1
|
Fan J, Jing Z, Guo F, Jia J, Jiang Y, Cai X, Wang S, Zhao H, Song X. Spatial Variation Characteristics of Polycyclic Aromatic Hydrocarbons and Their Derivatives in Surface Water of Suzhou City: Occurrence, Sources, and Risk Assessment. TOXICS 2025; 13:403. [PMID: 40423482 DOI: 10.3390/toxics13050403] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2025] [Revised: 05/08/2025] [Accepted: 05/09/2025] [Indexed: 05/28/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) and their substituted derivatives (SPAHs) are persistent organic pollutants derived from incomplete combustion of fossil fuels and industrial processes. These compounds are of global concern due to their carcinogenicity and environmental persistence. This study provides the first comprehensive analysis of PAH and SPAH contamination in Suzhou's rapidly urbanizing watersheds, integrating ultra-high-performance liquid chromatography and high-resolution mass spectrometry with multidimensional risk assessment to address critical gaps in understanding pollutant dynamics in urban aquatic systems. Key findings reveal that SPAHs were significantly more abundant than parent PAHs (mean ∑19 SPAHs = 107.43 ng/L vs. ∑8 PAHs = 48.05 ng/L), with hydroxylated derivatives accounting for 67.9% of the total SPAHs, indicating active environmental transformation processes. Source apportionment identified coal combustion and industrial emissions as the dominant contributors (58.2% of PAHs), directly linking contamination patterns to localized anthropogenic activities. Notably, industrial zones exhibited unexpected toxicity hotspots, where SPAH toxicity equivalents (e.g., 3-OH-BaP) surpassed parent PAHs 2-5-fold, demonstrating substituent-driven toxicity enhancement-a critical finding for regulatory prioritization. This study advances the field by uncovering SPAHs as emerging risks in urban waterways, challenging traditional PAH-centric monitoring frameworks, and providing a novel integration of analytical chemistry and spatial risk mapping to guide targeted pollution control (e.g., prioritizing industrial discharges and non-exhaust traffic emissions). Furthermore, it highlights the urgent need for updated toxicological databases to account for substituted PAH derivatives and advocates for the regulatory inclusion of SPAHs. These insights underscore the necessity of adapting environmental policies to address complex pollutant mixtures in rapidly developing regions, emphasizing the replicability of the proposed framework for urban watershed management.
Collapse
Affiliation(s)
- Jinxu Fan
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
- Guizhou Academy of Testing and Analysis, Guiyang 550002, China
| | - Zhangwei Jing
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Feng Guo
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Jing Jia
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Yu Jiang
- Suzhou Sub-Bureau of Jiangsu Provincial Hydrology, Water Resources Survey Bureau, Suzhou 215000, China
| | - Xiaoyu Cai
- Suzhou Sub-Bureau of Jiangsu Provincial Hydrology, Water Resources Survey Bureau, Suzhou 215000, China
| | - Shuting Wang
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Hu Zhao
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| | - Xianjing Song
- National Research Center for Geoanalysis, Key Laboratory of Eco-Geochemistry, Ministry of Natural Resources, Beijing 100037, China
| |
Collapse
|
2
|
Zhang X, Liu Y, Liu R, Qiu Y, Zhang B, Zhao N, He R. Effects of bicarbonate on electro-bioremediation of phenanthrene-contaminated groundwater. ENVIRONMENTAL RESEARCH 2025; 279:121859. [PMID: 40379006 DOI: 10.1016/j.envres.2025.121859] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/08/2025] [Revised: 04/29/2025] [Accepted: 05/13/2025] [Indexed: 05/19/2025]
Abstract
Electro-bioremediation under anaerobic conditions is an effective approach for refractory organic matter removal in groundwater. Bicarbonate (HCO3-) is an inorganic carbon source and electron acceptor in groundwater, however, the influencing mechanism of HCO3- on pollutant removal of electro-bioremediation remains unclear. Herein, the effects of HCO3- concentration on electro-bioremediation of phenanthrene (PHE)-contaminated groundwater were investigated. HCO3- could facilitate the PHE degradation while an HCO3- concentration of higher than 1000 mg L-1 had a significant inhibition effect. Among the HCO3- concentration of 100-5000 mg L-1, the highest PHE degradation efficiency of 75.04-80.18 % was achieved in the electro-biochemical reactor with 500 mg L-1 HCO3-. The PHE removal efficiency was negatively correlated with the current density during the electro-bioremediation process, due to the effect of HCO3- concentrations on the electrolyte conductivity in the reactors. The electro-bioremediation process could increase the richness of diversity of microbes. Methanomethylovorans and the PHE-degrading bacteria including Pelolinea, Clostridium sensu stricto 5, Diaphorobacter, Methyloversatilis and Flavobacterium were the main microbes involved in PHE degradation. Of them, Methanomethylovorans was significantly positively correlated with the PHE removal efficiency. The potential metabolic function analysis revealed that the bacterial chemotaxis, flagellar assembly, carbohydrate metabolism and ABC transporters were prompted with the addition of HCO3-, while they were inhibited with the increasing HCO3- concentration. These findings suggested that electro-bioremediation technology was suitable for the remediation of polycyclic aromatic hydrocarbons such as PHE-contaminated groundwater in low bicarbonate areas.
Collapse
Affiliation(s)
- Xin Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yue Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Rongrong Liu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Yiting Qiu
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Bohan Zhang
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Nannan Zhao
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China
| | - Ruo He
- Zhejiang Provincial Key Laboratory of Solid Waste Treatment and Recycling, School of Environmental Science and Engineering, Zhejiang Gongshang University, Hangzhou, 310012, China.
| |
Collapse
|
3
|
Amadou A, Praud D, Marques C, Noh H, Frenoy P, Vigneron A, Coudon T, Deygas F, Severi G, Fervers B, Mancini FR. Dietary intake of polycyclic aromatic hydrocarbons (PAHs) and breast cancer risk: Evidence from the French E3N-Generations prospective cohort. ENVIRONMENT INTERNATIONAL 2025; 200:109505. [PMID: 40373460 DOI: 10.1016/j.envint.2025.109505] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2024] [Revised: 04/25/2025] [Accepted: 04/29/2025] [Indexed: 05/17/2025]
Abstract
BACKGROUND While there is compelling evidence of the association between occupational exposure to polycyclic aromatic hydrocarbons (PAHs) and risk of breast cancer (BC), findings on PAH dietary exposure are less consistent. The present study aims to evaluate the association between PAH dietary intake and BC risk. METHODS The study included 67,879 women who completed a validated semi-quantitative dietary questionnaire (208 food items) from the E3N-Generations cohort study. PAH dietary intake was estimated by combining E3N food consumption data with food contamination levels obtained from the second French total diet study (TDS2). Cox regression was used to estimate adjusted hazard ratios (HRs) and 95 % confidence intervals (CIs) for the association between PAH dietary intake (sum of four PAHs (PAH4) namely benzo[a]pyrene (BaP), chrysene (CHR), benzo[a]anthracene (BaA) and benzo[b]fluoranthene (BbF)) and BC risk. Additionally, BaP, a surrogate for total PAHs, was investigated as the second exposure variable. RESULTS After an average follow-up of 17.6 years, 5,686 incident BC were diagnosed. Overall, the estimated HRs for the associations between each quintile of PAH4 and BC risk, taking the first quintile as reference, were all greater than 1, but were statistically significant only for the third quintile (HRQ3 vs Q1 = 1.10; CI: 1.01-1.20). By estrogen (ER) and progesterone (PR) hormone receptor status, we observed a positive association between PAH4 dietary intake and ER-PR- BC (HRQ4 vs Q1 = 1.34; CI: 1.01-1.76). Moreover, there was a borderline positive association with BaP, for the second (HRQ2 vs Q1 = 1.08; CI: 0.99-1.17) and third (HRQ3 vs Q1 = 1.07; CI: 0.98-1.16) quintiles. CONCLUSIONS This study supports a relationship between PAH4 dietary intake and BC risk, notably with a non-linear trend. A positive but marginal association was observed between BaP dietary intake and BC risk.
Collapse
Affiliation(s)
- Amina Amadou
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France.
| | - Delphine Praud
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Chloé Marques
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Hwayoung Noh
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France
| | - Pauline Frenoy
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France
| | - Arnaud Vigneron
- Centre de Recherche en Cancérologie de Lyon, INSERM U1052-CNRS UMR5286, Centre Léon Bérard, Université de Lyon, Université Claude Bernard Lyon1, 69008 Lyon, France
| | - Thomas Coudon
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Floriane Deygas
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | - Gianluca Severi
- Université Paris-Saclay, UVSQ, Inserm, Gustave Roussy, CESP, Villejuif, France; Department of Statistics, Computer Science and Applications (DISIA), University of Florence, Florence, Italy
| | - Béatrice Fervers
- Department of Prevention, Cancer and Environment, Centre Léon Bérard, Lyon, France; Inserm U1296, "Radiation: Defense, Health and Environment", Lyon, France
| | | |
Collapse
|
4
|
Ullah A, Rashid A, Tao S, Rafique M, Batool A, Qayyum M, Kamal A. Evaluating PAH exposure and occupational health in petrochemical sector: a focus on POL depot workers. INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH 2025:1-13. [PMID: 40353650 DOI: 10.1080/09603123.2025.2502631] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 05/02/2025] [Indexed: 05/14/2025]
Abstract
This investigation delineates occupational health concerns related to petroleum products handling at Petroleum Oil and Lubricant (POL) depots. The cohort included 117 workers from depots in Sihala, Risalpur and Lahore, alongside 69 controls. A strong correlation was found between specific job-related tasks, such as direct fuel handling, equipment maintenance, and tanker offloading, and urinary Polycyclic Aromatic Hydrocarbon (PAH) metabolites in exposed workers. Labourers and firemen displayed significantly higher (p < 0.01) urinary 1-hydroxypyrene (6.9 ± 1.7 and 5.8 ± 2.2 ng g-1 creatinine) concentration than watchmen (2.2 ± 1.2 ng g-1 creatinine) and controls (0.79 ± 0.3 ng g-1 creatinine). Logistic regression analysis linked exposure to increased likelihood of anxiety (OR = 4.6, 95% CI = 1.85-11.7), post-meal acidity (OR = 2.1, 95% CI = 1.05-4.5), dermal lesions (OR = 3.4, 95% CI = 1.8-6.4), and abdominal pain (OR = 1.9, 95% CI = 1.02-3.5). Principal component analysis (PCA) identified a collective impact of escalating serum pyrene and benzo[a]pyrene (B[a]P), and job type on insomnia, thoracic discomfort, fatigue, and headache. Gastrointestinal symptoms correlated strongly with urinary 1-hydroxypyrene and 9-hydroxyphenanthrene while urinary 2/3-OH-Flu was associated with dermatological and neurasthenic symptoms. Cigarette smoking and a sedentary lifestyle further worsened health outcomes. In conclusion, robust measures are needed to reduce PAH exposure and mitigate its neuro-metabolic and psychological impacts on the health of petrochemical workers.
Collapse
Affiliation(s)
- Aman Ullah
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Audil Rashid
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
- Faculty of Science, University of Gujrat, Gujrat, Pakistan
| | - Shu Tao
- College of Urban and Environmental Sciences, Peking University, Beijing, China
| | - Maria Rafique
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Aniqa Batool
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Mazhar Qayyum
- Department of Zoology, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| | - Atif Kamal
- Department of Environmental Sciences, PMAS Arid Agriculture University, Rawalpindi, Pakistan
| |
Collapse
|
5
|
Huizenga JM, Semprini L, Garcia-Jaramillo M. Identification of Potentially Toxic Transformation Products Produced in Polycyclic Aromatic Hydrocarbon Bioremediation Using Suspect and Non-Target Screening Approaches. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:7561-7573. [PMID: 40208242 PMCID: PMC12060897 DOI: 10.1021/acs.est.4c13093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/11/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are a class of ubiquitous environmental contaminants that can be remediated through physical, chemical, or biological means. Treatment strategies can lead to the formation of PAH-transformation products (PAH-TPs) that, despite having the potential for adverse ecological and human health effects, are unregulated and understudied in environmental monitoring and remediation. Unavailability of reference standards for PAH-TPs limits the ability to identify PAH-TPs by targeted methods. This study utilized suspect and nontarget screening approaches to identify PAH-TPs produced by a bacterial culture, Rhodococcus rhodochrous ATCC 21198, using liquid chromatography-high resolution mass spectrometry. Open-source tools were used to predict biotransformation products, predict potential PAH-TP structures from mass spectra, and estimate health hazards of potential PAH-TPs. The workflow developed in this study allowed for the tentative identification of 16 PAH-TPs (confidence levels 2a to 3), seven of which were not previously detected by targeted analysis. Several new potential transformation pathways for our bacterial pure culture were suggested by the PAH-TPs, including carboxylation, sulfonation and up to three hydroxylation reactions. A computational toxicity assessment indicated that the PAH-TPs shared many hazard characteristics with their parent compounds, including genotoxicity and endocrine disruption, highlighting the importance of considering PAH-TPs in future PAH studies.
Collapse
Affiliation(s)
- Juliana M. Huizenga
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| | - Lewis Semprini
- Oregon State University, School of Chemical, Biological, and Environmental Engineering 105 SW 26 St, Corvallis, OR, USA, 97331
| | - Manuel Garcia-Jaramillo
- Oregon State University, Department of Environmental and Molecular Toxicology 28645 East Hwy 34, Corvallis, OR, USA, 97333
| |
Collapse
|
6
|
Berríos-Rolón PJ, Cotto MC, Márquez F. Polycyclic Aromatic Hydrocarbons (PAHs) in Freshwater Systems: A Comprehensive Review of Sources, Distribution, and Ecotoxicological Impacts. TOXICS 2025; 13:321. [PMID: 40278637 PMCID: PMC12031217 DOI: 10.3390/toxics13040321] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 04/06/2025] [Accepted: 04/14/2025] [Indexed: 04/26/2025]
Abstract
This comprehensive review offers new perspectives on the distribution, sources, and ecotoxicological impacts of polycyclic aromatic hydrocarbons (PAHs) in freshwater systems. Unlike previous reviews, this work integrates recent findings on PAH dynamics within environmental matrices and emphasizes spatiotemporal variability across geographic regions. It critically examines both anthropogenic and natural sources, as well as the physical, chemical, and biological mechanisms driving PAH transport and fate. Special attention is given to the ecotoxicological effects of PAHs on freshwater organisms, including bioaccumulation, endocrine disruption, and genotoxicity. Notably, this review identifies key knowledge gaps and proposes an interdisciplinary framework to assess ecological risk and guide effective monitoring and management strategies for the protection of freshwater ecosystems.
