1
|
Bienentreu JF, Schock DM, Greer AL, Lesbarrères D. Ranavirus Amplification in Low-Diversity Amphibian Communities. Front Vet Sci 2022; 9:755426. [PMID: 35224079 PMCID: PMC8863596 DOI: 10.3389/fvets.2022.755426] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2021] [Accepted: 01/03/2022] [Indexed: 11/13/2022] Open
Abstract
In an era where emerging infectious diseases are a serious threat to biodiversity, epidemiological patterns need to be identified, particularly the complex mechanisms driving the dynamics of multi-host pathogens in natural communities. Many amphibian species have faced unprecedented population declines associated with diseases. Yet, specific processes shaping host-pathogen relationships within and among communities for amphibian pathogens such as ranaviruses (RV) remain poorly understood. To address this gap, we conducted a comprehensive study of RV in low-diversity amphibian communities in north-western Canada to assess the effects of biotic factors (species identity, species richness, abundance) and abiotic factors (conductivity, pH) on the pathogen prevalence and viral loads. Across 2 years and 18 sites, with communities of up to three hosts (wood frog, Rana sylvatica; boreal chorus frog, Pseudacris maculata; Canadian toad, Anaxyrus hemiophrys), we observed that RV prevalence nearly doubled with each additional species in a community, suggesting an amplification effect in aquatic, as well as terrestrial life-history stages. Infection intensity among infected wood frogs and boreal chorus frogs also significantly increased with an increase in species richness. Interestingly, we did not observe any effects of host abundance or abiotic factors, highlighting the importance of including host identity and species richness when investigating multi-host pathogens. Ultimately, only such a comprehensive approach can improve our understanding of complex and often highly context-dependent host-pathogen interactions.
Collapse
Affiliation(s)
- Joe-Felix Bienentreu
- Department of Biology, Laurentian University, Sudbury, ON, Canada
- *Correspondence: Joe-Felix Bienentreu
| | - Danna M. Schock
- Sciences and Environmental Technology, Keyano College, Fort McMurray, AB, Canada
| | - Amy L. Greer
- Department of Population Medicine, University of Guelph, Guelph, ON, Canada
| | | |
Collapse
|
2
|
Social group size influences pathogen transmission in salamanders. Behav Ecol Sociobiol 2021. [DOI: 10.1007/s00265-021-03057-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
3
|
Townsend AK, Hawley DM, Stephenson JF, Williams KEG. Emerging infectious disease and the challenges of social distancing in human and non-human animals. Proc Biol Sci 2020; 287:20201039. [PMID: 32781952 PMCID: PMC7575514 DOI: 10.1098/rspb.2020.1039] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Accepted: 07/20/2020] [Indexed: 12/17/2022] Open
Abstract
The 'social distancing' that occurred in response to the COVID-19 pandemic in humans provides a powerful illustration of the intimate relationship between infectious disease and social behaviour in animals. Indeed, directly transmitted pathogens have long been considered a major cost of group living in humans and other social animals, as well as a driver of the evolution of group size and social behaviour. As the risk and frequency of emerging infectious diseases rise, the ability of social taxa to respond appropriately to changing infectious disease pressures could mean the difference between persistence and extinction. Here, we examine changes in the social behaviour of humans and wildlife in response to infectious diseases and compare these responses to theoretical expectations. We consider constraints on altering social behaviour in the face of emerging diseases, including the lack of behavioural plasticity, environmental limitations and conflicting pressures from the many benefits of group living. We also explore the ways that social animals can minimize the costs of disease-induced changes to sociality and the unique advantages that humans may have in maintaining the benefits of sociality despite social distancing.
Collapse
Affiliation(s)
- Andrea K. Townsend
- Department of Biology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| | - Dana M. Hawley
- Department of Biological Sciences, Virginia Tech, 4036 Derring Hall (MC 0406), 926 West Campus Drive, Blacksburg, VA 24061, USA
| | - Jessica F. Stephenson
- Department of Biological Sciences, University of Pittsburgh, 403B Clapp Hall, 4249 Fifth Avenue, Pittsburgh, PA 15260, USA
| | - Keelah E. G. Williams
- Department of Psychology, Hamilton College, 198 College Hill Road, Clinton, NY 13323, USA
| |
Collapse
|
4
|
Bienentreu JF, Lesbarrères D. Amphibian Disease Ecology: Are We Just Scratching the Surface? HERPETOLOGICA 2020. [DOI: 10.1655/0018-0831-76.2.153] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Affiliation(s)
| | - David Lesbarrères
- Department of Biology, Laurentian University, Sudbury, ON P3E 2C6, Canada
| |
Collapse
|
5
|
Bradley PW, Brawner MD, Raffel TR, Rohr JR, Olson DH, Blaustein AR. Shifts in temperature influence how Batrachochytrium dendrobatidis infects amphibian larvae. PLoS One 2019; 14:e0222237. [PMID: 31536533 PMCID: PMC6752834 DOI: 10.1371/journal.pone.0222237] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2019] [Accepted: 08/23/2019] [Indexed: 11/18/2022] Open
Abstract
Many climate change models predict increases in frequency and magnitude of temperature fluctuations that might impact how ectotherms are affected by disease. Shifts in temperature might especially affect amphibians, a group with populations that have been challenged by several pathogens. Because amphibian hosts invest more in immunity at warmer than cooler temperatures and parasites might acclimate to temperature shifts faster than hosts (creating lags in optimal host immunity), researchers have hypothesized that a temperature shift from cold-to-warm might result in increased amphibian sensitivity to pathogens, whereas a shift from warm-to-cold might result in decreased sensitivity. Support for components of this climate-variability based hypothesis have been provided by prior studies of the fungus Batrachochytrium dendrobatidis (Bd) that causes the disease chytridiomycosis in amphibians. We experimentally tested whether temperature shifts before exposure to Batrachochytrium dendrobatidis (Bd) alters susceptibility to the disease chytridiomycosis in the larval stage of two amphibian species–western toads (Anaxyrus boreas) and northern red legged frogs (Rana aurora). Both host species harbored elevated Bd infection intensities under constant cold (15° C) temperature in comparison to constant warm (20° C) temperature. Additionally, both species experienced an increase in Bd infection abundance after shifted from 15° C to 20° C, compared to a constant 20° C but they experienced a decrease in Bd after shifted from 20° C to 15° C, compared to a constant 15° C. These results are in contrast to prior studies of adult amphibians highlighting the potential for species and stage differences in the temperature-dependence of chytridiomycosis.
