1
|
Poulin BA, Tate MT, Janssen SE, Aiken GR, Krabbenhoft DP. A comprehensive sulfate and DOM framework to assess methylmercury formation and risk in subtropical wetlands. Nat Commun 2025; 16:4253. [PMID: 40335456 PMCID: PMC12058987 DOI: 10.1038/s41467-025-59581-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 04/28/2025] [Indexed: 05/09/2025] Open
Abstract
Wetlands play a vital role in contaminant cycling and uptake. Understanding how sulfate (SO42‒) influences the conversion of inorganic mercury (Hg(II)) to toxic methylmercury (MeHg) is critical for predicting wetland responses to land use and climate change. Here, we sampled surface and pore waters across SO42‒ gradients in three freshwater Everglades wetlands to assess linkages between SO42‒, MeHg, dissolved organic matter (DOM), and inorganic sulfide (S(‒II)). Increasing SO42‒ concentrations increase S(‒II) and DOM concentrations and DOM aromaticity. MeHg concentration show a unimodal response to surface water SO42‒, which reflect high Hg(II) methylation at low-to-intermediate SO42‒concentration (2-12 mg/L) and low Hg(II) methylation at higher SO42‒concentrations ( > 12 mg/L). MeHg concentrations in surface waters correlate positively with MeHg concentrations in prey fish. The coherent biogeochemical relationships between SO42‒ and MeHg concentrations and biologic uptake improve MeHg risk assessment for aquatic food webs and are globally relevant due to anthropogenic and climate-driven increases in SO42‒.
Collapse
Affiliation(s)
- Brett A Poulin
- Department of Environmental Toxicology, University of California Davis, Davis, CA, USA.
| | - Michael T Tate
- U.S. Geological Survey, Mercury Research Laboratory, Madison, WI, USA
| | - Sarah E Janssen
- U.S. Geological Survey, Mercury Research Laboratory, Madison, WI, USA
| | - George R Aiken
- U.S. Geological Survey, Water Mission Area, Boulder, CO, USA
| | | |
Collapse
|
2
|
Evers DC, Ackerman JT, Åkerblom S, Bally D, Basu N, Bishop K, Bodin N, Braaten HFV, Burton MEH, Bustamante P, Chen C, Chételat J, Christian L, Dietz R, Drevnick P, Eagles-Smith C, Fernandez LE, Hammerschlag N, Harmelin-Vivien M, Harte A, Krümmel EM, Brito JL, Medina G, Barrios Rodriguez CA, Stenhouse I, Sunderland E, Takeuchi A, Tear T, Vega C, Wilson S, Wu P. Global mercury concentrations in biota: their use as a basis for a global biomonitoring framework. ECOTOXICOLOGY (LONDON, ENGLAND) 2024; 33:325-396. [PMID: 38683471 PMCID: PMC11213816 DOI: 10.1007/s10646-024-02747-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 03/06/2024] [Indexed: 05/01/2024]
Abstract
An important provision of the Minamata Convention on Mercury is to monitor and evaluate the effectiveness of the adopted measures and its implementation. Here, we describe for the first time currently available biotic mercury (Hg) data on a global scale to improve the understanding of global efforts to reduce the impact of Hg pollution on people and the environment. Data from the peer-reviewed literature were compiled in the Global Biotic Mercury Synthesis (GBMS) database (>550,000 data points). These data provide a foundation for establishing a biomonitoring framework needed to track Hg concentrations in biota globally. We describe Hg exposure in the taxa identified by the Minamata Convention: fish, sea turtles, birds, and marine mammals. Based on the GBMS database, Hg concentrations are presented at relevant geographic scales for continents and oceanic basins. We identify some effective regional templates for monitoring methylmercury (MeHg) availability in the environment, but overall illustrate that there is a general lack of regional biomonitoring initiatives around the world, especially in Africa, Australia, Indo-Pacific, Middle East, and South Atlantic and Pacific Oceans. Temporal trend data for Hg in biota are generally limited. Ecologically sensitive sites (where biota have above average MeHg tissue concentrations) have been identified throughout the world. Efforts to model and quantify ecosystem sensitivity locally, regionally, and globally could help establish effective and efficient biomonitoring programs. We present a framework for a global Hg biomonitoring network that includes a three-step continental and oceanic approach to integrate existing biomonitoring efforts and prioritize filling regional data gaps linked with key Hg sources. We describe a standardized approach that builds on an evidence-based evaluation to assess the Minamata Convention's progress to reduce the impact of global Hg pollution on people and the environment.
Collapse
Affiliation(s)
- David C Evers
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA.
| | - Joshua T Ackerman
- U.S. Geological Survey, Western Ecological Research Center, Dixon Field Station, 800 Business Park Drive, Suite D, Dixon, CA, 95620, USA
| | | | - Dominique Bally
- African Center for Environmental Health, BP 826 Cidex 03, Abidjan, Côte d'Ivoire
| | - Nil Basu
- Faculty of Agricultural and Environmental Sciences, McGill University, Montreal, QC, Canada
| | - Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Upsalla, Sweden
| | - Nathalie Bodin
- Research Institute for Sustainable Development Seychelles Fishing Authority, Victoria, Seychelles
| | | | - Mark E H Burton
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Paco Bustamante
- Littoral, Environnement et Sociétés (LIENSs), UMR 7266 CNRS La Rochelle Université, 2 Rue Olympe de Gouges, 17000, La Rochelle, France
| | - Celia Chen
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| | - John Chételat
- Environment and Cliamte Change Canada, National Wildlife Research Centre, Ottawa, ON, K1S 5B6, Canada
| | - Linroy Christian
- Department of Analytical Services, Dunbars, Friars Hill, St John, Antigua and Barbuda
| | - Rune Dietz
- Department of Ecoscience, Aarhus University, Arctic Research Centre (ARC), Department of Ecoscience, P.O. Box 358, DK-4000, Roskilde, Denmark
| | - Paul Drevnick
- Teck American Incorporated, 2500 University Drive NW, Calgary, AB, T2N 1N4, Canada
| | - Collin Eagles-Smith
- U.S. Geological Survey, Forest and Rangeland Ecosystem Science Center, 3200 SW Jefferson Way, Corvallis, OR, 97331, USA
| | - Luis E Fernandez
- Sabin Center for Environment and Sustainability and Department of Biology, Wake Forest University, Winston-Salem, NC, 29106, USA
- Centro de Innovación Científica Amazonica (CINCIA), Puerto Maldonado, Madre de Dios, Peru
| | - Neil Hammerschlag
- Shark Research Foundation Inc, 29 Wideview Lane, Boutiliers Point, NS, B3Z 0M9, Canada
| | - Mireille Harmelin-Vivien
- Aix-Marseille Université, Université de Toulon, CNRS/INSU/IRD, Institut Méditerranéen d'Océanologie (MIO), UM 110, Campus de Luminy, case 901, 13288, Marseille, cedex 09, France
| | - Agustin Harte
- Basel, Rotterdam and Stockholm Conventions Secretariat, United Nations Environment Programme (UNEP), Chem. des Anémones 15, 1219, Vernier, Geneva, Switzerland
| | - Eva M Krümmel
- Inuit Circumpolar Council-Canada, Ottawa, Canada and ScienTissiME Inc, Barry's Bay, ON, Canada
| | - José Lailson Brito
- Universidade do Estado do Rio de Janeiro, Rua Sao Francisco Xavier, 524, Sala 4002, CEP 20550-013, Maracana, Rio de Janeiro, RJ, Brazil
