional single-cell, bulk and spatial transcriptome profiling with radiomics characterization was conducted to dissect the heterogeneity of TAMs and resolve the landscape of the CXCL9:SPP1 (CS) macrophage polarity in HCC. Results TAMs were particularly increased in HCC. SPP1+ TAMs and CXCL9+ TAMs were identified as the dominant subtypes with different evolutionary trajectories. SPP1+ TAMs, located in the tumor core, co-localized with cancer-associated fibroblasts to promote tumor growth and further contributed to worse prognosis. In contrast, CXCL9+ TAMs, located in the peritumoral region, synergized with CD8+ T cells to create an immunostimulatory micro-environment. For the first time, we explored the applicability of CS polarity in HCC tumors and revealed several key transcription factors involved in shaping this polarity. Moreover, CS polarity could serve as a potential indicator of prognostic and micro-environmental status for HCC patients. Based on medical imaging data, we developed a radiomics tool, RCSP (Radiogenomics-based CXCL9/SPP1 Polarity), to assist in non-invasively predicting the CS polarity in HCC patients. Conclusion Our research sheds light on the regulatory roles of SPP1+ TAMs and CXCL9+ TAMs in the micro-environment and provides new therapeutic targets or insights for the reprogramming of targeted macrophages in HCC.
Collapse
Affiliation(s)
- Yu Gu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Zhihui Zhang
- College of Acupuncture-Moxibustion and Tuina, Nanjing University of Chinese Medicine, Nanjing, China
| | - Hao Huang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Wenyong Zhu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Hongjia Liu
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Rongxin Zhang
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Nan Weng
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| | - Xiao Sun
- State Key Laboratory of Digital Medical Engineering, School of Biological Science and Medical Engineering, Southeast University, Nanjing, China
| |
Collapse
|
9
|
Zhan T, Liu Y, Duan S, Lu C, Jia H, Jin M, Li J, Du X, Sun S, Li Y, Zhang J. Targeting HCG18 counteracts ferroptosis resistance via blocking the miR-30a-5p/RRM2/GSS pathway in hepatocellular carcinoma. Int J Biol Sci 2025; 21:2550-2567. [PMID: 40303288 PMCID: PMC12035896 DOI: 10.7150/ijbs.104127] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Accepted: 03/07/2025] [Indexed: 05/02/2025] Open
Abstract
Background: Finding effective strategies and novel targets for reversing drug resistance is one of the major frontiers in hepatocellular carcinoma (HCC) research. Ferroptosis is participate in the malignant progression and drug resistance of HCC. However, the underlying molecular mechanisms remail largely uninvestigated. Methods: HCC cell lines and xenografted nude mice were used as experimental models. Biological functions were investigated by various molecular biology experiments. An HCC population was used to reveal clinical significance. Results: In our study, HCG18 and RRM2 was found to be associated with unfavorable prognosis. HCG18 regulates RRM2 expression through competitively binding to miR-30a-5p, consequently impacting ferroptosis. RRM2 directly regulated GSS to increase GSH synthesis. The colony formation assay demonstrated that overexpression of HCG18 inhibited erastin-induced cell death. In addition, in vivo experiments have also confirmed that HCG18 can inhibit ferroptosis by regulating the expression of RRM2, thereby promoting HCC proliferation. Conclusion: Our study discovered a novel lncRNA HCG18, as a "switch-like" molecule of the axis of miR-30a-5p/RRM2/GSS, confers resistance to ferroptosis and holds promise as a potential target for ferroptosis-dependent therapy.
Collapse
Affiliation(s)
- Tian Zhan
- Department of General Surgery, The Affiliated Cancer Hospital of Nanjing Medical University, Nanjing, 210009, China
| | - Yawei Liu
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Shuoke Duan
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Chen Lu
- Department of General Surgery, Sir Run Run Hospital of Nanjing Medical University, Nanjing, 211100, China
| | - Heng Jia
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Ming Jin
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jie Li
- Department of Oncology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Xinru Du
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Sizheng Sun
- Department of General Surgery, The Second Affiliated Hospital of Nanjing Medical University, Nanjing, 210000, China
| | - Yuan Li
- Department of Gastroenterology, the Affiliated Suzhou Hospital of Nanjing Medical University, Suzhou, 215031, China
- The Key Laboratory of Modern Toxicology, Ministry of Education, School of Public Health, Nanjing Medical University, Nanjing, 211166, China
| | - Jianping Zhang
- Xiamen Humanity Hospital, Fujian Medical University, Fujian, 350122, China
| |
Collapse
|
10
|
Wan X, Zou Y, Zhou Q, Tang Q, Zhu G, Jia L, Yu X, Mo H, Yang X, Wang S. Tumor Prognostic Risk Model Related to Monocytes/Macrophages in Hepatocellular Carcinoma Based on Machine Learning and Multi-Omics. Biol Proced Online 2025; 27:9. [PMID: 40065214 PMCID: PMC11892220 DOI: 10.1186/s12575-025-00270-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2024] [Accepted: 02/13/2025] [Indexed: 03/14/2025] Open
Abstract
Tumor-associated macrophages (TAMs) are crucial in hepatocellular carcinoma (HCC) development and invasion. This study explores monocyte/ macrophage-associated gene expression profiles in HCC, constructs a prognostic model based on these genes, and examines its relationship with drug resistance and immune therapy responses. Single-cell RNA sequencing(scRNA-seq) data from 10 HCC tissue biopsy samples, totaling 24,597 cells, were obtained from the GEO database to identify monocyte/macrophage-associated genes. A prognostic model was constructed and validated using external datasets and Western blot. Relationships between the model, clinical correlates, drug sensitivity, and immune therapy responses were investigated. From scRNA-seq data, 2,799 monocyte/macrophage marker genes were identified. Using the TCGA dataset, a prognostic model based on the single-gene UQCRH was constructed, stratifying patients into high-risk and low-risk groups based on overall survival rates. High-risk group patients showed reduced survival rates and higher UQCRH expression in tumor tissues. Western blot analysis further confirmed the elevated expression of UQCRH in HCC cell lines. Spatial transcriptomics analysis revealed that high UQCRH expression co-localized with malignant cells in the tumor tissue. Drug sensitivity analysis revealed that the high-risk group had lower sensitivity to sorafenib and axitinib. Immune therapy response analysis indicated poorer outcomes in the high-risk group, with more pronounced APC inhibition and a weaker IFN-II response. Clinical indicator analysis showed a positive correlation between high UQCRH expression and tumor invasion. Enrichment analysis of UQCRH and associated molecules indicated involvement in oxidative phosphorylation and mitochondrial electron transport. This study introduces a prognostic model for HCC patients based on monocyte/macrophage marker genes. The single-gene model predicts HCC patient survival and treatment outcomes, identifying high-risk individuals with varying drug sensitivities and immune suppression states.
Collapse
Affiliation(s)
- Xinliang Wan
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Yongchun Zou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qichun Zhou
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Qing Tang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Gangxing Zhu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Luyu Jia
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaoyan Yu
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Handan Mo
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China
| | - Xiaobing Yang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| | - Sumei Wang
- Clinical and Basic Research Team of TCM Prevention and Treatment of NSCLC, Department of Oncology, The Second Clinical College of Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, State Key Laboratory of Dampness Syndrome of Chinese Medicine, Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou, Guangdong, 510120, China.
- The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangdong Provincial Hospital of Chinese Medicine, Guangzhou University of Chinese Medicine, Chinese Medicine Guangdong Laboratory, 111 Dade Rd, Guangzhou, Guangdong Province, 510120, China.
| |
Collapse
|
11
|
Liu M, Wang C, Hu Q, Wu X, Wang Q, Wang J, Xu K, Lu X, Tian W. Single-cell sequencing revealed the necessity of macrophages in brain microenvironment remodeling by breast cancer metastasis. Transl Oncol 2025; 53:102287. [PMID: 39837060 PMCID: PMC11788856 DOI: 10.1016/j.tranon.2025.102287] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 01/09/2025] [Accepted: 01/13/2025] [Indexed: 01/23/2025] Open
Abstract
Breast cancer is one of the most common cancers worldwide, 30-50 % of patients with advanced breast cancer develop brain metastasis, causing severe damage to their life quality. Due to the existence of the blood-brain barrier (BBB), brain lesions were recognized to be a unique microenvironment with limited infiltration of circulating immune cells and drugs. However, emerging studies reported the immunology of the brain tumor microenvironment (TME) and indicated the potential of immunotherapy against brain metastases. Therefore, it is of great value to comprehensively investigate the TME and identify the pro-tumoral mechanisms facilitating brain metastases and the crucial molecules involved in this process. In this research, we re-analyzed public data on three brain surgical specimens of breast cancer metastases and identified the immunosuppressive roles of macrophages in the metastatic TME. Then, we conducted the first single-cell RNA sequencing on a murine model of breast cancer brain metastasis. In the brain TME, immune cells showed prominent heterogeneity, especially the mononuclear phagocyte system (MPS). We identified the alteration of macrophage subclusters in the central nerve system (CNS) after breast cancer invasion and found that metastatic cancer cells re-shaped the TME cellular interactions for immune evasion and nutrition supply. Finally, this research could serve as a reference for further analysis of new therapies against brain metastatic lesions.
Collapse
Affiliation(s)
- Maotang Liu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - CenZhu Wang
- Department of Oncology, The Affiliated Wuxi People's Hospital of Nanjing Medical University, Wuxi People's Hospital, Wuxi Medical Center, Nanjing Medical University, Wuxi, China
| | - Qin Hu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China
| | - XueChao Wu
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Qing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Jing Wang
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China
| | - Kun Xu
- Department of Oncology, Jiangsu Cancer Hospital, The Affiliated Cancer Hospital of Nanjing Medical University, Jiangsu Institute of Cancer Research, Nanjing 210009, China.
| | - XiaoJie Lu
- Department of Neurosurgery, General Hospital of Tianjin Medical University, Tianjin Medical University, Tianjin, 300041, China; Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| | - Wei Tian
- Department of Neurosurgery, The Affiliated Wuxi No.2 People's Hospital, Wuxi 214002, China; Wuxi Neurosurgical Institute, Wuxi, Jiangsu Province, 214002, China; Nanjing Medical University, Nanjing, Jiangsu Province, 211166, China.
| |
Collapse
|
12
|
Leung J, Qu L, Ye Q, Zhong Z. The immune duality of osteopontin and its therapeutic implications for kidney transplantation. Front Immunol 2025; 16:1520777. [PMID: 40093009 PMCID: PMC11906708 DOI: 10.3389/fimmu.2025.1520777] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Accepted: 02/10/2025] [Indexed: 03/19/2025] Open
Abstract
Osteopontin (OPN) is a multifunctional glycoprotein with various structural domains that enable it to perform diverse functions in both physiological and pathological states. This review comprehensively examines OPN from multiple perspectives, including its protein structure, interactions with receptors, interactions with immune cells, and roles in kidney diseases and transplantation. This review explores the immunological duality of OPN and its significance and value as a biomarker and therapeutic target in kidney transplantation. In cancer, OPN typically promotes tumor evasion by suppressing the immune system. Conversely, in immune-related kidney diseases, particularly kidney transplantation, OPN activates the immune system by enhancing the migration and activation of immune cells, thereby exacerbating kidney damage. This immunological duality may stem from different OPN splice variants and the exposure, after cleavage, of different structural domains, which play distinct biological roles in cellular interactions. Additionally, OPN has a significant biological impact posttransplantation and on chronic kidney disease and, highlighting its importance as a biomarker and potential therapeutic target. Future research should further explore the specific mechanisms of OPN in kidney transplantation to improve treatment strategies and enhance patient quality of life.
Collapse
Affiliation(s)
- Junto Leung
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Lei Qu
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| | - Qifa Ye
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
- The 3rd Xiangya Hospital of Central South University, NHC Key Laboratory of Translational Research on Transplantation Medicine, Changsha, China
| | - Zibiao Zhong
- Zhongnan Hospital of Wuhan University, Institute of Hepatobiliary Diseases of Wuhan University, Transplant Center of Wuhan University, National Quality Control Center for Donated Organ Procurement, Hubei Key Laboratory of Medical Technology on Transplantation, Hubei Provincial Clinical Research Center for Natural Polymer Biological Liver, Wuhan, Hubei, China
| |
Collapse
|
13
|
Wei Z, Kou Z, Luo Y, Cheng Y. DNA methyltransferase 3A: A prognostic biomarker and potential target for immunotherapy in gastric cancer. Medicine (Baltimore) 2025; 104:e41578. [PMID: 39960919 PMCID: PMC11835108 DOI: 10.1097/md.0000000000041578] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/29/2024] [Accepted: 01/31/2025] [Indexed: 02/20/2025] Open
Abstract
DNA methyltransferase 3A (DNMT3A) has been associated with the occurrence or progression of various tumors, including gastric cancer. However, the role of DNMT3A in the efficacy of immune-cell infiltration in the tumor microenvironment and immunotherapy in gastric cancer remains less explored. DNMT3A expression level was analyzed using TIMER 2.0, Sangerbox 3.0, and The Cancer Genome Atlas database and further verified by immunohistochemical staining and RT-qPCR. The UALCAN, chi-square test, and Kaplan-Meier plotter databases were performed to assess the correlation of DNMT3A with clinicopathological characteristics and prognosis. The GeneMANIA database, STRING database, and R package were used to construct a DNMT3A co-expression gene network. Gene set enrichment analysis was used to identify the signaling pathways related to DNMT3A expression. The correlations between DNMT3A and cancer immune infiltrates were investigated using TIMER 2.0, Sangerbox 3.0, Kaplan-Meier Plotter, R package, and TISIDB databases. The TISIDB database and R package were used to construct the correlation between DNMT3A and immunomodulators and Immune cell Proportion Score. The association of DNMT3A expression with tumor mutational burden (TMB), microsatellite instability, and tumor dryness was evaluated using the TMB function of the R package, TIMER 2.0. Finally, the biological function of DNMT3A in gastric cancer cells was further assessed by CCK-8, cloning formation, and transwell assay. DNMT3A expression was remarkably upregulated in gastric cancer. The high expression of DNMT3A was associated with poor clinical features and poor survival in patients with gastric cancer. Moreover, gene set enrichment analyses showed that DNMT3A and its related genes were involved in various pathways that promoted cancer occurrence and progression by influencing the tumor microenvironment. Finally, DNMT3A was significantly related to tumor-infiltrating immune cells, immunomodulators, TMB, microsatellite instability, and immune checkpoints in gastric cancer. Moreover, knockdown of DNMT3A reduced the proliferation and migration of gastric cancer cells. Our findings highlight the potential of DNMT3A as a prognosis biomarker and an immunotherapeutic target for gastric cancer.