Collapse
Affiliation(s)
- Paul W. Bradley
- Environmental Sciences Graduate Program, Oregon State University, Corvallis, Oregon, United States of America
- * E-mail:
| | - Michael D. Brawner
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| | - Thomas R. Raffel
- Department of Biology, Oakland University, Rochester, MI, United States of America
| | - Jason R. Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, United States of America
| | - Deanna H. Olson
- USDA Forest Service, Pacific Northwest Research Station, Corvallis, OR, United States of America
| | - Andrew R. Blaustein
- Department of Integrative Biology, Oregon State University, Corvallis, OR, United States of America
| |
Collapse
|
6
|
Sauer EL, Trejo N, Hoverman JT, Rohr JR. Behavioural fever reduces ranaviral infection in toads. Funct Ecol 2019; 33:2172-2179. [PMID: 33041425 DOI: 10.1111/1365-2435.13427] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
1. Host behaviour is known to influence disease dynamics. Additionally, hosts often change their behaviours in response to pathogen detection to resist and avoid disease. The capacity of wildlife populations to respond to pathogens using behavioural plasticity is critical for reducing the impacts of disease outbreaks. However, there is limited information regarding the ability of ectothermic vertebrates to resist diseases via behavioural plasticity. 2. Here, we experimentally examine the effect of host behaviour on ranaviral infections, which affect at least 175 species of ectothermic vertebrates. We placed metamorphic (temporal block 1) or adult (block 2) Southern toads (Anaxyrus terrestris) in thermal gradients, tested their temperature preferences before and after oral inoculation by measuring individual-level body temperature over time, and measured ranaviral loads of viral-exposed individuals. 3. We found significant individual-level variation in temperature preference and evidence for behavioural fever in both metamorph and adult A. terrestris during the first two days after exposure. Additionally, we found that individual-level change in temperature preference was negatively correlated with ranaviral load and a better predictor of load than average temperature preference or maximum temperature reached by an individual. In other words, an increase in baseline temperature preference was more important than simply reaching an absolute temperature. 4. These results suggest that behavioural fever is an effective mechanism for resisting ranaviral infections.
Collapse
Affiliation(s)
- Erin L Sauer
- Department of Integrative Biology, University of South Florida, Tampa, FL, U.S.A
| | - Nadia Trejo
- Department of Integrative Biology, University of South Florida, Tampa, FL, U.S.A
| | - Jason T Hoverman
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, U.S.A
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL, U.S.A
| |
Collapse
|
7
|
Hettyey A, Ujszegi J, Herczeg D, Holly D, Vörös J, Schmidt BR, Bosch J. Mitigating Disease Impacts in Amphibian Populations: Capitalizing on the Thermal Optimum Mismatch Between a Pathogen and Its Host. Front Ecol Evol 2019. [DOI: 10.3389/fevo.2019.00254] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Sauer EL, Fuller RC, Richards-Zawacki CL, Sonn J, Sperry JH, Rohr JR. Variation in individual temperature preferences, not behavioural fever, affects susceptibility to chytridiomycosis in amphibians. Proc Biol Sci 2018; 285:rspb.2018.1111. [PMID: 30135162 DOI: 10.1098/rspb.2018.1111] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2018] [Accepted: 07/27/2018] [Indexed: 11/12/2022] Open
Abstract
The ability of wildlife populations to mount rapid responses to novel pathogens will be critical for mitigating the impacts of disease outbreaks in a changing climate. Field studies have documented that amphibians preferring warmer temperatures are less likely to be infected with the fungal pathogen Batrachochytrium dendrobatidis (Bd). However, it is unclear whether this phenomenon is driven by behavioural fever or natural variation in thermal preference. Here, we placed frogs in thermal gradients, tested for temperature preferences and measured Bd growth, prevalence, and the survival of infected animals. Although there was significant individual- and species-level variation in temperature preferences, we found no consistent evidence of behavioural fever across five frog species. Interestingly, for species that preferred warmer temperatures, the preferred temperatures of individuals were negatively correlated with Bd growth on hosts, while the opposite correlation was true for species preferring cooler temperatures. Our results suggest that variation in thermal preference, but not behavioural fever, might shape the outcomes of Bd infections for individuals and populations, potentially resulting in selection for individual hosts and host species whose temperature preferences minimize Bd growth and enhance host survival during epidemics.
