1
|
Lei J, Li X, Wang X, Xiao Y, Chi Y, Sun Q, Zhang H. Research on LCN2 interference to enhance the sensitivity of drug-resistant strains to gemcitabine. Xenobiotica 2025:1-9. [PMID: 40340561 DOI: 10.1080/00498254.2025.2501591] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2025] [Revised: 04/17/2025] [Accepted: 04/25/2025] [Indexed: 05/10/2025]
Abstract
The aim of this study was to observe the sensitivity of the resistant strains to gemcitabine by interfering with the LCN2.An AsPC-1 gemcitabine-resistant cell line (GEM-R) was generated. Based on GEM-R, a lentivirus-infected shRNA-transfected LCN2 cell line was established. The proliferation of LCN2-regulated GEM-R cells was evaluated using the CCK-8 test and the mRNA expression of Ki-67. The apoptosis level of each drug-resistant strain was detected by flow cytometry. The expression of Bax, Bcl-2, Akt, E-cadherin and Vimentin were detected by western blotting.A gemcitabine-resistant strain of AsPC-1 was successfully induced and constructed as an shRNA LCN2 strain based on GEM-R. The interference of LCN2 expression enhanced the tumour inhibition and pro-apoptotic level of gemcitabine, increased the Bax/Bcl-2 value, and decreased p-Akt/Akt value. Meanwhile, the expression of E-cadherin was enhanced while the expression of Vimentin was decreased.This study confirmed that LCN2 affects gemcitabine sensitivity by participating in apoptosis and EMT processes, which may provide potential for overcoming gemcitabine resistance.
Collapse
Affiliation(s)
- Jianjun Lei
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Xuehua Li
- Department of Training Center for Clinical Skills and Medical staff, General Hospital of Northern Theater Command, Shenyang, China
| | - Xinpei Wang
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yuwei Xiao
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Yang Chi
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
| | - Qian Sun
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
| | - He Zhang
- Department of Laboratory Animal Center, General Hospital of Northern Theater Command, Shenyang, China
- Department of Training Center for Clinical Skills and Medical staff, General Hospital of Northern Theater Command, Shenyang, China
| |
Collapse
|
2
|
Reichmann R, Nimptsch K, Pischon T, Gunter MJ, Jenab M, Eriksen AK, Tjonneland A, Janke J, Katzke V, Kaaks R, Schulze MB, Eichelmann F, Masala G, Sieri S, Pasanisi F, Tumino R, Giraudo MT, Rothwell J, Severi G, Jakszyn P, Sanchez-Perez MJ, Amiano P, Colorado-Yohar SM, Guevara M, van Guelpen B, Aglago EK, Heath AK, Smith-Byrne K, Weiderpass E, Aleksandrova K. Sex- and site-specific associations of circulating lipocalin 2 and incident colorectal cancer: Results from the EPIC cohort. Int J Cancer 2025; 156:930-942. [PMID: 39511728 DOI: 10.1002/ijc.35205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 07/17/2024] [Accepted: 07/18/2024] [Indexed: 11/15/2024]
Abstract
Experimental research has uncovered lipocalin 2 (LCN2) as a novel biomarker implicated in the modulation of intestinal inflammation, metabolic homeostasis, and colon carcinogenesis. However, evidence from human research has been scant. We, therefore, explored the association of pre-diagnostic circulating LCN2 concentrations with incident colorectal cancer (CRC) in a nested case-control study within the in the European Prospective Investigation into Cancer and Nutrition (EPIC) cohort. LCN2 was measured in 1267 incident CRC cases matched to 1267 controls using incidence density sampling. Conditional logistic regression was used to estimate incidence rate ratios (IRRs) and 95% confidence intervals (95% CIs) according to tumor subsite and sex. Weighted Cox proportional hazard regression was used to explore associations by adiposity status. In multivariable-adjusted analyses, the IRR [95% CI] per doubling in LCN2 concentration was 1.16 [0.98-1.37] for CRC overall, 1.26 [1.00-1.59] for colon cancer, and 1.08 [0.85-1.38] for rectal cancer. The association for colon cancer was more pronounced in women (IRR [95% CI], 1.66 [1.20-2.30]) and for proximal colon cancer (IRR [95% CI], 1.96 [1.15-3.34]), whereas no association was seen in men and distal colon cancer. The association for colon cancer was positive in individuals with high waist circumference (hazard ratio [95% CI], 1.69 [1.52-1.88]) and inverse in individuals with low waist circumference (hazard ratio [95% CI], 0.86 [0.76-0.98], P interaction<0.01). Overall, these data suggest that pre-diagnostic LCN2 concentrations were positively associated with colon cancer, particularly occurring in the proximal colon, in women and among individuals with abdominal adiposity.
Collapse
Grants
- Dutch Ministry of Public Health, Welfare and Sports (VWS), Netherlands Cancer Registry (NKR), LK Research Funds, Dutch Prevention Funds, Dutch ZON (Zorg Onderzoek Nederland), World Cancer Research Fund (WCRF), Statistics Netherlands (The Netherlands)
- German Cancer Aid, German Cancer Research Center (DKFZ), German Institute of Human Nutrition Potsdam-Rehbruecke (DIfE), Federal Ministry of Education and Research (BMBF) (Germany)
- Danish Cancer Society (Denmark)
- Ligue Contre le Cancer, Institut Gustave Roussy, Mutuelle Générale de l'Education Nationale, Institut National de la Santé et de la Recherche Médicale (INSERM) (France)
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London
- 001 World Health Organization
- Associazione Italiana per la Ricerca sul Cancro-AIRC-Italy, Compagnia di SanPaolo and National Research Council (Italy)
- International Agency for Research on Cancer (IARC)
- Cancer Research UK (14,136 to EPIC-Norfolk; C8221/A29017 to EPIC-Oxford), Medical Research Council (1,000,143 to EPIC-Norfolk; MR/M012190/1 to EPIC-Oxford) (United Kingdom).
