1
|
Restifo D, McDermott JR, Cvetkovic D, Santos TD, Ogier C, Surumbayeva A, Handorf EA, Schimke C, Ma C, Cai KQ, Olszanski AJ, Kathad U, Bhatia K, Sharma P, Kulkarni A, Astsaturov I. Conditional Dependency of LP-184 on Prostaglandin Reductase 1 is Synthetic Lethal in Pancreatic Cancers with DNA Damage Repair Deficiencies. Mol Cancer Ther 2023; 22:1182-1190. [PMID: 37552607 PMCID: PMC10592171 DOI: 10.1158/1535-7163.mct-22-0818] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/22/2023] [Accepted: 08/01/2023] [Indexed: 08/10/2023]
Abstract
The greater efficacy of DNA-damaging drugs for pancreatic adenocarcinoma (PDAC) relies on targeting cancer-specific vulnerabilities while sparing normal organs and tissues due to their inherent toxicities. We tested LP-184, a novel acylfulvene analog, for its activity in preclinical models of PDAC carrying mutations in the DNA damage repair (DDR) pathways. Cytotoxicity of LP-184 is solely dependent on prostaglandin reductase 1 (PTGR1), so that PTGR1 expression robustly correlates with LP-184 cytotoxicity in vitro and in vivo. Low-passage patient-derived PDAC xenografts with DDR deficiencies treated ex vivo are more sensitive to LP-184 compared with DDR-proficient tumors. Additional in vivo testing of PDAC xenografts for their sensitivity to LP-184 demonstrates marked tumor growth inhibition in models harboring pathogenic mutations in ATR, BRCA1, and BRCA2. Depletion of PTGR1, however, completely abrogates the antitumor effect of LP-184. Testing combinatorial strategies for LP-184 aimed at deregulation of nucleotide excision repair proteins ERCC3 and ERCC4 established synergy. Our results provide valuable biomarkers for clinical testing of LP-184 in a large subset of genetically defined characterized refractory carcinomas. High PTGR1 expression and deleterious DDR mutations are present in approximately one third of PDAC making these patients ideal candidates for clinical trials of LP-184.
Collapse
Affiliation(s)
- Diana Restifo
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | - Dusica Cvetkovic
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Troy Dos Santos
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Charline Ogier
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Aizhan Surumbayeva
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | | | - Charlie Ma
- Department of Radiation Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Kathy Q. Cai
- Histopathology Facility, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | - Anthony J. Olszanski
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| | | | | | | | | | - Igor Astsaturov
- The Marvin & Concetta Greenberg Pancreatic Cancer Institute, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
- Department of Hematology and Oncology, Fox Chase Cancer Center, Philadelphia, PA, 19111, USA
| |
Collapse
|
2
|
Casimir L, Zimmer S, Racine-Brassard F, Jacques PÉ, Maréchal A. The mutational impact of Illudin S on human cells. DNA Repair (Amst) 2023; 122:103433. [PMID: 36566616 DOI: 10.1016/j.dnarep.2022.103433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 12/03/2022] [Accepted: 12/07/2022] [Indexed: 12/15/2022]
Abstract
Illudin S (ILS) is a fungal sesquiterpene secondary metabolite with potent genotoxic and cytotoxic properties. Early genetic studies and more recent genome-wide CRISPR screens showed that Illudin-induced lesions are preferentially repaired by transcription-coupled nucleotide excision repair (TC-NER) with some contribution from post-replication repair pathways. In line with these results, Irofulven, a semi-synthetic ILS analog was recently shown to be particularly effective on cell lines and patient-derived xenografts with impaired NER (e.g. ERCC2/3 mutations), raising hope that ILS-derived molecules may soon enter the clinic. Despite the therapeutic potential of ILS and its analogs, we still lack a global understanding of their mutagenic potential. Here, we characterize the mutational signatures associated with chronic exposure to ILS in human cells. ILS treatment rapidly stalls DNA replication and transcription, leading to the activation of the replication stress response and the accumulation of DNA damage. Novel single and double base substitution signatures as well as a characteristic indel signature indicate that ILS treatment preferentially alkylates purine residues and induces oxidative stress, confirming prior in vitro data. Many mutation contexts exhibit a strong transcriptional strand bias, highlighting the contribution of TC-NER to the repair of ILS lesions. Finally, collateral mutations are also observed in response to ILS, suggesting a contribution of translesion synthesis pathways to ILS tolerance. Accordingly, ILS treatment led to the rapid recruitment of the Y-family DNA polymerase kappa onto chromatin, supporting its preferential use for ILS lesion bypass. Altogether, our work provides the first global assessment of the genomic impact of ILS, demonstrating the contribution of multiple DNA repair pathways to ILS resistance and mutagenicity.