| | - Gabriela Medina
- Director of Basel Convention Coordinating Centre, Stockholm Convention Regional Centre for Latin America and the Caribbean, Hosted by the Ministry of Environment, Montevideo, Uruguay
| | | | - Iain Stenhouse
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Elsie Sunderland
- Harvard University, Pierce Hall 127, 29 Oxford Street, Cambridge, MA, 02138, USA
| | - Akinori Takeuchi
- National Institute for Environmental Studies, Health and Environmental Risk Division, 16-2 Onogawa Tsukuba, Ibaraki, 305-8506, Japan
| | - Tim Tear
- Biodiversity Research Institute, 276 Canco Road, Portland, ME, 04103, USA
| | - Claudia Vega
- Centro de Innovaccion Cientifica Amazonica (CINCIA), Jiron Ucayali 750, Puerto Maldonado, Madre de Dios, 17001, Peru
| | - Simon Wilson
- Arctic Monitoring and Assessment Programme (AMAP) Secretariat, N-9296, Tromsø, Norway
| | - Pianpian Wu
- Department of Biological Sciences, Dartmouth College, Hanover, NH, 03755, USA
| |
Collapse
|
3
|
Janiga M, Janiga M, Pitoňáková T. Differential accumulation of metals in the lacustrine and fluvial Alpine bullheads (Cottus poecilopus) and recovery of fish from metal contamination after a flash flood. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:17387-17400. [PMID: 38340297 PMCID: PMC10894169 DOI: 10.1007/s11356-024-32288-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Accepted: 01/27/2024] [Indexed: 02/12/2024]
Abstract
The spatiotemporal distribution and transport of mercury, zinc, molybdenum, rubidium, and strontium from alpine terrestrial ecosystems to alpine lake and mountain stream populations of Cottus poecilopus were investigated. Metals were measured for 66 wild fish collected from different lakes and Javorinka stream across. Mercury was measured in the pectoral fins, other elements in the skull. Bullheads contained more metals in the alpine lakes than in the mountain stream. In particular, mercury and zinc concentrations in lake bullheads were 6 and 2.5 times higher, respectively, than those of stream-dwelling fish. New data were generated on metal bioaccumulation in fish of understudied West Carpathian alpine lake environments. In July 2018, a major flood occurred in the area of the Javorinka. Already then, the mercury content in bullheads increased significantly. Bioaccumulation of mercury in fish occurred very quickly after the flood and was also significant in the following 2019. Then, the concentrations of mercury quickly decreased up to 70% in 2021-2022. Average concentrations of molybdenum and rubidium in bullheads in the stream rapidly declined in the year following the flood disturbance, but within less than 2 years, the metal levels stabilized at about the same level as in 2017 prior the flood. Strontium concentrations in fish dropped rapidly immediately after the flood, increased in the following years, and dropped again after 4 years, suggesting that many more factors are influencing strontium bioaccumulation in fish that are comparable in magnitude to the flood. The most serious warning seems to be the absence of biogenic zinc. The average concentration in the Alpine bullheads population in the stream has declined by 70% in less than 5 years and is steadily declining. An important result of this study is the demonstration that disturbance by a single factor (heavy rainfall and flooding) has a clear and timely effect on average metal concentrations in the fish population.
Collapse
Affiliation(s)
- Marián Janiga
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Žilina, Tatranská Javorina, Slovakia
| | - Martin Janiga
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Žilina, Tatranská Javorina, Slovakia
- Faculty of Humanities and Natural Scienes, University of Presov, Presov, Slovakia
| | - Tatiana Pitoňáková
- Institute of High Mountain Biology, University of Žilina, Tatranská Javorina 7, 059 56, Žilina, Tatranská Javorina, Slovakia.
| |
Collapse
|
4
|
Missimer TM, MacDonald JH, Tsegaye S, Thomas S, Teaf CM, Covert D, Kassis ZR. Natural Background and the Anthropogenic Enrichment of Mercury in the Southern Florida Environment: A Review with a Discussion on Public Health. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2024; 21:118. [PMID: 38276812 PMCID: PMC10815244 DOI: 10.3390/ijerph21010118] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 01/09/2024] [Accepted: 01/16/2024] [Indexed: 01/27/2024]
Abstract
Mercury (Hg) is a toxic metal that is easily released into the atmosphere as a gas or a particulate. Since Hg has serious health impacts based on human exposure, it is a major concern where it accumulates. Southern Florida is a region of high Hg deposition in the United States. It has entered the southern Florida environment for over 56 MY. For the past 3000 to 8000 years, Hg has accumulated in the Everglades peatlands, where approximately 42.3 metric tons of Hg was deposited. The pre-industrial source of mercury that was deposited into the Everglades was from the atmosphere, consisting of combined Saharan dust and marine evasion. Drainage and the development of the Everglades for agriculture, and other mixed land uses have caused a 65.7% reduction in the quantity of peat, therefore releasing approximately 28 metric tons of Hg into the southern Florida environment over a period of approximately 133 years. Both natural and man-made fires have facilitated the Hg release. The current range in mercury release into the southern Florida environment lies between 994.9 and 1249 kg/yr. The largest source of Hg currently entering the Florida environment is from combined atmospheric sources, including Saharan dust, aerosols, sea spray, and ocean flux/evasion at 257.1-514.2 kg/yr. The remobilization of Hg from the Everglades peatlands and fires is approximately 215 kg/yr. Other large contributors include waste to energy incinerators (204.1 kg/yr), medical waste and crematory incinerators (159.7+ kg/yr), and cement plant stack discharge (150.6 kg/yr). Minor emissions include fuel emissions from motorized vehicles, gas emissions from landfills, asphalt plants, and possible others. No data are available on controlled fires in the Everglades in sugar farming, which is lumped with the overall peatland loss of Hg to the environment. Hg has impacted wildlife in southern Florida with recorded excess concentrations in fish, birds, and apex predators. This bioaccumulation of Hg in animals led to the adoption of regulations (total maximum loads) to reduce the impacts on wildlife and warnings were given to consumers to avoid the consumption of fish that are considered to be contaminated. The deposition of atmospheric Hg in southern Florida has not been studied sufficiently to ascertain where it has had the greatest impacts. Hg has been found to accumulate on willow tree leaves in a natural environment in one recent study. No significant studies of the potential impacts on human health have been conducted in southern Florida, which should be started based on the high rates of Hg fallout in rainfall and known recycling for organic sediments containing high concentrations of Hg.