- Health Research Fund (FIS)-Instituto de Salud Carlos III (ISCIII), Regional Governments of Andalucía, Asturias, Basque Country, Murcia and Navarra, and the Catalan Institute of Oncology-ICO (Spain)
- Swedish Cancer Society, Swedish Research Council, Region Skåne and Region Västerbotten (Sweden)
Collapse
Affiliation(s)
- Robin Reichmann
- Biomarkers and Metabolism Research Group, Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
| | - Katharina Nimptsch
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Tobias Pischon
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Core Facility Biobank, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
- Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Marc J Gunter
- International Agency for Research on Cancer, World Health Organization, Lyon, France
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Mazda Jenab
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Anne Kirstine Eriksen
- Diet, Cancer and Health Research Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
| | - Anne Tjonneland
- Diet, Cancer and Health Research Group, Danish Cancer Institute, Danish Cancer Society, Copenhagen, Denmark
- Department of Public Health, University of Copenhagen, Copenhagen, Denmark
| | - Jürgen Janke
- Molecular Epidemiology Research Group, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
- Biobank Technology Platform, Max-Delbrueck-Center for Molecular Medicine in the Helmholtz Association (MDC), Berlin, Germany
| | - Verena Katzke
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Rudolf Kaaks
- Department of Cancer Epidemiology, German Cancer Research Center (DKFZ), Heidelberg, Germany
| | - Matthias B Schulze
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- Institute of Nutritional Science, University of Potsdam, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Fabian Eichelmann
- Department of Molecular Epidemiology, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
- German Center for Diabetes Research (DZD), Neuherberg, Germany
| | - Giovanna Masala
- Prevention and Clinical Network, Institute for the Study and Prevention of Cancer (ISPRO), Florenz, Italy
| | - Sabina Sieri
- Epidemiology and Prevention Unit, Fondazione IRCCS Instituto Nazionale dei Tumori, Milan, Italy
| | - Fabrizio Pasanisi
- Dipartimento di Medicina Clinica e Chirurgia, Federico II University, Naples, Italy
| | - Rosario Tumino
- Hyblean Association for Epidemiological Research, Associazione Iblea per la Ricerca Epidemiologica (A.I.R.E.-ONLUS), Ragusa, Italy
| | - Maria Teresa Giraudo
- Department of Clinical and Biological Sciences, University of Turin, Turin, Italy
| | - Joseph Rothwell
- CESP-Univ. Paris-Saclay, UVSQ, Inserm-"Exposome, heredity, cancer and health" Team, The Centre for Research in Epidemiology and Population Health, Villejuif, France
| | - Gianluca Severi
- CESP-Univ. Paris-Saclay, UVSQ, Inserm-"Exposome, heredity, cancer and health" Team, The Centre for Research in Epidemiology and Population Health, Villejuif, France
- Department of Statistics, Computer Science, Applications "G. Parenti" (DISIA), University of Florence, Florence, Italy
| | - Paula Jakszyn
- Unit of Nutrition and Cancer, Cancer Epidemiology Research Programme, Catalan Institute of Oncology (ICO-IDIBELL), Barcelona, Spain
- Blanquerna School of Health Sciences, Ramon Llull University, Barcelona, Spain
| | - Maria Jose Sanchez-Perez
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Public Health Research and Health Services Research Group, Andalusian School of Public Health (EASP), Granada, Andalucía, Spain
- Epidemiology, Prevention and Control of Cancer Research Group, Biosanitary Research Institute of Granada (ibs.Granada), Granada, Spain
- Department of Preventive Medicine and Public Health, University of Granada, Granada, Spain
| | - Pilar Amiano
- Sub Directorate for Public Health and Addictions of Gipuzkoa, Ministry of Health of the Basque Government, San Sebastian, Spain
- Epidemiology of Chronic and Communicable Diseases Group, Biodonostia Health Research Institute, San Sebastian, Spain
- Instituto de Salud Carlos III, CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
| | - Sandra M Colorado-Yohar
- Department of Epidemiology, Murcia Regional Health Council, Instituto Murciano de Investigación Biosanitaria, Murcia, Spain
- Research Group on Demography and Health, National Faculty of Public Health, University of Antioquia, Medellin, Colombia
| | - Marcela Guevara
- CIBER of Epidemiology and Public Health (CIBERESP), Madrid, Spain
- Epidemiology and Health Prevention Service, Institute of Public Health and Labor of Navarre, Pamplona, Navarra, Spain
- Epidemiology of Cancer and Other Chronic Diseases Research Group, Healthcare Research Institute of Navarre (IdiSNA), Pamplona, Spain
| | - Bethany van Guelpen
- Department of Radiation Sciences, Umeå University, Umeå, Sweden
- Wallenberg Centre for Molecular Medicine, Umeå University, Umeå, Sweden
| | - Elom K Aglago
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Alicia K Heath
- Department of Epidemiology and Biostatistics, School of Public Health, Imperial College London, London, UK
| | - Karl Smith-Byrne
- Cancer Epidemiology Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Elisabete Weiderpass
- International Agency for Research on Cancer, World Health Organization, Lyon, France
| | - Krasimira Aleksandrova
- Biomarkers and Metabolism Research Group, Department of Epidemiological Methods and Etiological Research, Leibniz Institute for Prevention Research and Epidemiology, Bremen, Germany
- Faculty of Human and Health Sciences, University of Bremen, Bremen, Germany
| |
Collapse
|
3
|
Zhang ZX, Peng J, Ding WW. Lipocalin-2 and intestinal diseases. World J Gastroenterol 2024; 30:4864-4879. [PMID: 39679305 PMCID: PMC11612708 DOI: 10.3748/wjg.v30.i46.4864] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/27/2024] [Revised: 09/25/2024] [Accepted: 11/04/2024] [Indexed: 11/21/2024] Open
Abstract
Dysfunction of the intestinal barrier is a prevalent phenomenon observed across a spectrum of diseases, encompassing conditions such as mesenteric artery dissection, inflammatory bowel disease, cirrhosis, and sepsis. In these pathological states, the integrity of the intestinal barrier, which normally serves to regulate the selective passage of substances between the gut lumen and the bloodstream, becomes compromised. This compromised barrier function can lead to a range of adverse consequences, including increased permeability to harmful substances, the translocation of bacteria and their products into systemic circulation, and heightened inflammatory responses within the gut and beyond. Understanding the mechanisms underlying intestinal barrier dysfunction in these diverse disease contexts is crucial for the development of targeted therapeutic interventions aimed at restoring barrier integrity and ameliorating disease progression. Lipocalin-2 (LCN2) expression is significantly upregulated during episodes of intestinal inflammation, making it a pivotal indicator for gauging the extent of such inflammatory processes. Notably, however, LCN2 derived from distinct cellular sources, whether intestinal epithelial cells or immune cells, exhibits notably divergent functional characteristics. Furthermore, the multifaceted nature of LCN2 is underscored by its varying roles across different diseases, sometimes even demonstrating contradictory effects.