Collapse
Affiliation(s)
- Zijie Wei
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Ziqian Kou
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yun Luo
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| | - Yu Cheng
- College of Basic Medicine, Chengde Medical University, Chengde, Hebei, China
| |
Collapse
|
14
|
Wang K, Wan J, Zheng R, Xiao Y, Lv F, Ge H, Yang G, Cheng Y. SPP1 as a Prognostic and Immunotherapeutic Biomarker in Gliomas and Other Cancer Types: A Pan-Cancer Study. J Inflamm Res 2025; 18:2247-2265. [PMID: 39963684 PMCID: PMC11832131 DOI: 10.2147/jir.s505237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2024] [Accepted: 02/05/2025] [Indexed: 02/20/2025] Open
Abstract
Background Gliomas, including glioblastoma (GBM), present significant treatment challenges due to their poor prognosis and complex tumor microenvironment. This study investigates the role of Secreted Phosphoprotein 1 (SPP1) as a prognostic and immunotherapeutic biomarker in gliomas and other cancers through pan-cancer analysis. Methods A comprehensive pan-cancer analysis was conducted using datasets from UCSC TCGA Pan-Cancer, TCGA-GBM, UALCAN, and single-cell sequencing data from GEO and TISCH. The correlation of SPP1 expression with overall survival (OS), progression-free survival (PFS), immune cell infiltration, and immune checkpoint markers was analyzed. Functional validation was performed via SPP1 knockdown in glioma cell lines to evaluate effects on proliferation, invasion, and immune interactions. Results SPP1 was found to be overexpressed in 27 tumor types, with high expression correlating with poor OS, PFS, and increased immune cell infiltration, particularly with CD8+ T cells and macrophages. Single-cell analysis indicated SPP1 enrichment in macrophages interacting with malignant GBM cells. Knockdown of SPP1 significantly inhibited glioma cell proliferation, invasion, and promoted apoptosis. Conclusion The findings suggest that SPP1 is a promising target for immunotherapy, potentially improving outcomes for patients with gliomas and other cancers. Further research is warranted to explore SPP1-targeted therapies and their efficacy in clinical settings.
Collapse
Affiliation(s)
- Kan Wang
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Jinxin Wan
- Department of Neurosurgery, Guangdong Provincial People’s Hospital, Zhuhai Hospital (Jinwan Central Hospital of Zhuhai), Zhuhai City, Guangdong Province, 519090, People’s Republic of China
| | - Ruipeng Zheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Yifei Xiao
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Fengjun Lv
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Haitao Ge
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| | - Guang Yang
- Department of Neurosurgery, The Second Affiliated Hospital of Fujian Medical University, Quanzhou, Fujian Province, 362000, People’s Republic of China
| | - Yu Cheng
- Department of Neurosurgery, The First Affiliated Hospital of Harbin Medical University, Harbin City, Heilongjiang Province, 150007, People’s Republic of China
| |
Collapse
|
15
|
Ma R, Gong L, Dong C, Utsumi T, Qi J, Zhuang ZW, Zhang X, Yang Y, McConnell MJ, Huang HC, Iwakiri Y. Hepatic Arterial Flow-Induced Portal Tract Fibrosis in Portal Hypertension: The Role of VCAM-1 and Osteopontin-Expressing Macrophages. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.01.31.634947. [PMID: 39975181 PMCID: PMC11838461 DOI: 10.1101/2025.01.31.634947] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/21/2025]
Abstract
Background The liver undergoes significant hemodynamic changes during surgery, transplantation, or cirrhosis with portal hypertension(PH). The hepatic artery buffer response(HABR), which compensates for reduced portal venous flow by increasing hepatic artery(HA) flow, is hypothesized to induce pathological portal tract remodeling. This study investigates the molecular mechanisms underlying this process. Methods PH was induced in Sprague-Dawley rats via partial portal vein ligation(PPVL). Structural evaluation(microCT), immune cell profiling, hemodynamic measurements, and transcriptomic analysis in macrophages(Mϕ) from sham or PPVL rats were conducted. Results MicroCT revealed decreased portal vein flow and increased HA flow correlated with portal pressure(r=0.799, p<0.01). A 2-fold increase in portal tract fibrosis(p<0.001) was observed with increased α-SMA+ myofibroblasts in PPVL rats. CD68+ Mϕ peaked at 10 days post-PPVL, and their depletion significantly reduced fibrosis(p<0.001), indicating critical roles of Mϕ in portal tract remodeling. VCAM-1 was elevated in HA endothelium and portal fibroblasts (PFs); VCAM-1 neutralization reduced collagen accumulation(p<0.05), CD68+ Mϕ(46.3%, p<0.01), and CD3+ T cells(18%, p<0.05). Mϕ-conditioned medium increased VCAM-1 in PFs(8-fold, p<0.001) and enhanced PF migration, while VCAM-1 knockdown reduced this effect (p<0.01). Single-cell RNA sequencing data(GSE171904) and RNA-FISH revealed increased interactions between osteopontin (Spp1)+ Mϕ and PFs, with Spp1+ Mϕ driving fibrosis. Spp1 knockdown in Mϕ co-culture reduced PF fibrogenic markers, while recombinant Spp1 upregulated Col1a1, Fn1, and Acta2 expression in PFs. Conclusion Increased VCAM-1 in arterial endothelial cells and PFs facilitates the recruitment of Spp1+ Mϕ, which drive HA flow-mediated vascular remodeling and portal tract fibrosis. These findings highlight arterial flow-induced fibrosis as a key mechanism in PH, potentially contributing to disease progression and decompensation. Synopsis Liver hemodynamic changes in portal hypertension drive extracellular matrix accumulation and portal tract remodeling via Spp1+ macrophages. This study highlights how altered blood flow induces fibrosis, and its potential role in decompensation, and identifies therapeutic targets for advanced liver disease.
Collapse
|
16
|
Huang Z, Li Y, Liu Q, Chen X, Lin W, Wu W, Chen Z, Chen X, Pan Y, Qiu S. SPP1-mediated M2 macrophage polarization shapes the tumor microenvironment and enhances prognosis and immunotherapy guidance in nasopharyngeal carcinoma. Int Immunopharmacol 2025; 147:113944. [PMID: 39742726 DOI: 10.1016/j.intimp.2024.113944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2024] [Revised: 12/21/2024] [Accepted: 12/22/2024] [Indexed: 01/04/2025]
Abstract
Secreted phosphoprotein 1 (SPP1) shows carcinogenic potential in multiple cancers, yet its role in nasopharyngeal carcinoma (NPC) remains elusive. Leveraging transcriptomic data sourced from an NPC cohort at Fujian Cancer Hospital, alongside datasets from the Gene Expression Omnibus cohort and a single-cell RNA sequencing dataset, this investigation explored the role of SPP1 in tumor progression and the tumor microenvironment of NPC. A co-culture system involving tumor cells and macrophages was established to elucidate the relationship between SPP1 and tumor-associated macrophages in NPC. Subsequently, we established an SPP1-driven M2 macrophage signature using a machine-learning-based framework to predict patient prognosis. The results of our analysis indicated that SPP1 is associated with an elevated risk of disease progression and poor prognosis in NPC. Single-cell analysis demonstrated that SPP1 is a pivotal gene in the polarization of M2 macrophages within the tumor microenvironment. In vitro experiments demonstrated that NPC-derived SPP1 has the potential to activate the CD44/JAK2/STAT3 signaling pathway, promoting macrophage recruitment and polarization of the M2 subtype. Furthermore, we established a comprehensive SPP1-related M2 macrophage signature that can predict the prognosis and immune characteristics of patients with NPC. Our findings offer new insights into the role of SPP1 in the tumor microenvironment of NPC, and provide a novel SPP1-driven M2 macrophage signature with the potential to serve as a valuable tool for prognosis prediction and personalized therapy in NPC.
Collapse
Affiliation(s)
- Zongwei Huang
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Ying Li
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Qinying Liu
- Fujian Provincial Key Laboratory of Tumor Biotherapy, Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital, Fuzhou, China
| | - Xiaochuan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Wanzun Lin
- Shanghai Proton and Heavy Ion Center, Fudan University Cancer Hospital, Shanghai, China
| | - Wenxi Wu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Zihan Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Xin Chen
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China
| | - Yuhui Pan
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China.
| | - Sufang Qiu
- Clinical Oncology School of Fujian Medical University, Fujian Cancer Hospital (Fujian Branch of Fudan University Shanghai Cancer Center), Fuzhou, China.
| |
Collapse
|
17
|
Wang J, Gao R, Qi J, Xing Y, Hong B, Wang H, Nie J. A comprehensive analysis of vasculogenic mimicry related genes to predict the survival rate of HCC and its influence on the tumor microenvironment. Front Genet 2024; 15:1437715. [PMID: 39748947 PMCID: PMC11693674 DOI: 10.3389/fgene.2024.1437715] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 12/04/2024] [Indexed: 01/04/2025] Open
Abstract
Objectives Investigate the predictive value of Vasculogenic mimicry (VM) related genes for the survival and prognosis of Hepatocellular carcinoma (HCC) patients and its role in the tumor microenvironment (TME). Methods VM-related genes were obtained from previous literature, the expression profiles, single-cell data and clinical information of HCC patients were downloaded from public databases. The HCC patients were divided into different clusters by unsupervised clustering, the differences in prognosis and immune characteristics of VM-related clusters were analyzed. A prognostic model related to VM (VM Score) was constructed based on LASSO regression and univariate and multivariate Cox regression, the correlation between this model and chemotherapy drugs and immunotherapy was studied. Seurat package was used to standardize single-cell data for single-cell level analysis. The expression of risk factors in VM Score was verified by RT-qPCR. Results VM Score composed of SPP1, ADAMTS5 and ZBP1 was constructed and validated. VM Score was an independent prognostic factor for HCC. Through the analysis of single cell data further reveals the VM Score influence on TME. In addition, VM Score could provide ideas for the selection of immunotherapy and chemotherapy drugs. RT-qPCR showed that the expression of risk factors was different in HCC cell lines. Conclusion Our results suggest that VM Score may serve as a promising prognostic biomarker for HCC and provide new ideas for immunotherapy in HCC patients.
Collapse
Affiliation(s)
- Jingyun Wang
- School of Medicine, Anhui University of Science and Technology, Huainan, China
| | - Rong Gao
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
| | - Jian Qi
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
| | - Yingru Xing
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Department of Clinical Laboratory, Anhui Zhongke Gengjiu Hospital, Hefei, China
| | - Bo Hong
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital of CAS, Hefei, China
| | - Hongzhi Wang
- School of Basic Medical Sciences, Anhui Medical University, Hefei, Anhui, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital of CAS, Hefei, China
| | - Jinfu Nie
- School of Medicine, Anhui University of Science and Technology, Huainan, China
- Institute of Health and Medical Technology, Hefei Institutes of Physical Science, Chinese Academy of Sciences, Hefei, China
- Hefei Cancer Hospital of CAS, Hefei, China
| |
Collapse
|
18
|
Li W, He H, Wang H, Wen W. Dynamics of liver cancer cellular taxa revealed through single-cell RNA sequencing: Advances and challenges. Cancer Lett 2024; 611:217394. [PMID: 39689824 DOI: 10.1016/j.canlet.2024.217394] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2024] [Revised: 10/13/2024] [Accepted: 12/14/2024] [Indexed: 12/19/2024]
Abstract
Liver cancer is a leading cause of death worldwide, representing a substantial public health challenge. The advent of single-cell RNA sequencing has significantly advanced our understanding of cellular dynamics from the onset of liver cancer to therapeutic intervention. This technology has unveiled profound insights into cancer heterogeneity and the tumor microenvironment (TME), enabling the identification of key molecular drivers and phenotypic landscapes of liver cancer at a single-cell resolution. This review highlights recent advancements in mapping functional cell subsets, phenotypic alterations, and the diversity of the TME. These insights are pivotal for advancing targeted therapies and developing prognostic tools. Moreover, this review covers the ongoing challenges and advances from tumor initiation to progression, offering a detailed perspective on advancing personalized treatment.
Collapse
Affiliation(s)
- Wenxin Li
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Huisi He
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Oncology, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China
| | - Hongyang Wang
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; The Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| | - Wen Wen
- Third Affiliated Hospital of Naval Medical University (Second Military Medical University), National Center for Liver Cancer, Shanghai, 200438, China; Department of Clinical Laboratory Medicine, Third Affiliated Hospital of Naval Medical University (Second Military Medical University), Shanghai, 200438, China; The Ministry of Education Key Laboratory on Signaling Regulation and Targeting Therapy of Liver Cancer, Shanghai, 200438, China.
| |
Collapse
|
19
|
Li DH, Wen QE, Feng RQ, Qiao C, Tian XT. Use of traditional Chinese medicine bezoars and bezoar-containing preparations in hepatocarcinoma. World J Gastrointest Oncol 2024; 16:4770-4777. [PMID: 39678798 PMCID: PMC11577376 DOI: 10.4251/wjgo.v16.i12.4770] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 09/24/2024] [Accepted: 10/18/2024] [Indexed: 11/12/2024] Open
Abstract
This manuscript used network pharmacology and experimental verification to analyze the anti-hepatocarcinoma mechanism of action of bezoars in traditional Chinese medicine (TCM), discovering that it can affect the immune cells within the tumor microenvironment and related pathways to produce inhibitory effects in liver cancer. In TCM, bezoars have a unique therapeutic advantage in the prevention and treatment of tumors. They play an anti-tumorigenic role by regulating the immune microenvironment through multi-component, multi-target and multi-pathway mechanisms. With the application of nanotechnology, bezoars and their compound preparations have been developed into anti-cancer drugs with unique therapeutic advantages, providing novel treatment options for tumor patients.