Collapse
Affiliation(s)
- Erin L Sauer
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| | - Rebecca C Fuller
- Department of Animal Biology, University of Illinois, Champaign, IL 61820, USA
| | | | - Julia Sonn
- Department of Ecology and Evolutionary Biology, Tulane University, New Orleans, LA 70118, USA
| | - Jinelle H Sperry
- US Army Engineer Research and Development Center, Champaign, IL 61826, USA
| | - Jason R Rohr
- Department of Integrative Biology, University of South Florida, Tampa, FL 33620, USA
| |
Collapse
|
9
|
Effects of Emerging Infectious Diseases on Amphibians: A Review of Experimental Studies. DIVERSITY-BASEL 2018. [DOI: 10.3390/d10030081] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Numerous factors are contributing to the loss of biodiversity. These include complex effects of multiple abiotic and biotic stressors that may drive population losses. These losses are especially illustrated by amphibians, whose populations are declining worldwide. The causes of amphibian population declines are multifaceted and context-dependent. One major factor affecting amphibian populations is emerging infectious disease. Several pathogens and their associated diseases are especially significant contributors to amphibian population declines. These include the fungi Batrachochytrium dendrobatidis and B. salamandrivorans, and ranaviruses. In this review, we assess the effects of these three pathogens on amphibian hosts as found through experimental studies. Such studies offer valuable insights to the causal factors underpinning broad patterns reported through observational studies. We summarize key findings from experimental studies in the laboratory, in mesocosms, and from the field. We also summarize experiments that explore the interactive effects of these pathogens with other contributors of amphibian population declines. Though well-designed experimental studies are critical for understanding the impacts of disease, inconsistencies in experimental methodologies limit our ability to form comparisons and conclusions. Studies of the three pathogens we focus on show that host susceptibility varies with such factors as species, host age, life history stage, population and biotic (e.g., presence of competitors, predators) and abiotic conditions (e.g., temperature, presence of contaminants), as well as the strain and dose of the pathogen, to which hosts are exposed. Our findings suggest the importance of implementing standard protocols and reporting for experimental studies of amphibian disease.
Collapse
|
10
|
Cenzer ML. Maladaptive Plasticity Masks the Effects of Natural Selection in the Red-Shouldered Soapberry Bug. Am Nat 2017; 190:521-533. [DOI: 10.1086/693456] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
11
|
Cohen JM, Venesky MD, Sauer EL, Civitello DJ, McMahon TA, Roznik EA, Rohr JR. The thermal mismatch hypothesis explains host susceptibility to an emerging infectious disease. Ecol Lett 2017; 20:184-193. [DOI: 10.1111/ele.12720] [Citation(s) in RCA: 138] [Impact Index Per Article: 17.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2016] [Revised: 10/06/2016] [Accepted: 11/17/2016] [Indexed: 01/15/2023]
Affiliation(s)
- Jeremy M. Cohen
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | - Erin L. Sauer
- Department of Integrative Biology University of South Florida Tampa FL USA
| | - David J. Civitello
- Department of Integrative Biology University of South Florida Tampa FL USA
| | | | | | - Jason R. Rohr
- Department of Integrative Biology University of South Florida Tampa FL USA
| |
Collapse
|
12
|
Courtois EA, Loyau A, Bourgoin M, Schmeller DS. Initiation of Batrachochytrium dendrobatidis
infection in the absence of physical contact with infected hosts - a field study in a high altitude lake. OIKOS 2016. [DOI: 10.1111/oik.03462] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023]
Affiliation(s)
- Elodie A. Courtois
- Laboratoire Ecologie, Evolution, Interactions des Systèmes Amazoniens (LEEISA); Univ. de Guyane; CNRS, IFREMER FR-97300 Cayenne France
- Dept of Biology; Univ. of Antwerp; Wilrijk Belgium
| | - Adeline Loyau
- Helmholtz Centre for Environmental Research - UFZ; Dept of Conservation Biology; Leipzig Germany
- EcoLab; Univ. de Toulouse; CNRS, INPT, UPS Toulouse France
| | - Mégane Bourgoin
- Station d'écologie expérimentale du CNRS à Moulis; Moulis France
| | - Dirk S. Schmeller
- Helmholtz Centre for Environmental Research - UFZ; Dept of Conservation Biology; Leipzig Germany
- EcoLab; Univ. de Toulouse; CNRS, INPT, UPS Toulouse France
| |
Collapse
|
13
|
Karavlan SA, Venesky MD. Thermoregulatory Behavior ofAnaxyrus americanusin Response to Infection withBatrachochytrium dendrobatidis. COPEIA 2016. [DOI: 10.1643/ch-15-299] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
14
|
Han BA, Kerby JL, Searle CL, Storfer A, Blaustein AR. Host species composition influences infection severity among amphibians in the absence of spillover transmission. Ecol Evol 2015; 5:1432-9. [PMID: 25897383 PMCID: PMC4395173 DOI: 10.1002/ece3.1385] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2014] [Revised: 12/02/2014] [Accepted: 12/03/2014] [Indexed: 11/23/2022] Open
Abstract
Wildlife epidemiological outcomes can depend strongly on the composition of an ecological community, particularly when multiple host species are affected by the same pathogen. However, the relationship between host species richness and disease risk can vary with community context and with the degree of spillover transmission that occurs among co-occurring host species. We examined the degree to which host species composition influences infection by Batrachochytrium dendrobatidis (Bd), a widespread fungal pathogen associated with amphibian population declines around the world, and whether transmission occurs from one highly susceptible host species to other co-occurring host species. By manipulating larval assemblages of three sympatric amphibian species in the laboratory, we characterized the relationship between host species richness and infection severity, whether infection mediates growth and survivorship differently across various combinations of host species, and whether Bd is transmitted from experimentally inoculated tadpoles to uninfected tadpoles. We found evidence of a dilution effect where Bd infection severity was dramatically reduced in the most susceptible of the three host species (Anaxyrus boreas). Infection also mediated survival and growth of all three host species such that the presence of multiple host species had both positive (e.g., infection reduction) and negative (e.g., mortality) effects on focal species. However, we found no evidence that Bd infection is transmitted by this species. While these results demonstrate that host species richness as well as species identity underpin infection dynamics in this system, dilution is not the product of reduced transmission via fewer infectious individuals of a susceptible host species. We discuss various mechanisms, including encounter reduction and antagonistic interactions such as competition and opportunistic cannibalism that may act in concert to mediate patterns of infection severity, growth, and mortality observed in multihost communities.