Collapse
Affiliation(s)
| | - María C. Cotto
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| | - Francisco Márquez
- Nanomaterials Research Group, Department of Natural Sciences and Technology, Division of Natural Sciences, Technology and Environment, Universidad Ana G. Méndez-Gurabo Campus, Gurabo, PR 00778, USA;
| |
Collapse
|
7
|
Marchal L, Gateuille D, Naffrechoux E, Thuiller W, Saillard A, Poulenard J. Polycyclic aromatic hydrocarbon contents and distributions in soils of the northern French Alps. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2025; 32:10945-10959. [PMID: 40183867 DOI: 10.1007/s11356-025-36354-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 03/27/2025] [Indexed: 04/05/2025]
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are toxic and persistent organic pollutants that are ubiquitous in the environment. In particular, their presence and persistence in soils represent public health and environmental problems. However, no regulation of the levels of these pollutants in soils has been introduced in France. Despite a few nationwide monitoring studies of PAHs, little is known about the contamination by these pollutants in ecosystems such as mountainous areas. The aim of this study was therefore to assess PAH soil contamination in the northern French Alps and to improve our understanding of (i) their spatial distribution and (ii) their dynamic on sites submitted to very local past and present contamination. To this end, PAH levels were measured in the topsoil (0-10 cm) along eight elevational gradients (220-2700 m), the latter allowing us to study a wide range of climatic and ecological conditions and different levels of PAH exposure over a limited spatial area. The results revealed that the distance from sources played a major role in determining the PAH distribution. In addition, sites subject to major past and present PAH-emitting industrial activities were studied. At the site subject to current high emissions, PAH levels were extremely high, with a specific signature. In contrast, at site that was no longer subject to any particular source, the PAH levels were close to the regional background. The complementary study of these different types of sites allowed us to improve our knowledge of the spatial and temporal dynamics of PAHs in mountainous areas.
Collapse
Affiliation(s)
- Lise Marchal
- Université Savoie Mont-Blanc, CNRS, EDYTEM, 73000, Chambéry, France.
| | - David Gateuille
- Université Savoie Mont-Blanc, CNRS, EDYTEM, 73000, Chambéry, France
| | | | - Wilfried Thuiller
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Amélie Saillard
- Université Grenoble Alpes, Université Savoie Mont Blanc, CNRS, LECA, 38000, Grenoble, France
| | - Jérôme Poulenard
- Université Savoie Mont-Blanc, CNRS, EDYTEM, 73000, Chambéry, France
| |
Collapse
|
8
|
Soleimani F, Mallaki R, Arfaeinia H, Ghaemi M. Bioaccumulation of polycyclic aromatic hydrocarbons from leachates of waterpipe tobacco wastes on Peronia peronii species from the Persian Gulf region. Sci Rep 2025; 15:9227. [PMID: 40097503 PMCID: PMC11914590 DOI: 10.1038/s41598-025-93543-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 03/07/2025] [Indexed: 03/19/2025] Open
Abstract
This study examines the bioaccumulation factor (BAF) of polycyclic aromatic hydrocarbons (PAHs) in Peronia peronii (as the bio-indicator organism) exposed to the leachate resulting from fruit-flavored and traditional burnt tobacco wastes. The ƩPAHs concentrations in the muscle samples of P. Peronii of exposed group I (organisms exposed to the leachate resulting from fruit-flavored waterpipe tobacco wastes) and exposed group II (organisms exposed to the leachate resulting from traditional waterpipe tobacco wastes) and control group (exposed to natural seawater) were 37.49 ± 12.9, 9.32 ± 3.8, and 3.89 ± 1.9 ng/g, respectively. Furthermore, there was a significant difference between the mean values of all ƩPAHs compounds in the three groups (group I, group II, and control). The mean Log BAFs in P. Peronii exposed to fruit-flavored and traditional tobacco waste leachates were ranged from 1.70 to 3.61 and 2.49 to 3.07, respectively. The mean Log BAFs of none of the PAHs compounds did not exceed 3.7 (the limit set as "bio-accumulative") in none of the leachates (fruit-flavored or traditional). In the organisms exposed to the leachates resulting from fruit-flavored tobacco waste, Log BAFs of Benzo[b] fluoranthene (BbF), benzo(a)anthracene (BaA), and chrysene (Chr) lay within the range of 3.3-3.7 ("potentially bio-accumulative"). However, in the organisms exposed to the leachates resulting from traditional tobacco waste, the mean Log BAFs of all compounds did not reach even 3.3. The findings of our study indicate that leachates from tobacco waste, pose significant environmental and health hazards. Considering the prevalence of tobacco smoking, suitable strategies should be employed for management of these hazardous wastes to protect the environmental health.
Collapse
Affiliation(s)
- Farshid Soleimani
- Tobacco and Health Research Center, Hormozgan University of Medical Sciences, Bandar Abbas, Iran
| | - Reza Mallaki
- Department of Health, Safety and Environment, School of Health, Bushehr University of Medical Sciences, Bushehr, Iran
| | - Hossein Arfaeinia
- Addiction and Lifestyle Research Center, Bushehr University of Medical Sciences, Bushehr, Iran.
- Department of Environmental Health Engineering, Faculty of Health and Nutrition, Bushehr University of Medical Sciences, Bushehr, Iran.
| | - Maryam Ghaemi
- Iranian National Institute for Oceanography and Atmospheric Science, No. 3, Etemadzadeh St., Fatemi Ave, Tehran, 1411813389, Iran.
| |
Collapse
|
9
|
Fernandes Dias JD, Vieira DH, Serghiou T, Rivas CJ, Constantino CJL, Jimenez LB, Alves N, Kettle J. Influence of the Chemical Structure of Perylene Derivatives on the Performance of Honey-Gated Organic Field-Effect Transistors (HGOFETs) and Their Application in UV Light Detection. ACS APPLIED ELECTRONIC MATERIALS 2024; 6:9142-9153. [PMID: 39735568 PMCID: PMC11673095 DOI: 10.1021/acsaelm.4c01773] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Revised: 11/12/2024] [Accepted: 11/16/2024] [Indexed: 12/31/2024]
Abstract
Electronics based on natural or degradable materials are a key requirement for next-generation devices, where sustainability, biodegradability, and resource efficiency are essential. In this context, optimizing the molecular chemical structure of organic semiconductor compounds (OSCs) used as active layers is crucial for enhancing the efficiency of these devices, making them competitive with conventional electronics. In this work, honey-gated organic field-effect transistors (HGOFETs) were fabricated using four different perylene derivative films as OSCs, and the impact of the chemical structure of these perylene derivatives on the performance of HGOFETs was investigated. HGOFETs were fabricated using naturally occurring or low-impact materials in an effort to produce sustainable systems that degrade into benign end products at the end of their life. It is shown that the second chain of four carbons at the imide position present in perylenes N,N'-bis(5-nonyl)-perylene-3,4,9,10-bis(dicarboximide) (PDI) and N,N'-bis(5-nonyl)-1-naphthoxyperylene-3,4,9,10-bis(dicarboximide) (PDI-ONaph) reduces π-stacking interaction in the active layer, leading to lower AC conductivity and the non-functionality of HGOFETs. On the other side, the chain-on molecular orientation in the film of N,N'-dibutylperylen-3,4:9,10-bis(dicarboximide) (BuPTCD) was fundamental for the efficiency of HGOFETs, showing a better performance than the HGOFETs of N,N'-bis(2-phenylethyl)-3,4:9,10-bis(dicarboximide) (PhPTCD), which has a face-on molecular orientation. Finally, the HGOFETs of BuPTCD and PhPTCD are good candidates as UV light detectors and are used for the detection of UV radiation.
Collapse
Affiliation(s)
- Jose Diego Fernandes Dias
- Department
of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 15385-000, São Paulo, Brazil
- James
Watt School of Engineering, University of
Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Douglas Henrique Vieira
- Department
of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 15385-000, São Paulo, Brazil
| | - Theodoros Serghiou
- James
Watt School of Engineering, University of
Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| | - Carlos J. Rivas
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba.
INFIQC, Instituto de Investigaciones en Físicoquímica
de Córdoba (CONICET-UNC). Córdoba X5000HUA, Argentina
| | - Carlos J. L. Constantino
- Department
of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 15385-000, São Paulo, Brazil
| | - Liliana B. Jimenez
- Departamento
de Química Orgánica, Facultad
de Ciencias Químicas, Universidad Nacional de Córdoba.
INFIQC, Instituto de Investigaciones en Físicoquímica
de Córdoba (CONICET-UNC). Córdoba X5000HUA, Argentina
| | - Neri Alves
- Department
of Physics, School of Sciences and Technology, São Paulo State University (UNESP), Presidente Prudente 15385-000, São Paulo, Brazil
| | - Jeff Kettle
- James
Watt School of Engineering, University of
Glasgow, G12 8QQ Glasgow, Scotland, U.K.
| |
Collapse
|
10
|
Bai L, Geng X, Liu X. Review of polycyclic aromatic hydrocarbons pollution characteristics and carcinogenic risk assessment in global cooking environments. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 361:124816. [PMID: 39187058 DOI: 10.1016/j.envpol.2024.124816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 08/04/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
In recent years, research on air pollution in cooking environments has gained increasing attention, particularly studies related to polycyclic aromatic hydrocarbons (PAHs) pollution. Hence, it is crucial and urgent to conduct a comprehensive review of research findings and further evaluate their carcinogenic risks. This study adopts a comprehensive literature review approach, systematically integrating and deeply analyzing the conclusions and data from 62 selected relevant studies. It focuses on the impact of different factors on PAHs concentrations, considers the indoor-outdoor PAHs concentration ratio, and conducts carcinogenic risk assessments for PAHs. The results show that Africa has the highest average PAHs pollution concentration globally at 14.74 μg/m³, exceeding that of other continents by 1.5-160.9 times. Among various influencing factors, fuel type has the most significant impact on PAHs concentrations. Existing research data indicate that cooking with charcoal as fuel produces the highest PAHs concentration at 223.52 μg/m³, with high molecular weight PAHs accounting for 58.16%, significantly higher than when using clean energy. Furthermore, efficient ventilation systems have been proven to substantially reduce PAHs concentrations, with a reduction rate of up to 88.1%. However, cooking methods and food types also have a small but non-negligible impact on PAHs production. Using mild cooking methods such as steaming and selecting low-fat foods can also reduce PAHs to some extent. Additionally, through the analysis of the Indoor/Outdoor ratio, it was found that cooking is the primary source of indoor pollution, and the average concentration of PAHs in cooking environments in Asia and Africa is much higher than in Europe and America. The Total Incremental Lifetime Cancer Risk (TILCR) exceeds 10⁻⁴, indicating a high level of carcinogenic risk.
Collapse
Affiliation(s)
- Li Bai
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China; Key Laboratory of Songliao Aquatic of Education, Jilin Jianzhu University, Changchun, 130118, China.
| | - Xinshuai Geng
- School of Municipal & Environmental Engineering, Jilin Jianzhu University, Changchun, 130118, China
| | - Xinru Liu
- School of Municipal and Environmental Engineering, Shenyang Jianzhu University, 110168, Shenyang, China
| |
Collapse
|
11
|
de Castro Lins P, Hamann PRV, Lima JCB, Gonçalves Barbosa JAR, da Silva Correia JL, de Andrade IA, Knupp Dos Santos DF, Quirino BF, Krüger RH. Biochemical characterization and structure prediction of the Cerrado soil CRB2(1) metagenomic dioxygenase. Enzyme Microb Technol 2024; 182:110544. [PMID: 39527864 DOI: 10.1016/j.enzmictec.2024.110544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Revised: 10/01/2024] [Accepted: 10/31/2024] [Indexed: 11/16/2024]
Abstract
Dioxygenases are enzymes involved in the conversion of polyconic aromatic hydroxycarbons (PAHs), attracting significant biotechnological interest for the conversion of recalcitrant organic compounds. Furthermore, few studies show that dioxygenases can take on the function of resistance genes in clones. This enzymatic versatility opens up new opportunities for elucidating the mechanisms of microbial resistance, as well as its biotechnological application. In this work, a Cerrado soil dioxygenase named CRB2(1) was biochemically characterized. The enzyme was shown to have optimal activity at pH 7; a temperature of 30 °C; and using iron ions as a cofactor for substrate cleavage. The kinetic catalytic parameters of CRB2(1) were Vmax = 0.02281 µM/min and KM = 97.6. Its predicted three-dimensional structure obtained using the Modeller software v9.22 based on the crystal structure of gentisate 1,2-dioxygenase from Silicibacter pomeroyi (GDOsp) (PDB ID 3BU7, resolution 2.80 Å, residues 17-374) revealed substrate binding to the cupin domain, where the active site is located. The analyzed substrates interact directly with the iron ion, coordinated by three histidine residues. Changing the iron ion charge modifies the binding between the active site and the substrates. Currently, there is a demand for enzymes that have biotechnological activities of interest. Metagenomics allows analyzing the biotechnological potential of several organisms at the same time, based on sequence and functional activity analyses.
Collapse
Affiliation(s)
- Philippe de Castro Lins
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | - Jônatas Cunha Barbosa Lima
- Laboratory of Biophysics, Department of Cellular Biology, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | - Ikaro Alves de Andrade
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil
| | | | | | - Ricardo Henrique Krüger
- Cell Biology Department, Enzymology Laboratory, University of Brasilia, Brasilia, DF 70910-900, Brazil.
| |
Collapse
|
12
|
Liu A, Feng LJ, Ou Y, Zhang X, Zhang J, Chen H. Competitive adsorption of polycyclic aromatic hydrocarbons on phosphorus tailing-modified sludge biochar provides mechanistic insights. ENVIRONMENTAL GEOCHEMISTRY AND HEALTH 2024; 46:497. [PMID: 39508923 DOI: 10.1007/s10653-024-02283-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Accepted: 10/21/2024] [Indexed: 11/15/2024]
Abstract
Biochar has been widely used to solve the wastewater pollution of polycyclic aromatic hydrocarbons (PAHs). However, the competition of PAHs with different benzene ring numbers (e.g., phenanthrene [Phe], pyrene [Pyr], and benzo[a]pyrene [BaP]) for adsorption sites on biochar has received little attention. In this study, biochar was produced by co-pyrolysis of sludge and phosphorus tailing at different temperatures (300, 500, or 800 °C) to adsorb PAHs. The results show that phosphorus tailing increased the adsorption of PAH by increasing the biochar's BET surface area (SBET), micropore volume, hydrophobicity (at low temperatures) and aromaticity (at high temperatures). The maximum adsorption capacities were 29.90 µmol/g for Phe, 25.58 µmol/g for Pyr and 20.45 µmol/g for BaP, respectively. Importantly, the types and functions of groups involved in the adsorption of various PAHs were discussed. Adsorption of Phe and Pyr on the biochar mainly involved C=O and C-O-C functional groups, and there was a certain degree of competition between these PAHs for those sites. In contrast, BaP mainly adsorbed at C-OH and C=C moieties, without competing with Phe or Pyr at C-OH sites. The competitive edge of BaP was also stronger than that of Phe and Pyr on C=C functional groups. The adsorption mechanisms involving pore filling, hydrophobic interactions, and π-π interactions governed the adsorption of the evaluated PAHs. Overall, the adsorption of PAHs on biochar followed a heterogeneous chemical adsorption process.