Collapse
Affiliation(s)
- De-Hui Li
- Department of Oncology II, The First Affiliated Hospital of Hebei University of Chinese Medicine (Hebei Province Hospital of Chinese Medicine), Key Laboratory of Integrated Chinese and Western Medicine for Gastroenterology Research, Hebei Industrial Technology Institute for Traditional Chinese Medicine Preparation, Shijiazhuang 050000, Hebei Province, China
| | - Qian-Er Wen
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Rui-Qi Feng
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Chang Qiao
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| | - Xiao-Tong Tian
- Graduate School, Hebei University of Chinese Medicine, Shijiazhuang 050000, Hebei Province, China
| |
Collapse
|
20
|
Dong L, Qiu X, Li Z, Ge W, Tang X, Zhou R, Chen W, Xu X, Wang K. Potential crosstalk between Naïve CD4 + T cells and SPP1 + Macrophages is associated with clinical outcome and therapeutic response in hepatocellular carcinoma. Int Immunopharmacol 2024; 142:113231. [PMID: 39332093 DOI: 10.1016/j.intimp.2024.113231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 09/29/2024]
Abstract
BACKGROUND The highly heterogeneity of the tumor microenvironment (TME) in hepatocellular carcinoma (HCC) results in diverse clinical outcomes and therapeutic responses. This study aimed to investigate potential intercellular crosstalk and its impact on clinical outcomes and therapeutic responses. METHODS Single-cell RNA sequencing (scRNA-seq), spatial transcriptomics (ST) and bulk RNA sequencing (RNA-seq) datasets were integrated to comprehensively analyze the intercellular interactions within the TME. Multiplex immunohistochemistry was conducted to validate the intercellular interactions. A machine learning-based integrative procedure was used in bulk RNA-seq datasets to generate a risk model to predict prognosis and therapeutic responses. RESULTS Survival analyses based on the bulk RNA-seq datasets revealed the negative impact of the naïve Cluster of Differentiation 4+ (CD4) T cells and Secreted Phosphoprotein 1+ (SPP1) macrophages on prognosis. Furthermore, their intricate intercellular crosstalk and spatial colocalization were also observed by scRNA-seq and ST analyses. Based on this crosstalk, a machine learning model, termed the naïve CD4+ T cell and SPP1+ macrophage prognostic score (TMPS), was established in the bulk-RNA seq datasets for prognostic prediction. The TMPS achieved C-index values of 0.785, 0.715, 0.692 and 0.857, respectively, across 4 independent cohorts. A low TMPS was associated with a significantly increased survival rates, improved response to immunotherapy and reduced infiltration of immunosuppressive cells, such as. regulatory T cells. Finally, 8 potential sensitive drugs and 6 potential targets were predicted for patients based on their TMPS. CONCLUSION The crosstalk between naïve CD4+ T cells and SPP1+ macrophages play a crucial role in the TME. TMPS can reflect this crosstalk and serve as a valuable tool for prognostic stratification and guiding clinical decision-making.
Collapse
Affiliation(s)
- Libin Dong
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xun Qiu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Zekuan Li
- Division of Hepatobiliary and Pancreatic Surgery, Department of Surgery, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310003, Zhejiang, China
| | - Wenwen Ge
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Tang
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Ruhong Zhou
- Institute of Quantitative Biology, Shanghai Institute for Advanced Study, College of Life Sciences, Zhejiang University, Hangzhou 310027, Zhejiang, China
| | - Wei Chen
- Department of Cell Biology, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China
| | - Xiao Xu
- Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou 310058, Zhejiang, China; School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| | - Kai Wang
- School of Clinical Medicine, Hangzhou Medical College, Hangzhou 310059, Zhejiang, China.
| |
Collapse
|
21
|
Liu L, Niu K, Yang Z, Song J, Wei D, Zhang R, Tao K. Osteopontin: an indispensable component in common liver, pancreatic, and biliary related disease. J Cancer Res Clin Oncol 2024; 150:508. [PMID: 39572438 PMCID: PMC11582231 DOI: 10.1007/s00432-024-06038-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Accepted: 11/15/2024] [Indexed: 11/24/2024]
Abstract
BACKGROUND The liver, gallbladder, and pancreas constitute a critically important system of digestive and endocrine organs in the human body, performing essential and complex physiological functions. At present, diseases of this digestive system have a high incidence in the world and is a more common disease. However, osteopontin (OPN) plays a crucial role in common liver, pancreatic, and biliary diseases, and its mechanisms of action merit further exploration and study. METHODS We performed an analysis to assess the role of osteopontin in liver, pancreatic, and biliary diseases, focusing on its significance in these conditions. RESULTS Osteopontin, a profoundly phosphorylated glycoprotein, can be utilized as a diagnostic marker for hepatocellular carcinoma and cholangiopathies. Additionally it assists in the treatment of non-alcoholic fatty liver disease and promotes the proliferation, migration, and invasion of pancreatic cancer cells. Furthermore, osteopontin regulates inflammatory responses in chronic pancreatitis. CONCLUSIONS This review offers a thorough analysis of the genetic and protein architecture of OPN, and elucidates the relationship between osteopontin and liver, pancreatic, and biliary diseases. Furthermore, exclusive focus is lavished on the potential utility of OPN as a biomarker and an innovative therapeutic target in the management of these disorder.
Collapse
Affiliation(s)
- Lu Liu
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Kunwei Niu
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Zhipeng Yang
- College of Life Sciences, Northwest University, Xi'an, 710069, China
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Junbo Song
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China
| | - Dan Wei
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Ruohan Zhang
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| | - Kaishan Tao
- Department of Hepatobiliary Surgery, Xijing Hosptial, Fourth Military Medical University, Xi'an, 710032, China.
| |
Collapse
|
22
|
Zhou Y, Wei S, Xu M, Wu X, Dou W, Li H, Zhang Z, Zhang S. CAR-T cell therapy for hepatocellular carcinoma: current trends and challenges. Front Immunol 2024; 15:1489649. [PMID: 39569202 PMCID: PMC11576447 DOI: 10.3389/fimmu.2024.1489649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Accepted: 10/18/2024] [Indexed: 11/22/2024] Open
Abstract
Hepatocellular carcinoma (HCC) ranks among the most prevalent cancers worldwide, highlighting the urgent need for improved diagnostic and therapeutic methodologies. The standard treatment regimen generally involves surgical intervention followed by systemic therapies; however, the median survival rates for patients remain unsatisfactory. Chimeric antigen receptor (CAR) T-cell therapy has emerged as a pivotal advancement in cancer treatment. Both clinical and preclinical studies emphasize the notable efficacy of CAR T cells in targeting HCC. Various molecules, such as GPC3, c-Met, and NKG2D, show significant promise as potential immunotherapeutic targets in liver cancer. Despite this, employing CAR T cells to treat solid tumors like HCC poses considerable challenges within the discipline. Numerous innovations have significant potential to enhance the efficacy of CAR T-cell therapy for HCC, including improvements in T cell trafficking, strategies to counteract the immunosuppressive tumor microenvironment, and enhanced safety protocols. Ongoing efforts to discover therapeutic targets for CAR T cells highlight the need for the development of more practical manufacturing strategies for CAR-modified cells. This review synthesizes recent findings and clinical advancements in the use of CAR T-cell therapies for HCC treatment. We elucidate the therapeutic benefits of CAR T cells in HCC and identify the primary barriers to their broader application. Our analysis aims to provide a comprehensive overview of the current status and future prospects of CAR T-cell immunotherapy for HCC.
Collapse
Affiliation(s)
- Yexin Zhou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
- The General Hospital of Western Theater Command, Chengdu, China
| | - Shanshan Wei
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Menghui Xu
- The General Hospital of Western Theater Command, Chengdu, China
| | - Xinhui Wu
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Wenbo Dou
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Huakang Li
- Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Zhonglin Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| | - Shuo Zhang
- Department of Radiation Oncology, Radiation Oncology Key Laboratory of Sichuan Province, Sichuan Clinical Research Center for Cancer, Sichuan Cancer Hospital & Institute, Sichuan Cancer Center, Affiliated Cancer Hospital of University of Electronic Science and Technology of China, Chengdu, Sichuan, China
| |
Collapse
|
23
|
Yang Z, Tian H, Chen X, Li B, Bai G, Cai Q, Xu J, Guo W, Wang S, Peng Y, Liang Q, Xue L, Gao S. Single-cell sequencing reveals immune features of treatment response to neoadjuvant immunochemotherapy in esophageal squamous cell carcinoma. Nat Commun 2024; 15:9097. [PMID: 39438438 PMCID: PMC11496748 DOI: 10.1038/s41467-024-52977-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 09/25/2024] [Indexed: 10/25/2024] Open
Abstract
Neoadjuvant immunochemotherapy (nICT) has dramatically changed the treatment landscape of operable esophageal squamous cell carcinoma (ESCC), but factors influencing tumor response to nICT are not well understood. Here, using single-cell RNA sequencing paired with T cell receptor sequencing, we profile tissues from ESCC patients accepting nICT treatment and characterize the tumor microenvironment context. CXCL13+CD8+ Tex cells, a subset of exhausted CD8+ T cells, are revealed to highly infiltrate in pre-treatment tumors and show prominent progenitor exhaustion phenotype in post-treatment samples from responders. We validate CXCL13+CD8+ Tex cells as a predictor of improved response to nICT and reveal CXCL13 to potentiate anti-PD-1 efficacy in vivo. Post-treatment tumors from non-responders are enriched for CXCL13+CD8+ Tex cells with notably remarkable exhaustion phenotype and TNFRSF4+CD4+ Tregs with activated immunosuppressive function and a significant clone expansion. Several critical markers for therapeutic resistance are also identified, including LRRC15+ fibroblasts and SPP1+ macrophages, which may recruit Tregs to form an immunosuppressive landscape. Overall, our findings unravel immune features of distinct therapeutic response to nICT treatment, providing a rationale for optimizing individualized neoadjuvant strategy in ESCC.
Collapse
Affiliation(s)
- Zhenlin Yang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - He Tian
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Respiratory Medicine, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xiaowei Chen
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Bozhao Li
- CAS Key Laboratory for Biomedical Effects of Nanomaterials and Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Beijing, China
| | - Guangyu Bai
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qingyuan Cai
- BIOPIC, Peking-Tsinghua Center for Life Sciences, Academy for Advanced Interdisciplinary Studies, School of Life Sciences, International Cancer Institute, Peking University, Beijing, China
| | - Jiachen Xu
- Department of Medical Oncology, National Cancer Center/ National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Guangdong Provincial People's Hospital/Guangdong Provincial Academy of Medical Sciences, Guangdong Provincial Key Lab of Translational Medicine in Lung Cancer, Guangdong, China
| | - Wei Guo
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Shuaibo Wang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yue Peng
- Department of Thoracic Surgery, Beijing Chao-Yang Hospital, Capital Medical University, Beijing, China
| | - Qing Liang
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Liyan Xue
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Shugeng Gao
- Department of Thoracic Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
24
|
Xu S, Wan M, Ye C, Chen R, Li Q, Zhang X, Ruan J. Machine learning based on biological context facilitates the identification of microvascular invasion in intrahepatic cholangiocarcinoma. Carcinogenesis 2024; 45:721-734. [PMID: 39086220 DOI: 10.1093/carcin/bgae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma is a rare disease associated with a poor prognosis, primarily due to early recurrence and metastasis. An important feature of this condition is microvascular invasion (MVI). However, current predictive models based on imaging have limited efficacy in this regard. This study employed a random forest model to construct a predictive model for MVI identification and uncover its biological basis. Single-cell transcriptome sequencing, whole exome sequencing, and proteome sequencing were performed. The area under the curve of the prediction model in the validation set was 0.93. Further analysis indicated that MVI-associated tumor cells exhibited functional changes related to epithelial-mesenchymal transition and lipid metabolism due to alterations in the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways. Tumor cells were also differentially enriched for the interleukin-17 signaling pathway. There was less infiltration of SLC30A1+ CD8+ T cells expressing cytotoxic genes in MVI-associated intrahepatic cholangiocarcinoma, whereas there was more infiltration of myeloid cells with attenuated expression of the major histocompatibility complex II pathway. Additionally, MVI-associated intercellular communication was closely related to the SPP1-CD44 and ANXA1-FPR1 pathways. These findings resulted in a brilliant predictive model and fresh insights into MVI.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Jian Ruan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
25
|
Kim SJ, Hyun J. Ursolic acid: A promising therapeutic agent for metabolic dysfunction-associated steatotic liver disease via inhibition of SPP1-induced Th17 cell differentiation: Editorial on "Ursolic acid targets secreted phosphoprotein 1 to regulate Th17 cells against metabolic dysfunction-associated steatotic liver disease". Clin Mol Hepatol 2024; 30:709-713. [PMID: 38858183 PMCID: PMC11540351 DOI: 10.3350/cmh.2024.0412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2024] [Accepted: 06/06/2024] [Indexed: 06/12/2024] Open
Affiliation(s)
- So Jung Kim
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| | - Jeongeun Hyun
- Department of Nanobiomedical Science and BK21 PLUS NBM Global Research Center for Regenerative Medicine, Dankook University, Cheonan, Korea
| |
Collapse
|
26
|
Ding T, Chen Q, Liu H, Zhang H, Sun Y, Zhao L, Gao Y, Wei Q. Single-cell RNA sequencing analysis reveals the distinct features of colorectal cancer with or without Fusobacterium nucleatum infection in PD-L1 blockade therapy. Heliyon 2024; 10:e37511. [PMID: 39309908 PMCID: PMC11416490 DOI: 10.1016/j.heliyon.2024.e37511] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 08/28/2024] [Accepted: 09/04/2024] [Indexed: 09/25/2024] Open
Abstract
MSS/pMMR patients are unresponsive to PD-1/PD-L1 blockade in colorectal cancer (CRC), but the mechanisms are unclear. A better understanding of immunotherapy resistance in CRC may lead to more precise treatment and expand the benefit of immunotherapy to patients. In this study, we constructed mouse model of subcutaneous CRC tumor received anti-PD-L1 treatment with or without fusobacterium nucleatum (F. nucleatum) infection. Then we used single-cell RNA sequencing (scRNA-seq) to explore the comprehensive landscape of the tumor microenvironment (TME). Our data delineated the composition, subclonal diversity and putative function of distinct cells, tracked the developmental trajectory of tumor cells and highlighted cell-cell interactions. We found different compositions and functions of both tumor cells and immune cells. Single anti-PD-L1 monoclonal antibody (mAb) treated tumor exhibited two specific clusters which might be resistant to PD-L1 blockade. The accumulation of immune cells, including T cell, NK cell and pro-inflammatory macrophage subset in tumors infected with F. nucleatum may be one of the reasons for the increased sensitivity to PD-L1 blockade. Thus, targeting F. nucleatum to change the composition of tumor cell subclusters and enliven the immune response might help to overcome immune checkpoint blockade (ICB) resistance.