Collapse
Affiliation(s)
- Barbara A Han
- Cary Institute of Ecosystem Studies Millbrook, New York, 12545
| | - Jacob L Kerby
- Biology Department, University of South Dakota 414 E. Clark St., Vermillion, South Dakota, 57069
| | - Catherine L Searle
- Department of Ecology and Evolutionary Biology, University of Michigan Ann Arbor, Michigan, 48109
| | - Andrew Storfer
- School of Biological Sciences, Washington State University Pullman, Washington, 99164
| | - Andrew R Blaustein
- Department of Zoology, Oregon State University 3029 Cordley Hall, Corvallis, Oregon, 97331
| |
Collapse
|
15
|
Buck JC, Scholz KI, Rohr JR, Blaustein AR. Trophic dynamics in an aquatic community: interactions among primary producers, grazers, and a pathogenic fungus. Oecologia 2014; 178:239-48. [PMID: 25432573 DOI: 10.1007/s00442-014-3165-6] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2013] [Accepted: 11/14/2014] [Indexed: 10/24/2022]
Abstract
Free-living stages of parasites are consumed by a variety of predators, which might have important consequences for predators, parasites, and hosts. For example, zooplankton prey on the infectious stage of the amphibian chytrid fungus, Batrachochytrium dendrobatidis (Bd), a pathogen responsible for amphibian population declines and extinctions worldwide. Predation on parasites is predicted to influence community structure and function, and affect disease risk, but relatively few studies have explored its consequences empirically. We investigated interactions among Rana cascadae tadpoles, zooplankton, and Bd in a fully factorial experiment in outdoor mesocosms. We measured growth, development, survival, and infection of amphibians and took weekly measurements of the abundance of zooplankton, phytoplankton (suspended algae), and periphyton (attached algae). We hypothesized that zooplankton might have positive indirect effects on tadpoles by consuming Bd zoospores and by consuming phytoplankton, thus reducing the shading of a major tadpole resource, periphyton. We also hypothesized that zooplankton would have negative effects on tadpoles, mediated by competition for algal resources. Mixed-effects models, repeated-measures ANOVAs, and a structural equation model revealed that zooplankton significantly reduced phytoplankton but had no detectable effects on Bd or periphyton. Hence, the indirect positive effects of zooplankton on tadpoles were negligible when compared to the indirect negative effect mediated by competition for phytoplankton. We conclude that examination of host-pathogen dynamics within a community context may be necessary to elucidate complex community dynamics.
Collapse
Affiliation(s)
- Julia C Buck
- Department of Integrative Biology, Oregon State University, Corvallis, OR, 97331, USA,
| | | | | | | |
Collapse
|
16
|
Spitzen-Van Der Sluijs A, Martel A, Hallmann CA, Bosman W, Garner TWJ, Van Rooij P, Jooris R, Haesebrouck F, Pasmans F. Environmental determinants of recent endemism of Batrachochytrium dendrobatidis infections in amphibian assemblages in the absence of disease outbreaks. CONSERVATION BIOLOGY : THE JOURNAL OF THE SOCIETY FOR CONSERVATION BIOLOGY 2014; 28:1302-1311. [PMID: 24641583 DOI: 10.1111/cobi.12281] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2012] [Accepted: 12/24/2013] [Indexed: 06/03/2023]
Abstract
The inconsistent distribution of large-scale infection mediated die-offs and the subsequent population declines of several animal species, urges us to understand how, when, and why species are affected by disease. It is often unclear when or under what conditions a pathogen constitutes a threat to a host. Often, variation of environmental conditions plays a role. Globally Batrachochytrium dendrobatidis (Bd) causes amphibian declines; however, host responses are inconsistent and this fungus appears equally capable of reaching a state of endemism and subsequent co-existence with native amphibian assemblages. We sought to identify environmental and temporal factors that facilitate host-pathogen coexistence in northern Europe. To do this, we used molecular diagnostics to examine archived and wild amphibians for infection and general linear mixed models to explore relationships between environmental variables and prevalence of infection in 5 well-sampled amphibian species. We first detected infection in archived animals collected in 1999, and infection was ubiquitous, but rare, throughout the study period (2008-2010). Prevalence of infection exhibited significant annual fluctuations. Despite extremely rare cases of lethal chytridiomycosis in A. obstetricans, Bd prevalence was uncorrelated with this species' population growth. Our results suggest context dependent and species-specific host susceptibility. Thus, we believe recent endemism of Bd coincides with environmentally driven Bd prevalence fluctuations that preclude the build-up of Bd infection beyond the critical threshold for large-scale mortality and host population crashes.