Collapse
Affiliation(s)
- Anrong Liu
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Li-Juan Feng
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China.
| | - Yangyang Ou
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- The State Key Laboratory Incubation Base for Karst Mountain Ecology Environment of Guizhou Province, Guiyang, 550001, People's Republic of China
| | - Xiaoya Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
- State Engineering Technology Institute for Karst Desertification Control, Guiyang, 550001, People's Republic of China
| | - Jinhong Zhang
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| | - Hongyan Chen
- School of Geography and Environmental Science, Guizhou Normal University, Guiyang, 550001, Guizhou, People's Republic of China
| |
Collapse
|
13
|
Zhang M, He Z, Xu X, Ji F, Wang B. Synergistic enhancement of polycyclic aromatic hydrocarbon degradation by Arthrobacter sp. SZ-3 and Pseudomonas putida B6-2 under high Tween80 concentration: mechanisms and efficiency. Int Microbiol 2024:10.1007/s10123-024-00603-w. [PMID: 39382751 DOI: 10.1007/s10123-024-00603-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 09/19/2024] [Accepted: 10/02/2024] [Indexed: 10/10/2024]
Abstract
This study investigates the advantages of combined microbial degradation of polycyclic aromatic hydrocarbons (PAHs) in reducing the inhibitory effects of high-concentration eluents commonly used in soil washing. A microbial synergistic strategy was proposed using Arthrobacter sp. SZ-3 and Pseudomonas putida B6-2 as the key bacteria in the presence of Tween 80. The results show that in systems with Tween 80, the SZ-3 strain exhibits a strong capacity to degrade three types of PAH compounds, while the B6-2 strain follows multiple degradation pathways. Mixed bacteria achieved degradation rates 60.70% higher than single bacteria at varying concentrations of Tween 80. Additionally, the average growth rates of mixed bacteria increased by 1.17-1.37 times, aligning with the changes in the functional group. Protein activity detection within each degradation system corresponded with growth quantity and the cyclic variation characteristics of ETS enzyme activity. Notably, the ETS activity of mixed bacteria was 150% higher than that of single bacteria. At a Tween 80 concentration of 500 mg/L, the degradation rates of PAHs (Phe, Flu, Pyr) by mixed bacteria were significantly higher than those by single bacteria. The catechol 1,2-dioxygenase activity of mixed bacteria was 2.30 times higher than that of single bacteria. While Tween 80 did not alter the PAH degradation pathways, it significantly influenced the accumulation amount and duration of the characteristic intermediate product. This provides a reference for the remediation of recalcitrant pollutants under conditions involving high-concentration surfactants.
Collapse
Affiliation(s)
- Mingle Zhang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Zhimin He
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Xiaoyi Xu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China.
| | - Fan Ji
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215000, China
| | - Bin Wang
- College of Civil Engineering, Guizhou University, Guiyang, 550025, China
| |
Collapse
|
14
|
Liu J, Chen G, Qin X, Sun Q, Guo Z. Effects of Benzo[α]pyrene on Mucus Secretion and Tissue Remodeling in a Rat Model of Allergic Rhinitis. Ann Otol Rhinol Laryngol 2024; 133:886-892. [PMID: 39148236 DOI: 10.1177/00034894241275449] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/17/2024]
Abstract
OBJECTIVES Exposure to benzo[α]pyrene (BaP) increases the incidence and severity of allergic rhinitis (AR), but the underlying mechanisms remain unclear. Thus, we investigated the in vivo effects of BaP exposure on mucus hypersecretion and tissue remodeling in a rat model of AR. METHODS Female Sprague-Dawley rats were randomly divided into 4 groups: a negative control group, a group of healthy rats exposed to BaP, a group of rats with ovalbumin (OVA)-induced AR, and a group of AR model rats exposed to BaP. Nasal symptoms and levels of OVA-specific serum immunoglobulin E (IgE) were measured in each individual rat. Moreover, examination of goblet cell hyperplasia and collagen deposition was carried out with periodic acid-Schiff (PAS) staining and Masson trichrome (MT) staining. Mucin 5AC (MUC5AC) expression was assessed by immunohistochemistry. RESULTS BaP significantly increased the number of sneezes, the number of nasal rubs and the levels of OVA-specific serum IgE in rats with AR. Statistically significant differences in goblet cell hyperplasia and collagen deposition were observed between the BaP-exposed AR model group and the AR model group. Immunohistochemical results showed that the nasal mucosa of AR model rats displayed markedly elevated MUC5AC expression after BaP exposure. CONCLUSION Our data indicate that mucus hypersecretion and the development of nasal remodeling might be pathophysiologic mechanisms underlying increased susceptibility to AR after exposure to BaP.
Collapse
Affiliation(s)
- Jian Liu
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Guohui Chen
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Xuemei Qin
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Qing Sun
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| | - Zhiqiang Guo
- Department of Otolaryngology-Head and Neck Surgery, QingPu Branch of Zhongshan Hospital Affiliated to Fudan University, Shanghai, People's Republic of China
| |
Collapse
|
15
|
Sharma S, Shaikh S, Mohana S, Desai C, Madamwar D. Current trends in bioremediation and bio-integrated treatment of petroleum hydrocarbons. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:57397-57416. [PMID: 37861831 DOI: 10.1007/s11356-023-30479-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2023] [Accepted: 10/11/2023] [Indexed: 10/21/2023]
Abstract
Petroleum hydrocarbons and their derivatives constitute the leading group of environmental pollutants worldwide. In the present global scenario, petroleum and natural gas production, exploration, petroleum refining, and other anthropogenic activities produce huge amounts of hazardous petroleum wastes that accumulate in the terrestrial and marine environment. Due to their carcinogenic, neurotoxic, and mutagenic characteristics, petroleum pollutants pose severe risks to human health and exert ecotoxicological effects on the ecosystems. To mitigate petroleum hydrocarbons (PHs) contamination, implementing "green technologies" for effective cleanup and restoration of an affected environment is considered as a pragmatic approach. This review provides a comprehensive outline of newly emerging bioremediation technologies, for instance; nanobioremediation, electrokinetic bioremediation, vermiremediation, multifunctional and sustainably implemented on-site applied biotechnologies such as; natural attenuation, biostimulation, bioaugmentation, bioventing, phytoremediation and multi-process hybrid technologies. Additionally, the scope of the effectiveness and limitations of individual technologies in treating the petroleum hydrocarbon polluted sites are also evaluated.
Collapse
Affiliation(s)
- Shruti Sharma
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Shabnam Shaikh
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India
| | - Sarayu Mohana
- Department of Microbiology, Mount Carmel College (Autonomous), Palace Road, Bengaluru, Karnataka, 560052, India
| | - Chirayu Desai
- Department of Environmental Biotechnology, Gujarat Biotechnology University, Near Gujarat International Finance Tech (GIFT) - City, Gandhinagar, Gujarat, 382355, India
| | - Datta Madamwar
- Department of Biological Sciences, P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa, Anand, Gujarat, 388421, India.
| |
Collapse
|
16
|
Yin F, Gao C, Feng D, Sun Y. A review of the pollution signatures of polycyclic aromatic hydrocarbons in the sediments of the East China Sea. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 357:124386. [PMID: 38897279 DOI: 10.1016/j.envpol.2024.124386] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 05/29/2024] [Accepted: 06/16/2024] [Indexed: 06/21/2024]
Abstract
Marine sediments serve as crucial reservoirs for polycyclic aromatic hydrocarbons (PAHs), and their PAH signatures offer valuable historical pollution records. This article provides a comprehensive review of the pollution status of 16 priority PAHs in more than 1000 sediments from the East China Sea (ECS). It focuses on the PAH sources, spatiotemporal distributions, driving factors, and ecological risks, with information derived from peer-reviewed papers published between 2003 and 2023. The results revealed that vehicular emissions, mixed combustion sources of coal, biomass, and coke, as well as petrogenic sources, were the primary contributors to PAH pollution in the ECS sediments, accounting for 50%, 34%, and 16%, respectively. Human activities, hydrodynamic mechanisms, and environmental variables such as particle size and organic matter, collectively influenced the distribution of PAHs. Additionally, the population size and economic development played a key role in the temporal distribution of PAHs in the ECS sediments. The ecotoxicity assessment of PAHs in sediments indicated a low risk level. These outcomes are expected to provide environmentalists with detailed and up-to-date insights into sedimentary PAHs in the ECS, helping to develop suitable monitoring plans and strategies for promoting better management of ECS environment.
Collapse
Affiliation(s)
- Fang Yin
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Chen Gao
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China
| | - Daolun Feng
- College of Ocean Science and Engineering, Shanghai Maritime University, Shanghai, 201306, PR China; International Joint Research Center for Persistent Toxic Substances (IJRC-PTS), Shanghai Maritime University, Shanghai, 201306, PR China
| | - Yawei Sun
- Nantong Marine Center, Ministry of Natural Resources, Nantong, 226002, PR China.
| |
Collapse
|
17
|
Rojas-Villalta D, Rojas-Rodríguez D, Villanueva-Ilama M, Guillén-Watson R, Murillo-Vega F, Gómez-Espinoza O, Núñez-Montero K. Exploring Extremotolerant and Extremophilic Microalgae: New Frontiers in Sustainable Biotechnological Applications. BIOLOGY 2024; 13:712. [PMID: 39336139 PMCID: PMC11428398 DOI: 10.3390/biology13090712] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2024] [Revised: 09/03/2024] [Accepted: 09/08/2024] [Indexed: 09/30/2024]
Abstract
Exploring extremotolerant and extremophilic microalgae opens new frontiers in sustainable biotechnological applications. These microorganisms thrive in extreme environments and exhibit specialized metabolic pathways, making them valuable for various industries. The study focuses on the ecological adaptation and biotechnological potential of these microalgae, highlighting their ability to produce bioactive compounds under stress conditions. The literature reveals that extremophilic microalgae can significantly enhance biomass production, reduce contamination risks in large-scale systems, and produce valuable biomolecules such as carotenoids, lipids, and proteins. These insights suggest that extremophilic microalgae have promising applications in food, pharmaceutical, cosmetic, and biofuel industries, offering sustainable and efficient alternatives to traditional resources. The review concludes that further exploration and utilization of these unique microorganisms can lead to innovative and environmentally friendly solutions in biotechnology.
Collapse
Affiliation(s)
- Dorian Rojas-Villalta
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - David Rojas-Rodríguez
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Melany Villanueva-Ilama
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Rossy Guillén-Watson
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
- Facultad de Ingeniería, Universidad Autónoma de Chile, Temuco 4810101, Chile
| | - Francinie Murillo-Vega
- Biotechnology Research Center, Department of Biology, Instituto Tecnológico de Costa Rica, Cartago 159-7050, Costa Rica
| | - Olman Gómez-Espinoza
- Departamento de Ciencias Químicas y Recursos Naturales, Facultad de Ingeniería y Ciencias, Universidad de La Frontera, Temuco 4811230, Chile
| | - Kattia Núñez-Montero
- Facultad Ciencias de la Salud, Instituto de Ciencias Aplicadas, Universidad Autónoma de Chile, Temuco 4810101, Chile
| |
Collapse
|
18
|
Davletgildeeva AT, Kuznetsov NA. Bioremediation of Polycyclic Aromatic Hydrocarbons by Means of Bacteria and Bacterial Enzymes. Microorganisms 2024; 12:1814. [PMID: 39338488 PMCID: PMC11434427 DOI: 10.3390/microorganisms12091814] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 08/29/2024] [Accepted: 08/30/2024] [Indexed: 09/30/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are widespread, persistent, and toxic environmental pollutants. Many anthropogenic and some natural factors contribute to the spread and accumulation of PAHs in aquatic and soil systems. The effective and environmentally friendly remediation of these chemical compounds is an important and challenging problem that has kept scientists busy over the last few decades. This review briefly summarizes data on the main sources of PAHs, their toxicity to living organisms, and physical and chemical approaches to the remediation of PAHs. The basic idea behind existing approaches to the bioremediation of PAHs is outlined with an emphasis on a detailed description of the use of bacterial strains as individual isolates, consortia, or cell-free enzymatic agents.
Collapse
Affiliation(s)
- Anastasiia T. Davletgildeeva
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
| | - Nikita A. Kuznetsov
- Institute of Chemical Biology and Fundamental Medicine, Siberian Branch of Russian Academy of Sciences, Novosibirsk 630090, Russia;
- Department of Natural Sciences, Novosibirsk State University, Novosibirsk 630090, Russia
| |
Collapse
|
19
|
Dai S, Zhou Q, Yang Y, Zhang Y, Zhang S, Yao Y. Increasing contamination of polycyclic aromatic hydrocarbons in Chinese soils. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 368:122268. [PMID: 39178791 DOI: 10.1016/j.jenvman.2024.122268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2024] [Revised: 08/10/2024] [Accepted: 08/20/2024] [Indexed: 08/26/2024]
Abstract
China is facing a serious threat PAHs contaminated soil. To better understand the current state of soil PAH pollution in China and contribute to the development of feasible prevention and control measures and policies in the future. This study examines the spatiotemporal distributions of soil Polycyclic Aromatic Hydrocarbons (PAHs) pollution in China since 2000, and investigates the key factors influencing changes in levels of soil PAHs. The results of the survey on soil PAHs concentration levels in 716 areas were analyzed by visualization of ArcGIS pro data, correlation analysis and linear regression analysis, it was found that the increase in soil PAH pollution in China is concerning. The analysis indicates significant regional disparities, with pollution levels in the north being higher than in the south. Over the 20-year period, the median level of PAHs in soil increased by 476.8 μg/kg. Construction land areas that heavily rely on fossil fuels and industrial activities exhibit significantly higher concentrations of polycyclic aromatic hydrocarbons (PAHs) compared to other land use types. The study identifies key socio-economic factors linked to rising PAH levels, including energy consumption (notably coal and oil), industrial and domestic waste production. Coal consumption is highlighted as the leading factor in PAH concentration changes in 18 provinces, followed by industrial waste in 6 provinces. Future projections up to 2030 suggest continued influence of these factors on soil PAH levels. The research emphasizes the urgent necessity for comprehensive soil management policies to address the growing PAH pollution, offering insights into its dynamics and contributing factors in China.