Collapse
Affiliation(s)
- Thomas M. Missimer
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - James H. MacDonald
- Environmental Geology Program & Honors College, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Seneshaw Tsegaye
- Department of Bioengineering, Civil and Environmental Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Serge Thomas
- Department of Ecology and Environmental Studies, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| | - Christopher M. Teaf
- Institute for Science & Public Affairs, Florida State University, Tallahassee, FL 32310, USA;
| | - Douglas Covert
- Hazardous Substance & Waste Management Research, 2976 Wellington Circle West, Tallahassee, FL 32309, USA;
| | - Zoie R. Kassis
- U. A. Whitaker College of Engineering, Florida Gulf Coast University, 10501 FGCU Boulevard South, Fort Myers, FL 33965-6565, USA;
| |
Collapse
|
5
|
Janssen SE, Tate MT, Poulin BA, Krabbenhoft DP, DeWild JF, Ogorek JM, Varonka MS, Orem WH, Kline JL. Decadal trends of mercury cycling and bioaccumulation within Everglades National Park. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:156031. [PMID: 35595135 DOI: 10.1016/j.scitotenv.2022.156031] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Revised: 05/11/2022] [Accepted: 05/13/2022] [Indexed: 06/15/2023]
Abstract
Mercury (Hg) contamination has been a persistent concern in the Florida Everglades for over three decades due to elevated atmospheric deposition and the system's propensity for methylation and rapid bioaccumulation. Given declines in atmospheric Hg concentrations in the conterminous United States and efforts to mitigate nutrient release to the greater Everglades ecosystem, it was vital to assess how Hg dynamics responded on temporal and spatial scales. This study used a multimedia approach (water and biota) to examine Hg and methylmercury (MeHg) dynamics across a 76-site network within the southernmost portion of the region, Everglades National Park (ENP), from 2008 to 2018. Hg concentrations across matrices showed that air, water, and biota from the system were inextricably linked. Temporal patterns across matrices were driven primarily by hydrologic and climatic changes in the park and no evidence of a decline in atmospheric Hg deposition from 2008 to 2018 was observed, unlike other regions of the United States. In the Shark River Slough (SRS), excess dissolved organic carbon and sulfate were also consistently delivered from upgradient canals and showed no evidence of decline over the study period. Within the SRS a strong positive correlation was observed between MeHg concentrations in surface water and resident fish. Within distinct geographic regions of ENP (SRS, Marsh, Coastal), the geochemical controls on MeHg dynamics differed and highlighted regions susceptible to higher MeHg bioaccumulation, particularly in the SRS and Coastal regions. This study demonstrates the strong influence that dissolved organic carbon and sulfate loads have on spatial and temporal distributions of MeHg across ENP. Importantly, improved water quality and flow rates are two key restoration targets of the nearly 30-year Everglades restoration program, which if achieved, this study suggests would lead to reduced MeHg production and exposure.
Collapse
Affiliation(s)
- Sarah E Janssen
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, USA.
| | - Michael T Tate
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, USA
| | - Brett A Poulin
- University of California-Davis, Department of Environmental Toxicology, Davis, CA, USA
| | - David P Krabbenhoft
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, USA
| | - John F DeWild
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, USA
| | - Jacob M Ogorek
- U.S. Geological Survey, Upper Midwest Water Science Center, Madison, WI, USA
| | - Matthew S Varonka
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA
| | - William H Orem
- U.S. Geological Survey, Geology, Energy & Minerals Science Center, Reston, VA, USA
| | - Jeffrey L Kline
- South Florida Natural Resources Center, Everglades National Park, Homestead, FL, USA
| |
Collapse
|
6
|
Xiang Y, Liu G, Yin Y, Cai Y. Periphyton as an important source of methylmercury in Everglades water and food web. JOURNAL OF HAZARDOUS MATERIALS 2021; 410:124551. [PMID: 33223320 DOI: 10.1016/j.jhazmat.2020.124551] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2020] [Revised: 09/23/2020] [Accepted: 11/10/2020] [Indexed: 06/11/2023]
Abstract
Periphyton is ubiquitous in Florida Everglades and has a profound effect on mercury (Hg) cycling. Enhanced methylmercury (MeHg) production in periphyton has been well documented, but the re-distribution of MeHg from periphyton remains unknown. In this study, periphyton, sediments, surface water, periphyton overlying water, and periphyton porewater were collected from Everglades for analyzing the distribution of MeHg and total Hg (THg). Results showed that there were no significant differences in THg and MeHg in different types of periphyton, but they all displayed higher MeHg levels than sediments. MeHg distribution coefficients (logkd) in periphyton were lower than in sediments, suggesting that periphyton MeHg could be more labile entering aquatic cycling and bioaccumulation. In water, the more the distance of water samples taken from periphyton, the lower the MeHg and dissolved organic carbon concentrations were detected. In extracellular polymeric substances of periphyton, MeHg in colloidal fractions was significantly higher than that in capsular fractions. It was estimated that approximately 10% (or 1.35 kg) of periphyton MeHg were passed on to mosquitofish entering the food web during wet season, contributing 73% of total Hg stocked in mosquitofish. These results revealed the importance of periphyton on water MeHg distribution and MeHg bioaccumulation in Everglades.
Collapse
Affiliation(s)
- Yuping Xiang
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Guangliang Liu
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA
| | - Yongguang Yin
- Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China
| | - Yong Cai
- Department of Chemistry & Biochemistry and Southeast Environmental Research Center, Florida International University, 11200 SW 8th ST, Miami, FL 33199, USA; Laboratory of Environmental Nanotechnology and Health Effect, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| |
Collapse
|
7
|
Ferreira-Rodríguez N, Castro AJ, Tweedy BN, Quintas-Soriano C, Vaughn CC. Mercury consumption and human health: Linking pollution and social risk perception in the southeastern United States. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 282:111528. [PMID: 33172704 DOI: 10.1016/j.jenvman.2020.111528] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2020] [Revised: 09/17/2020] [Accepted: 10/18/2020] [Indexed: 06/11/2023]
Abstract
The study of the relationships between freshwater organisms, pollution and public awareness has been little researched. The public's perception of risk from pollution is a fundamental component in determining consumer behavior and promoting healthy habits. For instance, understanding how consumers perceive the risks associated with pollution can help with adoption of safe behaviors to reduce the health hazard associated with pollutant exposure. This study focused on the southeastern United States, a region predicted to be exposed to high mercury stress by increasing mercury deposition and methylation. First, we placed our study region in the world map of regions more prone to suffer from increasing mercury stress in a climate change scenario. Second, mercury levels in fish tissues was quantified by direct mercury analyzer (DMA). Third, we explored human fish consumption habits and risk social perception, including willingness to adapt fish consumption based on two future hypothetical scenarios of mercury stress. From a global perspective, our analysis demonstrates that the southern US is one of five world areas of greatest conservation concern for mercury stress. In this region, the average mono-methyl mercury concentration in fish tissues exceeded the limits considered safe for human consumption. Even though many in the local population were aware of the health hazards associated with fish consumption, only women of reproductive age were willing to adopt safe consumption habits. Altogether, these results show how bringing together field data, social perceptions, and consumption habits can help in designing an adaptive strategy to confront mercury pollution. Although our results are for the United States, other world regions prone to suffer increasing mercury stress have been identified and should be the focus of future studies and prescriptions.