Collapse
Affiliation(s)
- Zhong-Xu Zhang
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Jian Peng
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| | - Wei-Wei Ding
- Department of Trauma and Acute Care Surgery, Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210002, Jiangsu Province, China
| |
Collapse
|
4
|
Su MC, Hsu CH, Chen KC, Lin JR, Li HY, Fang YT, Huang RYJ, Jeng YM. Identification of Early Events in Serrated Pathway Colorectal Tumorigenesis by Using Digital Spatial Profiling. Pathobiology 2024; 91:393-410. [PMID: 38830348 PMCID: PMC11614314 DOI: 10.1159/000539612] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 05/30/2024] [Indexed: 06/05/2024] Open
Abstract
INTRODUCTION The colorectal serrated pathway involves precursor lesions known as sessile serrated lesions (SSL) and traditional serrated adenomas (TSA). Mutations in BRAF or KRAS are crucial early events in this pathway. Additional genetic and epigenetic changes contribute to the progression of these lesions into high-grade lesions and, eventually, invasive carcinoma. METHODS We employed digital spatial profiling to investigate the transcriptional changes associated with SSL and TSA. The genes identified are confirmed by immunohistochemical (IHC) staining. Colorectal cancer (CRC) cell lines with CEACAM6 overexpression and knockdown were established to study the roles of CEACAM6 on tumorigenesis of CRC. RESULTS Ten genes were upregulated in SSL and TSA, and seven were upregulated in both types of lesions. IHC staining confirmed overexpression of CEACAM6, LCN2, KRT19, and lysozyme in SSL and TSA. CEACAM6 expression is an early event in the serrated pathway but a late event in the conventional pathway. Using cell line models, we confirmed that CEACAM6 promotes CRC cells' proliferation, migration, and invasion abilities. CONCLUSION These results highlight that the transcriptional changes in the early stages of tumorigenesis exhibit relative uniformity. Identifying these early events may hold significant promise in elucidating the mechanisms behind tumor initiation.
Collapse
Affiliation(s)
- Min-Cheng Su
- Department of Pathology, Min-Sheng General Hospital, Taoyuan, Taiwan
| | - Ching-Hsiang Hsu
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Ko-Chen Chen
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Jun-Ru Lin
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
| | - Huei-Ying Li
- Medical Microbiota Center of the First Core Laboratory, National Taiwan University College of Medicine, Taipei, Taiwan
| | - Yi-Ting Fang
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| | - Ruby Yun-Ju Huang
- School of Medicine, National Taiwan University, Taipei, Taiwan
- Department of Obstetrics and Gynecology, National Taiwan University Hospital, Taipei, Taiwan
| | - Yung-Ming Jeng
- Graduate Institute of Pathology, National Taiwan University, Taipei, Taiwan
- Department of Pathology, National Taiwan University Hospital, Taipei, Taiwan
| |
Collapse
|
5
|
Crescenzi E, Leonardi A, Pacifico F. Iron Metabolism in Cancer and Senescence: A Cellular Perspective. BIOLOGY 2023; 12:989. [PMID: 37508419 PMCID: PMC10376531 DOI: 10.3390/biology12070989] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 07/06/2023] [Accepted: 07/10/2023] [Indexed: 07/30/2023]
Abstract
Iron participates in a number of biological processes and plays a crucial role in cellular homeostasis. Alterations in iron metabolism are considered hallmarks of cancer and drivers of aggressive behaviors, such as uncontrolled proliferation, resistance to apoptosis, enhanced metastatic ability, increased cell plasticity and stemness. Furthermore, a dysregulated iron metabolism has been associated with the development of an adverse tumor microenvironment. Alterations in iron metabolism have been described in cellular senescence and in aging. For instance, iron has been shown to accumulate in aged tissues and in age-related diseases. Furthermore, in vitro studies demonstrate increases in iron content in both replicative and stress-induced senescent cells. However, the role, the mechanisms of regulation and dysregulation and the effects of iron metabolism on senescence remain significantly less characterized. In this review, we first provide an overview of iron metabolism and iron regulatory proteins. Then, we summarize alterations in iron homeostasis in cancer and senescence from a cellular point of view.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, "Federico II" University of Naples, Via S. Pansini, 5, 80131 Naples, Italy
| | - Francesco Pacifico