Collapse
Affiliation(s)
- Shuo Dai
- College of Environment, Hohai University, Nanjing, 210024, China; Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| | - Qing Zhou
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yadi Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China; School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yanni Zhang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Songhe Zhang
- College of Environment, Hohai University, Nanjing, 210024, China.
| | - Yijun Yao
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| |
Collapse
|
20
|
Albarico FPJB, Chen CF, Lim YC, Wang MH, Chen CW, Dong CD. Seasonal dynamics of polycyclic aromatic hydrocarbons in microplankton from Kaohsiung Harbor (Taiwan Strait, northeastern South China Sea). MARINE POLLUTION BULLETIN 2024; 206:116759. [PMID: 39079475 DOI: 10.1016/j.marpolbul.2024.116759] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Revised: 07/03/2024] [Accepted: 07/20/2024] [Indexed: 08/21/2024]
Abstract
The impact of polycyclic aromatic hydrocarbons (PAHs) on the marine food web is crucially understudied in the primary trophic system. We evaluated the seasonal dynamics of PAHs in microplankton in a polluted environment (Taiwan), northeastern South China Sea. Replicate size-fractionated microplankton (55-1000 μm) were freeze-dried, and PAHs were extracted with a 1:1 v/v ratio of acetone: n-hexane, then analyzed using GC-MS. Total PAHs ranged between 68 and 2548 ng/g dw in microplankton, greatest during spring (130-2548 ng/g), followed by autumn (135-772 ng/g) and summer (44-423 ng/g). Spatial distribution varied through seasons but was higher in the southern part (S6 > S4 > S5 > S2 > S3 > S1 > S7), dominated by higher-ring PAHs from mixed pyrogenic and petrogenic sources. PAHs are significantly correlated with environmental factors, especially in colder seasons and lower salinity areas. Suspended matter and plankton influenced PAH transport and partitioning seasonally. Plankton's PAHs seasonal changes and environmental influences are revealed in an anthropic environment.
Collapse
Affiliation(s)
- Frank Paolo Jay B Albarico
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chih-Feng Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Yee Cheng Lim
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Ming-Huang Wang
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan
| | - Chiu-Wen Chen
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| | - Cheng-Di Dong
- Sustainable Environment Research Center, College of Hydrosphere Science, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City 81157, Taiwan.
| |
Collapse
|
21
|
El Hawari K, El Khatib M, Zeineh M, Beh D, Jaber F, Mokh S. Contaminant and residue profiles in Lebanese food: a comparative analysis with global standards. Food Addit Contam Part A Chem Anal Control Expo Risk Assess 2024; 41:1077-1098. [PMID: 39038014 DOI: 10.1080/19440049.2024.2374358] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 06/20/2024] [Accepted: 06/26/2024] [Indexed: 07/24/2024]
Abstract
Lebanon's agricultural sector, known for its diverse crop and livestock production, faces challenges in the international market due to the presence of chemical residues and contaminants in its food exports. Recent rejections of these exports have raised global concerns about food safety, increasingly seen as vital for public health and economic prosperity. This review focuses on examining scientific studies about the levels of various chemical residues including pesticides, and veterinary drugs and contaminants like mycotoxins, and polycyclic aromatic hydrocarbons, and heavy metals in Lebanese food products. Findings indicate that these residues and contaminants often exceed both the maximum residue limits (MRLs) and maximum limits (MLs) set by the Codex Alimentarius and the European Union. The review concludes with recommendations for reducing these contaminants and residues to enhance Lebanon's food safety and quality, aligning with international standards, and mitigating the risk of export rejections.
Collapse
Affiliation(s)
- Khaled El Hawari
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
| | - Mohammad El Khatib
- Unit of Basic and Applied Biosciences, Department of Biosciences, Agro-Food and Environmental Technologies, University of Teramo, Teramo, Italy
| | - Mariam Zeineh
- Faculty of Public Health- I, Lebanese University, Hadath, Lebanon
| | - Daniel Beh
- Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Farouk Jaber
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
- Faculty of Sciences I, Lebanese University, Hadath, Lebanon
| | - Samia Mokh
- Laboratory for Analysis of Organic Compounds (LAOC), CNRSL, Lebanese Atomic Energy Commission (LAEC), Beirut, Lebanon
- Faculty of Public Health- I, Lebanese University, Hadath, Lebanon
- Department of Biochemistry and Plant Immunology, University of Jaume I, Castellón de la Plana, Spain
| |
Collapse
|
22
|
Lancheros A, Cajamarca F, Guedes C, Brito O, Guimarães MDF. Exploring the potential of Canavalia ensiformis for phytoremediation of B10 biodiesel-contaminated soil: insights on aromatic compound degradation and soil fertility. INTERNATIONAL JOURNAL OF PHYTOREMEDIATION 2024; 26:1854-1862. [PMID: 38804225 DOI: 10.1080/15226514.2024.2357646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/29/2024]
Abstract
The widespread use of petroleum-based fuels poses a significant environmental problem due to the risks associated with accidental spills. Among the treatments available, phytoremediation is increasingly accepted as an effective and low-cost solution. This study aimed to evaluate the degradation of the aromatic fraction of biodiesel B10 and the soil fertility analysis in artificially contaminated soils treated with phytoremediation. The experimental design consisted of a 3x3 factorial, with three types of soil treatment: control, autoclaved, and planted with C. ensiformis L, and three levels of B10 biodiesel contamination: 0, 1, and 2%, to simulate spills of 30,000 and 60,000 L ha-1. The soil was analyzed at three depths: 0-10, 10-20, and 20-30 cm. The results indicated that aromatic compound degradation after phytoremediation was superior to 92,76% and 88,65% for 1% and 2% B10 soil contamination, respectively. The fuel contamination affected soil fertility, reducing the availability of phosphorus and zinc while increasing the Total Organic Carbon (TOC), pH, and the availability of manganese and iron for plants.
Collapse
Affiliation(s)
- Andres Lancheros
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Fabio Cajamarca
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
- Chemistry Department, Pedagogical National University (UPN), Bogotá, Colombia
| | - Carmen Guedes
- Postgraduate Program in Bioenergy, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
- Chemistry Department, Exact Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Osmar Brito
- Department of Agronomy, Agricultural Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| | - Maria de Fátima Guimarães
- Department of Agronomy, Agricultural Sciences Center, State University of Londrina (UEL), Londrina, Brazil
| |
Collapse
|
23
|
Akl FMA, El-Sheekh MM, Ahmed SI, Makhlof MEM. Bioadsorption of crude petroleum oil from seawater using the marine alga Hormophysa triquetra mediated silver nanoparticles. MARINE POLLUTION BULLETIN 2024; 206:116763. [PMID: 39079478 DOI: 10.1016/j.marpolbul.2024.116763] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/04/2024] [Revised: 07/19/2024] [Accepted: 07/21/2024] [Indexed: 08/21/2024]
Abstract
The biosynthesis of silver nanoparticles, both economically and environmentally advantageous, uses algae extracts. In the current work, we extracted the marine brown alga Hormophysa triquetra (C. Agardh) kützing and used it to make silver nanoparticles (HAgNPs) which are characterized via UV-visible spectrophotometers, Transmission Electron Microscopy (TEM), Zeta potential, and FTIR then used them in the bio adsorption of crude petroleum oil from seawater, comparing them with H. triquetra aqueous extract. UV scan of the phycosynthesized silver nanoparticles achieved the highest absorption at 369 nm. TEM showed that the synthesized HAgNPs occur with smooth, spherical, and semispherical forms with sizes ranging from 12.04 to 20.67 nm, zeta potential illustrated that HAgNPs were charged with -22.1, The H. triquetra aqueous extract's FTIR examination identified several active groups like - OH, -C=C-, NO, -CH, CCl, -C ≡ C-H: CH which are responsible for the bioadsorption of crude petroleum oil. When extracting crude petroleum oil from seawater, HAgNPs worked better than its aqueous extract. The maximum removal % for light n-alkanes (Ln-alk), heavy n-alkanes (Hn-alk), and PAHs were 70.4 %, 71.63 %, and 75.38 % respectively for H. triquetra aqueous extract with adsorption capacity 889, 511, 273 μg/g at salinity 36 % and pH 5, while in case of HAgNPs the results were 75.81 %, 77.15 %, and 80.56 %, respectively with adsorption capacity 957, 550, 292 μg/g at the same salinity and pH.
Collapse
Affiliation(s)
- Faiza M A Akl
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mostafa M El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Suzan I Ahmed
- Biological and Geological Sciences Department, Faculty of Education, Alexandria University, Alexandria, Egypt
| | - Mofida E M Makhlof
- Botany and Microbiology Department, Faculty of Science, Damanhour University, El-Bahira, Egypt
| |
Collapse
|
24
|
Guo M, Fang Y, Peng M, He C, Chen J, Sun B, Liu C, Zhou Y, Zhang H, Zhao K. Prenatal exposure to polycyclic aromatic hydrocarbons and phthalate acid esters and gestational diabetes mellitus: A prospective cohort study. Int J Hyg Environ Health 2024; 261:114419. [PMID: 38968840 DOI: 10.1016/j.ijheh.2024.114419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/25/2024] [Accepted: 06/30/2024] [Indexed: 07/07/2024]
Abstract
BACKGROUND Polycyclic aromatic hydrocarbons and phthalate acid esters (PAHs & PAEs), known as endocrine disrupting chemicals (EDCs), widely exist in daily life and industrial production. Previous studies have suggested that PAHs & PAEs may modify the intrauterine homeostasis and have adverse effects on fetal development. However, epidemiological evidence on the associations between PAHs & PAEs and gestational diabetes mellitus (GDM) is still limited. OBJECTIVE To investigate the effects of prenatal PAHs &PAEs exposure on the risk of GDM and hyperglycemia in pregnant women. METHODS The study population was a total of 725 pregnant women from a prospective birth cohort study conducted from December 2019 to December 2021. Blood glucose levels were collected by the hospital information system. Urinary PAHs & PAEs concentrations were determined by gas chromatography tandem mass spectrometry. The Poisson regression in a generalized linear model (GLM), multiple linear regression, quantile-based g-computation method (qgcomp), and Bayesian kernel machine regression (BKMR) were applied to explore and verify the individual and overall effects of PAHs & PAEs on glucose homeostasis. Potential confounders were adjusted in all statistical models. RESULTS A total of 179 (24.69%) women were diagnosed with GDM. The Poisson regression suggested that a ln-unit increment of 4-OHPHE (4-hydroxyphenanthrene) (adjusted Risk Ratio (aRR) = 1.13; 1.02-1.26) was associated with the increased GDM risk. Mixed-exposure models showed similar results. We additionally found that MBZP (mono-benzyl phthalate) (aRR = 1.19; 1.02-1.39) was positively related to GDM risk in qgcomp model. Although neither model demonstrated that 2-OHNAP (2-hydroxynaphthalene) and 9-OHFLU (9-hydroxyfluorene) increased the risk of GDM, 2-OHNAP and 9-OHFLU exposure significantly increased blood glucose levels. BKMR model further confirmed that overall effects of PAHs & PAEs were significantly associated with the gestational hyperglycemia and GDM risk. CONCLUSIONS Our study presents that environmental exposure to PAHs & PAEs was positively associated with gestational glucose levels and the risks of developing GDM. In particular, 2-OHNAP, 9-OHFLU, 4-OHPHE and MBZP may serve as important surveillance markers to prevent the development of GDM.
Collapse
Affiliation(s)
- Minghao Guo
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yiwei Fang
- Center for Reproductive Medicine, Department of Obstetrics and Gynecology, Peking University Third Hospital, No. 49, North Garden Road, Haidian District, Beijing, 100191, PR China; National Clinical Research Center for Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, PR China; State Key Laboratory of Female Fertility Promotion, Department of Obstetrics and Gynecology, Peking University Third Hospital, Beijing, 100191, PR China; Key Laboratory of Assisted Reproduction, Ministry of Education, Peking University, Beijing, 100191, PR China; Beijing Key Laboratory of Reproductive Endocrinology and Assisted Reproductive Technology, Beijing, 100191, PR China.
| | - Meilin Peng
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chao He
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Jin Chen
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Borui Sun
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Chunyan Liu
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China
| | - Yuanzhong Zhou
- School of Public Health, Zunyi Medical University, Zunyi, Guizhou, 563060, PR China
| | - Huiping Zhang
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| | - Kai Zhao
- Institute of Reproductive Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei, 430030, PR China.
| |
Collapse
|
25
|
Yang R, Shi C, Li X, Gan P, Pan X, Peng R, Tan L. Human biomonitoring of serum polycyclic aromatic hydrocarbons and oxygenated derivatives by gas chromatography coupled with tandem mass spectrometry. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2024; 16:4817-4826. [PMID: 38966930 DOI: 10.1039/d4ay00758a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2024]
Abstract
While polycyclic aromatic hydrocarbons (PAHs) are well-known for their potential carcinogenic and mutagenic effects, the health implications of exposure to oxygenated PAHs (OPAHs), which are significant substitutes with increased persistence and bioaccumulation, are less understood. In this work, we compared the background levels of liquid-liquid, solid-phase, and supported-liquid extraction for the determination of serum PAHs and OPAHs. Liquid-liquid extraction demonstrated minimal background interference and was validated and used for human biomonitoring of PAHs and OPAHs in 240 participants using gas chromatography coupled with tandem mass spectrometry. We observed significant positive correlations between these compounds using Spearman correlation analysis. Furthermore, we investigated the concentration levels and compositions of PAHs and OPAHs among different demographic characteristics, including gender, age, and body mass index. Linear regression analysis demonstrated a weak but significant correlation between total concentrations of PAHs and OPAHs and age and body mass index. A multivariate linear regression analysis was then conducted to examine the association of exposure to individual PAHs and OPAHs with the body mass index. Naphthalene exposure and body mass index showed a statistically significant positive correlation, suggesting that higher levels of naphthalene exposure are associated with higher body mass index values. This study establishes a robust method for biomonitoring PAHs and OPAHs in serum, evaluating the exposure levels of these compounds in healthy adults and highlighting their associations with demographic characteristics.
Collapse
Affiliation(s)
- Rong Yang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Chenwen Shi
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| | - Xiaojing Li
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Pingsheng Gan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Rongfei Peng
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China.
- School of Public Health, Guangzhou Medical University, Guangzhou 510515, China
| |
Collapse
|
26
|
Jindal S, Aggarwal KK. Pseudomonas aeruginosa PR23 isolated from oil contaminated soil tolerate and degrades mixture of polyaromatic hydrocarbons and express novel proteins. World J Microbiol Biotechnol 2024; 40:262. [PMID: 38972951 DOI: 10.1007/s11274-024-04071-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 07/03/2024] [Indexed: 07/09/2024]
Abstract
Pseudomonas aeruginosa PR23 isolated from the hydrocarbon contaminated soil can tolerate and degrade mixture of polyaromatic hydrocarbons (PAHs) at an initial concentration of 1300 ppm. The degradation and intermediates formed were assessed by gas chromatography-mass spectrometry (GC-MS) analysis. The isolated strain was able to degrade 59.2% of the mixture of PAHs in 3 days and 71.6% by day 15. Effect of PAHs on protein expression in Pseudomonas aeruginosa PR23 was studied using nano LC-MS/MS. Thirty-six proteins showed a more than 2-fold increase in expression in the presence of mixture of PAHs. Out of these proteins, 7 proteins have been reported for their role in degradation of naphthalene, phenanthrene, and pyrene. The data revealed the presence of 16 proteins that were uniquely expressed in the presence of mixture of PAHs. A twin-arginine translocation signal peptide (Tat system), known for the transportation of folded proteins across the cell membrane, showed more than 8-fold increased expression in the presence of mixture of PAHs. These results indicate that the isolated strain adopts the conditions in the presence of mixture of PAHs by modulating its metabolic and physiological processes. These findings suggest that Pseudomonas aeruginosa PR23 may be a suitable candidate for use in the development of strategies for bioremediation of mixtures of PAHs.