Collapse
Affiliation(s)
- Noé Ferreira-Rodríguez
- Departamento de Ecoloxía e Bioloxía Animal, Facultade de Bioloxía, Campus As Lagoas - Marcosende, Universidade de Vigo, Vigo, 36310, Spain.
| | - Antonio J Castro
- Departmento de Biología y Geología, Centro Andaluz para la Evaluación y Seguimiento del Cambio Global, University of Almeria, 04120, Almería, Spain; Department of Biological Sciences, Idaho State University, 921 South 8th Avenue, Pocatello, ID, 83209, USA; Oklahoma Biological Survey and Department of Biology, University of Oklahoma, 111 E Chesapeake Street, Norman, OK, 73019, USA
| | - Beth N Tweedy
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, 111 E Chesapeake Street, Norman, OK, 73019, USA; Bizzell Memorial Library, University of Oklahoma, 401 W. Brooks St, Norman, OK, 73019, USA
| | - Cristina Quintas-Soriano
- Departmento de Biología y Geología, Centro Andaluz para la Evaluación y Seguimiento del Cambio Global, University of Almeria, 04120, Almería, Spain; Social-Ecological Interactions in Agricultural Systems Lab, Faculty of Organic Agricultural Sciences, University of Kassel, Steinstraße 19, 37213, Witzenhausen, Germany
| | - Caryn C Vaughn
- Oklahoma Biological Survey and Department of Biology, University of Oklahoma, 111 E Chesapeake Street, Norman, OK, 73019, USA
| |
Collapse
|
8
|
Burke SM, Zimmerman CE, Laske SM, Koch JC, Derry AM, Guernon S, Branfireun BA, Swanson HK. Fish growth rates and lake sulphate explain variation in mercury levels in ninespine stickleback (Pungitius pungitius) on the Arctic Coastal Plain of Alaska. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140564. [PMID: 32758814 DOI: 10.1016/j.scitotenv.2020.140564] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2020] [Revised: 06/24/2020] [Accepted: 06/25/2020] [Indexed: 06/11/2023]
Abstract
Mercury concentrations in freshwater food webs are governed by complex biogeochemical and ecological interactions that spatially vary and are often mediated by climate. The Arctic Coastal Plain of Alaska (ACP) is a heterogeneous, lake-rich landscape where variability in mercury accumulation is poorly understood. Earlier research indicated that the level of catchment influence on lakes varied spatially on the ACP, and affected mercury accumulation in lake sediments. This work sought to determine drivers of spatial variation in mercury accumulation in lake food webs on the ACP. Three lakes that were a priori identified as "high catchment influence" (Reindeer Camp region) and three lakes that were a priori identified as "low catchment influence" (Atqasuk region) were sampled, and variability in water chemistry, food web ecology, and mercury accumulation was investigated. Among-lake differences in ninespine stickleback (Pungitius pungitius) length-adjusted methylmercury concentrations were significantly explained by sulphate concentration in lake water, a tracer of catchment runoff input. This effect was mediated by fish growth, which had no pattern between regions. Together, lake water sulphate concentration and fish age-at-size (proxy for growth) accounted for nearly all of the among-lake variability in length-adjusted methylmercury concentrations in stickleback (R2adj = 0.94, p < 0.01). The percentage of total mercury as methylmercury (a proxy for net Hg methylation) was higher in sediments of more autochthonous, "low catchment influence" lakes (p < 0.05), and in the periphyton of more allochthonous, "high catchment influence" lakes (p < 0.05). The results indicate that dominant sources of primary production (littoral macrophyte/biofilm vs. pelagic phytoplankton) and food web structure (detrital vs. grazing) are regulated by catchment characteristics on the ACP, and that this ultimately influences the amount of methylmercury in the aquatic food web. These results have important implications for predicting future mercury concentrations in fish in lakes where fish growth rates and catchment inputs may change in response to a changing climate.
Collapse
Affiliation(s)
- S M Burke
- Department of Biology and Water Institute, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada; Environment and Climate Change Canada (ECCC), Aquatic Contaminants Research Division, 867 Lakeshore Rd., Burlington, ON L7S 1A1, Canada.
| | - C E Zimmerman
- U. S. Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - S M Laske
- U. S. Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - J C Koch
- U. S. Geological Survey, Alaska Science Center, 4210 University Dr., Anchorage, AK 99508, USA
| | - A M Derry
- Département des sciences biologiques, Université du Québec à Montréal (UQAM), P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - S Guernon
- Département des sciences biologiques, Université du Québec à Montréal (UQAM), P.O. Box 8888, Succ. Centre-Ville, Montréal, Québec H3C 3P8, Canada
| | - B A Branfireun
- Western University, Department of Biological Sciences, London, Ontario N6A 3K7, Canada
| | - H K Swanson
- Department of Biology and Water Institute, University of Waterloo, 200 University Ave. West, Waterloo, Ontario N2L 3G1, Canada
| |
Collapse
|
9
|
Bishop K, Shanley JB, Riscassi A, de Wit HA, Eklöf K, Meng B, Mitchell C, Osterwalder S, Schuster PF, Webster J, Zhu W. Recent advances in understanding and measurement of mercury in the environment: Terrestrial Hg cycling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 721:137647. [PMID: 32197286 DOI: 10.1016/j.scitotenv.2020.137647] [Citation(s) in RCA: 60] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2019] [Revised: 02/23/2020] [Accepted: 02/28/2020] [Indexed: 06/10/2023]
Abstract
This review documents recent advances in terrestrial mercury cycling. Terrestrial mercury (Hg) research has matured in some areas, and is developing rapidly in others. We summarize the state of the science circa 2010 as a starting point, and then present the advances during the last decade in three areas: land use, sulfate deposition, and climate change. The advances are presented in the framework of three Hg "gateways" to the terrestrial environment: inputs from the atmosphere, uptake in food, and runoff with surface water. Among the most notable advances: These and other advances reported here are of value in evaluating the effectiveness of the Minamata Convention on reducing environmental Hg exposure to humans and wildlife.
Collapse
Affiliation(s)
- Kevin Bishop
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | | | - Ami Riscassi
- Department of Environmental Sciences, University of Virginia, P.O. Box 400123, Charlottesville, VA 22904-4123, USA.
| | - Heleen A de Wit
- Norwegian Institute for Water Research, Gaustadalléen 21, NO-0349, Norway.
| | - Karin Eklöf
- Department of Aquatic Sciences and Assessment, Swedish University of Agricultural Sciences, Box 7050, 75007 Uppsala, Sweden.
| | - Bo Meng
- State Key Laboratory of Environmental Geochemistry, Institute of Geochemistry, Chinese Academy of Sciences, Guiyang 550002, China.
| | - Carl Mitchell
- Department of Physical and Environmental Sciences, University of Toronto Scarborough, 1265 Military Trail, Toronto, Ontario M1C 1A4, Canada.
| | - Stefan Osterwalder
- Institut des Géosciences de l'Environnement, Université Grenoble Alpes, CNRS, IRD, Grenoble 18 INP, 38000 Grenoble, France.
| | - Paul F Schuster
- U.S. Geological Survey, 3215 Marine Street, Suite E-127, Boulder, CO 80303-1066, USA.
| | - Jackson Webster
- Department of Civil Engineering, California State University, 400 W. 1st Street, 21 95929-0930 Chico, CA, USA.
| | - Wei Zhu
- Department of Forest Ecology and Management, Swedish University of Agricultural Sciences, 90183 Umeå, Sweden.
| |
Collapse
|
10
|
Azevedo LS, Pestana IA, da Costa Nery AF, Bastos WR, Souza CMM. Variation in Hg accumulation between demersal and pelagic fish from Puruzinho Lake, Brazilian Amazon. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1143-1149. [PMID: 31620950 DOI: 10.1007/s10646-019-02118-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/01/2019] [Indexed: 06/10/2023]
Abstract
Aquatic ecosystems in the Amazon are exposed to mercury, mostly from natural sources. Hg accumulation in fish tissues poses a risk to the local population since fish is one of the main sources of protein in the region. The aim of this study was to evaluate Hg distribution in demersal and pelagic carnivorous fish between seasons in Puruzinho Lake in the Brazilian Amazon. Total Hg was quantified in 221 individuals of 8 species obtained during the high water and low water seasons. Two-way ANOVA indicated an interaction between foraging habitat and season. During high water, total Hg concentrations were similar between demersal and pelagic fish, while in low water, total Hg levels were higher in demersal fish. Pelagic and demersal fishes' Hg levels were similar between the two seasons.