Collapse
Affiliation(s)
- Tingting Ding
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
- Department of Medical Oncology, Jinling Hospital, Affiliated Hospital of Medicine School, Nanjing University, Nanjing, China
| | - Qian Chen
- Research Institute of Intestinal Diseases, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Hu Liu
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Heping Zhang
- Department of Oncology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Yuefang Sun
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Lamei Zhao
- Department of Pathology, Shanghai Clinical College, Anhui Medical University, Hefei, Anhui, China
| | - Yaohui Gao
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| | - Qing Wei
- Department of Pathology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, 200072, China
| |
Collapse
|
27
|
Lin X, Wei R, Xu Z, Zhuo S, Dou J, Sun H, Li R, Yang R, Lu Q, An C, Chen H. A deep learning model for personalized intra-arterial therapy planning in unresectable hepatocellular carcinoma: a multicenter retrospective study. EClinicalMedicine 2024; 75:102808. [PMID: 39296944 PMCID: PMC11407998 DOI: 10.1016/j.eclinm.2024.102808] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 08/15/2024] [Accepted: 08/15/2024] [Indexed: 09/21/2024] Open
Abstract
BACKGROUND Unresectable Hepatocellular Carcinoma (uHCC) poses a substantial global health challenge, demanding innovative prognostic and therapeutic planning tools for improved patient management. The predominant treatment strategies include Transarterial chemoembolization (TACE) and hepatic arterial infusion chemotherapy (HAIC). METHODS Between January 2014 and November 2021, a total of 1725 uHCC patients [mean age, 52.8 ± 11.5 years; 1529 males] received preoperative CECT scans and were eligible for TACE or HAIC. Patients were assigned to one of the four cohorts according to their treatment, four transformer models (SELECTION) were trained and validated on each cohort; AUC was used to determine the prognostic performance of the trained models. Patients were stratified into high and low-risk groups based on the survival scores computed by SELECTION. The proposed AI-based treatment decision model (ATOM) utilizes survival scores to further inform final therapeutic recommendation. FINDINGS In this study, the training and validation sets included 1448 patients, with an additional 277 patients allocated to the external validation sets. The SELECTION model outperformed both clinical models and the ResNet approach in terms of AUC. Specifically, SELECTION-TACE and SELECTION-HAIC achieved AUCs of 0.761 (95% CI, 0.693-0.820) and 0.805 (95% CI, 0.707-0.881) respectively, in predicting ORR in their external validation cohorts. In predicting OS, SELECTION-TC and SELECTION-HC demonstrated AUCs of 0.736 (95% CI, 0.608-0.841) and 0.748 (95% CI, 0.599-0.865) respectively, in their external validation sets. SELECTION-derived survival scores effectively stratified patients into high and low-risk groups, showing significant differences in survival probabilities (P < 0.05 across all four cohorts). Additionally, the concordance between ATOM and clinician recommendations was associated with significantly higher response/survival rates in cases of agreement, particularly within the TACE, HAIC, and TC cohorts in the external validation sets (P < 0.05). INTERPRETATION ATOM was proposed based on SELECTION-derived survival scores, emerges as a promising tool to inform the selection among different intra-arterial interventional therapy techniques. FUNDING This study received funding from the Beijing Municipal Natural Science Foundation, China (Z190024); the Key Program of the National Natural Science Foundation of China, China (81930119); The Science and Technology Planning Program of Beijing Municipal Science & Technology Commission and Administrative Commission of Zhongguancun Science Park, China (Z231100004823012); Tsinghua University Initiative Scientific Research Program of Precision Medicine, China (10001020108); and Institute for Intelligent Healthcare, Tsinghua University, China (041531001).
Collapse
Affiliation(s)
- Xiaoqi Lin
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Ran Wei
- Department of Gastrointestinal Surgery, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Ziming Xu
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Shuiqing Zhuo
- Department of Radiology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Jiaqi Dou
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Haozhong Sun
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Rui Li
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Runyu Yang
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| | - Qian Lu
- Tsinghua Changgung Hospital, School of Clinical Medicine, Institute for Precision Medicine, Tsinghua University, Beijing, 100190, China
| | - Chao An
- Department of Minimal Invasive Intervention, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, China
| | - Huijun Chen
- School of Biomedical Engineering, Center for Biomedical Imaging Research, Tsinghua University, Beijing, 100019, China
| |
Collapse
|
28
|
Zhang J, Zhang F, Zhang L, Zhang M, Liu S, Ma Y. Screening and molecular docking verification of feature genes related to phospholipid metabolism in hepatocarcinoma caused by hepatitis B. Lipids Health Dis 2024; 23:268. [PMID: 39182089 PMCID: PMC11344459 DOI: 10.1186/s12944-024-02253-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Accepted: 08/13/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND The progression of tumours is related to abnormal phospholipid metabolism. This study is anticipated to present a fresh perspective for disease therapy targets of hepatocarcinoma caused by hepatitis B virus in the future by screening feature genes related to phospholipid metabolism. METHODS This study analysed GSE121248 to pinpoint differentially expressed genes (DEGs). By examining the overlap between the metabolism-related genes and DEGs, the research focused on the genes involved in phospholipid metabolism. To find feature genes, functional enrichment studies were carried out and a network diagram was proposed. These findings were validated via data base of The Cancer Genome Atlas (TCGA). Further analyses included immune infiltration studies and metabolomics. Finally, the relationships between differentially abundant metabolites and feature genes were confirmed by molecular docking, providing a thorough comprehension of the molecular mechanisms. RESULTS The seven genes with the highest degree of connection (PTGS2, IGF1, SPP1, BCHE, NR1I2, NAMPT, and FABP1) were identified as feature genes. In the TCGA database, the seven feature genes also had certain diagnostic efficiency. Immune infiltration analysis revealed that feature genes regulate the infiltration of various immune cells. Metabolomics successfully identified the different metabolites of the phospholipid metabolism pathway between patients and normal individuals. The docking study indicated that different metabolites may play essential roles in causing disease by targeting feature genes. CONCLUSIONS In this study, for the first time, it reveals the possible involvement of genes linked to phospholipid metabolism-related genes using bioinformatics analysis. Identifying genes and probable therapeutic targets could provide clues for the further treatment of disease.
Collapse
Affiliation(s)
- Jian Zhang
- Department of Clinical Laboratory, The Second Hospital of Tianjin Medical University, Tianjin, 300211, China
| | - Fengmei Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China
| | - Lei Zhang
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China.
| | - Meiling Zhang
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China
| | - Shuye Liu
- Department of Clinical Laboratory, Tianjin Key Laboratory of Extracorporeal Life Support for Critical Diseases, Artificial Cell Engineering Technology Research Center, The Third Central Hospital of Tianjin, Tianjin Institute of Hepatobiliary Disease, Tianjin, 300170, China.
| | - Ying Ma
- Tianjin Key Laboratory on Technologies Enabling Development of Clinical Therapeutics and Diagnostics (Theranostics), School of Pharmacy, Tianjin Medical University, Tianjin, 300070, China.
| |
Collapse
|
29
|
Zhang Z, Liu B, Lin Z, Mei L, Chen R, Li Z. SPP1 could be an immunological and prognostic biomarker: From pan-cancer comprehensive analysis to osteosarcoma validation. FASEB J 2024; 38:e23783. [PMID: 39037571 DOI: 10.1096/fj.202400622rr] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/03/2024] [Accepted: 06/20/2024] [Indexed: 07/23/2024]
Abstract
Secreted phosphoprotein 1 (SPP1), also known as osteopontin, is a phosphorylated protein. High SPP1 expression levels have been detected in multiple cancers and are associated with poor prognosis and reduced survival rates. However, only a few pan-cancer analyses have targeted SPP1. We conducted a comprehensive analysis using multiple public databases, including TIMER and TCGA, to investigate the expression levels of SPP1 in 33 different tumor types. In addition, we verified the effect of SPP1 on osteosarcoma. To assess the impact of SPP1 on patient outcomes, we employed univariate Cox regression and Kaplan-Meier survival analyses to analyze overall survival (OS), disease-specific survival (DSS), and progression-free interval (PFI) in these tumor patients. We also explored SPP1 gene alterations in various tumor tissues using cBioPortal. We then examined the relationship between SPP1 and clinical characteristics, TME, immune regulatory genes, immune checkpoints, TMB, and MSI using R language. In addition, we used GSEA to investigate the molecular mechanisms underlying the role of SPP1. Bioinformatics analysis indicated that SPP1 was upregulated in 17 tumors. Overexpression of SPP1 results in poor OS, DSS, and PFI in CESC, ESCA, GBM, LGG, LIHC, PAAD, PRAD, and skin cutaneous melanoma. SPP1 expression was positively associated with immunocyte infiltration, immune regulatory genes, immune checkpoints, TMB, MSI, and drug sensitivity in certain cancers. We found that high expression of SPP1 in osteosarcoma was related to drug resistance and metastasis and further demonstrated that SPP1 can stimulate osteosarcoma cell proliferation via CCND1 by activating the PI3K/Akt pathway. These findings strongly suggest that SPP1 is a potential prognostic marker and novel target for cancer immunotherapy.
Collapse
Affiliation(s)
- Zhiming Zhang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Binfeng Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhengjun Lin
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Lin Mei
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Ruiqi Chen
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Zhihong Li
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
- Hunan Key Laboratory of Tumor Models and Individualized Medicine, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| |
Collapse
|
30
|
Chen S, Hu T, Zhao J, Zhu Q, Wang J, Huang Z, Xiang C, Zhao R, Zhu C, Lu S, Han Y. Novel molecular subtypes of METex14 non-small cell lung cancer with distinct biological and clinical significance. NPJ Precis Oncol 2024; 8:159. [PMID: 39060379 PMCID: PMC11282101 DOI: 10.1038/s41698-024-00642-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2023] [Accepted: 07/09/2024] [Indexed: 07/28/2024] Open
Abstract
Not all MET exon 14 skipping (METex14) NSCLC patients benefited from MET inhibitors. We hypothesized an inter-tumoral heterogeneity in METex14 NSCLC. Investigations at genomic and transcriptomic level were conducted in METex14 NSCLC samples from stage I-III and recurrent/metastatic patients as discovery and validation cohort. Four molecular subtypes were discovered. MET-Driven subtype, with the worst prognosis, displayed MET overexpression, enrichment of MET-related pathways, and higher infiltration of fibroblast and regulatory T cells. Immune-Activated subtype having the most idea long-term survival, had higher tertiary lymphoid structures, spatial co-option of PD-L1+ cancer cells, and GZMK+ CD8+ T cell. FGFR- and Bypass-Activated subtypes displayed FGFR2 overexpression and enrichments of multiple oncogenic pathways respectively. In the validation cohort, patients with MET-Driven subtype had better response to MET inhibitors than those with MET overexpression. Thus, molecular subtypes of METex14 NSCLC with distinct biological and clinical significance may indicate more precise therapeutic strategies for METex14 NSCLC patients.
Collapse
Affiliation(s)
- Shengnan Chen
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Tao Hu
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Jikai Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Qian Zhu
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Jin Wang
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Zhan Huang
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China
| | - Chan Xiang
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Ruiying Zhao
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China
| | - Changbin Zhu
- Department of Medicine, Amoy Diagnostics Co., Ltd., Xiamen, China.
| | - Shun Lu
- Department of Oncology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| | - Yuchen Han
- Department of Pathology, Shanghai Chest Hospital, School of Medicine, Shanghai Jiaotong University, Shanghai, China.
| |
Collapse
|
31
|
Du Y, An C, Liu W. Surgical resection versus thermal ablation after intra-arterial conversion therapy for unresectable hepatocellular carcinoma: a multicenter retrospective one as per the STROBE guidelines. Int J Hyperthermia 2024; 41:2380001. [PMID: 39043379 DOI: 10.1080/02656736.2024.2380001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Accepted: 07/07/2024] [Indexed: 07/25/2024] Open
Abstract
PURPOSE Intra-arterial conversion therapy (ICT) is a promising option for patients with unresectable hepatocellular carcinoma (uHCC). However, the selection of sequential therapeutic modalities is still controversial. This study compared the efficacy and safety of surgical resection (SR) versus thermal ablation (TA) after patients with uHCC received ICT. METHODS From May 2008 to November 2021, 3553 consecutive patients were reviewed and 791 patients were downstaged to receive TA or SR. Among them, 340 patients received SR, and 451 received TA after ICTs. The propensity score matching (PSM) method was applied to reduce selection bias between groups. Cumulative overall survival (OS) and progression-free survival (PFS) were compared using the Kaplan-Meier method with the log-rank test. The occurrence of complications and adverse events (AEs) were compared using chi-square test. RESULTS After PSM 1:1 (n = 185 in both groups), the 10-year OS and PFS rates for patients who underwent SR were comparable to those of patients who underwent TA (OS: 45.2% vs. 36.1%; p = 0.190; PFS: 19.3% vs. 15.9%; p = 0.533). A total of 237 (29.9%) patients (203 males; mean age:57.1 ± 11.0 years) received downstaging therapy, and long-term OS and PFS remained comparable between the two groups (p = 0.718, 0.636, respectively). However, the cumulative OS and PFS rates in the downstaged cohort were significantly higher than those in the nondownstaged cohort (both ps < 0.001). Additionally, there was no difference in major complications between the two groups (SR: 6.3% vs. TA: 8.6%; p = 0.320). CONCLUSIONS TA might be an acceptable first-line alternative to SR after patients with uHCC receive ICT, especially patients unsuitable for SR. Better long-term survival was observed among patients in the downstaged cohort compared to those who failed to downstage.