Collapse
Affiliation(s)
- Shanky Jindal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec 16C Dwarka, New Delhi, 110078, India
| | - Kamal Krishan Aggarwal
- University School of Biotechnology, Guru Gobind Singh Indraprastha University, Sec 16C Dwarka, New Delhi, 110078, India.
| |
Collapse
|
27
|
Kuprijanov I, Buhhalko N, Eriksson U, Sjöberg V, Rotander A, Kolesova N, Lipp M, Buschmann F, Hashmi A, Liblik T, Lehtonen KK. A case study on microlitter and chemical contaminants: Assessing biological effects in the southern coast of the Gulf of Finland (Baltic sea) using the mussel Mytilus trossulus as a bioindicator. MARINE ENVIRONMENTAL RESEARCH 2024; 199:106628. [PMID: 38968804 DOI: 10.1016/j.marenvres.2024.106628] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2024] [Revised: 05/09/2024] [Accepted: 06/29/2024] [Indexed: 07/07/2024]
Abstract
Chemical and microlitter (ML) pollution in three Estonian coastal areas (Baltic Sea) was investigated using mussels (Mytilus trossulus). Polycyclic aromatic hydrocarbons (PAH) in mussel tissues were observed in moderate levels with high bioaccumulation factors for the more hydrophilic and low molecular weight PAH (LMW PAH), namely anthracene and fluorene. Tissue concentrations of polybrominated diphenyl ethers (PBDE) and cadmium within mussel populations exceeded the Good Environmental Status thresholds by more than 200% and 60%, respectively. Multiple contamination at the Muuga Harbour site by tributyltin, high molecular weight PAH, including the highly toxic benzo[c]fluorene and PBDE, coincided with the inhibition of acetylcholinesterase activity and a lower condition index of the mussels. The metabolization and removal of bioaccumulated LMW PAH, reflected in the dominance of oxy-PAH such as anthracene-9,10-dione, is likely associated with the increased activity of glutathione S-transferase in caged mussels. Only a few microplastic particles were observed among the ML in mussel tissues, with coloured cellulose-based microfibers being the most prevalent. The average concentration of ML in mussels was significantly higher at the harbour area than at other sites. The integrated biomarker response index values allowed for the differentiation of pollution levels across studied locations representing high, intermediate, and low pollution levels within the studied area.
Collapse
Affiliation(s)
- Ivan Kuprijanov
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia.
| | - Natalja Buhhalko
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Ulrika Eriksson
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Viktor Sjöberg
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Anna Rotander
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Natalja Kolesova
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Maarja Lipp
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Fred Buschmann
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Arslan Hashmi
- School of Science and Technology, Örebro University, Grenadjärgatan 8, 703 65, Örebro, Sweden
| | - Taavi Liblik
- Department of Marine Systems, Tallinn University of Technology, Akadeemia Tee 15a, 12618, Tallinn, Estonia
| | - Kari K Lehtonen
- Marine and Freshwater Solutions Unit, Finnish Environment Institute (Syke), Agnes Sjöbergin Katu 2, FI-00790, Helsinki, Finland
| |
Collapse
|
28
|
Huang H, Xie C, Xia Z, Sun Z, Chen Y, Gou M, Tang Y, Cui H, Wu X. Multi-omics association study of hexadecane degradation in haloarchaeal strain Halogranum rubrum RO2-11. ENVIRONMENTAL RESEARCH 2024; 252:118751. [PMID: 38522738 DOI: 10.1016/j.envres.2024.118751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2023] [Revised: 03/01/2024] [Accepted: 03/18/2024] [Indexed: 03/26/2024]
Abstract
Haloarchaea with the capacity to degrade alkanes is promising to deal with petroleum pollution in hypersaline environments. However, only a limited number of haloarchaeal species are investigated, and their pathway and mechanism for alkane degradation remain unclear. In this study, Halogranum rubrum RO2-11, a haloarchaeal strain, verified the ability to degrade kerosene and hexadecane in 184 g/L NaCl, with 53% and 52% degradation rates after 9 and 4 days, respectively. Genome sequencing and gene annotation indicated that strain RO2-11 possesses a complete potential alkane-degrading pathway, of which alkane hydroxylases may include CYP450, AlmA, and LadA. Transcriptome and metabolome analyses revealed that the upregulation of related genes in TCA cycle, lysine biosynthesis, and acetylation may help improve hexadecane degradation. Additionally, an alternative degrading pathway of hexadecane based on dual-terminal β-oxidation may occur in strain RO2-11. It is likely to be the first report of alkane degradation by the genus Halogranum, which may be helpful for applications of oil-pollution bioremediation under high-salt conditions.
Collapse
Affiliation(s)
- HeLang Huang
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China; Chengdu Surveying Geotechnical Research Institute Co. Ltd. of MCC, Chengdu, 610023, China.
| | - CaiYun Xie
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - ZiYuan Xia
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - ZhaoYong Sun
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - YaTing Chen
- Institute for Disaster Management and Reconstruction, Sichuan University, Sichuan, 610207, China.
| | - Min Gou
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - YueQin Tang
- College of Architecture and Environment, Sichuan University, Sichuan, 610065, China.
| | - HengLin Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang, 212013, China.
| | - XiaoLei Wu
- College of Engineering, Peking University, Beijing, 100871, China.
| |
Collapse
|
29
|
Polasko AL, Koutnik VS, Tsai K, Alkidim S, Borthakur A, Mohanty S, Mahendra S. Evaluation of historical data on persistent organic pollutants and heavy metals in Lake Baikal: Implications for accumulation in marine environments. ENVIRONMENTAL RESEARCH 2024; 252:119035. [PMID: 38685302 DOI: 10.1016/j.envres.2024.119035] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2024] [Revised: 04/25/2024] [Accepted: 04/26/2024] [Indexed: 05/02/2024]
Abstract
Lake Baikal, the largest freshwater lake by volume, provides drinking water and aquatic food supplies to over 2.5 million people. However, the lake has been contaminated with recalcitrant pollutants released from surrounding industrial complexes, agriculture, and natural lands, thereby increasing the risk of their bioaccumulation in fish and seals. Yet, a collective analysis of historical concentration data and their bioaccumulation potential as well as what factors drive their accumulation in fish or seals remains largely unknown. We analyzed concentration data from 42 studies collected between 1985 and 2019 in water, sediment, fish, and seals of Lake Baikal. Heavy metals had the highest concentrations in water and biota followed closely by polycyclic aromatic hydrocarbons (PAHs) and organochlorines. Among organochlorines, polychlorinated biphenyls (PCBs) showed the highest levels in water, surpassing hexachlorocyclohexane (HCH) concentrations, particularly after normalizing to solubility. While naphthalene and phenanthrene exhibited the highest average concentrations among polycyclic aromatic hydrocarbons (PAHs), their relative concentrations significantly decreased upon solubility normalization. The analysis confirmed that bioconcentration and biomagnification of organochlorine pesticides, PCBs, PAHs, and heavy metals depend primarily on source strength to drive their concentration in water and secondarily on their chemical characteristics as evidenced by the higher concentrations of low-solubility PCBs and high molecular weight PAHs in water and sediment. The differential biomagnification patterns of Cu, Hg, and Zn compared to Pb are attributed to their distinct sources and bioavailability, with Cu, Hg, and Zn showing more pronounced biomagnification due to prolonged industrial release, in contrast to the declining Pb levels. Dibenzo-p-dioxins were detected in sediment and seals, but not in water or fish compartments. These data highlight the importance of addressing even low concentrations of organic and inorganic pollutants and the need for more consistent and frequent monitoring to ensure the future usability of this and other similar essential natural resources.
Collapse
Affiliation(s)
| | | | | | - Sarah Alkidim
- Brown University, Department of Physics, Providence, RI, USA
| | - Annesh Borthakur
- St. Louis University, Department of Civil, Computer, and Electrical Engineering, 1 N. Grand Blvd, St. Lous, MO, USA
| | - Sanjay Mohanty
- University of California at Los Angeles (UCLA), Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| | - Shaily Mahendra
- University of California at Los Angeles (UCLA), Department of Civil and Environmental Engineering, Los Angeles, CA, USA
| |
Collapse
|
30
|
Osman HE, Fadhlallah RS, El-Morsy MHE. Synergistic effect by Sorghum bicolor L., citric acid, biochar, and vermiwash amendment for the remediation of a mine-contaminated soil. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47655-47673. [PMID: 39003426 DOI: 10.1007/s11356-024-34223-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2023] [Accepted: 06/29/2024] [Indexed: 07/15/2024]
Abstract
Phytoremediation is an in situ remediation and eco-friendly technique employing accumulator plant species to remove trace elements (TEs) from contaminated sites. Moreover, it has been demonstrated that both natural and synthetic amendments can enhance trace elements (TEs) phytoremediation from polluted soils through bioenergy crops. This work assessed the synergistic impact of two tested biochar (BC) from data palm (B1) and Prosopis (B2) (1.5%/ kg), citric acid (CA, 1.5 mmol/kg) and vermiwash (VW, 20 ml/kg) to enhance the remediation of tested TEs (Mn, Zn, Cd, Pb, Ni, Cu, and Fe) from Mahad AD'Dahab mine-contaminated soil by sorghum (Sorghum bicolor L.). The BC and CA amendments alone and combined with VW significantly augmented the proliferation and survival of sorghum grown in mine-contaminated soil. Considering the individual and combined applications of VW and BC, the influence on plant growth followed this order: K < VW < B2 < B1 < B1 + VW < B2 + VW < CA < CA + VW. Applying tested BC/CA and VW significantly increased chlorophyll compared to unamended soil. The outcomes revealed a substantial elevation in TE absorption in both shoot and root (p ≤ 0.05) with all tested treatments compared to the untreated soil (K). The combined application of CA and VW resulted in the most significant TE uptake of TEs at both the root and the shoot. Furthermore, adding CA or VW as a foliar spray enhanced the bioaccumulation factor (BCF) and translocation factor (TF) of studied metals. The combined addition of CA and foliar spraying of VW was more effective than the sole addition of CA or VW. Such increase reached 20.0%, 15.6%, 19.4%, 14.3%, 14.0%, and 25.6% of TF, and 13.7%, 11.9%, 8.3%, 20.9%, 20.5%,18.7%, and 19.8% of BCE for Cd, Cu, Fe, Mn, Ni, Pb, and Zn, respectively. This study highlights the efficiency of combining CA/BC with VW as a more viable option for remediating mine-contaminated soil than individual amendments. However, future research should prioritize long-term field trials to assess the efficiency of using citric acid and vermiwash for restoring contaminated mining soils.
Collapse
Affiliation(s)
- Hanan E Osman
- Biology Department, Faculty of Science, Umm-Al-Qura University, Makkah, Saudi Arabia.
| | - Ruwaydah S Fadhlallah
- Biology Department, Faculty of Science, Umm-Al-Qura University, Makkah, Saudi Arabia
| | - Mohamed H E El-Morsy
- Deanship of Postgraduate Studied and Research, Umm Al-Qura University, Makkah, Saudi Arabia
| |
Collapse
|
31
|
Scariot MA, Radünz LL, Morelato RR, da Costa Cabrera L, Dugatto JS, Rohrig B, Dionello RG, Radünz AL. Contamination and persistence of polycyclic aromatic hydrocarbons (PAHs) in rice grains after drying in direct-fired dryer. Food Sci Biotechnol 2024; 33:1593-1602. [PMID: 38623431 PMCID: PMC11016032 DOI: 10.1007/s10068-023-01456-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Revised: 08/28/2023] [Accepted: 10/10/2023] [Indexed: 04/17/2024] Open
Abstract
The objective of this work was to study PAHs contamination in rice grains subjected to different milling types, after drying at different air temperatures in a direct-fired dryer and using firewood with different moisture contents as a heating source. In addition to verifying the persistence of these compounds after storage. Drying of rice grains was performed in a cross-flow dryer at air temperatures of 55 and 65 ºC. As heating source firewood containing different moisture contents was used. The presence of nine PAHs was detected. The drying air temperature, as well as the storage time, did not significantly influence the PAHs contamination of grains. The highest PAHs contamination was observed in grains from the brown subgroup. Grain polishing promoted a reduction in the PAH concentration. The grains subjected to parboilization showed a higher PAHs concentration. The use of firewood with higher moisture content promoted greater PAHs contamination in the grains.
Collapse
Affiliation(s)
- Maurício Albertoni Scariot
- Department. de Fitossanidade, Universidade Federal do Rio Grande do Sul – UFRGS – Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, Porto Alegre, RS CEP 91540-000 Brazil
| | - Lauri Lourenço Radünz
- Department. de Fitossanidade, Universidade Federal do Rio Grande do Sul – UFRGS – Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, Porto Alegre, RS CEP 91540-000 Brazil
| | - Rafaela Roberta Morelato
- Laboratório de Química Instrumental, Universidade Federal da Fronteira Sul, Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal, 1580, São Pedro, Cerro Largo, RS CEP 97900-000 Brazil
| | - Liziara da Costa Cabrera
- Laboratório de Química Instrumental, Universidade Federal da Fronteira Sul, Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal, 1580, São Pedro, Cerro Largo, RS CEP 97900-000 Brazil
| | - Jonas Simões Dugatto
- Laboratório de Química Instrumental, Universidade Federal da Fronteira Sul, Campus Cerro Largo, Rua Jacob Reinaldo Haupenthal, 1580, São Pedro, Cerro Largo, RS CEP 97900-000 Brazil
| | - Bruna Rohrig
- Department. de Fitossanidade, Universidade Federal do Rio Grande do Sul – UFRGS – Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, Porto Alegre, RS CEP 91540-000 Brazil
| | - Rafael Gomes Dionello
- Department. de Fitossanidade, Universidade Federal do Rio Grande do Sul – UFRGS – Faculdade de Agronomia, Avenida Bento Gonçalves, 7712, Porto Alegre, RS CEP 91540-000 Brazil
| | - André Luiz Radünz
- Universidade Federal da Fronteira Sul, Campus Chapecó, Rodovia SC 484, Km 02, Chapecó, SC CEP 89815-899 Brazil
| |
Collapse
|
32
|
Nagy KK, Takács K, Németh I, Varga B, Grolmusz V, Molnár M, Vértessy BG. Novel enzymes for biodegradation of polycyclic aromatic hydrocarbons identified by metagenomics and functional analysis in short-term soil microcosm experiments. Sci Rep 2024; 14:11608. [PMID: 38773163 PMCID: PMC11109138 DOI: 10.1038/s41598-024-61566-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2023] [Accepted: 05/07/2024] [Indexed: 05/23/2024] Open
Abstract
Polycyclic aromatic hydrocarbons (PAHs) are highly toxic, carcinogenic substances. On soils contaminated with PAHs, crop cultivation, animal husbandry and even the survival of microflora in the soil are greatly perturbed, depending on the degree of contamination. Most microorganisms cannot tolerate PAH-contaminated soils, however, some microbial strains can adapt to these harsh conditions and survive on contaminated soils. Analysis of the metagenomes of contaminated environmental samples may lead to discovery of PAH-degrading enzymes suitable for green biotechnology methodologies ranging from biocatalysis to pollution control. In the present study, our goal was to apply a metagenomic data search to identify efficient novel enzymes in remediation of PAH-contaminated soils. The metagenomic hits were further analyzed using a set of bioinformatics tools to select protein sequences predicted to encode well-folded soluble enzymes. Three novel enzymes (two dioxygenases and one peroxidase) were cloned and used in soil remediation microcosms experiments. The experimental design of the present study aimed at evaluating the effectiveness of the novel enzymes on short-term PAH degradation in the soil microcosmos model. The novel enzymes were found to be efficient for degradation of naphthalene and phenanthrene. Adding the inorganic oxidant CaO2 further increased the degrading potential of the novel enzymes for anthracene and pyrene. We conclude that metagenome mining paired with bioinformatic predictions, structural modelling and functional assays constitutes a powerful approach towards novel enzymes for soil remediation.