Collapse
Affiliation(s)
- Lucas Silva Azevedo
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil.
| | - Inácio Abreu Pestana
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| | | | - Wanderley Rodrigues Bastos
- Laboratório de Biogeoquímica Ambiental WCP, Universidade Federal de Rondônia, Porto Velho, RO, CEP: 76815-800, Brazil
| | - Cristina Maria Magalhães Souza
- Laboratório de Ciências Ambientais, Centro de Biociências e Biotecnologia, Universidade Estadual do Norte Fluminense Darcy Ribeiro, Campos dos Goytacazes, Rio de Janeiro, RJ, CEP: 28013-602, Brazil
| |
Collapse
|
11
|
Flower H, Rains M, Carl Fitz H, Orem W, Newman S, Osborne TZ, Ramesh Reddy K, Obeysekera J. Shifting Ground: Landscape-Scale Modeling of Biogeochemical Processes under Climate Change in the Florida Everglades. ENVIRONMENTAL MANAGEMENT 2019; 64:416-435. [PMID: 31441014 DOI: 10.1007/s00267-019-01200-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/14/2018] [Accepted: 08/02/2019] [Indexed: 06/10/2023]
Abstract
Scenarios modeling can be a useful tool to plan for climate change. In this study, we help Everglades restoration planning to bolster climate change resiliency by simulating plausible ecosystem responses to three climate change scenarios: a Baseline scenario of 2010 climate, and two scenarios that both included 1.5 °C warming and 7% increase in evapotranspiration, and differed only by rainfall: either increase or decrease by 10%. In conjunction with output from a water-use management model, we used these scenarios to drive the Everglades Landscape Model to simulate changes in a suite of parameters that include both hydrologic drivers and changes to soil pattern and process. In this paper we focus on the freshwater wetlands; sea level rise is specifically addressed in prior work. The decreased rainfall scenario produced marked changes across the system in comparison to the Baseline scenario. Most notably, muck fire risk was elevated for 49% of the period of simulation in one of the three indicator regions. Surface water flow velocity slowed drastically across most of the system, which may impair soil processes related to maintaining landscape patterning. Due to lower flow volumes, this scenario produced decreases in parameters related to flow-loading, such as phosphorus accumulation in the soil, and methylmercury production risk. The increased rainfall scenario was hydrologically similar to the Baseline scenario due to existing water management rules. A key change was phosphorus accumulation in the soil, an effect of flow-loading due to higher inflow from water control structures in this scenario.
Collapse
Affiliation(s)
- Hilary Flower
- Eckerd College, 4200 54th Ave S, St. Petersburg, FL, 33711, USA.
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA.
| | - Mark Rains
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
| | - H Carl Fitz
- School of Geosciences, University of South Florida, 4202 E. Fowler Ave, Tampa, FL, 33620, USA
- EcoLandMod, Inc., 1936 Harbortown Drive, Fort Pierce, FL, 34946, USA
| | | | - Susan Newman
- Everglades Systems Assessment Section, South Florida Water Management District, 8894 Belvedere Road, Bldg 374, West Palm Beach, FL, 33411, USA
| | - Todd Z Osborne
- Whitney Laboratory for Marine Bioscience, University of Florida, St. Augustine, FL, 32080, USA
- Wetland Biogeochemistry Laboratory, Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - K Ramesh Reddy
- Wetland Biogeochemistry Laboratory, Soil and Water Science Department, University of Florida, Gainesville, FL, 32611, USA
| | - Jayantha Obeysekera
- Sea Level Solutions Center, Florida International University, 11200 SW 8th St, Miami, FL, 33199, USA
| |
Collapse
|
12
|
Dharampal PS, Findlay RH. Mercury levels in largemouth bass (Micropterus salmoides) from regulated and unregulated rivers. CHEMOSPHERE 2017; 170:134-140. [PMID: 27984776 DOI: 10.1016/j.chemosphere.2016.11.162] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2016] [Revised: 11/29/2016] [Accepted: 11/30/2016] [Indexed: 06/06/2023]
Abstract
Within areas of comparable atmospheric mercury deposition rates methylmercury burden in largemouth bass populations vary significantly between regulated and unregulated rivers. To investigate if trophic dynamics strongly influenced pollutant body load, we sampled largemouth bass from two adjacent rivers, one regulated and one unregulated, and applied a suite of biochemical and stable isotope assays to compare their trophic dynamics. Total mercury burden in the bass from the unregulated Sipsey River (Elrod, AL, USA) and the regulated Black Warrior River (Demopolis, AL, USA) averaged 0.87 mg kg-1 and 0.19 mg kg-1 wet weight, respectively. For both populations, age, weight, and length were positively correlated with muscle mercury concentration. Compound specific stable isotope analysis of amino acids showed the trophic position of both populations was just under four. Quantitative and isotopic analysis of neutral lipid fatty acid of Sipsey River bass indicated a greater reliance upon the detrital component of the food web compared to Demopolis Reservoir bass which fed within the autochthonous, pelagic component of the food web. Since the close proximity of the rivers makes differences in atmospheric deposition unlikely and both populations had similar trophic position, our findings indicate that food web dynamics should be included among the factors that can strongly influence mercury concentration in fish.
Collapse
Affiliation(s)
- Prarthana S Dharampal
- Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States
| | - Robert H Findlay
- Department of Biological Sciences, Box 870344, University of Alabama, Tuscaloosa, AL 35487, United States.
| |
Collapse
|
13
|
Noh S, Kim CK, Kim Y, Lee JH, Han S. Assessing correlations between monomethylmercury accumulation in fish and trophic states of artificial temperate reservoirs. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 580:912-919. [PMID: 28012652 DOI: 10.1016/j.scitotenv.2016.12.039] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/21/2016] [Revised: 12/02/2016] [Accepted: 12/04/2016] [Indexed: 06/06/2023]
Abstract
We investigated monomethylmercury (MMHg) concentrations in 448 samples of four common fish species (barbel steed, largemouth bass, leopard mandarin, and bluegill) and the trophic states of 14 artificial reservoirs in South Korea in order to understand how trophic states of reserviors affect MMHg concentrations in fish. The trophic state index (TSI) of each reservoir was determined using empirical equations based on the monthly chlorophyll-a, total phosphorus, and Secchi depth, collected over a three-year period. The length-normalized MMHg concentrations in fish showed a negative correlation with the TSI based on chlorophyll-a (r2=0.90) and total phosphorus (r2=0.75) that may be a result of particle dilution of MMHg in surface waters. This study revealed that MMHg accumulation in fish was better correlated with TSI than MMHg in water, therefore, we suggest that the measurement of TSI based on chlorophyll-a and total phosphorus is an effective way to predict MMHg bioaccumulation across diverse reservoirs.