Collapse
Affiliation(s)
- Yusen Du
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| | - Chao An
- Department of Minimal Invasive Intervention, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, P.R. China
| | - Wendao Liu
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, Guangzhou, Guangdong, P.R. China
| |
Collapse
|
32
|
Panda VK, Mishra B, Nath AN, Butti R, Yadav AS, Malhotra D, Khanra S, Mahapatra S, Mishra P, Swain B, Majhi S, Kumari K, Radharani NNV, Kundu GC. Osteopontin: A Key Multifaceted Regulator in Tumor Progression and Immunomodulation. Biomedicines 2024; 12:1527. [PMID: 39062100 PMCID: PMC11274826 DOI: 10.3390/biomedicines12071527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2024] [Revised: 06/22/2024] [Accepted: 06/25/2024] [Indexed: 07/28/2024] Open
Abstract
The tumor microenvironment (TME) is composed of various cellular components such as tumor cells, stromal cells including fibroblasts, adipocytes, mast cells, lymphatic vascular cells and infiltrating immune cells, macrophages, dendritic cells and lymphocytes. The intricate interplay between these cells influences tumor growth, metastasis and therapy failure. Significant advancements in breast cancer therapy have resulted in a substantial decrease in mortality. However, existing cancer treatments frequently result in toxicity and nonspecific side effects. Therefore, improving targeted drug delivery and increasing the efficacy of drugs is crucial for enhancing treatment outcome and reducing the burden of toxicity. In this review, we have provided an overview of how tumor and stroma-derived osteopontin (OPN) plays a key role in regulating the oncogenic potential of various cancers including breast. Next, we dissected the signaling network by which OPN regulates tumor progression through interaction with selective integrins and CD44 receptors. This review addresses the latest advancements in the roles of splice variants of OPN in cancer progression and OPN-mediated tumor-stromal interaction, EMT, CSC enhancement, immunomodulation, metastasis, chemoresistance and metabolic reprogramming, and further suggests that OPN might be a potential therapeutic target and prognostic biomarker for the evolving landscape of cancer management.
Collapse
Affiliation(s)
- Venketesh K. Panda
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Barnalee Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Angitha N. Nath
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Ramesh Butti
- Division of Hematology and Oncology, Department of Internal Medicine, Southwestern Medical Center, University of Texas, Dallas, TX 75235, USA;
| | - Amit Singh Yadav
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Diksha Malhotra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sinjan Khanra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Samikshya Mahapatra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Priyanka Mishra
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Biswajit Swain
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Sambhunath Majhi
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - Kavita Kumari
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
| | - N. N. V. Radharani
- Biomedical Centre, Faculty of Medicine, Lund University, 223 62 Lund, Sweden; (A.S.Y.); (N.N.V.R.)
| | - Gopal C. Kundu
- School of Biotechnology, KIIT Deemed to be University, Bhubaneswar 751024, India; (V.K.P.); (B.M.); (A.N.N.); (D.M.); (S.K.); (S.M.); (P.M.); (B.S.); (S.M.); (K.K.)
- Kalinga Institute of Medical Sciences (KIMS), KIIT Deemed to be University, Bhubaneswar 751024, India
| |
Collapse
|
33
|
Liu F, Zhang J, Gu X, Guo Q, Guo W. Single-cell transcriptome sequencing reveals SPP1-CD44-mediated macrophage-tumor cell interactions drive chemoresistance in TNBC. J Cell Mol Med 2024; 28:e18525. [PMID: 38982317 PMCID: PMC11233263 DOI: 10.1111/jcmm.18525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/28/2024] [Accepted: 06/12/2024] [Indexed: 07/11/2024] Open
Abstract
Triple-negative breast cancer (TNBC) is often considered one of the most aggressive subtypes of breast cancer, characterized by a high recurrence rate and low overall survival (OS). It is notorious for posing challenges related to drug resistance. While there has been progress in TNBC research, the mechanisms underlying chemotherapy resistance in TNBC remain largely elusive. We collect single-cell RNA sequencing (scRNA-seq) data from five TNBC patients susceptible to chemotherapy and five resistant cases. Comprehensive analyses involving copy number variation (CNV), pseudotime trajectory, cell-cell interactions, pseudospace analysis, as well as transcription factor and functional enrichment are conducted specifically on macrophages and malignant cells. Furthermore, we performed validation experiments on clinical samples using multiplex immunofluorescence. We identified a subset of SPP1+ macrophages that secrete SPP1 signals interacting with CD44 on malignant cell surfaces, potentially activating the PDE3B pathway within malignant cells via the integrin pathway, leading to chemotherapy resistance. The abnormally enhanced SPP1 signal between macrophages and malignant cells may serve as a factor promoting chemotherapy resistance in TNBC patients. Therefore, SPP1+ macrophages could potentially serve as a therapeutic target to reduce chemotherapy resistance.
Collapse
Affiliation(s)
- Fuzhong Liu
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | - Junfeng Zhang
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | - Xiaowei Gu
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
| | | | - Wenjia Guo
- Xinjiang Medical University Affiliated Cancer HospitalUrumqiChina
- Xinjiang Key Laboratory of Translational Biomedical EngineeringUrumqiChina
| |
Collapse
|
34
|
Zvirblyte J, Nainys J, Juzenas S, Goda K, Kubiliute R, Dasevicius D, Kincius M, Ulys A, Jarmalaite S, Mazutis L. Single-cell transcriptional profiling of clear cell renal cell carcinoma reveals a tumor-associated endothelial tip cell phenotype. Commun Biol 2024; 7:780. [PMID: 38942917 PMCID: PMC11213875 DOI: 10.1038/s42003-024-06478-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2023] [Accepted: 06/21/2024] [Indexed: 06/30/2024] Open
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most prevalent form of renal cancer, accounting for over 75% of cases. The asymptomatic nature of the disease contributes to late-stage diagnoses and poor survival. Highly vascularized and immune infiltrated microenvironment are prominent features of ccRCC, yet the interplay between vasculature and immune cells, disease progression and response to therapy remains poorly understood. Using droplet-based single-cell RNA sequencing we profile 50,236 transcriptomes from paired tumor and healthy adjacent kidney tissues. Our analysis reveals significant heterogeneity and inter-patient variability of the tumor microenvironment. Notably, we discover a previously uncharacterized vasculature subpopulation associated with epithelial-mesenchymal transition. The cell-cell communication analysis reveals multiple modes of immunosuppressive interactions within the tumor microenvironment, including clinically relevant interactions between tumor vasculature and stromal cells with immune cells. The upregulation of the genes involved in these interactions is associated with worse survival in the TCGA KIRC cohort. Our findings demonstrate the role of tumor vasculature and stromal cell populations in shaping the ccRCC microenvironment and uncover a subpopulation of cells within the tumor vasculature that is associated with an angiogenic phenotype.
Collapse
Affiliation(s)
- Justina Zvirblyte
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Juozas Nainys
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
- Droplet Genomics, Vilnius, 10257, Lithuania
| | - Simonas Juzenas
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Karolis Goda
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Raimonda Kubiliute
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania
| | - Darius Dasevicius
- National Center of Pathology, Affiliate of Vilnius University Hospital Santaros Klinikos, Vilnius, 08406, Lithuania
| | | | - Albertas Ulys
- National Cancer Institute, Vilnius, 08660, Lithuania
| | - Sonata Jarmalaite
- Institute of Biosciences, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
- National Cancer Institute, Vilnius, 08660, Lithuania.
| | - Linas Mazutis
- Institute of Biotechnology, Life Sciences Center, Vilnius University, Vilnius, 10257, Lithuania.
| |
Collapse
|
35
|
Ji Y, An Q, Wen X, Xu Z, Xia Z, Xia Z, Hu Q, Lei S. Liver cancer from the perspective of single-cell sequencing: a review combined with bibliometric analysis. J Cancer Res Clin Oncol 2024; 150:316. [PMID: 38910204 PMCID: PMC11194221 DOI: 10.1007/s00432-024-05855-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Accepted: 06/17/2024] [Indexed: 06/25/2024]
Abstract
BACKGROUND Liver cancer (LC) is a prevalent malignancy and a leading cause of cancer-related mortality worldwide. Extensive research has been conducted to enhance patient outcomes and develop effective prevention strategies, ranging from molecular mechanisms to clinical interventions. Single-cell sequencing, as a novel bioanalysis technology, has significantly contributed to the understanding of the global cognition and dynamic changes in liver cancer. However, there is a lack of bibliometric analysis in this specific research area. Therefore, the objective of this study is to provide a comprehensive overview of the knowledge structure and research hotspots in the field of single-cell sequencing in liver cancer research through the use of bibliometrics. METHOD Publications related to the application of single-cell sequencing technology to liver cancer research as of December 31, 2023, were searched on the web of science core collection (WoSCC) database. VOSviewers, CiteSpace, and R package "bibliometrix" were used to conduct this bibliometric analysis. RESULTS A total of 331 publications from 34 countries, primarily led by China and the United States, were included in this study. The research focuses on the application of single cell sequencing technology to liver cancer, and the number of related publications has been increasing year by year. The main research institutions involved in this field are Fudan University, Sun Yat-Sen University, and the Chinese Academy of Sciences. Frontiers in Immunology and Nature Communications is the most popular journal in this field, while Cell is the most frequently co-cited journal. These publications are authored by 2799 individuals, with Fan Jia and Zhou Jian having the most published papers, and Llovet Jm being the most frequently co-cited author. The use of single cell sequencing to explore the immune microenvironment of liver cancer, as well as its implications in immunotherapy and chemotherapy, remains the central focus of this field. The emerging research hotspots are characterized by keywords such as 'Gene-Expression', 'Prognosis', 'Tumor Heterogeneity', 'Immunoregulation', and 'Tumor Immune Microenvironment'. CONCLUSION This is the first bibliometric study that comprehensively summarizes the research trends and developments on the application of single cell sequencing in liver cancer. The study identifies recent research frontiers and hot directions, providing a valuable reference for researchers exploring the landscape of liver cancer, understanding the composition of the immune microenvironment, and utilizing single-cell sequencing technology to guide and enhance the prognosis of liver cancer patients.
Collapse
Affiliation(s)
- Yanwei Ji
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qi An
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Xinyu Wen
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Zhou Xu
- The Second Clinical Medical College, Jiangxi Medical College, Nanchang University, Jiangxi, Nanchang, China
| | - Zhengyuan Xia
- Department of Anesthesiology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, China
- Faculty of Chinese Medicine, State Key Laboratory of Quality Research in Chinese Medicine, Macau University of Science and Technology, Taipa, Macao, China
| | - Zhongyuan Xia
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China
| | - Qinyong Hu
- Department of Oncology, Renmin Hospital of Wuhan University, Wuhan, China.
| | - Shaoqing Lei
- Department of Anesthesiology, Renmin Hospital of Wuhan University, Wuhan, China.
| |
Collapse
|
36
|
Zhao Y, Huang Z, Gao L, Ma H, Chang R. Osteopontin/SPP1: a potential mediator between immune cells and vascular calcification. Front Immunol 2024; 15:1395596. [PMID: 38919629 PMCID: PMC11196619 DOI: 10.3389/fimmu.2024.1395596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Accepted: 05/22/2024] [Indexed: 06/27/2024] Open
Abstract
Vascular calcification (VC) is considered a common pathological process in various vascular diseases. Accumulating studies have confirmed that VC is involved in the inflammatory response in heart disease, and SPP1+ macrophages play an important role in this process. In VC, studies have focused on the physiological and pathological functions of macrophages, such as pro-inflammatory or anti-inflammatory cytokines and pro-fibrotic vesicles. Additionally, macrophages and activated lymphocytes highly express SPP1 in atherosclerotic plaques, which promote the formation of fatty streaks and plaque development, and SPP1 is also involved in the calcification process of atherosclerotic plaques that results in heart failure, but the crosstalk between SPP1-mediated immune cells and VC has not been adequately addressed. In this review, we summarize the regulatory effect of SPP1 on VC in T cells, macrophages, and dendritic cells in different organs' VC, which could be a potential therapeutic target for VC.