Collapse
Affiliation(s)
- Kinga K Nagy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., 1117, Budapest, Hungary
| | - Kristóf Takács
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Imre Németh
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary
| | - Bálint Varga
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
| | - Vince Grolmusz
- PIT Bioinformatics Group, Eötvös Loránd University, 1117, Budapest, Hungary
- Uratim Ltd., 1118, Budapest, Hungary
| | - Mónika Molnár
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary.
| | - Beáta G Vértessy
- Department of Applied Biotechnology and Food Science, Faculty of Chemical Technology and Biotechnology, Budapest University of Technology and Economics, Műegyetem Rkp. 3., 1111, Budapest, Hungary.
- Institute of Enzymology, Research Centre for Natural Sciences, Magyar Tudósok Körútja 2., 1117, Budapest, Hungary.
| |
Collapse
|
33
|
Yemele OM, Zhao Z, Nkoh JN, Ymele E, Usman M. A systematic review of polycyclic aromatic hydrocarbon pollution: A combined bibliometric and mechanistic analysis of research trend toward an environmentally friendly solution. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 926:171577. [PMID: 38521268 DOI: 10.1016/j.scitotenv.2024.171577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2024] [Revised: 02/28/2024] [Accepted: 03/06/2024] [Indexed: 03/25/2024]
Abstract
Pollution caused by polycyclic aromatic hydrocarbons (PAHs) is a significant concern. This concern has become more problematic given the rapid modification of PAHs in the environment during co-contamination to form substituted PAHs. This review aims to integrate bibliometric analysis with a rigorous study of mechanistic insights, resulting in a more comprehensive knowledge of evolving research trends on PAH remediation. The results show that research in this field has progressed over the years and peaked in 2022, potentially due to the redirection of resources toward emerging pollutants, hinting at the dynamic nature of environmental research priorities. During this year, 158,147 documents were published, representing 7 % of the total publications in the field between 2000 and 2023. The different remediation methods used for PAH remediation were identified and compared. Bioremediation, having >90 % removal efficiency, has been revealed to be the best technique because it is cost-effective and easy to operate at large scale in situ and ex-situ. The current challenges in PAH remediation have been detailed and discussed. Implementing innovative and sustainable technologies that target pollutant removal and valuable compound recovery is necessary to build a more robust future for water management.
Collapse
Affiliation(s)
- Olive Mekontchou Yemele
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Zhenhua Zhao
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| | - Jackson Nkoh Nkoh
- Shenzhen Engineering Laboratory for Marine Algal Biotechnology, Shenzhen Public Service Platform for Collaborative Innovation of Marine Algae Industry, Guangdong Engineering Research Center for Marine Algal Biotechnology, College of Life Science and Oceanography, Shenzhen University, Shenzhen 518060, PR China; College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, PR China; Department of Chemistry, University of Buea, PO Box 63, Buea, Cameroon
| | - Ervice Ymele
- Department of Chemistry, University of Dschang, P.O. Box 67, Dschang, Cameroon
| | - Muhammad Usman
- Key Laboratory of Integrated Regulation and Resource Development on Shallow Lake of Ministry of Education, College of Environment, Hohai University, Nanjing 210098, PR China
| |
Collapse
|
34
|
Li Q, Zhang M, Wei B, Lan W, Wang Q, Chen C, Zhao H, Liu D, Gadd GM. Fungal biomineralization of toxic metals accelerates organic pollutant removal. Curr Biol 2024; 34:2077-2084.e3. [PMID: 38663397 DOI: 10.1016/j.cub.2024.04.005] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/27/2024] [Accepted: 04/02/2024] [Indexed: 05/23/2024]
Abstract
Fungal biomineralization plays an important role in the biogeochemical cycling of metals in the environment and has been extensively explored for bioremediation and element biorecovery. However, the cellular and metabolic responses of fungi in the presence of toxic metals during biomineralization and their impact on organic matter transformations are unclear. This is an important question because co-contamination by toxic metals and organic pollutants is a common phenomenon in the natural environment. In this research, the biomineralization process and oxidative stress response of the geoactive soil fungus Aspergillus niger were investigated in the presence of toxic metals (Co, Cu, Mn, and Fe) and the azo dye orange II (AO II). We have found that the co-existence of toxic metals and AO II not only enhanced the fungal biomineralization of toxic metals but also accelerated the removal of AO II. We hypothesize that the fungus and in situ mycogenic biominerals (toxic metal oxalates) constituted a quasi-bioreactor, where the biominerals removed organic pollutants by catalyzing reactive oxygen species (ROS) generation resulting from oxidative stress. We have therefore demonstrated that a fungal/biomineral system can successfully achieve the goal of toxic metal immobilization and organic pollutant decomposition. Such findings inform the potential development of fungal-biomineral hybrid systems for mixed pollutant bioremediation as well as provide further understanding of fungal organic-inorganic pollutant transformations in the environment and their importance in biogeochemical cycles.
Collapse
Affiliation(s)
- Qianwei Li
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Miao Zhang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Biao Wei
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Wei Lan
- Pipechina Institute of Science and Technology, No. 51 Jinguang Road, Guangyang District, Langfang 065000, China
| | - Qinghong Wang
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Chunmao Chen
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China
| | - Huazhang Zhao
- Key Laboratory of Water and Sediment Sciences (Ministry of Education), College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; Shanxi Laboratory for Yellow River, College of Environmental and Resource Sciences, Shanxi University, Taiyuan 030006, China
| | - Daoqing Liu
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China.
| | - Geoffrey Michael Gadd
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum, Beijing 102249, China; Geomicrobiology Group, School of Life Sciences, University of Dundee, Dundee, Scotland DD1 5EH, UK.
| |
Collapse
|
35
|
Roshandel F, Saadatmand S, Iranbakhsh A, Ardebili ZO. Effect of oil contaminants on antioxidant responses and antioxidant properties of Pleurotus florida (P. Kumm). Mycologia 2024; 116:370-380. [PMID: 38551373 DOI: 10.1080/00275514.2024.2324250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 02/23/2024] [Indexed: 05/01/2024]
Abstract
This research investigated the antioxidant responses of Pleurotus florida at different concentrations of gas oil [0% (control), 2.5%, 5%, and 10% (v:v)] for 30 days. The activities of superoxide dismutase and catalase enzymes decreased in responses to the gas oil presence by an average of 83% and 49%, respectively. In contrast, the activities of the ascorbate peroxidase and glutathione peroxidase enzymes displayed an upward trend in the groups cultured in oil-contaminated media. The gas oil contaminant increased total phenol and flavonoid accumulation, reflecting the variation in secondary metabolism. According to the 1,2-diphenyl-2-picrylhydrazyl radical scavenging, the 2.5% gas oil treatment resulted in the highest antioxidant activity (48 μg mL-1). The highest scavenging activity of nitric oxide radicals (IC50 = 272 μg mL-1) was observed in the treatment with the highest gas oil concentration (10%). Also, this treatment showed an excellent ability to chelate Fe+2 ions (IC50 = 205 μg mL-1). The IC50 values of methanolic extract for nitric oxide scavenging activity and metal chelating ability were significantly reduced by increasing gas oil concentration in the treatments. With increasing the gas oil concentration, malondialdehyde content as a criterion measure of lipid peroxidation level showed significant reduction. These results show that P. florida is resistant to and a compatible mushroom with oil pollutants. Also, the activity of glutathione peroxidase and the ascorbate-glutathione cycle detoxify nitric oxide radicals and products of reactive oxygen species-induced lipid peroxidation in the gas oil treatments.
Collapse
Affiliation(s)
- Farzaneh Roshandel
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Sara Saadatmand
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Alireza Iranbakhsh
- Department of Biology, Science and Research Branch, Islamic Azad University, Tehran 1477893855, Iran
| | - Zahra Oraghi Ardebili
- Department of Biology, Garmsar Branch, Islamic Azad University, Garmsar 3581631167, Iran
| |
Collapse
|
36
|
Ñañez KB, Rios Ramirez KD, Cordeiro de Oliveira OM, Reyes CY, Andrade Moreira ÍT. Removal of polycyclic aromatic hydrocarbons (PAHs) from produced water using the microalgae Chlorella vulgaris cultivated in mixotrophic and heterotrophic conditions. CHEMOSPHERE 2024; 356:141931. [PMID: 38614391 DOI: 10.1016/j.chemosphere.2024.141931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 03/24/2024] [Accepted: 04/05/2024] [Indexed: 04/15/2024]
Abstract
Chlorella vulgaris was cultivated for 15 days in 10 different treatments under mixotrophic and heterotrophic conditions, using wastewater from oil and poultry industries as the culture medium. The blends were made with produced water (PW), sterilized produced water (PWs), sterilized poultry wastewater (PoWs), sterilized seawater (SWs), and the addition of sodium nitrate to evaluate cell growth in treatments and the removal of PAHs. The heterotrophic condition showed more effective removal, having an initial concentration of 3.93 μg L-1 and a final concentration of 0.57 μg L-1 of total PAHs reporting 83%, during phycoremediation of (PW) than the mixotrophic condition, with an initial concentration of 3.93 μg L-1 and a final concentration of 1.96 and 43% removal for the PAHs. In the heterotrophic condition, the blend with (PWs + SWs) with an initial concentration of 0.90 μg L-1 and a final concentration of 0.32 μg L-1 had 64% removal of total PAHs compared to the mixotrophic condition with 37% removal having an initial concentration of 0.90 μg L-1 and a final concentration of 0.56 μg L-1. However, the best result in the mixotrophic condition was obtained using a blend of (PWs + PoWs) that had an initial cell concentration of 1.18 × 105 cells mL-1 and reached a final cell concentration of 4.39 × 105 cells mL-1, an initial concentration of 4.76 μg L-1 and a final concentration of 0.37 μg L-1 having a 92% total removal of PAHs. The biostimulation process increased the percentage of PAHs removal by 45% (PW) in the mixotrophic condition. This study showed that it is possible to allow an environmental remediation strategy that significantly reduces effluent toxicity and generates high value-added biomass in contaminated effluents rich in nutrients and carbon, based on a circular bioeconomy model.
Collapse
Affiliation(s)
- Katerine Botero Ñañez
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil.
| | - Karen Daniela Rios Ramirez
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil
| | | | - Claudia Yolanda Reyes
- University of the Amazon, Campus Porvenir street 17 Diagonal 17 with Carrera 3F, Florencia, CAQ, Colombia
| | - Ícaro Thiago Andrade Moreira
- Federal University of Bahia, Geosciences Institute, R. Barão de Jeremoabo, s/n - Ondina, 40170-290, Salvador, BA, Brazil
| |
Collapse
|
37
|
Sarma H, Gogoi B, Guan CY, Yu CP. Nitro-PAHs: Occurrences, ecological consequences, and remediation strategies for environmental restoration. CHEMOSPHERE 2024; 356:141795. [PMID: 38548078 DOI: 10.1016/j.chemosphere.2024.141795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/24/2023] [Accepted: 03/23/2024] [Indexed: 04/12/2024]
Abstract
Nitrated polycyclic aromatic hydrocarbons (nitro-PAHs) are persistent pollutants that have been introduced into the environment as a result of human activities. They are produced when PAHs undergo oxidation and are highly resistant to degradation, resulting in prolonged exposure and significant health risks for wildlife and humans. Nitro-PAHs' potential to induce cancer and mutations has raised concerns about their harmful effects. Furthermore, their ability to accumulate in the food chain seriously threatens the ecosystem and human health. Moreover, nitro-PAHs can disrupt the normal functioning of the endocrine system, leading to reproductive and developmental problems in humans and other organisms. Reducing nitro-PAHs in the environment through source management, physical removal, and chemical treatment is essential to mitigate the associated environmental and human health risks. Recent studies have focused on improving nitro-PAHs' phytoremediation by incorporating microorganisms and biostimulants. Microbes can break down nitro-PAHs into less harmful substances, while biostimulants can enhance plant growth and metabolic activity. By combining these elements, the effectiveness of phytoremediation for nitro-PAHs can be increased. This study aimed to investigate the impact of introducing microbial and biostimulant agents on the phytoremediation process for nitro-PAHs and identify potential solutions for addressing the environmental risks associated with these pollutants.
Collapse
Affiliation(s)
- Hemen Sarma
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India.
| | - Bhoirob Gogoi
- Bioremediation Technology Research Group, Department of Botany, Bodoland University, Rangalikhata, Deborgaon, Kokrajhar (BTR), Assam, 783370, India
| | - Chung-Yu Guan
- Department of Environmental Engineering, National Ilan University, Yilan, 260, Taiwan
| | - Chang-Ping Yu
- Graduate Institute of Environmental Engineering, National Taiwan University. B.S., Civil Engineering, National Taiwan University, Taiwan
| |
Collapse
|
38
|
Dai Y, Deng Q, Liu Q, Zhang L, Gan H, Pan X, Gu B, Tan L. Humoral immunosuppression of exposure to polycyclic aromatic hydrocarbons and the roles of oxidative stress and inflammation. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 347:123741. [PMID: 38458516 DOI: 10.1016/j.envpol.2024.123741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 02/19/2024] [Accepted: 03/06/2024] [Indexed: 03/10/2024]
Abstract
Previous studies have indicated adverse health effects of exposure to polycyclic aromatic hydrocarbons (PAHs), but evidence on the association between PAH exposure and immunity is scarce and its underlying mechanism is largely unknown. This study assessed human exposure to PAHs by determining the concentrations of PAHs in serum and their metabolites in paired urine. The oxidative stress and inflammation levels were evaluated by urinary DNA damage biomarker 8-hydroxydeoxyguanosine, white blood cell counts and C-reaction protein. We investigated the relationship between PAH exposure and seven immunological components, and explored the indirect roles of oxidative stress and inflammation by mediation and moderation analysis. Multivariate regression analysis revealed that 1-hydroxynaphthalene and 2-hydroxyfluorene were negatively associated with immunoglobulin A, and 3-hydroxyphenanthrene was negatively correlated with complement component 3. Restricted cubic spline analysis demonstrated nonlinear relationships between some individual PAHs or their metabolites with immunological components. Bayesian kernel machine regression and quantile g-computation revealed significant associations of higher PAH exposure with decreased immunoglobulin G and kappa light chain levels. Phenanthrene was the compound that contributed the most to reduced immunoglobulin G. Mediation analysis demonstrated significant indirect effects of 8-hydroxydeoxyguanosine and white blood cell counts on the association between higher PAH exposure and decreased immunological components. Moderation analysis revealed that PAH exposure and decreased immunological components are significantly associated with higher levels of C-reaction protein and white blood cell counts. The results demonstrated significant immunosuppression of PAH exposure and highlighted the indirect roles of oxidative stress and inflammation. Interventions to reduce systemic inflammation may mitigate the adverse immune effects of PAH exposure.