Collapse
Affiliation(s)
- Annemarieke Spitzen-Van Der Sluijs
- Reptile, Amphibian & Fish Conservation Netherlands (RAVON), P.O. Box 1413, 6501, BK Nijmegen, the Netherlands; Faculty of Veterinary Medicine, Department of Pathology, Bacteriology and Avian Diseases, Ghent University, Salisburylaan 133, B9820 Merelbeke, Belgium.
| | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Murray KA, Skerratt LF, Garland S, Kriticos D, McCallum H. Whether the weather drives patterns of endemic amphibian chytridiomycosis: a pathogen proliferation approach. PLoS One 2013; 8:e61061. [PMID: 23613783 PMCID: PMC3629077 DOI: 10.1371/journal.pone.0061061] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/09/2012] [Accepted: 03/05/2013] [Indexed: 12/29/2022] Open
Abstract
The pandemic amphibian disease chytridiomycosis often exhibits strong seasonality in both prevalence and disease-associated mortality once it becomes endemic. One hypothesis that could explain this temporal pattern is that simple weather-driven pathogen proliferation (population growth) is a major driver of chytridiomycosis disease dynamics. Despite various elaborations of this hypothesis in the literature for explaining amphibian declines (e.g., the chytrid thermal-optimum hypothesis) it has not been formally tested on infection patterns in the wild. In this study we developed a simple process-based model to simulate the growth of the pathogen Batrachochytrium dendrobatidis (Bd) under varying weather conditions to provide an a priori test of a weather-linked pathogen proliferation hypothesis for endemic chytridiomycosis. We found strong support for several predictions of the proliferation hypothesis when applied to our model species, Litoria pearsoniana, sampled across multiple sites and years: the weather-driven simulations of pathogen growth potential (represented as a growth index in the 30 days prior to sampling; GI30) were positively related to both the prevalence and intensity of Bd infections, which were themselves strongly and positively correlated. In addition, a machine-learning classifier achieved ∼72% success in classifying positive qPCR results when utilising just three informative predictors 1) GI30, 2) frog body size and 3) rain on the day of sampling. Hence, while intrinsic traits of the individuals sampled (species, size, sex) and nuisance sampling variables (rainfall when sampling) influenced infection patterns obtained when sampling via qPCR, our results also strongly suggest that weather-linked pathogen proliferation plays a key role in the infection dynamics of endemic chytridiomycosis in our study system. Predictive applications of the model include surveillance design, outbreak preparedness and response, climate change scenario modelling and the interpretation of historical patterns of amphibian decline.
Collapse
Affiliation(s)
- Kris A Murray
- EcoHealth Alliance, New York, New York, United States of America.
| | | | | | | | | |
Collapse
|
18
|
Blaustein AR, Gervasi SS, Johnson PTJ, Hoverman JT, Belden LK, Bradley PW, Xie GY. Ecophysiology meets conservation: understanding the role of disease in amphibian population declines. Philos Trans R Soc Lond B Biol Sci 2012; 367:1688-707. [PMID: 22566676 DOI: 10.1098/rstb.2012.0011] [Citation(s) in RCA: 113] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2023] Open
Abstract
Infectious diseases are intimately associated with the dynamics of biodiversity. However, the role that infectious disease plays within ecological communities is complex. The complex effects of infectious disease at the scale of communities and ecosystems are driven by the interaction between host and pathogen. Whether or not a given host-pathogen interaction results in progression from infection to disease is largely dependent on the physiological characteristics of the host within the context of the external environment. Here, we highlight the importance of understanding the outcome of infection and disease in the context of host ecophysiology using amphibians as a model system. Amphibians are ideal for such a discussion because many of their populations are experiencing declines and extinctions, with disease as an important factor implicated in many declines and extinctions. Exposure to pathogens and the host's responses to infection can be influenced by many factors related to physiology such as host life history, immunology, endocrinology, resource acquisition, behaviour and changing climates. In our review, we discuss the relationship between disease and biodiversity. We highlight the dynamics of three amphibian host-pathogen systems that induce different effects on hosts and life stages and illustrate the complexity of amphibian-host-parasite systems. We then review links between environmental stress, endocrine-immune interactions, disease and climate change.
Collapse
Affiliation(s)
- Andrew R Blaustein
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA.
| | | | | | | | | | | | | |
Collapse
|
19
|
Forrest MJ, Schlaepfer MA. Nothing a hot bath won't cure: infection rates of amphibian chytrid fungus correlate negatively with water temperature under natural field settings. PLoS One 2011; 6:e28444. [PMID: 22205950 PMCID: PMC3244395 DOI: 10.1371/journal.pone.0028444] [Citation(s) in RCA: 68] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2011] [Accepted: 11/08/2011] [Indexed: 11/18/2022] Open
Abstract
Dramatic declines and extinctions of amphibian populations throughout the world have been associated with chytridiomycosis, an infectious disease caused by the pathogenic chytrid fungus Batrachochytrium dendrobatidis (Bd). Previous studies indicated that Bd prevalence correlates with cooler temperatures in the field, and laboratory experiments have demonstrated that Bd ceases growth at temperatures above 28°C. Here we investigate how small-scale variations in water temperature correlate with Bd prevalence in the wild. We sampled 221 amphibians, including 201 lowland leopard frogs (Rana [Lithobates] yavapaiensis), from 12 sites in Arizona, USA, and tested them for Bd. Amphibians were encountered in microhabitats that exhibited a wide range of water temperatures (10-50°C), including several geothermal water sources. There was a strong inverse correlation between the water temperature in which lowland leopard frogs were captured and Bd prevalence, even after taking into account the influence of year, season, and host size. In locations where Bd was known to be present, the prevalence of Bd infections dropped from 75-100% in water <15°C, to less than 10% in water >30°C. A strong inverse correlation between Bd infection status and water temperature was also observed within sites. Our findings suggest that microhabitats where water temperatures exceed 30°C provide lowland leopard frogs with significant protection from Bd, which could have important implications for disease dynamics, as well as management applications.There must be quite a few things a hot bath won't cure, but I don't know many of them--Sylvia Plath, "The Bell Jar" (1963).