- Istituto per l'Endocrinologia e l'Oncologia Sperimentale, CNR, Via S. Pansini, 5, 80131 Naples, Italy
| |
Collapse
|
6
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021. [DOI: 10.3390/ijms222212333
expr 804735418 + 979474750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
7
|
Crescenzi E, Leonardi A, Pacifico F. NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:12333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333&set/a 915137580+984946846] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
Affiliation(s)
- Elvira Crescenzi
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
| | - Antonio Leonardi
- Dipartimento di Medicina Molecolare e Biotecnologie Mediche, “Federico II” University of Naples, Via S. Pansini, 5-80131 Naples, Italy;
| | - Francesco Pacifico
- Istituto per l’Endocrinologia e l’Oncologia Sperimentale, CNR, Via S. Pansini, 5-80131 Naples, Italy;
- Correspondence:
| |
Collapse
|
8
|
NGAL as a Potential Target in Tumor Microenvironment. Int J Mol Sci 2021; 22:ijms222212333. [PMID: 34830212 PMCID: PMC8623964 DOI: 10.3390/ijms222212333] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Revised: 11/09/2021] [Accepted: 11/12/2021] [Indexed: 12/29/2022] Open
Abstract
The signaling network between cancer and stromal cells plays a crucial role in tumor microenvironment. The fate of tumor progression mainly depends on the huge amount of information that these cell populations exchange from the onset of neoplastic transformation. Interfering with such signaling has been producing exciting results in cancer therapy: just think of anti-PD-1/anti-PD-L1/anti-CTLA-4 antibodies that, acting as immune checkpoint inhibitors, interrupt the inhibitory signaling exerted by cancer cells on immune cells or the CAR-T technology that fosters the reactivation of anti-tumoral immunity in a restricted group of leukemias and lymphomas. Nevertheless, many types of cancers, in particular solid tumors, are still refractory to these treatments, so the identification of novel molecular targets in tumor secretome would benefit from implementation of current anti-cancer therapeutical strategies. Neutrophil Gelatinase-Associated Lipocalin (NGAL) is a secreted protein abundantly expressed in the secretome of various human tumors. It represents a promising target for the multiple roles that are played inside cancer and stromal cells, and also overall in their cross-talk. The review focuses on the different roles of NGAL in tumor microenvironment and in cancer senescence-associated secretory phenotype (SASP), highlighting the most crucial functions that could be eventually targetable in cancer therapy.
Collapse
|
9
|
Chaudhary N, Choudhary BS, Shah SG, Khapare N, Dwivedi N, Gaikwad A, Joshi N, Raichanna J, Basu S, Gurjar M, P K S, Saklani A, Gera P, Ramadwar M, Patil P, Thorat R, Gota V, Dhar SK, Gupta S, Das M, Dalal SN. Lipocalin 2 expression promotes tumor progression and therapy resistance by inhibiting ferroptosis in colorectal cancer. Int J Cancer 2021; 149:1495-1511. [PMID: 34146401 DOI: 10.1002/ijc.33711] [Citation(s) in RCA: 134] [Impact Index Per Article: 33.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 05/13/2021] [Accepted: 06/08/2021] [Indexed: 01/14/2023]
Abstract
Lipocalin 2 is a siderophore-binding protein that regulates iron homeostasis. Lipocalin 2 expression is elevated in multiple tumor types; however, the mechanisms that drive tumor progression upon Lipocalin 2 expression remain unclear. When Lipocalin 2 is over-expressed, it leads to resistance to 5-fluorouracil in colon cancer cell lines in vitro and in vivo by inhibiting ferroptosis. Lipocalin 2 inhibits ferroptosis by decreasing intracellular iron levels and stimulating the expression of glutathione peroxidase4 and a component of the cysteine glutamate antiporter, xCT. The increase in xCT levels is dependent on increased levels of ETS1 in Lipocalin 2 over-expressing cells. Inhibiting Lipocalin 2 function with a monoclonal antibody leads to a decrease in chemo-resistance and transformation in vitro, and a decrease in tumor progression and chemo-resistance in xenograft mouse models. Lipocalin 2 and xCT levels exhibit a positive correlation in human tumor samples suggesting that the pathway we have identified in cell lines is operative in human tumor samples. These results indicate that Lipocalin 2 is a potential therapeutic target and that the monoclonal antibody described in our study can serve as the basis for a potential therapeutic in patients who do not respond to chemotherapy.