Collapse
Affiliation(s)
- Lisa Casimir
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Samuel Zimmer
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Félix Racine-Brassard
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8
| | - Pierre-Étienne Jacques
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada J1H 5N3.
| | - Alexandre Maréchal
- Département de Biologie, Université de Sherbrooke, Sherbrooke, QC, Canada J1K 2R1; Institut de Recherche sur le Cancer de l'Université de Sherbrooke (IRCUS), Sherbrooke, QC, Canada J1E 4K8; Centre de recherche du Centre hospitalier universitaire de Sherbrooke (CRCHUS), Sherbrooke, QC, Canada J1H 5N3.
| |
Collapse
|
3
|
Börcsök J, Sztupinszki Z, Bekele R, Gao SP, Diossy M, Samant AS, Dillon KM, Tisza V, Spisák S, Rusz O, Csabai I, Pappot H, Frazier ZJ, Konieczkowski DJ, Liu D, Vasani N, Rodrigues JA, Solit DB, Hoffman-Censits JH, Plimack ER, Rosenberg JE, Lazaro JB, Taplin ME, Iyer G, Brunak S, Lozsa R, Van Allen EM, Szüts D, Mouw KW, Szallasi Z. Identification of a Synthetic Lethal Relationship between Nucleotide Excision Repair Deficiency and Irofulven Sensitivity in Urothelial Cancer. Clin Cancer Res 2020; 27:2011-2022. [PMID: 33208343 DOI: 10.1158/1078-0432.ccr-20-3316] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Revised: 10/16/2020] [Accepted: 11/04/2020] [Indexed: 11/16/2022]
Abstract
PURPOSE Cisplatin-based chemotherapy is a first-line treatment for muscle-invasive and metastatic urothelial cancer. Approximately 10% of bladder urothelial tumors have a somatic missense mutation in the nucleotide excision repair (NER) gene, ERCC2, which confers increased sensitivity to cisplatin-based chemotherapy. However, a significant subset of patients is ineligible to receive cisplatin-based therapy due to medical contraindications, and no NER-targeted approaches are available for platinum-ineligible or platinum-refractory ERCC2-mutant cases. EXPERIMENTAL DESIGN We used a series of NER-proficient and NER-deficient preclinical tumor models to test sensitivity to irofulven, an abandoned anticancer agent. In addition, we used available clinical and sequencing data from multiple urothelial tumor cohorts to develop and validate a composite mutational signature of ERCC2 deficiency and cisplatin sensitivity. RESULTS We identified a novel synthetic lethal relationship between tumor NER deficiency and sensitivity to irofulven. Irofulven specifically targets cells with inactivation of the transcription-coupled NER (TC-NER) pathway and leads to robust responses in vitro and in vivo, including in models with acquired cisplatin resistance, while having minimal effect on cells with intact NER. We also found that a composite mutational signature of ERCC2 deficiency was strongly associated with cisplatin response in patients and was also associated with cisplatin and irofulven sensitivity in preclinical models. CONCLUSIONS Tumor NER deficiency confers sensitivity to irofulven, a previously abandoned anticancer agent, with minimal activity in NER-proficient cells. A composite mutational signature of NER deficiency may be useful in identifying patients likely to respond to NER-targeting agents, including cisplatin and irofulven.See related commentary by Jiang and Greenberg, p. 1833.