Collapse
Affiliation(s)
- Matthew J Forrest
- Center for Marine Biodiversity and Conservation, Scripps Institution of Oceanography, La Jolla, California, United States of America.
| | | |
Collapse
|
20
|
Venesky MD, Kerby JL, Storfer A, Parris MJ. Can differences in host behavior drive patterns of disease prevalence in tadpoles? PLoS One 2011; 6:e24991. [PMID: 21949824 PMCID: PMC3174251 DOI: 10.1371/journal.pone.0024991] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2011] [Accepted: 08/22/2011] [Indexed: 11/23/2022] Open
Abstract
Differences in host behavior and resistance to disease can influence the outcome of host-pathogen interactions. We capitalized on the variation in aggregation behavior of Fowler's toads (Anaxyrus [ = Bufo] fowleri) and grey treefrogs (Hyla versicolor) tadpoles and tested for differences in transmission of Batrachochytrium dendrobatidis (Bd) and host-specific fitness consequences (i.e., life history traits that imply fitness) of infection in single-species amphibian mesocosms. On average, A. fowleri mesocosms supported higher Bd prevalences and infection intensities relative to H. versicolor mesocosms. Higher Bd prevalence in A. fowleri mesocosms may result, in part, from higher intraspecific transmission due to the aggregation of tadpoles raised in Bd treatments. We also found that, independent of species, tadpoles raised in the presence of Bd were smaller and less developed than tadpoles raised in disease-free conditions. Our results indicate that aggregation behavior might increase Bd prevalence and that A. fowleri tadpoles carry heavier infections relative to H. versicolor tadpoles. However, our results demonstrate that Bd appears to negatively impact larval growth and developmental rates of A. fowleri and H. versicolor similarly, even in the absence of high Bd prevalence.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biological Sciences, University of Memphis, Memphis, Tennessee, United States of America.
| | | | | | | |
Collapse
|
21
|
Hawley DM, Etienne RS, Ezenwa VO, Jolles AE. Does Animal Behavior Underlie Covariation Between Hosts’ Exposure to Infectious Agents and Susceptibility to Infection? Implications for Disease Dynamics. Integr Comp Biol 2011; 51:528-39. [DOI: 10.1093/icb/icr062] [Citation(s) in RCA: 91] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022] Open
|
22
|
Blaustein AR, Han BA, Relyea RA, Johnson PT, Buck JC, Gervasi SS, Kats LB. The complexity of amphibian population declines: understanding the role of cofactors in driving amphibian losses. Ann N Y Acad Sci 2011; 1223:108-19. [DOI: 10.1111/j.1749-6632.2010.05909.x] [Citation(s) in RCA: 201] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
|
23
|
Sih A, Ferrari MCO, Harris DJ. Evolution and behavioural responses to human-induced rapid environmental change. Evol Appl 2011; 4:367-87. [PMID: 25567979 PMCID: PMC3352552 DOI: 10.1111/j.1752-4571.2010.00166.x] [Citation(s) in RCA: 676] [Impact Index Per Article: 48.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2010] [Accepted: 10/03/2010] [Indexed: 11/30/2022] Open
Abstract
Almost all organisms live in environments that have been altered, to some degree, by human activities. Because behaviour mediates interactions between an individual and its environment, the ability of organisms to behave appropriately under these new conditions is crucial for determining their immediate success or failure in these modified environments. While hundreds of species are suffering dramatically from these environmental changes, others, such as urbanized and pest species, are doing better than ever. Our goal is to provide insights into explaining such variation. We first summarize the responses of some species to novel situations, including novel risks and resources, habitat loss/fragmentation, pollutants and climate change. Using a sensory ecology approach, we present a mechanistic framework for predicting variation in behavioural responses to environmental change, drawing from models of decision-making processes and an understanding of the selective background against which they evolved. Where immediate behavioural responses are inadequate, learning or evolutionary adaptation may prove useful, although these mechanisms are also constrained by evolutionary history. Although predicting the responses of species to environmental change is difficult, we highlight the need for a better understanding of the role of evolutionary history in shaping individuals' responses to their environment and provide suggestion for future work.