Collapse
Affiliation(s)
- Nazia Chaudhary
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Bhagya Shree Choudhary
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| | - Sanket Girish Shah
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nileema Khapare
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Nehanjali Dwivedi
- Tumor Immunology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Anagha Gaikwad
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Neha Joshi
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Jinsy Raichanna
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Srikanta Basu
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Murari Gurjar
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Smitha P K
- Tumor Immunology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Avanish Saklani
- Department of Gastrointestinal Oncology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Poonam Gera
- Department of Biorepository, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Mukta Ramadwar
- Department of Pathology, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Prachi Patil
- Department of Digestive Disease and Clinical Nutrition, Tata Memorial Hospital, Tata Memorial Centre, Mumbai, India
| | - Rahul Thorat
- Laboratory Animal Facility, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Vikram Gota
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- Department of Clinical Pharmacology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Sujan K Dhar
- Beyond Antibody, InCyte Laboratory, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Sanjay Gupta
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
- Epigenetics and Chromatin Biology Group, Gupta Lab, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
| | - Manjula Das
- Tumor Immunology Program, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
- Beyond Antibody, InCyte Laboratory, Mazumdar Shaw Medical Foundation, Mazumdar Shaw Medical Centre, Narayana Health City, Bangalore, India
| | - Sorab N Dalal
- Cell and Tumor Biology, Advanced Centre for Treatment, Research and Education in Cancer (ACTREC), Tata Memorial Centre, Navi Mumbai, India
- Life Sciences, Homi Bhabha National Institute, Mumbai, India
| |
Collapse
|
10
|
Delprat V, Michiels C. A bi-directional dialog between vascular cells and monocytes/macrophages regulates tumor progression. Cancer Metastasis Rev 2021; 40:477-500. [PMID: 33783686 PMCID: PMC8213675 DOI: 10.1007/s10555-021-09958-2] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 02/23/2021] [Indexed: 02/06/2023]
Abstract
Cancer progression largely depends on tumor blood vessels as well on immune cell infiltration. In various tumors, vascular cells, namely endothelial cells (ECs) and pericytes, strongly regulate leukocyte infiltration into tumors and immune cell activation, hence the immune response to cancers. Recently, a lot of compelling studies unraveled the molecular mechanisms by which tumor vascular cells regulate monocyte and tumor-associated macrophage (TAM) recruitment and phenotype, and consequently tumor progression. Reciprocally, TAMs and monocytes strongly modulate tumor blood vessel and tumor lymphatic vessel formation by exerting pro-angiogenic and lymphangiogenic effects, respectively. Finally, the interaction between monocytes/TAMs and vascular cells is also impacting several steps of the spread of cancer cells throughout the body, a process called metastasis. In this review, the impact of the bi-directional dialog between blood vascular cells and monocytes/TAMs in the regulation of tumor progression is discussed. All together, these data led to the design of combinations of anti-angiogenic and immunotherapy targeting TAMs/monocyte whose effects are briefly discussed in the last part of this review.
Collapse
Affiliation(s)
- Victor Delprat
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium
| | - Carine Michiels
- Biochemistry and Cellular Biology Research Unit (URBC), Namur Research Institute for Life Sciences (NARILIS), University of Namur (UNamur), 61 Rue de Bruxelles, B-5000, Namur, Belgium.
| |
Collapse
|
11
|
Liang W, Ferrara N. Iron Metabolism in the Tumor Microenvironment: Contributions of Innate Immune Cells. Front Immunol 2021; 11:626812. [PMID: 33679721 PMCID: PMC7928394 DOI: 10.3389/fimmu.2020.626812] [Citation(s) in RCA: 27] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2020] [Accepted: 12/30/2020] [Indexed: 12/21/2022] Open
Abstract
Cells of the innate immune system are a major component of the tumor microenvironment. They play complex and multifaceted roles in the regulation of cancer initiation, growth, metastasis and responses to therapeutics. Innate immune cells like neutrophils and macrophages are recruited to cancerous tissues by chemotactic molecules released by cancer cells and cancer-associated stromal cells. Once they reach the tumor, they can be instructed by a network of proteins, nucleic acids and metabolites to exert protumoral or antitumoral functions. Altered iron metabolism is a feature of cancer. Epidemiological studies suggest that increased presence of iron and/or iron binding proteins is associated with increased risks of cancer development. It has been shown that iron metabolism is involved in shaping the immune landscapes in inflammatory/infectious diseases and cancer-associated inflammation. In this article, we will dissect the contribution of macrophages and neutrophils to dysregulated iron metabolism in malignant cells and its impact on cancer growth and metastasis. The mechanisms involved in regulating the actions of macrophages and neutrophils will also be discussed. Moreover, we will examine the effects of iron metabolism on the phenotypes of innate immune cells. Both iron chelating and overloading agents are being explored in cancer treatment. This review highlights alternative strategies for management of iron content in cancer cells by targeting the iron donation and modulation properties of macrophages and neutrophils in the tumor microenvironment.
Collapse
Affiliation(s)
- Wei Liang
- Oncology, BioDuro LLC, San Diego, CA, United States
| | - Napoleone Ferrara
- Moores Cancer Center, University of California San Diego, La Jolla, CA, United States
| |
Collapse
|
12
|
Lyu W, Jia H, Deng C, Yamada S, Kato H. Zeolite-containing mixture alleviates microbial dysbiosis in dextran sodium sulfate-induced colitis in mice. Food Sci Nutr 2021; 9:772-780. [PMID: 33598162 PMCID: PMC7866626 DOI: 10.1002/fsn3.2042] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 11/15/2020] [Accepted: 11/18/2020] [Indexed: 12/13/2022] Open
Abstract
Inflammatory bowel disease (IBD) is a multifactorial immunomodulatory disorder. In relative nosogenesis, gut microbiota has been the focus of research on IBD. In our previous study, we demonstrated the ameliorating effect of zeolite-containing mixture (Hydryeast®, HY) on dextran sodium sulfate (DSS)-induced colitis, through transcriptomics and proteomics. In the present study, we performed further investigation from the perspective of metagenomics using the gut microbiota. C57BL6 mice were provided an AIN-93G basal diet or a 0.8% HY-containing diet, and sterilized tap water for 11 days. Thereafter, colitis was induced by providing 1.5% (w/v) DSS-containing water for 9 days. DNA was extracted from the cecal contents and pooled into libraries in a single Illumina MiSeq run. The resulting sequences were analyzed using Quantitative Insights Into Microbial Ecology (QIIME) software. According to the alterations in the relative abundance of certain bacteria, and the related gene and protein expressions, HY supplementation could improve the gut microbiota composition, ameliorate the degree of inflammation, inhibit the colonic mucosal microbial growth, and, to some extent, promote energy metabolism in the colon compared with the DSS treatment. Thus, we believe that HY may be a candidate to prevent and treat IBD.