Collapse
Affiliation(s)
- Seam Noh
- Division of Chemical Research, National Institute of Environmental Research (NIER), Incheon, Republic of Korea; School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chan-Kook Kim
- Environmental Health & Safety Research Institute, EH R&C Co., Ltd., Bucheon, Republic of Korea
| | - Younghee Kim
- Division of Chemical Research, National Institute of Environmental Research (NIER), Incheon, Republic of Korea
| | - Jong-Hyeon Lee
- Environmental Health & Safety Research Institute, EH R&C Co., Ltd., Bucheon, Republic of Korea.
| | - Seunghee Han
- School of Earth Sciences and Environmental Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
14
|
Berndt ME, Rutelonis W, Regan CP. A comparison of results from a hydrologic transport model (HSPF) with distributions of sulfate and mercury in a mine-impacted watershed in northeastern Minnesota. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2016; 181:74-79. [PMID: 27318875 DOI: 10.1016/j.jenvman.2016.05.067] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 05/25/2016] [Accepted: 05/26/2016] [Indexed: 06/06/2023]
Abstract
The St. Louis River watershed in northeast Minnesota hosts a major iron mining district that has operated continuously since the 1890s. Concern exists that chemical reduction of sulfate that is released from mines enhances the methylation of mercury in the watershed, leading to increased mercury concentrations in St. Louis River fish. This study tests this idea by simulating the behavior of chemical tracers using a hydrologic flow model (Hydrologic Simulation Program FORTRAN; HSPF) and comparing the results with measured chemistry from several key sites located both upstream and downstream from the mining region. It was found that peaks in measured methylmercury (MeHg), total mercury (THg), dissolved organic carbon (DOC), and dissolved iron (Fe) concentrations correspond to periods in time when modeled recharge was dominated by active groundwater throughout the watershed. This helps explain why the timing and size of the MeHg peaks was nearly the same at sites located just upstream and downstream from the mining region. Both the modeled percentages of mine water and the measured sulfate concentrations were low and computed transit times were short for sites downstream from the mining region at times when measured MeHg reached its peak. Taken together, the data and flow model imply that MeHg is released into groundwater that recharges the river through riparian sediments following periods of elevated summer rainfall. The measured sulfate concentrations at the upstream site reached minimum concentrations of approximately 1 mg/L just as MeHg reached its peak, suggesting that reduction of sulfate from non-point sources exerts an important influence on MeHg concentrations at this site. While mines are the dominant source of sulfate to sites downstream from them, it appears that the background sulfate which is present at only 1-6 mg/L, has the largest influence on MeHg concentrations. This is because point sourced sulfate is transported generally under oxidized conditions and is not flushed through riparian sediments in a gaining stream watershed system.
Collapse
Affiliation(s)
- Michael E Berndt
- Minnesota Department of Natural Resources, 500 Lafayette Road, St. Paul, MN, 55155, USA.
| | - Wes Rutelonis
- University of Minnesota, Earth Sciences Department, 310 Pillsbury Drive SE, Minneapolis, MN, 55455, USA
| | - Charles P Regan
- Minnesota Pollution Control Agency, 520 Lafayette Road, St. Paul, MN, 55155, USA
| |
Collapse
|
15
|
Impact and Mitigation of Nutrient Pollution and Overland Water Flow Change on the Florida Everglades, USA. SUSTAINABILITY 2016. [DOI: 10.3390/su8090940] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
16
|
Noh S, Kim CK, Lee JH, Kim Y, Choi K, Han S. Physicochemical factors affecting the spatial variance of monomethylmercury in artificial reservoirs. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2016; 208:345-353. [PMID: 26552526 DOI: 10.1016/j.envpol.2015.09.054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2015] [Revised: 09/22/2015] [Accepted: 09/29/2015] [Indexed: 06/05/2023]
Abstract
The aim of this study was to identify how hydrologic factors (e.g., rainfall, maximum depth, reservoir and catchment area, and water residence time) and water chemistry factors (e.g., conductivity, pH, suspended particulate matter, chlorophyll-a, dissolved organic carbon, and sulfate) interact to affect the spatial variance in monomethylmercury (MMHg) concentration in nine artificial reservoirs. We hypothesized that the MMHg concentration of reservoir water would be higher in eutrophic than in oligotrophic reservoirs because increased dissolved organic matter and sulfate in eutrophic reservoirs can promote in situ production of MMHg. Multiple tools, including Pearson correlation, a self-organizing map, and principal component analysis, were applied in the statistical modeling of Hg species. The results showed that rainfall amount and hydraulic residence time best explained the variance of dissolved Hg and dissolved MMHg in reservoir water. High precipitation events and residence time may mobilize Hg and MMHg in the catchment and reservoir sediment, respectively. On the contrary, algal biomass was a key predictor of the variance of the percentage fraction of unfiltered MMHg over unfiltered Hg (%MMHg). The creation of suboxic conditions and the supply of sulfate subsequent to the algal decomposition seemed to support enhanced %MMHg in the bloom reservoirs. Thus, the nutrient supply should be carefully managed to limit increases in the %MMHg/Hg of temperate reservoirs.
Collapse
Affiliation(s)
- Seam Noh
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea
| | - Chan-Kook Kim
- Institute of Environmental Protection and Safety, NeoEnBiz Co., Bucheon, Republic of Korea
| | - Jong-Hyeon Lee
- Institute of Environmental Protection and Safety, NeoEnBiz Co., Bucheon, Republic of Korea
| | - Younghee Kim
- Division of Chemical Research, National Institute of Environmental Research (NIER), Incheon, Republic of Korea
| | - Kyunghee Choi
- Division of Chemical Research, National Institute of Environmental Research (NIER), Incheon, Republic of Korea
| | - Seunghee Han
- School of Environmental Science and Engineering, Gwangju Institute of Science and Technology (GIST), Gwangju, Republic of Korea.