Collapse
Affiliation(s)
- Andrew Sih
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - Maud C O Ferrari
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| | - David J Harris
- Department of Environmental Science and Policy, University of California Davis, CA, USA
| |
Collapse
|
24
|
Han BA, Searle CL, Blaustein AR. Effects of an infectious fungus, Batrachochytrium dendrobatidis, on amphibian predator-prey interactions. PLoS One 2011; 6:e16675. [PMID: 21311771 PMCID: PMC3032789 DOI: 10.1371/journal.pone.0016675] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2010] [Accepted: 12/24/2010] [Indexed: 11/18/2022] Open
Abstract
The effects of parasites and pathogens on host behaviors may be particularly important in predator-prey contexts, since few animal behaviors are more crucial for ensuring immediate survival than the avoidance of lethal predators in nature. We examined the effects of an emerging fungal pathogen of amphibians, Batrachochytrium dendrobatidis, on anti-predator behaviors of tadpoles of four frog species. We also investigated whether amphibian predators consumed infected prey, and whether B. dendrobatidis caused differences in predation rates among prey in laboratory feeding trials. We found differences in anti-predator behaviors among larvae of four amphibian species, and show that infected tadpoles of one species (Anaxyrus boreas) were more active and sought refuge more frequently when exposed to predator chemical cues. Salamander predators consumed infected and uninfected tadpoles of three other prey species at similar rates in feeding trials, and predation risk among prey was unaffected by B. dendrobatidis. Collectively, our results show that even sub-lethal exposure to B. dendrobatidis can alter fundamental anti-predator behaviors in some amphibian prey species, and suggest the unexplored possibility that indiscriminate predation between infected and uninfected prey (i.e., non-selective predation) could increase the prevalence of this widely distributed pathogen in amphibian populations. Because one of the most prominent types of predators in many amphibian systems is salamanders, and because salamanders are susceptible to B. dendrobatidis, our work suggests the importance of considering host susceptibility and behavioral changes that could arise from infection in both predators and prey.
Collapse
Affiliation(s)
- Barbara A Han
- Odum School of Ecology, University of Georgia, Athens, Georgia, United States of America.
| | | | | |
Collapse
|
25
|
Venesky MD, Wassersug RJ, Parris MJ. Fungal pathogen changes the feeding kinematics of larval anurans. J Parasitol 2010; 96:552-7. [PMID: 20557202 DOI: 10.1645/ge-2353.1] [Citation(s) in RCA: 28] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
Pathogens can alter host life-history traits by affecting host feeding activities. In anuran tadpoles, keratinized mouthparts (teeth and jaw sheaths) are essential for feeding. Batrachochytrium dendrobatidis ( Bd ) is a pathogenic fungus of amphibians that can infect these mouthparts and reduce tadpole survival. However, the precise way that Bd-induced changes in tadpole mouthparts impact tadpole feeding is unknown. We use high-speed (500 frames/sec) videography to study how Bd-induced mouthpart deformities affect the feeding kinematics of Fowler's toad (Anaxyrus [= Bufo] fowleri ) and grey tree frog (Hyla chrysoscelis) tadpoles. We tested for species-specific patterns of Bd-induced mouthpart deformities to assess how deformations to specific areas of tadpole mouthparts alter feeding kinematics. The teeth of tadpoles from the Bd-exposed treatment slipped off of surfaces on which tadpoles graze and were in contact with an algal-covered substratum for a shorter duration in each gape cycle compared to teeth of control tadpoles. We also found that the jaw sheaths had significantly more deformations than labial teeth; however, how this relates to feeding kinematics is unclear. Our data show explicitly how Bd infection reduces foraging efficiency of anuran tadpoles by altering feeding kinematics and elucidate a mechanistic link between the pathogen infection and reduced host fitness.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | |
Collapse
|
26
|
Venesky MD, Wassersug RJ, Parris MJ. How does a change in labial tooth row number affect feeding kinematics and foraging performance of a ranid tadpole (Lithobates sphenocephalus)? THE BIOLOGICAL BULLETIN 2010; 218:160-168. [PMID: 20413792 DOI: 10.1086/bblv218n2p160] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2023]
Abstract
Recent studies have explored feeding kinematics in tadpoles with intact labial teeth; however, it is unknown how missing teeth impacts foraging. We explored the impact of missing labial teeth on the feeding mechanics and foraging performance of Southern leopard frog (Lithobates sphenocephalus [= Rana sphenocephala]) tadpoles by controlling the pattern of labial tooth loss; that is, by surgically removing one row of labial teeth. We then used high-speed (500 frames/second) videography to test the hypothesis that tooth loss reduces the time that tadpoles attach to and graze upon an algal-covered substrate. We next conducted trials of foraging efficiency and foraging activity to test the hypothesis that tadpoles with fewer teeth forage less effectively than control tadpoles. The teeth of tadpoles from the surgery treatment slipped while closing and were in contact with an algal-covered substrate for a shorter duration compared to control tadpoles. Surprisingly, tadpoles with missing labial teeth obtained similar amounts of food and were as active as tadpoles with intact mouthparts. However, tadpoles with missing teeth completed about 25% more gape cycles per unit time than control tadpoles. Our data suggest that tadpoles with missing teeth compensate for inferior feeding kinematics during mouth closing in each gape cycle by increasing the number of gape cycles per unit time.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, University of Memphis, Memphis, Tennessee 38152, USA.