Collapse
Affiliation(s)
- Weida Lyu
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | - Huijuan Jia
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| | | | | | - Hisanori Kato
- Graduate School of Agricultural and Life SciencesThe University of TokyoTokyoJapan
| |
Collapse
|
13
|
Predictive and Prognostic Role of Lipocalin-2 Expression in Prostate Cancer and Its Association with Gleason Score. Prostate Cancer 2021; 2021:8836043. [PMID: 33542838 PMCID: PMC7840261 DOI: 10.1155/2021/8836043] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2020] [Revised: 01/07/2021] [Accepted: 01/09/2021] [Indexed: 12/24/2022] Open
Abstract
Lipocalin-2 has an important role in tumor progression, invasion, and metastasis. However, its role in prostate cancer remains unclear. The objective of this study is to determine the expression level of lipocalin-2 in human prostate cancer tissues and to evaluate the relationship between its expression level and clinicopathologic parameters including response to docetaxel treatment, Gleason score, progression-free survival (PFS), and overall survival (OS). We retrospectively analyzed paraffin-embedded tissue sections from 33 metastatic castrate-resistant prostate cancer (mCRPC) patients whose clinical outcomes had been tracked after docetaxel treatment. The expression status of lipocalin-2 was defined by immunohistochemistry (IHC) using the anti-lipocalin-2 antibody. Lipocalin-2 was highly expressed in 36% of the examined specimens. There was no significant correlation between high lipocalin-2 expression and docetaxel response (p : 0.09). High lipocalin-2 expression was significantly associated with a higher Gleason score (p=0.027). Kaplan-Meier survival analysis failed to show a significant correlation between expression levels of lipocalin-2 and both OS and PFS although patients with high lipocalin-2 levels had a numerically shorter PFS and OS time compared to patients with low levels. Consequently, it is clear that further studies are needed to evaluate the predictive and prognostic role of lipocalin-2 in prostate cancer patients.
Collapse
|
14
|
Biological Functions and Therapeutic Potential of Lipocalin 2 in Cancer. Int J Mol Sci 2020; 21:ijms21124365. [PMID: 32575507 PMCID: PMC7352275 DOI: 10.3390/ijms21124365] [Citation(s) in RCA: 107] [Impact Index Per Article: 21.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2020] [Revised: 06/05/2020] [Accepted: 06/15/2020] [Indexed: 12/22/2022] Open
Abstract
Lipocalin-2 (LCN2) is a secreted glycoprotein linked to several physiological roles, including transporting hydrophobic ligands across cell membranes, modulating immune responses, maintaining iron homeostasis, and promoting epithelial cell differentiation. Although LNC2 is expressed at low levels in most human tissues, it is abundant in aggressive subtypes of cancer, including breast, pancreas, thyroid, ovarian, colon, and bile duct cancers. High levels of LCN2 have been associated with increased cell proliferation, angiogenesis, cell invasion, and metastasis. Moreover, LCN2 modulates the degradation, allosteric events, and enzymatic activity of matrix metalloprotease-9, a metalloprotease that promotes tumor cell invasion and metastasis. Hence, LCN2 has emerged as a potential therapeutic target against many cancer types. This review summarizes the most relevant findings regarding the expression, biological roles, and regulation of LCN2, as well as the proteins LCN2 interacts with in cancer. We also discuss the approaches to targeting LCN2 for cancer treatment that are currently under investigation, including the use of interference RNAs, antibodies, and gene editing.
Collapse
|
15
|
Dayama G, Priya S, Niccum DE, Khoruts A, Blekhman R. Interactions between the gut microbiome and host gene regulation in cystic fibrosis. Genome Med 2020; 12:12. [PMID: 31992345 PMCID: PMC6988342 DOI: 10.1186/s13073-020-0710-2] [Citation(s) in RCA: 80] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Accepted: 01/05/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Cystic fibrosis is the most common autosomal recessive genetic disease in Caucasians. It is caused by mutations in the CFTR gene, leading to poor hydration of mucus and impairment of the respiratory, digestive, and reproductive organ functions. Advancements in medical care have led to markedly increased longevity of patients with cystic fibrosis, but new complications have emerged, such as early onset of colorectal cancer. Although the pathogenesis of colorectal cancer in cystic fibrosis remains unclear, altered host-microbe interactions might play a critical role. To investigate this, we characterized changes in the microbiome and host gene expression in the colonic mucosa of cystic fibrosis patients relative to healthy controls, and identified host gene-microbiome interactions in the colon of cystic fibrosis patients. METHODS We performed RNA-seq on colonic mucosa samples from cystic fibrosis patients and healthy controls to determine differentially expressed host genes. We also performed 16S rRNA sequencing to characterize the colonic mucosal microbiome and identify gut microbes that are differentially abundant between patients and healthy controls. Lastly, we modeled associations between relative abundances of specific bacterial taxa in the gut mucosa and host gene expression. RESULTS We find that 1543 genes, including CFTR, show differential expression in the colon of cystic fibrosis patients compared to healthy controls. These genes are enriched with functions related to gastrointestinal and colorectal cancer, such as metastasis of colorectal cancer, tumor suppression, p53, and mTOR signaling pathways. In addition, patients with cystic fibrosis show decreased gut microbial diversity, decreased abundance of butyrate producing bacteria, such as Ruminococcaceae and Butyricimonas, and increased abundance of other taxa, such as Actinobacteria and Clostridium. An integrative analysis identified colorectal cancer-related genes, including LCN2 and DUOX2, for which gene expression is correlated with the abundance of colorectal cancer-associated bacteria, such as Ruminococcaceae and Veillonella. CONCLUSIONS In addition to characterizing host gene expression and mucosal microbiome in cystic fibrosis patients, our study explored the potential role of host-microbe interactions in the etiology of colorectal cancer in cystic fibrosis. Our results provide biomarkers that may potentially serve as targets for stratifying risk of colorectal cancer in patients with cystic fibrosis.