| |
Collapse
|
17
|
Atlantic Bottlenose Dolphins ( Tursiops truncatus) as A Sentinel for Exposure to Mercury in Humans: Closing the Loop. Vet Sci 2015; 2:407-422. [PMID: 29061950 PMCID: PMC5644643 DOI: 10.3390/vetsci2040407] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2015] [Revised: 11/03/2015] [Accepted: 11/05/2015] [Indexed: 11/17/2022] Open
Abstract
Mercury (Hg) is a ubiquitous global contaminant with important public health implications. Mercury is released from a variety of anthropogenic, industrial processes, enters the earth's atmosphere and is re-deposited onto the earth's surface in rainfall. Much of this Hg enters the oceans which cover the majority of the earth's surface. In the marine environment, inorganic Hg is converted to the most toxic form of the element, methylmercury, and biomagnified through the trophic levels of the food web. The bottlenose dolphin (Tursiops truncatus) is the apex predator in many estuarine and coastal ecosystems. Due to their long life span and trophic position, bottlenose dolphins bioaccumulate high concentrations of contaminants including Hg, thus making them an important sentinel species for ecosystem and public health. Bottlenose dolphins in Florida bioaccumulate high concentrations of Hg in their blood, skin and internal organs. The concentrations of Hg in blood and skin of bottlenose dolphins of the Indian River Lagoon, FL (IRL) are among the highest reported world-wide. In previous studies, we demonstrated associations between concentrations of total Hg in the blood and skin of IRL dolphins and markers of endocrine, renal, hepatic, hematologic and immune system dysfunction. The predominant manifestation of exposure to mercury in humans is neurotoxicity. During the 1950s and 1960s, residents of Minamata bay, Japan were exposed to high concentrations of methyl mercury as the result of ingestion of fish and shellfish that had become contaminated in this infamous environmental disaster. Affected adults had severe motor and sensory abnormalities often leading to death. Methyl mercury crosses the placenta during pregnancy. Children exposed in utero were born with multiple congenital anomalies and also suffered from neurologic disorders. Significantly, local cats that consumed Hg contaminated fish developed severe signs of neurotoxicity which led to their subsequent description as the "dancing cats of Minamata bay". Unfortunately, the cause of these strange manifestations in cats was not recognized in time to prevent hundreds of additional cases from occurring. More recent studies have shown that exposure to mercury as a result of seafood consumption during pregnancy may result in multiple cognitive and neurodevelopmental effects in children. The levels of mercury found in bottlenose dolphins and the health effects we identified alerted us to the possibility of an important public health hazard. The IRL occupies 40 percent of the east coast of Florida and is bordered by counties with approximately 2.5 million human inhabitants. Therefore, we hypothesized that local inhabitants in communities bordering the IRL could be at risk of exposure to Hg from the consumption of fish and shellfish. We measured hair Hg in 135 local residents and found a mean concentration of 1.53 µg/g which was higher than that from previous studies of sport fishermen and coastal residents in other states. Over 50% of participants had a hair Hg concentration which exceeded the U.S. EPA exposure guideline. Hair Hg concentration was directly related to the frequency of seafood consumption and to the proportion of fish and shellfish obtained from local recreational sources. This study clearly exemplifies the importance of an animal sentinel in identifying a public health hazard and is virtually unique in "closing the loop" between animal and human health.
Collapse
|
18
|
Gabriel MC, Axelrad D, Orem W, Osborne TZ. Response to Julian et al. (2015) "comment on and reinterpretation of Gabriel et al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'". ENVIRONMENTAL MANAGEMENT 2015; 55:1227-1231. [PMID: 25860595 DOI: 10.1007/s00267-015-0486-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2014] [Accepted: 03/30/2015] [Indexed: 06/04/2023]
Abstract
The purpose of this forum is to respond to a rebuttal submitted by Julian et al., Environ Manag 55:1-5, 2015 where they outlined their overall disagreement with the data preparation, methods, and interpretation of results presented in Gabriel et al. (Environ Manag 53:583-593, 2014). Here, we provide background information on the research premise presented in Gabriel et al. (Environ Manag 53:583-593, 2014) and provide a defense for this work using five themes. In spite of what Julian et al. perceive as limitations in the sampling methods and analytical tools used for this work, the relationships found between fish total mercury and surface water sulfate concentrations in Gabriel et al. (Environ Manag 53:583-593, 2014) are comparable to relationships between pore water methylmercury (MeHg) and pore water sulfate found in past studies indicating that sulfate is important to MeHg production and bioaccumulation in the Everglades. Julian et al. state "…there is no way to justify any ecosystem-wide sulfur strategy as a management approach to reduce mercury risk in the (Everglades) as suggested by Gabriel et al. (Environ Manag 53:583-593, 2014), Corrales et al. (Sci Tot Environ 409:2156-2162, 2011) and Orem et al. (Rev Environ Sci Technol 41 (S1):249-288, 2011)." We disagree, and having stated why sulfate input reduction to the Everglades may be the most effective means of reducing mercury in Everglades fish, it is important that research on sulfur and mercury biogeochemistry continues. If further studies support the relationship between sulfate loading reduction and MeHg reduction, sulfur mass balance studies should commence to (1) better quantify agricultural and connate seawater sulfate inputs and (2) define opportunities to reduce sulfate inputs to the Everglades ecosystem.
Collapse
Affiliation(s)
- Mark C Gabriel
- International Joint Commission, 2000 L Street NW, Suite 615, Washington, DC, 20440, USA,
| | | | | | | |
Collapse
|
19
|
Orem W, Newman S, Osborne TZ, Reddy KR. Projecting changes in Everglades soil biogeochemistry for carbon and other key elements, to possible 2060 climate and hydrologic scenarios. ENVIRONMENTAL MANAGEMENT 2015; 55:776-798. [PMID: 25365946 DOI: 10.1007/s00267-014-0381-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2013] [Accepted: 10/03/2014] [Indexed: 06/04/2023]
Abstract
Based on previously published studies of elemental cycling in Everglades soils, we projected how soil biogeochemistry, specifically carbon, nitrogen, phosphorus, sulfur, and mercury might respond to climate change scenarios projected for 2060 by the South Florida Water Management Model. Water budgets and stage hydrographs from this model with future scenarios of a 10% increased or decreased rainfall, a 1.5 °C rise in temperature and associated increase in evapotranspiration (ET) and a 0.5 m rise in sea level were used to predict resulting effects on soil biogeochemistry. Precipitation is a much stronger driver of soil biogeochemical processes than temperature, because of links among water cover, redox conditions, and organic carbon accumulation in soils. Under the 10% reduced rainfall scenario, large portions of the Everglades will experience dry down, organic soil oxidation, and shifts in soil redox that may dramatically alter biogeochemical processes. Lowering organic soil surface elevation may make portions of the Everglades more vulnerable to sea level rise. The 10% increased rainfall scenario, while potentially increasing phosphorus, sulfur, and mercury loading to the ecosystem, would maintain organic soil integrity and redox conditions conducive to normal wetland biogeochemical element cycling. Effects of increased ET will be similar to those of decreased precipitation. Temperature increases would have the effect of increasing microbial processes driving biogeochemical element cycling, but the effect would be much less than that of precipitation. The combined effects of decreased rainfall and increased ET suggest catastrophic losses in carbon- and organic-associated elements throughout the peat-based Everglades.
Collapse
|
20
|
Julian P, Gu B. Mercury accumulation in largemouth bass (Micropterus salmoides Lacépède) within marsh ecosystems of the Florida Everglades, USA. ECOTOXICOLOGY (LONDON, ENGLAND) 2015; 24:202-14. [PMID: 25336046 DOI: 10.1007/s10646-014-1373-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 10/13/2014] [Indexed: 05/17/2023]
Abstract
This study evaluates factors, particularly water quality related, that may influence mercury (Hg) bioaccumulation in largemouth bass (LMB, Micropterus salmoides Lacépède) within the Everglades marshes of South Florida. The investigation is an empirical analysis of ambient data from both long-term fish monitoring and marsh water quality monitoring sites across the Everglades Protection Area. Previous Hg studies of Everglade's marsh biota have focused on the role that sulfate plays in Hg bioaccumulation. While sulfate can be important under some environmental conditions, this empirical analysis in Everglades marshes showed that sulfate has little association with Hg concentrations in LMB. It is suggested that other water quality variables including water pH, alkalinity and specific conductance may have as much or more influence in the accumulation of Hg in LMB. Furthermore, tissue Hg concentration normalized to body-weight and age-specific growth rates were significantly correlated with Water Conservation Area (WCA)-1, WCA-2 and Everglades National Park (ENP) but not WCA-3. However, body condition was correlated negatively with Hg concentration only within WCA-2, WCA-3 and ENP; the relationship was not significant within WCA-1. This disparity between Hg concentration and body condition could be attributed to ecological effects including water quality and quantity conditions within each compartment of the system that are significant driving forces for biota abundance, trophic structure and distribution within the Everglades ecosystem. While water quality and quantity are important, trophic position of LMB has the potential to influence Hg accumulation dynamics. In spite of documented biogeochemical linkages to Hg accumulation, this empirical analysis did not demonstrate enough quantitative interaction to be useful for Hg management in the Everglades ecosystem.