Collapse
Affiliation(s)
- Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China
| | - Qianyun Deng
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Qiaojuan Liu
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Lin Zhang
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Huiquan Gan
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China
| | - Bing Gu
- Department of Clinical Laboratory Medicine, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510000, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou 510440, China; School of Public Health, Southern Medical University, Guangzhou 510515, China.
| |
Collapse
|
39
|
Ni S, Lv W, Ji Z, Wang K, Mei Y, Li Y. Progress of Crude Oil Gasification Technology Assisted by Microorganisms in Reservoirs. Microorganisms 2024; 12:702. [PMID: 38674646 PMCID: PMC11051786 DOI: 10.3390/microorganisms12040702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2024] [Revised: 03/17/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Crude oil gasification bacteria, including fermenting bacteria, hydrocarbon-oxidizing bacteria, reducing bacteria, and methanogenic bacteria, participate in multi-step reactions involving initial activation, intermediate metabolism, and the methanogenesis of crude oil hydrocarbons. These bacteria degrade crude oil into smaller molecules such as hydrogen, carbon dioxide, acetic acid, and formic acid. Ultimately, they convert it into methane, which can be utilized or stored as a strategic resource. However, the current challenges in crude oil gasification include long production cycles and low efficiency. This paper provides a summary of the microbial flora involved in crude oil gasification, the gasification metabolism pathways within reservoirs, and other relevant information. It specifically focuses on analyzing the factors that affect the efficiency of crude oil gasification metabolism and proposes suggestions for improving this efficiency. These studies deepen our understanding of the potential of reservoir ecosystems and provide valuable insights for future reservoir development and management.
Collapse
Affiliation(s)
- Shumin Ni
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Weifeng Lv
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
- State Key Laboratory of Enhanced Oil Recovery, Research Institute of Petroleum Exploration and Development, CNPC, Beijing 100083, China
| | - Zemin Ji
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Kai Wang
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yuhao Mei
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| | - Yushu Li
- University of Chinese Academy of Sciences, Beijing 100049, China; (S.N.); (K.W.); (Y.M.); (Y.L.)
- Institute of Porous Flow & Fluid Mechanics, Chinese Academy of Sciences, Langfang 065007, China;
| |
Collapse
|
40
|
Li J, Peng W, Yin X, Wang X, Liu Z, Liu Q, Deng Z, Lin S, Liang R. Identification of an efficient phenanthrene-degrading Pseudarthrobacter sp. L1SW and characterization of its metabolites and catabolic pathway. JOURNAL OF HAZARDOUS MATERIALS 2024; 465:133138. [PMID: 38086304 DOI: 10.1016/j.jhazmat.2023.133138] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Revised: 10/25/2023] [Accepted: 11/28/2023] [Indexed: 02/08/2024]
Abstract
Phenanthrene, a typical chemical of polycyclic aromatic hydrocarbons (PAHs) pollutants, severely threatens health of wild life and human being. Microbial degradation is effective and environment-friendly for PAH removal, while the phenanthrene-degrading mechanism in Gram-positive bacteria is unclear. In this work, one Gram-positive strain of plant growth-promoting rhizobacteria (PGPR), Pseudarthrobacter sp. L1SW, was isolated and identified with high phenanthrene-degrading efficiency and great stress tolerance. It degraded 96.3% of 500 mg/L phenanthrene in 72 h and kept stable degradation performance with heavy metals (65 mg/L of Zn2+, 5.56 mg/L of Ni2+, and 5.20 mg/L of Cr3+) and surfactant (10 CMC of Tween 80). Strain L1SW degraded phenanthrene mainly through phthalic acid pathway, generating intermediate metabolites including cis-3,4-dihydrophenanthrene-3,4-diol, 1-hydroxy-2-naphthoic acid, and phthalic acid. A novel metabolite (m/z 419.0939) was successfully separated and identified as an end-product of phenanthrene, suggesting a unique metabolic pathway. With the whole genome sequence alignment and comparative genomic analysis, 19 putative genes associated with phenanthrene metabolism in strain L1SW were identified to be distributed in three gene clusters and induced by phenanthrene and its metabolites. These findings advance the phenanthrene-degrading study in Gram-positive bacteria and promote the practical use of PGPR strains in the bioremediation of PAH-contaminated environments.
Collapse
Affiliation(s)
- Junlan Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Wanli Peng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xianqi Yin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Xiaozheng Wang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zhixiang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Qinchen Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Zixin Deng
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Shuangjun Lin
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China
| | - Rubing Liang
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 200240, China.
| |
Collapse
|
41
|
Zhou N, Guo H, Zhang Z, Wang H. The discrepant metabolic pathways of PAHs by facultative anaerobic bacteria under aerobic and nitrate-reducing conditions. CHEMOSPHERE 2024; 351:141230. [PMID: 38237784 DOI: 10.1016/j.chemosphere.2024.141230] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Revised: 01/07/2024] [Accepted: 01/14/2024] [Indexed: 01/28/2024]
Abstract
Studies regarding the facultative anaerobic biodegradation of polycyclic aromatic hydrocarbons (PAHs) were still in the initial stage. In this study, a facultative anaerobe which was identified as Bacillus Firmus and named as PheN7 was firstly isolated from the mixed petroleum-polluted soil samples using phenanthrene and nitrate as the solo carbon resource and electron acceptor under anaerobic condition. The degradation rates of PheN7 towards phenanthrene were detected as 33.17 μM/d, 13.81 μM/d and 7.11 μM/d at the initial phenanthrene concentration of 250.17 μM with oxygen, nitrate and sulfate as the electron acceptor, respectively. The metabolic pathways toward phenanthrene by PheN7 were deduced combining the metagenome analysis of PheN7 and intermediate metabolites of phenanthrene under aerobic and nitrate-reducing conditions. Dioxygenation and carboxylation were inferred as the initial activation reactions of phenanthrene degradation in these two pathways. This study highlighted the significance of facultative anaerobic bacteria in natural PAHs biodegradation, revealing the discrepant metabolic fates of PAHs by one solo bacteria under aerobic and anaerobic environments.
Collapse
Affiliation(s)
- Nan Zhou
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Haijiao Guo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Zuotao Zhang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China
| | - Hui Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
42
|
Muthukumar B, Satheeshkumar A, Parthipan P, Laishram B, Duraimurugan R, Devanesan S, AlSalhi MS, Rajamohan R, Rajasekar A. Integrated approach of nano assisted biodegradation of anthracene by Pseudomonas aeruginosa and iron oxide nanoparticles. ENVIRONMENTAL RESEARCH 2024; 244:117911. [PMID: 38104919 DOI: 10.1016/j.envres.2023.117911] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 11/29/2023] [Accepted: 12/09/2023] [Indexed: 12/19/2023]
Abstract
Poly aromatic hydrocarbons (PAHs) are considered as hazardous compounds which causes serious threat to the environment dua to their more carcinogenic and mutagenic impacts. In this study, Pseudomonas aeruginosa PP4 strain and synthesized iron nanoparticles were used to evaluate the biodegradation efficiency (BE %) of residual anthracene. The BE (%) of mixed degradation system (Anthracene + PP4+ FeNPs) was obtained about 67 %. The FTIR spectra result revealed the presence of functional groups (C-H, -CH3, CC, =C-H) in the residual anthracene. The FESEM and TEM techniques were used to determine the surface analysis of the synthesized FeNPs and the average size was observed by TEM around 5-50 nm. The crystalline nature of the synthesized iron nanoparticles was confirmed by the observed different respective peaks of XRD pattern. The various functional constituents (OH, C-H, amide I, CH3) were identified in the synthesized iron nanoparticles by FTIR spectrum. In conclusion, this integrated nano-bioremediation approach could be an promising and effective way for many environmental fields like cleanup of hydrocarbon rich environment.
Collapse
Affiliation(s)
- Balakrishnan Muthukumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Azhagarsamy Satheeshkumar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Punniyakotti Parthipan
- Department of Biotechnology, Faculty of Science and Humanities, SRM Institute of Science and Technology, Kattankulathur, Chengalpattu, Tamil Nadu, 603 203, India
| | - Bibek Laishram
- Department of Agronomy, Assam Agricultural University, Jorhat, 785013, Assam, India
| | - Ramanathan Duraimurugan
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India
| | - Sandhanasamy Devanesan
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Mohamad S AlSalhi
- Department of Physics and Astronomy, College of Science, King Saud University, P.O. Box-2455, Riyadh, 11451, Saudi Arabia
| | - Rajaram Rajamohan
- Organic Materials Synthesis Lab, School of Chemical Engineering, Yeungnam University, Gyeongsan-si, 38541, Republic of Korea.
| | - Aruliah Rajasekar
- Environmental Molecular Microbiology Research Laboratory, Department of Biotechnology, Thiruvalluvar University, Serkkadu, Vellore, Tamil Nadu, 632115, India; Adjunct Faculty, Department of Prosthodontics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Science (SIMATS), Saveetha University, Chennai, 600077, India.
| |
Collapse
|
43
|
Venkatraman G, Giribabu N, Mohan PS, Muttiah B, Govindarajan VK, Alagiri M, Abdul Rahman PS, Karsani SA. Environmental impact and human health effects of polycyclic aromatic hydrocarbons and remedial strategies: A detailed review. CHEMOSPHERE 2024; 351:141227. [PMID: 38253087 DOI: 10.1016/j.chemosphere.2024.141227] [Citation(s) in RCA: 44] [Impact Index Per Article: 44.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2023] [Revised: 12/19/2023] [Accepted: 01/13/2024] [Indexed: 01/24/2024]
Abstract
Polycyclic Aromatic Hydrocarbons (PAHs) profoundly impact public and environmental health. Gaining a comprehensive understanding of their intricate functions, exposure pathways, and potential health implications is imperative to implement remedial strategies and legislation effectively. This review seeks to explore PAH mobility, direct exposure pathways, and cutting-edge bioremediation technologies essential for combating the pervasive contamination of environments by PAHs, thereby expanding our foundational knowledge. PAHs, characterised by their toxicity and possession of two or more aromatic rings, exhibit diverse configurations. Their lipophilicity and remarkable persistence contribute to their widespread prevalence as hazardous environmental contaminants and byproducts. Primary sources of PAHs include contaminated food, water, and soil, which enter the human body through inhalation, ingestion, and dermal exposure. While short-term consequences encompass eye irritation, nausea, and vomiting, long-term exposure poses risks of kidney and liver damage, difficulty breathing, and asthma-like symptoms. Notably, cities with elevated PAH levels may witness exacerbation of bronchial asthma and chronic obstructive pulmonary disease (COPD). Bioremediation techniques utilising microorganisms emerge as a promising avenue to mitigate PAH-related health risks by facilitating the breakdown of these compounds in polluted environments. Furthermore, this review delves into the global concern of antimicrobial resistance associated with PAHs, highlighting its implications. The environmental effects and applications of genetically altered microbes in addressing this challenge warrant further exploration, emphasising the dynamic nature of ongoing research in this field.
Collapse
Affiliation(s)
- Gopinath Venkatraman
- Universiti Malaya Centre for Proteomics Research, Universiti Malaya, Kuala Lumpur, 50603, Malaysia; Department of Biochemistry, Saveetha Dental College, Saveetha Institute of Medical & Technical Sciences, Saveetha University, Chennai, 600 077, India.
| | - Nelli Giribabu
- Department of Physiology, Faculty of Medicine, Universiti Malaya, 50603, Kuala Lumpur, Malaysia
| | - Priyadarshini Sakthi Mohan
- Department of Pharmaceutical Chemistry, Faculty of Pharmacy, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Barathan Muttiah
- Department of Medical Microbiology, Faculty of Medicine, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| | - Venkat Kumar Govindarajan
- Department of Chemistry, SRM Institute of Science and Technology, Ramapuram Campus, Chennai, 600 089, Tamil Nadu, India
| | - Mani Alagiri
- Department of Physics and Nanotechnology, SRM Institute of Science and Technology, Kattankulathur, 603 203, Chengalpattu district, Tamil Nadu, India.
| | | | - Saiful Anuar Karsani
- Institute of Biological Sciences, Faculty of Science, Universiti Malaya, Kuala Lumpur, 50603, Malaysia
| |
Collapse
|
44
|
Zhang A, Zhang H, Mi L, Ding L, Jiang Z, Yu F, Tang M. Diabetes: a potential mediator of associations between polycyclic aromatic hydrocarbon exposure and stroke. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-32324-y. [PMID: 38332417 DOI: 10.1007/s11356-024-32324-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/21/2023] [Accepted: 01/30/2024] [Indexed: 02/10/2024]
Abstract
Epidemiological evidence suggests associations between exposure to polycyclic aromatic hydrocarbons (PAHs) and cardiovascular diseases (CVD), while diabetes is a common risk factor for CVD. The present study aims to clarify the effect of high PAH exposure on diabetes and stroke in general population. A total of 7849 individuals aged 20 years or older from the National Health and Nutrition Examination Survey 2007-2016 were included in the study. The logistic regression analysis modeled the association between PAH exposure and diabetes as well as stroke. The analysis yielded odds ratios (ORs) and 95% confidence intervals (CIs). The study also evaluated the potential mediating role of diabetes in the relation between PAH exposure and stroke via mediating effect analyses. Of the 7849 eligible participants, 1424 cases of diabetes and 243 cases of stroke were recorded. After adjusting for covariates including age, gender, smoking status, drinking status, education level, marital status, physical activity, hypertension, low-density lipoprotein cholesterol, and BMI, the ORs for stroke in the highest quartile (Q4) of total urinary PAHs were 1.97 (95% CI 1.11-3.52, P = 0.022) as compared to the lowest quartile (Q1) of total urinary PAHs. The ORs for diabetes in the Q4 of total urinary PAHs were 1.56 (95% CI 1.15-2.12, P = 0.005), while the ORs between Q4 and Q1 for stroke and diabetes concerning exposure to 2-hydroxynaphthalene were 2.23 (95% CI 1.17-4.25, P = 0.016) and 1.40 (95% CI 1.07-1.82, P = 0.015), respectively. The mediation analysis found that diabetes accounted for 5.00% of the associations between urinary PAHs and the prevalence of stroke. Urinary metabolites of PAH have been linked to stroke and diabetes. Increasing the risk of diabetes may play a significant role in mediating the association between exposure to PAHs and increased risk of stroke. Monitoring and improving glucose metabolism in individuals with high exposure to PAHs may aid in reducing the prevalence of stroke.