Collapse
Affiliation(s)
- Gargi Dayama
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - Sambhawa Priya
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA
| | - David E Niccum
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA
| | - Alexander Khoruts
- Department of Medicine, University of Minnesota, Minneapolis, MN, USA.
- Center for Immunology, BioTechnology Institute, University of Minnesota, Minneapolis, MN, USA.
| | - Ran Blekhman
- Department of Genetics, Cell Biology and Development, University of Minnesota, Minneapolis, MN, USA.
- Department of Ecology, Evolution, and Behavior, University of Minnesota, Minneapolis, MN, USA.
| |
Collapse
|
16
|
Can NGAL be employed as prognostic and diagnostic biomarker in human cancers? A systematic review of current evidence. Int J Biol Markers 2017; 32:e53-e61. [PMID: 28106227 DOI: 10.5301/jbm.5000245] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/17/2016] [Indexed: 12/30/2022]
Abstract
BACKGROUND Some studies have reported differentially altered neutrophil gelatinase-associated lipocalin (NGAL) levels in several malignancies. We evaluated NGAL measured in plasma or urine as both prognostic and diagnostic marker for different types of human tumors. METHODS We performed systematic electronic searches in Medline, Embase and CRDTAS. Studies were included if they evaluated NGAL as a prognostic or diagnostic marker for human cancers. The selection of the studies, screening of the full texts and data extraction were conducted independently by 2 authors. We used the random-effects model for the meta-analyses. A methodological assessment was completed. RESULTS We included 35 studies dedicated to colorectal, pancreas, breast, thyroid, gastric, kidney, endometrial, brain, liver, lung, esophageal, oral and ovarian cancers. Our meta-analyses showed that, in patients with colorectal and breast cancer, positive NGAL expression was associated with a decrease of disease-free survival (hazard ratio [HR] = 2.27, 95% confidence interval [95% CI], 1.54-3.36; HR = 1.78, 95% CI, 1.33-2.38, respectively). NGAL was a negative prognostic marker of overall survival in colorectal (HR = 2.37, 95% CI, 1.68-3.34) and endometrial (HR = 4.38, 95% CI, 1.9-10.12) cancers. Discriminative power of NGAL between cancer patients and control was moderate in colorectal cancer (area under the curve [AUC] = 0.6; pooled sensitivity 0.56; pooled specificity 0.72), acceptable in pancreatic cancer (AUC = 0.8; pooled sensitivity 0.6; pooled specificity 0.8) and good in thyroid cancer (AUC = 0.9; pooled sensitivity 0.85; pooled specificity 0.96). CONCLUSIONS NGAL determination in plasma and urine could be useful in the prognosis of colorectal and breast cancer, but its prognostic accuracy remains uncertain for other human tumors.
Collapse
|
17
|
Cristóbal I, Torrejón B, González-Alonso P, Manso R, Rojo F, García-Foncillas J. Downregulation of miR-138 as a Contributing Mechanism to Lcn-2 Overexpression in Colorectal Cancer with Liver Metastasis. World J Surg 2016; 40:1021-2. [PMID: 26316117 DOI: 10.1007/s00268-015-3241-z] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Affiliation(s)
- Ion Cristóbal
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| | - Blanca Torrejón
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain
| | - Paula González-Alonso
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Rebeca Manso
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Federico Rojo
- Pathology Department, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", 28040, Madrid, Spain
| | - Jesús García-Foncillas
- Translational Oncology Division, Oncohealth Institute, IIS-Fundacion Jimenez Diaz-UAM, University Hospital "Fundacion Jimenez Diaz", Avda. Reyes Católicos-2, 28040, Madrid, Spain.
| |
Collapse
|
18
|
Amberger A, Deutschmann AJ, Traunfellner P, Moser P, Feichtinger RG, Kofler B, Zschocke J. 17β-Hydroxysteroid dehydrogenase type 10 predicts survival of patients with colorectal cancer and affects mitochondrial DNA content. Cancer Lett 2016; 374:149-155. [PMID: 26884257 DOI: 10.1016/j.canlet.2016.02.011] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 02/03/2016] [Accepted: 02/04/2016] [Indexed: 02/04/2023]
Abstract
Mitochondrial energy production is reduced in tumor cells, and altered mitochondrial respiration contributes to tumor progression. Synthesis of proteins coded by mitochondrial DNA (mtDNA) requires the correct processing of long polycistronic precursor RNA molecules. Mitochondrial RNase P, composed of three different proteins (MRPP1, HSD10, and MRPP3), is necessary for correct RNA processing. Here we analyzed the role of RNase P proteins in colorectal cancer. High HSD10 expression was found in 28%; high MRPP1 expression in 40% of colorectal cancers, respectively. Expression of both proteins was not significantly associated with clinicopathological parameters. Survival analysis revealed that loss of HSD10 expression is associated with poor prognosis. Cox regression demonstrated that patients with high HSD10 tumors are at lower risk. High HSD10 expression was significantly associated with high mtDNA content in tumor tissue. A causal effect of HSD10 overexpression or knock down with increased or reduced mtDNA levels, respectively, was confirmed in tumor cell lines. Our data suggest that HSD10 plays a role in alterations of energy metabolism by regulating mtDNA content in colorectal carcinomas, and HSD10 protein analysis may be of prognostic value.