Collapse
Affiliation(s)
- Yanli Zhao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Zujuan Huang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Limei Gao
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| | - Hongbo Ma
- School of Clinical Medicine, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan, China
| | - Rong Chang
- Department of Cardiovascular Medicine, Shenzhen Longhua District Central Hospital, Shenzhen, China
| |
Collapse
|
37
|
Pinato DJ, D'Alessio A, Fulgenzi CAM, Schlaak AE, Celsa C, Killmer S, Blanco JM, Ward C, Stikas CV, Openshaw MR, Acuti N, Nteliopoulos G, Balcells C, Keun HC, Goldin RD, Ross PJ, Cortellini A, Thomas R, Young AM, Danckert N, Tait P, Marchesi JR, Bengsch B, Sharma R. Safety and Preliminary Efficacy of Pembrolizumab Following Transarterial Chemoembolization for Hepatocellular Carcinoma: The PETAL Phase Ib Study. Clin Cancer Res 2024; 30:2433-2443. [PMID: 38578610 PMCID: PMC11145164 DOI: 10.1158/1078-0432.ccr-24-0177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 02/29/2024] [Accepted: 04/03/2024] [Indexed: 04/06/2024]
Abstract
PURPOSE Transarterial chemoembolization (TACE) may prime adaptive immunity and enhance immunotherapy efficacy. PETAL evaluated safety, preliminary activity of TACE plus pembrolizumab and explored mechanisms of efficacy. PATIENTS AND METHODS Patients with liver-confined hepatocellular carcinoma (HCC) were planned to receive up to two rounds of TACE followed by pembrolizumab 200 mg every 21 days commencing 30 days post-TACE until disease progression or unacceptable toxicity for up to 1 year. Primary endpoint was safety, with assessment window of 21 days from pembrolizumab initiation. Secondary endpoints included progression-free survival (PFS) and evaluation of tumor and host determinants of response. RESULTS Fifteen patients were included in the safety and efficacy population: 73% had nonviral cirrhosis; median age was 72 years. Child-Pugh class was A in 14 patients. Median tumor size was 4 cm. Ten patients (67%) received pembrolizumab after one TACE; 5 patients after two (33%). Pembrolizumab yielded no synergistic toxicity nor dose-limiting toxicities post-TACE. Treatment-related adverse events occurred in 93% of patients, most commonly skin rash (40%), fatigue, and diarrhea (27%). After a median follow-up of 38.5 months, objective response rate 12 weeks post-TACE was 53%. PFS rate at 12 weeks was 93% and median PFS was 8.95 months [95% confidence interval (CI): 7.30-NE (not estimable)]. Median duration of response was 7.3 months (95% CI: 6.3-8.3). Median overall survival was 33.5 months (95% CI: 11.6-NE). Dynamic changes in peripheral T-cell subsets, circulating tumor DNA, serum metabolites, and in stool bacterial profiles highlight potential mechanisms of action of multimodal therapy. CONCLUSIONS TACE plus pembrolizumab was tolerable with no evidence of synergistic toxicity, encouraging further clinical development of immunotherapy alongside TACE.
Collapse
MESH Headings
- Humans
- Carcinoma, Hepatocellular/therapy
- Carcinoma, Hepatocellular/pathology
- Carcinoma, Hepatocellular/drug therapy
- Carcinoma, Hepatocellular/mortality
- Male
- Liver Neoplasms/therapy
- Liver Neoplasms/pathology
- Liver Neoplasms/drug therapy
- Liver Neoplasms/mortality
- Female
- Aged
- Chemoembolization, Therapeutic/methods
- Chemoembolization, Therapeutic/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Middle Aged
- Antineoplastic Agents, Immunological/administration & dosage
- Antineoplastic Agents, Immunological/adverse effects
- Antineoplastic Agents, Immunological/therapeutic use
- Aged, 80 and over
- Combined Modality Therapy
- Treatment Outcome
Collapse
Affiliation(s)
- David J. Pinato
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Antonio D'Alessio
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Oncology, Department of Translational Medicine, University of Piemonte Orientale, Novara, Italy
| | - Claudia Angela Maria Fulgenzi
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | | | - Ciro Celsa
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Section of Gastroenterology and Hepatology, Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties, PROMISE, University of Palermo, Palermo, Italy
| | - Saskia Killmer
- Department of Internal Medicine, University Hospital Freiburg, Freiburg, Germany
| | - Jesus Miguens Blanco
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, St Mary's Hospital Campus, London, United Kingdom
| | - Caroline Ward
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Charalampos-Vlasios Stikas
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Mark R. Openshaw
- Institute of Cancer and Genomics Sciences, University of Birmingham, Birmingham, United Kingdom
| | - Nicole Acuti
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Georgios Nteliopoulos
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Cristina Balcells
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Hector C. Keun
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| | - Robert D. Goldin
- Centre for Pathology, Imperial College London, Charing Cross Hospital, London, United Kingdom
| | - Paul J. Ross
- Department of Medical Oncology, Guy's and St Thomas’ NHS Foundation Trust, London, United Kingdom
- King's College Hospital NHS Foundation Trust, London, United Kingdom
| | - Alessio Cortellini
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
- Division of Medical Oncology, Policlinico Universitario Campus Bio-Medico, Rome, Italy
| | - Robert Thomas
- Interventional Radiology, Imperial College NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Anna-Mary Young
- Department of Medical Oncology, St Georges University Hospitals, NHS Foundation Trust, St George's University Hospitals NHS Foundation Trust, London, United Kingdom
| | - Nathan Danckert
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, St Mary's Hospital Campus, London, United Kingdom
| | - Paul Tait
- Interventional Radiology, Imperial College NHS Trust, Hammersmith Hospital, London, United Kingdom
| | - Julian R. Marchesi
- Department of Metabolism, Digestion and Reproduction, Faculty of Medicine, Imperial College London, St Mary's Hospital Campus, London, United Kingdom
| | - Bertram Bengsch
- Department of Internal Medicine, University Hospital Freiburg, Freiburg, Germany
- Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
- German Cancer Consortium (DKTK), Heidelberg, Germany, partner site Freiburg
| | - Rohini Sharma
- Department of Surgery and Cancer, Faculty of Medicine, Imperial College London, Hammersmith Hospital, London, United Kingdom
| |
Collapse
|
38
|
Liu C, Xie J, Lin B, Tian W, Wu Y, Xin S, Hong L, Li X, Liu L, Jin Y, Tang H, Deng X, Zou Y, Zheng S, Fang W, Cheng J, Dai X, Bao X, Zhao P. Pan-Cancer Single-Cell and Spatial-Resolved Profiling Reveals the Immunosuppressive Role of APOE+ Macrophages in Immune Checkpoint Inhibitor Therapy. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2401061. [PMID: 38569519 PMCID: PMC11186051 DOI: 10.1002/advs.202401061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Revised: 03/13/2024] [Indexed: 04/05/2024]
Abstract
The heterogeneity of macrophages influences the response to immune checkpoint inhibitor (ICI) therapy. However, few studies explore the impact of APOE+ macrophages on ICI therapy using single-cell RNA sequencing (scRNA-seq) and machine learning methods. The scRNA-seq and bulk RNA-seq data are Integrated to construct an M.Sig model for predicting ICI response based on the distinct molecular signatures of macrophage and machine learning algorithms. Comprehensive single-cell analysis as well as in vivo and in vitro experiments are applied to explore the potential mechanisms of the APOE+ macrophage in affecting ICI response. The M.Sig model shows clear advantages in predicting the efficacy and prognosis of ICI therapy in pan-cancer patients. The proportion of APOE+ macrophages is higher in ICI non-responders of triple-negative breast cancer compared with responders, and the interaction and longer distance between APOE+ macrophages and CD8+ exhausted T (Tex) cells affecting ICI response is confirmed by multiplex immunohistochemistry. In a 4T1 tumor-bearing mice model, the APOE inhibitor combined with ICI treatment shows the best efficacy. The M.Sig model using real-world immunotherapy data accurately predicts the ICI response of pan-cancer, which may be associated with the interaction between APOE+ macrophages and CD8+ Tex cells.
Collapse
Affiliation(s)
- Chuan Liu
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Jindong Xie
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Bo Lin
- College of Computer Science and TechnologyZhejiang UniversityHangzhou310053China
- Innovation Centre for InformationBinjiang Institute of Zhejiang UniversityHangzhou310053China
| | - Weihong Tian
- Changzhou Third People's HospitalChangzhou Medical CenterNanjing Medical UniversityChangzhou213000China
| | - Yifan Wu
- School of softwareZhejiang UniversityNingbo315100China
| | - Shan Xin
- Department of GeneticsYale School of medicineNew HavenCT06510USA
| | - Libing Hong
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Xin Li
- Department Chronic Inflammation and CancerGerman Cancer Research Center (DKFZ)69120HeidelbergGermany
| | - Lulu Liu
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Yuzhi Jin
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Hailin Tang
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Xinpei Deng
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Yutian Zou
- State Key Laboratory of Oncology in South ChinaGuangdong Provincial Clinical Research Center for CancerSun Yat‐sen University Cancer CenterGuangzhou510060China
| | - Shaoquan Zheng
- Breast Disease CenterThe First Affiliated HospitalSun Yat‐Sen UniversityGuangzhou510060China
| | - Weijia Fang
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious DiseasesNational Clinical Research Center for Infectious DiseasesNational Medical Center for Infectious DiseasesCollaborative Innovation Center for Diagnosis and Treatment of Infectious DiseasesThe First Affiliated HospitalZhejiang University School of MedicineZhejiang UniversityHangzhou310003China
| | - Xiaomeng Dai
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Xuanwen Bao
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| | - Peng Zhao
- Department of Medical OncologyThe First Affiliated HospitalSchool of MedicineZhejiang UniversityHangzhou310003China
| |
Collapse
|
39
|
Wang Y, Mang X, Guo X, Pu J. Distinct cuproptosis patterns in hepatocellular carcinoma patients correlate with unique immune microenvironment characteristics and cell-cell communication, contributing to varied overall survival outcomes. Front Immunol 2024; 15:1379690. [PMID: 38868777 PMCID: PMC11168106 DOI: 10.3389/fimmu.2024.1379690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 05/01/2024] [Indexed: 06/14/2024] Open
Abstract
Background Hepatocellular carcinoma (HCC), a prevalent cancer, is linked to cuproptosis in tumor progression. However, cuproptosis's impact on HCC prognosis and its role in the tumor microenvironment remain unclear. We aimed to explore the correlation between cellular cuproptosis and the immune microenvironment in HCC, providing potential immunotherapeutic insights. Methods Examining cuproptosis-related genes and the immune microenvironment through consensus clustering and WGCNA. Risk models were constructed using LASSO Cox analysis and validated in an independent cohort. Gene expression data from The Cancer Genome Atlas (TCGA) database and single-cell RNA sequencing (scRNA-seq) data from the Gene Expression Omnibus (GEO) database were utilized. We scored cuproptosis expression and explored immunoinfiltration and cell-cell communication. Differential signals in T_memory cells were compared across different cuproptosis levels. Results Cuproptosis genes associated with fibroblast recruitment (GLS) and macrophage infiltration (FDX1). Liver cancer patients categorized into two subtypes based on cuproptosis gene expression. High expression of DLAT, GLS, and CDKN2A linked to immunosuppression (TGF-β), while high FDX1, MTF1, LIAS, and LIPT1 expression enhanced communication with non-immune cells. Developed reliable prognostic signature score and nomogram using cuproptosis-related genes. Single-cell analysis revealed differences in T_memory and TAM infiltration based on cuproptosis scores, with SPP1 and MIF as dominant signaling molecules. Finally, the results of in vitro experiments showed that when DLAT or CDKN2A was knocked down, the proliferation, migration, and invasion of HCC cells were significantly decreased. Conclusion Our study demonstrates that cuproptosis affects the immune microenvironment and cell-cell communication. Identified 9 genetic markers predicting survival outcomes and immunotherapy responses. Evaluating cuproptosis signaling can optimize immunotherapeutic strategies for hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yanhong Wang
- Shanghai Fourth People’s Hospital, and School of Medicine, Tongji University, Shanghai, China
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
- Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Xinyu Mang
- Department of Biochemistry and Molecular Biology, State Key Laboratory of Common Mechanism Research for Major Diseases, Institute of Basic Medical Sciences Chinese Academy of Medical Sciences, School of Basic Medicine Peking Union Medical College, Beijing, China
| | - Xiaohong Guo
- Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou, Gansu, China
| | - Junfeng Pu
- Department of Pharmacy, People's Hospital of Gansu Province, Lanzhou, Gansu, China
| |
Collapse
|
40
|
Xu L, Chen Y, Liu L, Hu X, He C, Zhou Y, Ding X, Luo M, Yan J, Liu Q, Li H, Lai D, Zou Z. Tumor-associated macrophage subtypes on cancer immunity along with prognostic analysis and SPP1-mediated interactions between tumor cells and macrophages. PLoS Genet 2024; 20:e1011235. [PMID: 38648200 PMCID: PMC11034676 DOI: 10.1371/journal.pgen.1011235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Accepted: 03/25/2024] [Indexed: 04/25/2024] Open
Abstract
Tumor-associated macrophages (TAM) subtypes have been shown to impact cancer prognosis and resistance to immunotherapy. However, there is still a lack of systematic investigation into their molecular characteristics and clinical relevance in different cancer types. Single-cell RNA sequencing data from three different tumor types were used to cluster and type macrophages. Functional analysis and communication of TAM subpopulations were performed by Gene Ontology-Biological Process and CellChat respectively. Differential expression of characteristic genes in subpopulations was calculated using zscore as well as edgeR and Wilcoxon rank sum tests, and subsequently gene enrichment analysis of characteristic genes and anti-PD-1 resistance was performed by the REACTOME database. We revealed the heterogeneity of TAM, and identified eleven subtypes and their impact on prognosis. These subtypes expressed different molecular functions respectively, such as being involved in T cell activation, apoptosis and differentiation, or regulating viral bioprocesses or responses to viruses. The SPP1 pathway was identified as a critical mediator of communication between TAM subpopulations, as well as between TAM and epithelial cells. Macrophages with high expression of SPP1 resulted in poorer survival. By in vitro study, we showed SPP1 mediated the interactions between TAM clusters and between TAM and tumor cells. SPP1 promoted the tumor-promoting ability of TAM, and increased PDL1 expression and stemness of tumor cells. Inhibition of SPP1 attenuated N-cadherin and β-catenin expression and the activation of AKT and STAT3 pathway in tumor cells. Additionally, we found that several subpopulations could decrease the sensitivity of anti-PD-1 therapy in melanoma. SPP1 signal was a critical pathway of communication between macrophage subtypes. Some specific macrophage subtypes were associated with immunotherapy resistance and prognosis in some cancer types.