Collapse
Affiliation(s)
- Paul Julian
- Florida Department of Environmental Protection, Office of Ecosystem Projects, 2295 Vicotira Avenue, Fort Myers, FL, 33902, USA,
| | | |
Collapse
|
21
|
Julian P, Gu B, Redfield G. Comment on and reinterpretation of Gabriel et Al. (2014) 'fish mercury and surface water sulfate relationships in the everglades protection area'. ENVIRONMENTAL MANAGEMENT 2015; 55:1-5. [PMID: 25248934 DOI: 10.1007/s00267-014-0377-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 09/16/2014] [Indexed: 06/03/2023]
Abstract
Mercury (Hg) methylation and bioaccumulation is a major environmental issue in the Everglades Protection Area (EvPA). Therefore, it is critical to improve our predictive understanding of Hg dynamics. This commentary critically reviews a recently published manuscript concerning the possible relationship between Hg in fish tissue and surface water sulfate within EvPA marshes. The commentary addresses fundamental issues with the authors' data analysis, results and interpretation as well as highlights inconsistencies with published literature and the lack of support for their suggested ecosystem management actions. A number of chemical, biological, and physical factors influence Hg methylation and bioaccumulation, and water sulfate is sometimes viewed as a keystone factor, Gabriel et al. (2014) conclude that Hg bioaccumulation is favored at elevated sulfate concentrations, and suggest mitigation strategies to reduce sulfate inputs to the EvPA. A careful review of their data and conclusions reveals major flaws and in fact, a more straightforward and defensible interpretation of their data would be that no predictable relationship exists between fish tissue Hg and surface water sulfate concentrations in south Florida. Given the complexity of Hg cycling and the influence of trophic and habitat characteristics on aquatic consumer Hg accumulation, expecting one parameter to predict Hg accumulation dynamics within fish species within a dynamic marsh environment is unrealistic. Furthermore, proposing any management guidance from this relationship with little to no quantitative statistical analysis is inappropriate and misleading.
Collapse
Affiliation(s)
- Paul Julian
- Office of Ecosystem Projects, Florida Department of Environmental Protection, 2295 Victoria Ave, Fort Myers, FL, 33902, USA,
| | | | | |
Collapse
|
22
|
Pollman CD. Mercury cycling in aquatic ecosystems and trophic state-related variables--implications from structural equation modeling. THE SCIENCE OF THE TOTAL ENVIRONMENT 2014; 499:62-73. [PMID: 25173863 DOI: 10.1016/j.scitotenv.2014.08.036] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2014] [Revised: 08/08/2014] [Accepted: 08/09/2014] [Indexed: 06/03/2023]
Abstract
Structural equation modeling (SEM) provides a framework that can more properly handle complex variable interactions inherent in mercury cycling and its bioaccumulation compared to more traditional regression-based methods. SEM was applied to regional data sets for three different types of aquatic ecosystems within Florida, USA--lakes, streams, and the Everglades--to evaluate the underlying nature (i.e., indirect and direct) of the relationships between fish mercury concentrations and trophic state related variables such as nutrients, dissolved organic carbon (DOC), sulfate, and alkalinity. The modeling results indicated some differences in key variable relationships--for example, the effect of nutrients on fish mercury in lakes and streams was uniformly negative through direct and indirect pathways consistent with biodilution or eutrophication-associated effects on food web structure. Somewhat surprisingly, however, was that total phosphorus did not serve as a meaningful variable in the Everglades model, apparently because its effects were masked or secondary to the effects of DOC. What is perhaps a more important result were two key similarities across the three systems. First, the modeling clearly indicates that the dominant influence on fish tissue mercury concentrations in all three systems is related to variations in the methylmercury signal. Second, the modeling demonstrated that the effect of DOC on fish mercury concentrations was exerted through multiple and antagonistic pathways, including facilitated transport of total mercury and methylmercury, enhanced rates of methylation, and limitations imposed on bioavailability. Indeed, while the individual DOC pathways in the models were all highly significant (generally p<0.001), the net effect of DOC in each model was greatly reduced or insignificant. These results can help explain contradictory results obtained previously by other researchers in other systems, and illustrate the importance of SEM as a modeling tool when studying systems with complex interactions such as the aquatic mercury cycle.
Collapse
|
23
|
Pollman CD, Axelrad DM. Mercury bioaccumulation and bioaccumulation factors for Everglades mosquitofish as related to sulfate: a re-analysis of Julian II (2013). BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:509-516. [PMID: 25260994 DOI: 10.1007/s00128-014-1384-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2014] [Accepted: 09/10/2014] [Indexed: 06/03/2023]
Abstract
The Everglades, an ecosystem of international significance, has elevated biota mercury levels representing risk to human and wildlife consumers of fish. Given the critical role of sulfate in the methylation of mercury, and because there is a significant agricultural contribution, one potential means of reducing these mercury levels is reducing Everglades sulfate inputs. Julian II (Bull Environ Contam Toxicol 90:329-332, 2013) conducted regression modeling of the relationship between surface water sulfate concentrations and Gambusia spp. mercury bioconcentration factors across the major hydrologic subunits of the Everglades, and used those results to draw conclusions about the role of sulfate in the cycling of mercury in the Everglades. We however demonstrate a number of fundamental problems with the analysis, interpretation and conclusions. As a result, we strongly caution against using the results of Julian II (Bull Environ Contam Toxicol 90:329-332, 2013) to formulate management decisions regarding mitigation of the Everglades mercury problem.
Collapse
Affiliation(s)
- Curtis D Pollman
- Aqua Lux Lucis, Inc., PO Box 141363, Gainesville, FL, 32614, USA,
| | | |
Collapse
|
24
|
Julian P. Reply to "Mercury Bioaccumulation and Bioaccumulation Factors for Everglades Mosquitofish as Related to Sulfate: A Re-Analysis of Julian II (2013)". BULLETIN OF ENVIRONMENTAL CONTAMINATION AND TOXICOLOGY 2014; 93:517-521. [PMID: 25266044 DOI: 10.1007/s00128-014-1389-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2014] [Accepted: 09/18/2014] [Indexed: 06/03/2023]
Affiliation(s)
- Paul Julian
- Office of Ecosystem Projects, Florida Department of Environmental Protection, 2295 Victoria Avenue, Fort Myers, FL, 33902-2549, USA,
| |
Collapse
|
25
|
Orem W, Fitz HC, Krabbenhoft D, Tate M, Gilmour C, Shafer M. Modeling sulfate transport and distribution and methylmercury production associated with Aquifer Storage and Recovery implementation in the Everglades Protection Area. ACTA ACUST UNITED AC 2014. [DOI: 10.1016/j.swaqe.2014.11.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
|