Collapse
Affiliation(s)
- Albert Amberger
- Division of Human Genetics, Medical University Innsbruck, Peter Mayr Straße 1, 6020 Innsbruck, Austria.
| | - Andrea J Deutschmann
- Division of Human Genetics, Medical University Innsbruck, Peter Mayr Straße 1, 6020 Innsbruck, Austria
| | - Pia Traunfellner
- Division of Human Genetics, Medical University Innsbruck, Peter Mayr Straße 1, 6020 Innsbruck, Austria
| | - Patrizia Moser
- Institute of General Pathology, Medical University Innsbruck, Müllerstraße 44, 6020 Innsbruck, Austria
| | - René G Feichtinger
- Laura-Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Barbara Kofler
- Laura-Bassi Centre of Expertise-THERAPEP, Research Program for Receptor Biochemistry and Tumor Metabolism, Department of Pediatrics, Paracelsus Medical University Salzburg, Müllner Hauptstraße 48, 5020 Salzburg, Austria
| | - Johannes Zschocke
- Division of Human Genetics, Medical University Innsbruck, Peter Mayr Straße 1, 6020 Innsbruck, Austria.
| |
Collapse
|
19
|
Maier H, Aigner F. Upregulation of Neutrophil Gelatinase-Associated Lipocalin in Colorectal Cancer Predicts Poor Patient Survival: Reply. World J Surg 2015; 40:1023. [PMID: 26546183 DOI: 10.1007/s00268-015-3309-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Affiliation(s)
- Herbert Maier
- Department of Visceral, Transplant and Thoracic Surgery, Innsbruck Medical University, Innsbruck, Austria
| | - Felix Aigner
- General, Visceral and Transplantation Surgery, Charité Universitätsmedizin Berlin, Campus Virchow-Klinikum, Berlin, Germany.
| |
Collapse
|
20
|
Roles of NGAL and MMP-9 in the tumor microenvironment and sensitivity to targeted therapy. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2015; 1863:438-448. [PMID: 26278055 DOI: 10.1016/j.bbamcr.2015.08.010] [Citation(s) in RCA: 73] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Revised: 08/08/2015] [Accepted: 08/10/2015] [Indexed: 12/15/2022]
Abstract
Various, diverse molecules contribute to the tumor microenvironment and influence invasion and metastasis. In this review, the roles of neutrophil gelatinase-associated lipocalin (NGAL) and matrix metalloproteinase-9 (MMP-9) in the tumor microenvironment and sensitivity to therapy will be discussed. The lipocalin family of proteins has many important functions. For example when NGAL forms a complex with MMP-9 it increases its stability which is important in cancer metastasis. Small hydrophobic molecules are bound by NGAL which can alter their entry into and efflux from cells. Iron transport and storage are also influenced by NGAL activity. Regulation of iron levels is important for survival in the tumor microenvironment as well as metastasis. Innate immunity is also regulated by NGAL as it can have bacteriostatic properties. NGAL and MMP-9 expression may also affect the sensitivity of cancer cells to chemotherapy as well as targeted therapy. Thus NGAL and MMP-9 play important roles in key processes involved in metastasis as well as response to therapy. This article is part of a Special Issue entitled: Tumor Microenvironment Regulation of Cancer Cell Survival, Metastasis, Inflammation, and Immune Surveillance edited by Peter Ruvolo and Gregg L. Semenza.
Collapse
|
21
|
Diverse functional roles of lipocalin-2 in the central nervous system. Neurosci Biobehav Rev 2015; 49:135-56. [DOI: 10.1016/j.neubiorev.2014.12.006] [Citation(s) in RCA: 138] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2014] [Revised: 11/28/2014] [Accepted: 12/04/2014] [Indexed: 12/16/2022]
|
22
|
Qi X, Yu T, Zhu L, Gao J, He X, Huang K, Luo Y, Xu W. Ochratoxin A induces rat renal carcinogenicity with limited induction of oxidative stress responses. Toxicol Appl Pharmacol 2014; 280:543-9. [PMID: 25218026 DOI: 10.1016/j.taap.2014.08.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2014] [Revised: 08/27/2014] [Accepted: 08/28/2014] [Indexed: 10/24/2022]
Abstract
Ochratoxin A (OTA) has displayed nephrotoxicity and renal carcinogenicity in mammals, however, no clear mechanisms have been identified detailing the relationship between oxidative stress and these toxicities. This study was performed to clarify the relationship between oxidative stress and the renal carcinogenicity induced by OTA. Rats were treated with 70 or 210 μg/kg b.w. OTA for 4 or 13 weeks. In the rats administrated with OTA for 13 weeks, the kidney was damaged seriously. Cytoplasmic vacuolization was observed in the outer stripe of the outer medulla. Karyomegaly was prominent in the tubular epithelium. Kidney injury molecule-1 (Kim-1) was detected in the outer stripe of the outer medulla in both low- and high-dose groups. OTA increased the mRNA levels of clusterin in rat kidneys. Interestingly, OTA did not significantly alter the oxidative stress level in rat liver and kidney. Yet, some indications related to proliferation and carcinogenicity were observed. A dose-related increase in proliferating cell nuclear antigen (PCNA) was observed at 4 weeks in both liver and kidney, but at 13 weeks, only in the kidney. OTA down-regulated reactive oxygen species (ROS) and up-regulated vimentin and lipocalin 2 in rat kidney at 13 weeks. The p53 gene was decreased in both liver and kidney at 13 weeks. These results suggest that OTA caused apparent kidney damage within 13 weeks but exerted limited effect on oxidative stress parameters. It implies that cell proliferation is the proposed mode of action for OTA-induced renal carcinogenicity.
Collapse
Affiliation(s)
- Xiaozhe Qi
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Tao Yu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Liye Zhu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Jing Gao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Xiaoyun He
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Kunlun Huang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Yunbo Luo
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China
| | - Wentao Xu
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China; The Supervision, Inspection and Testing Center of Genetically Modified Organisms, Ministry of Agriculture, Beijing 100083, China.
| |
Collapse
|