Collapse
Affiliation(s)
- Liu Xu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yibing Chen
- Genetic and Prenatal Diagnosis Center, Department of Gynecology and Obstetrics, First Affiliated Hospital, Zhengzhou University, Zhengzhou, China
| | - Lingling Liu
- Department of Hematology, The Third Affiliated Hospital of Sun Yat-sen University & Sun Yat-sen Institute of Hematology, Guangzhou, China
| | - Xinyu Hu
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Chengsi He
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Yuan Zhou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Xinyi Ding
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Minhua Luo
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Jiajing Yan
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
| | - Quentin Liu
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou, China
| | - Hongsheng Li
- Department of Breast Surgery, Affiliated Cancer Hospital & Institute of Guangzhou Medical University, Guangzhou, China
| | - Dongming Lai
- Shenshan Medical Center and Department of Gastrointestinal Surgery, Sun Yat-sen Memorial Hospital, Sun Yat-sen University, Guangzhou, China
| | - Zhengzhi Zou
- MOE Key Laboratory of Laser Life Science & Institute of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Laser Life Science, College of Biophotonics, South China Normal University, Guangzhou, China
- Guangzhou Key Laboratory of Spectral Analysis and Functional Probes, College of Biophotonics, South China Normal University, Guangzhou, China
| |
Collapse
|
41
|
Zhang Q, Wang X, Liu Y, Xu H, Ye C. Pan-cancer and single-cell analyses identify CD44 as an immunotherapy response predictor and regulating macrophage polarization and tumor progression in colorectal cancer. Front Oncol 2024; 14:1380821. [PMID: 38590654 PMCID: PMC10999581 DOI: 10.3389/fonc.2024.1380821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 03/11/2024] [Indexed: 04/10/2024] Open
Abstract
Introduction Cluster of differentiation (CD) 44 is a non-kinase cell surface transmembrane glycoprotein critical for tumor maintenance and progression. Methods We conducted a systematic analysis of the expression profile and genomic alteration profile of CD44 in 33 types of cancer. The immune characteristics of CD44 were comprehensively explored by TIMER2.0 and CIBERSORT. In addition, the CD44 transcriptional landscape was examined at the single-cell level. Then, Pseudotime trajectory analysis of CD44 gene expression was performed using Monocle 2, and CellChat was utilized to compare the crosstalk differences between CD44+monocytes and CD44- monocytes. Tumor immune dysfunction and exclusion (TIDE) was used to evaluate the predictive ability of CD44 for immune checkpoint blockade (ICB) responses. The effects of CD44 on colorectal cancer (CRC) and macrophage polarization were investigated by knocking down the expression of CD44 in HCT-116 cell and macrophages in vitro. Results The expression of CD44 elevated in most cancers, predicting unfavorable prognosis. In addditon, CD44 was correlation with immune cell infiltration and key immune regulators. CD44+ monocytes had a higher information flow intensity than CD44- monocytes. CD44 had good predictive ability for immune checkpoint blockade responses. Knockdown of CD44 inhibited the proliferation, migration, and invasion of HCT-116 cell in vitro. Knockdown of CD44 inhibited M2 macrophage polarization. Discussion These findings suggest that CD44 is involved in regulating tumor development, macrophage polarization, and has certain predictive value for patient clinical prognosis and response to immunotherapy.
Collapse
Affiliation(s)
- Qian Zhang
- College of Medicine and Biological Information Engineering, Northeastern University, Shenyang, Liaoning, China
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinyu Wang
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Liu
- Department of Pharmacy, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning, China
| | - Hao Xu
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| | - Chun Ye
- Department of General Surgery, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
42
|
Yang S, Wang M, Hua Y, Li J, Zheng H, Cui M, Huang N, Liu Q, Liao Q. Advanced insights on tumor-associated macrophages revealed by single-cell RNA sequencing: The intratumor heterogeneity, functional phenotypes, and cellular interactions. Cancer Lett 2024; 584:216610. [PMID: 38244910 DOI: 10.1016/j.canlet.2024.216610] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Revised: 11/28/2023] [Accepted: 12/18/2023] [Indexed: 01/22/2024]
Abstract
Single-cell RNA sequencing (scRNA-seq) is an emerging technology used for cellular transcriptome analysis. The application of scRNA-seq has led to profoundly advanced oncology research, continuously optimizing novel therapeutic strategies. Intratumor heterogeneity extensively consists of all tumor components, contributing to different tumor behaviors and treatment responses. Tumor-associated macrophages (TAMs), the core immune cells linking innate and adaptive immunity, play significant roles in tumor progression and resistance to therapies. Moreover, dynamic changes occur in TAM phenotypes and functions subject to the regulation of the tumor microenvironment. The heterogeneity of TAMs corresponding to the state of the tumor microenvironment has been comprehensively recognized using scRNA-seq. Herein, we reviewed recent research and summarized variations in TAM phenotypes and functions from a developmental perspective to better understand the significance of TAMs in the tumor microenvironment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Mengyi Wang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Yuze Hua
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Jiayi Li
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Huaijin Zheng
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Nan Huang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Science, and Peking Union Medical College, Beijing, 100730, China.
| |
Collapse
|
43
|
Gui M, Huang S, Li S, Chen Y, Cheng F, Liu Y, Wang JA, Wang Y, Guo R, Lu Y, Cao P, Zhou G. Integrative single-cell transcriptomic analyses reveal the cellular ontological and functional heterogeneities of primary and metastatic liver tumors. J Transl Med 2024; 22:206. [PMID: 38414027 PMCID: PMC10898050 DOI: 10.1186/s12967-024-04947-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Accepted: 02/02/2024] [Indexed: 02/29/2024] Open
Abstract
BACKGROUND The global cellular landscape of the tumor microenvironment (TME) combining primary and metastatic liver tumors has not been comprehensively characterized. METHODS Based on the scRNA-seq and spatial transcriptomic data of non-tumor liver tissues (NTs), primary liver tumors (PTs) and metastatic liver tumors (MTs), we performed the tissue preference, trajectory reconstruction, transcription factor activity inference, cell-cell interaction and cellular deconvolution analyses to construct a comprehensive cellular landscape of liver tumors. RESULTS Our analyses depicted the heterogeneous cellular ecosystems in NTs, PTs and MTs. The activated memory B cells and effector T cells were shown to gradually shift to inhibitory B cells, regulatory or exhausted T cells in liver tumors, especially in MTs. Among them, we characterized a unique group of TCF7+ CD8+ memory T cells specifically enriched in MTs that could differentiate into exhausted T cells likely driven by the p38 MAPK signaling. With regard to myeloid cells, the liver-resident macrophages and inflammatory monocyte/macrophages were markedly replaced by tumor-associated macrophages (TAMs), with TREM2+ and UBE2C+ TAMs enriched in PTs, while SPP1+ and WDR45B+ TAMs in MTs. We further showed that the newly identified WDR45B+ TAMs exhibit an M2-like polarization and are associated with adverse prognosis in patients with liver metastases. Additionally, we addressed that endothelial cells display higher immune tolerance and angiogenesis capacity, and provided evidence for the source of the mesenchymal transformation of fibroblasts in tumors. Finally, the malignant hepatocytes and fibroblasts were prioritized as the pivotal cell populations in shaping the microenvironments of PTs and MTs, respectively. Notably, validation analyses by using spatial or bulk transcriptomic data in clinical cohorts concordantly emphasized the clinical significance of these findings. CONCLUSIONS This study defines the ontological and functional heterogeneities in cellular ecosystems of primary and metastatic liver tumors, providing a foundation for future investigation of the underlying cellular mechanisms.
Collapse
Affiliation(s)
- Menghui Gui
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Shilin Huang
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Shizhou Li
- Department of Medical Oncology, Guangxi Medical University Cancer Hospital, Nanning, 530021, People's Republic of China
| | - Yuying Chen
- Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China
| | - Furong Cheng
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yulin Liu
- Mudanjiang Medical College, Mudanjiang, 157011, People's Republic of China
| | - Ji-Ao Wang
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yuting Wang
- College of Chemistry & Environmental Science, Hebei University, Baoding, 071002, People's Republic of China
| | - Rui Guo
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China
| | - Yiming Lu
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China
| | - Pengbo Cao
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
| | - Gangqiao Zhou
- School of Public Health, Nanjing Medical University, Nanjing, 211166, People's Republic of China.
- State Key Laboratory of Medical Proteomics, National Center for Protein Sciences at Beijing, Beijing Institute of Radiation Medicine, 27 Taiping Road, Beijing, 100850, People's Republic of China.
- Hengyang Medical College, University of South China, Hengyang, 421001, People's Republic of China.
- Institute of Life Science and Green Development, College of Life Sciences, Hebei University, Baoding, 071002, People's Republic of China.
| |
Collapse
|
44
|
Bao X, Li Q, Chen D, Dai X, Liu C, Tian W, Zhang H, Jin Y, Wang Y, Cheng J, Lai C, Ye C, Xin S, Li X, Su G, Ding Y, Xiong Y, Xie J, Tano V, Wang Y, Fu W, Deng S, Fang W, Sheng J, Ruan J, Zhao P. A multiomics analysis-assisted deep learning model identifies a macrophage-oriented module as a potential therapeutic target in colorectal cancer. Cell Rep Med 2024; 5:101399. [PMID: 38307032 PMCID: PMC10897549 DOI: 10.1016/j.xcrm.2024.101399] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 01/02/2024] [Accepted: 01/08/2024] [Indexed: 02/04/2024]
Abstract
Colorectal cancer (CRC) is a common malignancy involving multiple cellular components. The CRC tumor microenvironment (TME) has been characterized well at single-cell resolution. However, a spatial interaction map of the CRC TME is still elusive. Here, we integrate multiomics analyses and establish a spatial interaction map to improve the prognosis, prediction, and therapeutic development for CRC. We construct a CRC immune module (CCIM) that comprises FOLR2+ macrophages, exhausted CD8+ T cells, tolerant CD8+ T cells, exhausted CD4+ T cells, and regulatory T cells. Multiplex immunohistochemistry is performed to depict the CCIM. Based on this, we utilize advanced deep learning technology to establish a spatial interaction map and predict chemotherapy response. CCIM-Net is constructed, which demonstrates good predictive performance for chemotherapy response in both the training and testing cohorts. Lastly, targeting FOLR2+ macrophage therapeutics is used to disrupt the immunosuppressive CCIM and enhance the chemotherapy response in vivo.
Collapse
Affiliation(s)
- Xuanwen Bao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Dong Chen
- Department of Colorectal Surgery, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Xiaomeng Dai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chuan Liu
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Weihong Tian
- Department of Immunology, School of Medicine, Jiangsu University, Zhenjiang, Jiangsu 212013, China
| | - Hangyu Zhang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yuzhi Jin
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yin Wang
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jinlin Cheng
- State Key Laboratory for Diagnosis and Treatment of Infectious Diseases, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chunyu Lai
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Shan Xin
- Department of Genetics, Yale School of Medicine, New Haven, CT 06510, USA
| | - Xin Li
- Department of Chronic Inflammation and Cancer, German Cancer Research Center (DKFZ), 69120 Heidelberg, Germany
| | - Ge Su
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yongfeng Ding
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Yangyang Xiong
- Department of Gastroenterology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jindong Xie
- Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangzhou 510060, China
| | - Vincent Tano
- Lee Kong Chian School of Medicine, Nanyang Technological University, Singapore 637551, Republic of Singapore
| | - Yanfang Wang
- Ludwig-Maximilians-Universität München (LMU), 80539 Munich, Germany
| | - Wenguang Fu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China
| | - Shuiguang Deng
- College of Computer Science and Technology, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Weijia Fang
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China
| | - Jianpeng Sheng
- Zhejiang Provincial Key Laboratory of Pancreatic Disease, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| | - Jian Ruan
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China; Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan Province 646000, China.
| | - Peng Zhao
- Department of Medical Oncology, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang Province 310003, China.
| |
Collapse
|
45
|
Wu J, Shen Y, Zeng G, Liang Y, Liao G. SPP1 + TAM subpopulations in tumor microenvironment promote intravasation and metastasis of head and neck squamous cell carcinoma. Cancer Gene Ther 2024; 31:311-321. [PMID: 38052857 DOI: 10.1038/s41417-023-00704-0] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2023] [Revised: 11/08/2023] [Accepted: 11/15/2023] [Indexed: 12/07/2023]
Abstract
Macrophages are heterogeneous cells that play multifaceted roles in cancer progression and metastasis. However, the phenotypic diversity of tumor-associated macrophages (TAMs) in head and neck squamous carcinomas (HNSCC) remains poorly characterized. Here, we comprehensively analyzed the HNSCC single-cell transcriptomic dataset (GSE172577) and identified 5 subsets of myeloid-driven cells as TAMs using Seurat. Deciphering the lineage trajectory of TAMs, we revealed that FCN1+ TAMs could give rise to pro-angiogenesis SPP1+CCL18+ and SPP1+FOLR2+ populations through SPP1-CCL18+ and CXCL9+CXCL10+ TAMs. SPP1+CCL18+ and SPP1+FOLR2+ TAMs harbored pro-angiogenic and metastatic transcriptional programs and were correlated with poor survival of HNSCC patients. Our immunostaining examination revealed that infiltration of SPP1+ TAMs is associated with lymph node metastasis and poor prognosis in patients with HNSCC. Cell-cell communication analysis implied that SPP1+ TAM populations may employ SPP1 signaling to activate metastasis-related ECs. In vitro and in vivo studies, we demonstrated that SPP1hi TAMs enhanced tumor intravasation and metastasis in HNSCC in a manner dependent on the secretion of SPP1, CCL18, and CXCL8. Taken together, our study characterized the cellular heterogeneity of TAM populations and identified two SPP1+ TAM populations that play key roles in HNSCC intravasation and metastasis and serve as predictive markers for patients with HNSCC.