Collapse
Affiliation(s)
- Aikai Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Hongda Zhang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lijie Mi
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Lei Ding
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Zihan Jiang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Fengyuan Yu
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China
| | - Min Tang
- Department of Cardiology, State Key Laboratory of Cardiovascular Disease, Cardiovascular Institute, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences, and Peking Union Medical College, Beijing, 100037, China.
| |
Collapse
|
45
|
Zhou S, Guo C, Dai Y, Pan X, Luo X, Qin P, Tan L. Association between polycyclic aromatic hydrocarbon exposure and liver function: The mediating roles of inflammation and oxidative stress. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2024; 342:123068. [PMID: 38042471 DOI: 10.1016/j.envpol.2023.123068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/26/2023] [Revised: 11/23/2023] [Accepted: 11/28/2023] [Indexed: 12/04/2023]
Abstract
Polycyclic aromatic hydrocarbon (PAH) exposure has been associated with adverse health effects, and accumulating evidence suggests that PAH exposure may impair liver function. However, the underlying mechanisms linking PAH exposure and liver function impairment remain unclear. This study aimed to explore the association between PAH exposure and liver function biomarkers, and the mediating effects of inflammation and oxidative stress. The cross-sectional study included 155 adults and their urinary PAH metabolites (OH-PAHs) were determined, and eight liver function biomarkers were measured in paired serum samples. A comprehensive statistical analysis investigated the linear, non-linear, individual, and joint effects of the association between urinary OH-PAHs and liver function biomarkers. The results indicated significant positive associations between urinary OH-PAH concentrations and liver function biomarker levels, suggesting that PAH exposure may adversely affect liver function. 2-hydroxyfluorene was identified as the individual metabolite contributing significantly to elevated gamma-glutamyl transferase levels. Further stratification by gender revealed that this association is more pronounced in males. Moreover, we observed significant mediation effects of the oxidative stress biomarker 8-hydroxy-2'-deoxyguanosine and the inflammatory biomarkers C-reactive protein and white blood cell count on this association. The physiological responses triggered by PAH exposure are mediated by inflammation, which serves as a link between oxidative stress, cellular injury, and elevated liver enzyme levels. The results demonstrated that increased inflammation and oxidative stress mediated the association between increased urinary OH-PAHs and elevated liver function biomarkers. The results contribute to a better understanding of the potential mechanisms underlying PAH exposure's hepatotoxic effects.
Collapse
Affiliation(s)
- Si Zhou
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Chongshan Guo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Yingyi Dai
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China
| | - Xinhong Pan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Xiaoyan Luo
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Pengzhe Qin
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China
| | - Lei Tan
- Guangzhou Center for Disease Control and Prevention, Guangzhou, 510440, China; School of Public Health, Southern Medical University, Guangzhou, 510515, China.
| |
Collapse
|
46
|
Bhattarai G, Shrestha SK, Sim HJ, Lee JC, Kook SH. Effects of fine particulate matter on bone marrow-conserved hematopoietic and mesenchymal stem cells: a systematic review. Exp Mol Med 2024; 56:118-128. [PMID: 38200155 PMCID: PMC10834576 DOI: 10.1038/s12276-023-01149-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2023] [Revised: 10/25/2023] [Accepted: 11/02/2023] [Indexed: 01/12/2024] Open
Abstract
The harmful effects of fine particulate matter ≤2.5 µm in size (PM2.5) on human health have received considerable attention. However, while the impact of PM2.5 on the respiratory and cardiovascular systems has been well studied, less is known about the effects on stem cells in the bone marrow (BM). With an emphasis on the invasive characteristics of PM2.5, this review examines the current knowledge of the health effects of PM2.5 exposure on BM-residing stem cells. Recent studies have shown that PM2.5 enters the circulation and then travels to distant organs, including the BM, to induce oxidative stress, systemic inflammation and epigenetic changes, resulting in the reduction of BM-residing stem cell survival and function. Understanding the broader health effects of air pollution thus requires an understanding of the invasive characteristics of PM2.5 and its direct influence on stem cells in the BM. As noted in this review, further studies are needed to elucidate the underlying processes by which PM2.5 disturbs the BM microenvironment and inhibits stem cell functionality. Strategies to prevent or ameliorate the negative effects of PM2.5 exposure on BM-residing stem cells and to maintain the regenerative capacity of those cells must also be investigated. By focusing on the complex relationship between PM2.5 and BM-resident stem cells, this review highlights the importance of specific measures directed at safeguarding human health in the face of rising air pollution.
Collapse
Affiliation(s)
- Govinda Bhattarai
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Saroj Kumar Shrestha
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Hyun-Jaung Sim
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea
| | - Jeong-Chae Lee
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
- Cluster for Craniofacial Development and Regeneration Research, Institute of Oral Biosciences and School of Dentistry, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| | - Sung-Ho Kook
- Department of Bioactive Material Sciences, Research Center of Bioactive Materials, Jeonbuk National University, Jeonju, 54896, Republic of Korea.
| |
Collapse
|
47
|
Wang T, Xu J, Chen J, Liu P, Hou X, Yang L, Zhang L. Progress in Microbial Fertilizer Regulation of Crop Growth and Soil Remediation Research. PLANTS (BASEL, SWITZERLAND) 2024; 13:346. [PMID: 38337881 PMCID: PMC10856823 DOI: 10.3390/plants13030346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 01/16/2024] [Accepted: 01/22/2024] [Indexed: 02/12/2024]
Abstract
More food is needed to meet the demand of the global population, which is growing continuously. Chemical fertilizers have been used for a long time to increase crop yields, and may have negative effect on human health and the agricultural environment. In order to make ongoing agricultural development more sustainable, the use of chemical fertilizers will likely have to be reduced. Microbial fertilizer is a kind of nutrient-rich and environmentally friendly biological fertilizer made from plant growth-promoting bacteria (PGPR). Microbial fertilizers can regulate soil nutrient dynamics and promote soil nutrient cycling by improving soil microbial community changes. This process helps restore the soil ecosystem, which in turn promotes nutrient uptake, regulates crop growth, and enhances crop resistance to biotic and abiotic stresses. This paper reviews the classification of microbial fertilizers and their function in regulating crop growth, nitrogen fixation, phosphorus, potassium solubilization, and the production of phytohormones. We also summarize the role of PGPR in helping crops against biotic and abiotic stresses. Finally, we discuss the function and the mechanism of applying microbial fertilizers in soil remediation. This review helps us understand the research progress of microbial fertilizer and provides new perspectives regarding the future development of microbial agent in sustainable agriculture.
Collapse
Affiliation(s)
- Tingting Wang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jiaxin Xu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Jian Chen
- Institute of Food Quality and Safety, Jiangsu Academy of Agricultural Sciences, Nanjing 221122, China;
| | - Peng Liu
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Xin Hou
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Long Yang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| | - Li Zhang
- College of Plant Protection, Shandong Agricultural University, Tai’an 271002, China; (T.W.); (J.X.); (P.L.); (X.H.)
| |
Collapse
|
48
|
Yue X, Shan Y, Zhang Y, Jiao W, Shen K. Heat and mass transfer induced by alternating current during desorption of PAHs from soil using electrical resistance heating. ENVIRONMENTAL MONITORING AND ASSESSMENT 2024; 196:135. [PMID: 38200165 DOI: 10.1007/s10661-023-12272-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Accepted: 12/29/2023] [Indexed: 01/12/2024]
Abstract
The transfer of heat and contaminants by alternating current (AC) and the removal mechanism of polycyclic aromatic hydrocarbons (PAHs) in electrical resistance heating (ERH) need further study. The main factors affecting heat transfer and water evaporation in the ERH experiment were studied, and the desorption efficiency, temporal and spatial distribution and kinetic behavior under various conditions were analyzed. The results suggested that moisture content was a necessary condition to ensure effective heating of soil, and soil moisture content above 30% was recommended. Higher voltage intensity and/or ion concentration meant stronger input power, resulting in the rapider heating process and the shorter the boiling time. At a low desorption temperature (about 100°C), the Phe desorption mainly depended on the volatilization of surface Phe and the co-boiling of Phe-water. In ERH, the participation of AC would accelerate the diffusion of pollutants from the internal pores of soil particles and their redistribution with water phase, thus improving the Phe removed by co-boiling. It was noteworthy that AC just greatly promoted solid-liquid mass transfer, but it hardly promoted desorption directly, and the removal still depended on Phe-water co-boiling. The Phe desorption efficiency could be significantly improved from 14.0~18.4% to 59.6~70.8% under the combined action of current strengthening Phe diffusion and co-boiling. Thermogravimetric and product analysis confirmed that no new organic matter was generated, but only Phe entered the gas phase through phase change.
Collapse
Affiliation(s)
- Xiupeng Yue
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| | - Yongping Shan
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Yaping Zhang
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China.
| | - Wentao Jiao
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China
| | - Kai Shen
- Key Laboratory of Energy Thermal Conversion and Control, Ministry of Education, School of Energy and Environment, Southeast University, Nanjing, 210096, China
| |
Collapse
|
49
|
Wigren MA, Johnson TA, Griffitt RJ, Hay AG, Knott JA, Sepúlveda MS. Limited impact of weathered residues from the Deepwater Horizon oil spill on the gut-microbiome and foraging behavior of sheepshead minnows ( Cyprinodon variegatus). JOURNAL OF TOXICOLOGY AND ENVIRONMENTAL HEALTH. PART A 2024; 87:1-21. [PMID: 37830742 DOI: 10.1080/15287394.2023.2265413] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/14/2023]
Abstract
The Deepwater Horizon disaster of April 2010 was the largest oil spill in U.S. history and exerted catastrophic effects on several ecologically important fish species in the Gulf of Mexico (GoM). Within fish, the microbiome plays a key symbiotic role in maintaining host health and aids in acquiring nutrients, supporting immune function, and modulating behavior. The aim of this study was to examine if exposure to weathered oil might produce significant shifts in fish gut-associated microbial communities as determined from taxa and genes known for hydrocarbon degradation, and whether foraging behavior was affected. The gut microbiome (16S rRNA and shotgun metagenomics) of sheepshead minnow (Cyprinodon variegatus) was characterized after fish were exposed to oil in High Energy Water Accommodated Fractions (HEWAF; tPAH = 81.1 ± 12.4 µg/L) for 7 days. A foraging behavioral assay was used to determine feeding efficiency before and after oil exposure. The fish gut microbiome was not significantly altered in alpha or beta diversity. None of the most abundant taxa produced any significant shifts as a result of oil exposure, with only rare taxa showing significant shifts in abundance between treatments. However, several bioindicator taxa known for hydrocarbon degradation were detected in the oil treatment, primarily Sphingomonas and Acinetobacter. Notably, the genus Stenotrophomonas was detected in high abundance in 16S data, which previously was not described as a core member of fish gut microbiomes. Data also demonstrated that behavior was not significantly affected by oil exposure. Potential low bioavailability of the oil may have been a factor in our observation of minor shifts in taxa and no behavioral effects. This study lays a foundation for understanding the microbiome of captive sheepshead minnows and indicates the need for further research to elucidate the responses of the fish gut-microbiome under oil spill conditions.
Collapse
Affiliation(s)
- Maggie A Wigren
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Timothy A Johnson
- Department of Animal Sciences, Purdue University, West Lafayette, IN, USA
| | - Robert J Griffitt
- Division of Coastal Sciences, School of Ocean Science and Engineering, University of Southern Mississippi, Ocean Springs, MS, USA
| | - Anthony G Hay
- Department of Microbiology, Cornell University, Ithaca, NY, USA
| | - Jonathan A Knott
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
| | - Maria S Sepúlveda
- Department of Forestry and Natural Resources, Purdue University, West Lafayette, IN, USA
- Faculty of Life Sciences, Universidad Andres Bello, Santiago, Chile
| |
Collapse
|
50
|
Chen Q, Li Z, Li Y, Liu M, Wu Y, Chen Z, Zhu B. Biodegradation of benzo[a]pyrene by a marine Chlorella vulgaris LH-1 with heterotrophic ability. MARINE POLLUTION BULLETIN 2024; 198:115848. [PMID: 38029673 DOI: 10.1016/j.marpolbul.2023.115848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/30/2023] [Accepted: 11/24/2023] [Indexed: 12/01/2023]
Abstract
In this study, a microalga, Chlorella vulgaris LH-1, with heterotrophic ability to degrade BaP was explored. The effect of BaP concentration on microalga growth was investigated, and the possible biodegradation mechanism of BaP was proposed. Results showed that low BaP concentration (<5 mg/L) had less negative influence on the growth of this microalga under mixotrophic condition, but high BaP concentration (>5 mg/L) had a significant inhibitory effect on its growth. During heterotrophic cultivation, low BaP concentration (<20 mg/L) promoted the growth of C. vulgaris LH-1, whereas high BaP concentration (>20 mg/L) inhibited its growth significantly. The degradation rates of mixotrophic and heterotrophic C. vulgaris LH-1 were 62.56 %-74.13 % and 52.07 %-71.67 %, respectively, when the BaP concentration ranged from 0.5 mg/L to 2 mg/L. The expression of functional enzyme genes of C. vulgaris LH-1 such as phenol 2-monooxygenase activity, protocatechuate 3,4-dioxygenase activity, catechol 1,2-dioxygenase activity, styrene degradation, and benzoate degradation were upregulated in the process of BaP degradation. C. vulgaris LH-1 may degrade BaP by monooxygenase and dioxygenase simultaneously. The degradation of BaP by this microalga under mixotrophic condition goes through the degradation pathway of phthalic acid, whereas it goes through the degradation pathway of benzoic acid under heterotrophic condition.
Collapse
Affiliation(s)
- Qingguo Chen
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhenzhen Li
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Yijing Li
- School of Marine Science & Technology, Zhejiang Ocean University, Zhoushan, PR China
| | - Mei Liu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China.
| | - Yingqi Wu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| | - Zhi Chen
- Department of Building, Civil and Environmental Engineering, Faculty of Engineering & Computer Sciences, Concordia University, Montreal, Quebec H3G1M8, Canada
| | - Baikang Zhu
- Zhejiang Provincial Key Laboratory of Petrochemical Pollution Control, Zhejiang Ocean University, Zhoushan, PR China; National & local Joint Engineering Research Center of Harbor Oil & Gas Storage and Transportation Technology, Zhejiang Ocean University, Zhoushan 316022, PR China
| |
Collapse
|