| | | | | |
Collapse
|
27
|
Kiesecker JM. Global stressors and the global decline of amphibians: tipping the stress immunocompetency axis. Ecol Res 2010; 26:897-908. [PMID: 32214651 PMCID: PMC7088592 DOI: 10.1007/s11284-010-0702-6] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2009] [Accepted: 02/01/2010] [Indexed: 10/27/2022]
Abstract
There is a widespread consensus that the earth is experiencing a mass extinction event and at the forefront are amphibians, the most threatened of all vertebrate taxa. A recent assessment found that nearly one-third (32%, 1,856 species) of the world's amphibian species are threatened. Amphibians have existed on the earth for over 300 million years, yet in just the last two decades there have been an alarming number of extinctions, nearly 168 species are believed to have gone extinct and at least 2,469 (43%) more have populations that are declining. Infectious diseases have been recognized as one major cause of worldwide amphibian population declines. This could be the result of the appearance of novel pathogens, or it could be that exposure to environmental stressors is increasing the susceptibility of amphibians to opportunistic pathogens. Here I review the potential effects of stressors on disease susceptibility in amphibians and relate this to disease emergence in human and other wildlife populations. I will present a series of case studies that illustrate the role of stress in disease outbreaks that have resulted in amphibian declines. First, I will examine how elevated sea-surface temperatures in the tropical Pacific since the mid-1970s have affected climate over much of the world and could be setting the stage for pathogen-mediated amphibian declines in many regions. Finally, I will discuss how the apparently rapid increase in the prevalence of amphibian limb deformities is linked to the synergistic effects of trematode infection and exposure to chemical contaminants.
Collapse
Affiliation(s)
- Joseph M. Kiesecker
- North America Conservation Region, The Nature Conservancy, 117 E Mountain, Suite 201, Fort Collins, CO 80524 USA
| |
Collapse
|
28
|
Venesky MD, Parris MJ, Storfer A. Impacts of Batrachochytrium dendrobatidis infection on tadpole foraging performance. ECOHEALTH 2009; 6:565-575. [PMID: 20135192 DOI: 10.1007/s10393-009-0272-7] [Citation(s) in RCA: 69] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2009] [Revised: 11/17/2009] [Accepted: 11/22/2009] [Indexed: 05/28/2023]
Abstract
Pathogen-induced modifications in host behavior, including alterations in foraging behavior or foraging efficiency, can compromise host fitness by reducing growth and development. Chytridiomycosis is an infectious disease of amphibians caused by the fungus Batrachochytrium dendrobatidis (Bd), and it has played an important role in the worldwide decline of amphibians. In larval anurans, Bd infections commonly result in reduced developmental rates, however, the mechanism(s) responsible are untested. We conducted laboratory experiments to test whether Bd infections reduced foraging performance of Grey Treefrog (Hyla chrysoscelis) and Fowler's Toad (Anaxyrus [= Bufo] fowleri) tadpoles. In the first experiment, we observed foraging behavior of Bd-infected and uninfected tadpoles to test for differences in foraging activity. In a second experiment, we tested for differences in the ingestion rates of tadpoles by examining the amount of food in their alimentary track after a 3-hour foraging period. We hypothesized that Bd-infected tadpoles would forage less often and less efficiently than uninfected tadpoles. As predicted, Bd-infected larvae forage less often and were less efficient at obtaining food than uninfected larvae. Our results show that Bd infections reduce foraging efficiency in Anaxyrus and Hyla tadpoles, and that Bd differentially affects foraging behavior in these species. Thus, our results provide a potential mechanism of decreased developmental rates of Bd-infected tadpoles.
Collapse
Affiliation(s)
- Matthew D Venesky
- Department of Biology, University of Memphis, Memphis, TN 38152, USA.
| | | | | |
Collapse
|
29
|
Blaustein AR, Alford RA, Harris RN. The value of well-designed experiments in studying diseases with special reference to amphibians. ECOHEALTH 2009; 6:373-377. [PMID: 20039096 DOI: 10.1007/s10393-009-0266-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2009] [Revised: 05/29/2009] [Accepted: 09/07/2009] [Indexed: 05/28/2023]
Abstract
Relatively few studies of amphibian diseases have employed standard ecological experimental designs. We discuss what constitutes a well-designed ecological experiment and encourage their use in disease studies. We illustrate how well-designed experiments can be used to determine the effects of pathogens on amphibians and we illustrate how ancillary information, including that collected using molecular tools, can be used to enhance the value of such experiments.
Collapse
Affiliation(s)
- Andrew R Blaustein
- Department of Zoology, Oregon State University, 3029 Cordley Hall, Corvallis, OR 97331-2914, USA.
| | | | | |
Collapse
|
30
|
Searle CL, Belden LK, Bancroft BA, Han BA, Biga LM, Blaustein AR. Experimental examination of the effects of ultraviolet-B radiation in combination with other stressors on frog larvae. Oecologia 2009; 162:237-45. [PMID: 19727829 DOI: 10.1007/s00442-009-1440-8] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2009] [Accepted: 08/05/2009] [Indexed: 11/26/2022]
Abstract
Ultraviolet-B radiation (UVB) is a ubiquitous stressor with negative effects on many aquatic organisms. In amphibians, ambient levels of UVB can result in impaired growth, slowed development, malformations, altered behavior and mortality. UVB can also interact with other environmental stressors to amplify these negative effects on individuals. In outdoor mesocosm and laboratory experiments we studied potential synergistic effects of UVB, a pathogenic fungus, Batrachochytrium dendrobatidis (Bd), and varying temperatures on larval Cascades frogs (Rana cascadae). First, we compared survivorship, growth and development in two mesocosm experiments with UVB- and Bd-exposure treatments. We then investigated the effects of UVB on larvae in the laboratory under two temperature regimes, monitoring survival and behavior. We found reduced survival of R. cascadae larvae with exposure to UVB radiation in all experiments. In the mesocosm experiments, growth and development were not affected in either treatment, and no effect of Bd was found. In the laboratory experiment, larvae exposed to UVB demonstrated decreased activity levels. We also found a trend towards reduced survival when UVB and cold temperatures were combined. Our results show that amphibian larvae can suffer both lethal and sublethal effects when exposed to UVB radiation.
Collapse
|