Collapse
Affiliation(s)
- Jiashun Wu
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yi Shen
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Guozhong Zeng
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China
| | - Yujie Liang
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| | - Guiqing Liao
- Hospital of Stomatology, Guanghua School of Stomatology, Guangdong Provincial Key Laboratory of Stomatology, Sun Yat-sen University, Guangzhou, China.
| |
Collapse
|
46
|
Wang J, Zhu N, Su X, Gao Y, Yang R. Novel tumor-associated macrophage populations and subpopulations by single cell RNA sequencing. Front Immunol 2024; 14:1264774. [PMID: 38347955 PMCID: PMC10859433 DOI: 10.3389/fimmu.2023.1264774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2023] [Accepted: 11/30/2023] [Indexed: 02/15/2024] Open
Abstract
Tumor-associated macrophages (TAMs) are present in almost all solid tumor tissues. 16They play critical roles in immune regulation, tumor angiogenesis, tumor stem cell activation, tumor invasion and metastasis, and resistance to therapy. However, it is unclear how TAMs perform these functions. With the application of single-cell RNA sequencing (scRNA-seq), it has become possible to identify TAM subpopulations associated with distinct functions. In this review, we discuss four novel TAM subpopulations in distinct solid tumors based on core gene signatures by scRNA-seq, including FCN1 +, SPP1 +, C1Q + and CCL18 + TAMs. Functional enrichment and gene expression in scRNA-seq data from different solid tumor tissues found that FCN1 + TAMs may induce inflammation; SPP1 + TAMs are potentially involved in metastasis, angiogenesis, and cancer cell stem cell activation, whereas C1Q + TAMs participate in immune regulation and suppression; And CCL18 + cells are terminal immunosuppressive macrophages that not only have a stronger immunosuppressive function but also enhance tumor metastasis. SPP1 + and C1Q + TAM subpopulations can be further divided into distinct populations with different functions. Meanwhile, we will also present emerging evidence highlighting the separating macrophage subpopulations associated with distinct functions. However, there exist the potential disconnects between cell types and subpopulations identified by scRNA-seq and their actual function.
Collapse
Affiliation(s)
- Juanjuan Wang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Ningning Zhu
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Xiaomin Su
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Yunhuan Gao
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Affiliated Tianjin Union Medical Center of Nankai University, Nankai University, Tianjin, China
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
- State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China
| |
Collapse
|
47
|
Cao L, Liu M, Ma X, Rong P, Zhang J, Wang W. Comprehensive scRNA-seq Analysis and Identification of CD8_+T Cell Related Gene Markers for Predicting Prognosis and Drug Resistance of Hepatocellular Carcinoma. Curr Med Chem 2024; 31:2414-2430. [PMID: 37936457 DOI: 10.2174/0109298673274578231030065454] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2023] [Revised: 09/26/2023] [Accepted: 10/23/2023] [Indexed: 11/09/2023]
Abstract
BACKGROUND Tumor heterogeneity of immune infiltration of cells plays a decisive role in hepatocellular carcinoma (HCC) therapy response and prognosis. This study investigated the effect of different subtypes of CD8+T cells on the HCC tumor microenvironment about its prognosis. METHODS Single-cell RNA sequencing, transcriptome, and single-nucleotide variant data from LUAD patients were obtained based on the GEO, TCGA, and HCCD18 databases. CD8+ T cells-associated subtypes were identified by consensus clustering analysis, and genes with the highest correlation with prognostic CD8+ T cell subtypes were identified using WGCNA. The ssGSEA and ESTIMATE algorithms were used to calculate pathway enrichment scores and immune cell infiltration levels between different subtypes. Finally, the TIDE algorithm, CYT score, and tumor responsiveness score were utilized to predict patient response to immunotherapy. RESULTS We defined 3 CD8+T cell clusters (CD8_0, CD8_1, CD8_2) based on the scRNA- seq dataset (GSE149614). Among, CD8_2 was prognosis-related risk factor with HCC. We screened 30 prognosis genes from CD8_2, and identified 3 molecular subtypes (clust1, clust2, clust3). Clust1 had better survival outcomes, higher gene mutation, and enhanced immune infiltration. Furthermore, we identified a 12 genes signature (including CYP7A1, SPP1, MSC, CXCL8, CXCL1, GCNT3, TMEM45A, SPP2, ME1, TSPAN13, S100A9, and NQO1) with excellent prediction performance for HCC prognosis. In addition, High-score patients with higher immune infiltration benefited less from immunotherapy. The sensitivity of low-score patients to multiple drugs including Parthenolide and Shikonin was significantly higher than that of high-score patients. Moreover, high-score patients had increased oxidative stress pathways scores, and the RiskScore was closely associated with oxidative stress pathways scores. And the nomogram had good clinical utility. CONCLUSION To predict the survival outcome and immunotherapy response for HCC, we developed a 12-gene signature based on the heterogeneity of the CD8+ T cells.
Collapse
Affiliation(s)
- Lu Cao
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Postdoctoral Research Station of Special Medicine, The Third Xiangya Hospital, Changsha, 410005, China
| | - Muqi Liu
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Xiaoqian Ma
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Pengfei Rong
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Juan Zhang
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
| | - Wei Wang
- The Institute for Cell Transplantation and Gene Therapy, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
- Department of Radiology, the Third Xiangya Hospital, Central South University, Changsha, 410005, China
| |
Collapse
|
48
|
Zou Y, Tan X, Yuan G, Tang Y, Wang Y, Yang C, Luo S, Wu Z, Yao K. SPP1 is associated with adverse prognosis and predicts immunotherapy efficacy in penile cancer. Hum Genomics 2023; 17:116. [PMID: 38111044 PMCID: PMC10729401 DOI: 10.1186/s40246-023-00558-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Accepted: 11/22/2023] [Indexed: 12/20/2023] Open
Abstract
BACKGROUND The effect of SPP1 in squamous cell carcinoma of the penis (PSCC) remained unknown. We attempted to clarify the function of the SPP1 gene in PSCC. METHOD Eight paired penile cancer specimens (including penile cancer tissue, paracancerous tissue, and positive lymph node tissue) subjected to whole transcriptome sequencing were analysed to identify differentially expressed genes. We used immunohistochemistry to detect the expression of SPP1 protein and immune cell related proteins in penile cancer tissue. Then, we performed weighted gene coexpression network analysis (WGCNA) to identify the genes related to SPP1 in penile cancer tissue and positive lymph node tissue. Based on the GSE57955 dataset, the CIBERSORT and ssGSEA algorithms were carried out to investigate the immune environment of PSCC. GSVA analysis was conducted to identify the signaling pathways related to SPP1 subgroups. Enzyme-linked immunosorbent assay (ELISA) method was adopted to detect SPP1 level in the serum of 60 patients with penile cancer. RESULTS Differential analysis indicated that SPP1 was the most differentially upregulated gene in both penile cancer tissues and positive lymph node tissues. Survival analysis suggested that the prognosis of the low-SPP1 group was significantly poorer than that of the high-SPP1 group. Subsequently, immune-related bioinformatics showed that SPP1 was significantly associated with B cells, CD8 + T cells, CD4 + T cells, macrophages, helper T cells, neutrophils and dendritic cells. The immunohistochemical results showed that the high-SPP1 group was characterized by relatively high expression of CD16 and relatively low expression of CD4. GSVA analysis indicated that high-SPP1 group was significantly associated with immune-related pathways such as PD-L1 expression and the PD-1 checkpoint pathway in cancer and the TNF signaling pathway. ELISA demonstrated that the serum level of SPP1 in patients with positive lymph node metastasis of penile cancer was significantly higher than that in patients with negative lymph node metastasis of penile cancer. CONCLUSION Our study shows that the SPP1 gene might be an effective biomarker for predicting the prognosis and the efficacy of immunotherapy in PSCC patients.
Collapse
Affiliation(s)
- Yuantao Zou
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Xingliang Tan
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Gangjun Yuan
- Department of Urology Oncological Surgery, Chongqing University Cancer Hospital, Chongqing, 400030, China
- Chongqing Key Laboratory of Translational Research for Cancer Metastasis and Individualized Treatment, Chongqing University Cancer Hospital, Chongqing, 400030, China
| | - Yi Tang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Yanjun Wang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Cong Yang
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Sihao Luo
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China
| | - Zhiming Wu
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| | - Kai Yao
- Department of Urology, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in Southern China, Guangzhou, 510060, China.
- Collaborative Innovation Center of Cancer Medicine, Guangzhou, 510060, China.
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Guangzhou, 510060, China.
| |
Collapse
|
49
|
Zhang X, Yu C, Zhao S, Wang M, Shang L, Zhou J, Ma Y. The role of tumor-associated macrophages in hepatocellular carcinoma progression: A narrative review. Cancer Med 2023; 12:22109-22129. [PMID: 38098217 PMCID: PMC10757104 DOI: 10.1002/cam4.6717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Revised: 11/04/2023] [Accepted: 11/07/2023] [Indexed: 12/31/2023] Open
Abstract
Hepatocellular carcinoma (HCC) is one of the most common malignant tumors in the world, with complex etiology and mechanism, and a high mortality rate. Tumor-associated macrophages (TAMs) are an important part of the HCC tumor microenvironment. Studies in recent years have shown that TAMs are involved in multiple stages of HCC and are related to treatment and prognosis in HCC. The specific mechanisms between TAMs and HCC are gradually being revealed. This paper reviews recent advances in the mechanisms associated with TAMs in HCC, concentrating on an overview of effects of TAMs on drug resistance in HCC and the signaling pathways linked with HCC, providing clues for the treatment and prognosis determination of HCC.
Collapse
Affiliation(s)
- Xinyi Zhang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Chao Yu
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Siqi Zhao
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Min Wang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Longcheng Shang
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Jin Zhou
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| | - Yong Ma
- Department of General Surgery, Nanjing First HospitalNanjing Medical UniversityNanjingChina
| |
Collapse
|
50
|
He X, Li K, Wei R, Zuo M, Yao W, Zheng Z, He X, Fu Y, Li C, An C, Liu W. A multitask deep learning radiomics model for predicting the macrotrabecular-massive subtype and prognosis of hepatocellular carcinoma after hepatic arterial infusion chemotherapy. LA RADIOLOGIA MEDICA 2023; 128:1508-1520. [PMID: 37801197 PMCID: PMC10700409 DOI: 10.1007/s11547-023-01719-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2023] [Accepted: 09/01/2023] [Indexed: 10/07/2023]
Abstract
BACKGROUND The macrotrabecular-massive (MTM) is a special subtype of hepatocellular carcinoma (HCC), which has commonly a dismal prognosis. This study aimed to develop a multitask deep learning radiomics (MDLR) model for predicting MTM and HCC patients' prognosis after hepatic arterial infusion chemotherapy (HAIC). METHODS From June 2018 to March 2020, 158 eligible patients with HCC who underwent surgery were retrospectively enrolled in MTM related cohorts, and 752 HCC patients who underwent HAIC were included in HAIC related cohorts during the same period. DLR features were extracted from dual-phase (arterial phase and venous phase) contrast-enhanced computed tomography (CECT) of the entire liver region. Then, an MDLR model was used for the simultaneous prediction of the MTM subtype and patient prognosis after HAIC. The MDLR model for prognostic risk stratification incorporated DLR signatures, clinical variables and MTM subtype. FINDINGS The predictive performance of the DLR model for the MTM subtype was 0.968 in the training cohort [TC], 0.912 in the internal test cohort [ITC] and 0.773 in the external test cohort [ETC], respectively. Multivariable analysis identified portal vein tumor thrombus (PVTT) (p = 0.012), HAIC response (p < 0.001), HAIC sessions (p < 0.001) and MTM subtype (p < 0.001) as indicators of poor prognosis. After incorporating DLR signatures, the MDLR model yielded the best performance among all models (AUC, 0.855 in the TC, 0.805 in the ITC and 0.792 in the ETC). With these variables, the MDLR model provided two risk strata for overall survival (OS) in the TC: low risk (5-year OS, 44.9%) and high risk (5-year OS, 4.9%). INTERPRETATION A tool based on MDLR was developed to consider that the MTM is an important prognosis factor for HCC patients. MDLR showed outstanding performance for the prognostic risk stratification of HCC patients who underwent HAIC and may help physicians with therapeutic decision making and surveillance strategy selection in clinical practice.
Collapse
Affiliation(s)
- Xuelei He
- School of Information Sciences and Technology, Northwest University, Xi'an, 710127, Shaanxi Province, People's Republic of China
| | - Kai Li
- Department of Ultrasound, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Ran Wei
- Department of Interventional Radiology and Vascular Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Mengxuan Zuo
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651, Dongfeng East Road, Guangzhou, 510060, People's Republic of China
| | - Wang Yao
- Department of Interventional Radiology and Vascular Surgery, The Third Affiliated Hospital of Sun Yat-sen University, Guangzhou, 510080, Province Guangdong, People's Republic of China
| | - Zechen Zheng
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Xiaowei He
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China
| | - Yan Fu
- Department of Interventional Therapy, National Cancer Center/National Clinical, Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical, Sciences and Peking Union Medical College, Beijing, 100021, People's Republic of China
| | - Chengzhi Li
- Department of Interventional Radiology and Vascular Surgery, The First Affiliated Hospital of Jinan University, Guangzhou, 510060, People's Republic of China.
| | - Chao An
- Department of Minimal Invasive Intervention, Sun Yat-sen University Cancer Center; State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, 651, Dongfeng East Road, Guangzhou, 510060, People's Republic of China.
| | - Wendao Liu
- Department of Interventional Therapy, Guangdong Provincial Hospital of Chinese, Medicine and Guangdong Provincial Academy of Chinese Medical Sciences, No. 111 Dade Road, Guangzhou, 510080, Guangdong, People's Republic of China.
| |
Collapse
|