Collapse
Affiliation(s)
- Judit Börcsök
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | | | - Raie Bekele
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Sizhi P Gao
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Miklos Diossy
- Danish Cancer Society Research Center, Copenhagen, Denmark
| | - Amruta S Samant
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Kasia M Dillon
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Viktoria Tisza
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
| | - Sándor Spisák
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Orsolya Rusz
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| | - Istvan Csabai
- Department of Physics of Complex Systems, Eötvös Loránd University, Budapest, Hungary
| | - Helle Pappot
- Department of Oncology, Rigshospitalet, University of Copenhagen, Copenhagen, Denmark
| | - Zoë J Frazier
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - David J Konieczkowski
- Department of Radiation Oncology, Arthur G. James Cancer Hospital and Richard J. Solove Research Institute, The Ohio State University, Columbus, Ohio
| | - David Liu
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Naresh Vasani
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - James A Rodrigues
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
| | - David B Solit
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Marie-Josee and Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Jean H Hoffman-Censits
- Department of Oncology, Sidney Kimmel Comprehensive Cancer Center, Johns Hopkins University, Baltimore, Maryland
| | - Elizabeth R Plimack
- Department of Hematology/Oncology, Fox Chase Cancer Center, Philadelphia, Pennsylvania
| | - Jonathan E Rosenberg
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medical College, New York, New York
| | - Jean-Bernard Lazaro
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Mary-Ellen Taplin
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Gopa Iyer
- Genitourinary Oncology Service, Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Søren Brunak
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, Copenhagen, Denmark
| | - Rita Lozsa
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Eliezer M Van Allen
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts
| | - Dávid Szüts
- Institute of Enzymology, Research Centre for Natural Sciences, Budapest, Hungary
| | - Kent W Mouw
- Department of Radiation Oncology, Dana-Farber Cancer Institute, Boston, Massachusetts.
- Department of Radiation Oncology, Brigham & Women's Hospital, Boston, Massachusetts
- Harvard Medical School, Boston, Massachusetts
| | - Zoltan Szallasi
- Danish Cancer Society Research Center, Copenhagen, Denmark.
- Computational Health Informatics Program, Boston Children's Hospital, Boston, Massachusetts
- 2nd Department of Pathology, SE NAP, Brain Metastasis Research Group, Semmelweis University, Budapest, Hungary
| |
Collapse
|
4
|
Kornienko A, Evidente A, Vurro M, Mathieu V, Cimmino A, Evidente M, van Otterlo WAL, Dasari R, Lefranc F, Kiss R. Toward a Cancer Drug of Fungal Origin. Med Res Rev 2015; 35:937-67. [PMID: 25850821 PMCID: PMC4529806 DOI: 10.1002/med.21348] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Although fungi produce highly structurally diverse metabolites, many of which have served as excellent sources of pharmaceuticals, no fungi-derived agent has been approved as a cancer drug so far. This is despite a tremendous amount of research being aimed at the identification of fungal metabolites with promising anticancer activities. This review discusses the results of clinical testing of fungal metabolites and their synthetic derivatives, with the goal to evaluate how far we are from an approved cancer drug of fungal origin. Also, because in vivo studies in animal models are predictive of the efficacy and toxicity of a given compound in a clinical situation, literature describing animal cancer testing of compounds of fungal origin is reviewed as well. Agents showing the potential to advance to clinical trials are also identified. Finally, the technological challenges involved in the exploitation of fungal biodiversity and procurement of sufficient quantities of clinical candidates are discussed, and potential solutions that could be pursued by researchers are highlighted.
Collapse
Affiliation(s)
- Alexander Kornienko
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Antonio Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Maurizio Vurro
- Institute of Sciences of Food Production, National Research Council, Via Amendola 122/0, 70126 Bari, Italy
| | - Véronique Mathieu
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Alessio Cimmino
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Marco Evidente
- Dipartimento di Scienze Chimiche, Università di Napoli Federico II, Complesso Universitario Monte S. Angelo, Via Cintia 4, 80126 Napoli, Italy
| | - Willem A. L. van Otterlo
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland 7602, South Africa
| | - Ramesh Dasari
- Department of Chemistry and Biochemistry, Texas State University, San Marcos, Texas 78666, USA
| | - Florence Lefranc
- Service de Neurochirurgie, Hôpital Erasme; Université Libre de Bruxelles (ULB), Brussels, Belgium
| | - Robert Kiss
- Laboratorie de Cancérologie et de Toxicologie Expérimentale, Faculté de Pharmacie, Université Libre de Bruxelles (ULB), Brussels, Belgium
| |
Collapse
|
5
|
Tanasova M, Sturla SJ. Chemistry and biology of acylfulvenes: sesquiterpene-derived antitumor agents. Chem Rev 2012; 112:3578-610. [PMID: 22482429 DOI: 10.1021/cr2001367] [Citation(s) in RCA: 73] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Marina Tanasova
- ETH Zurich, Institute of Food, Nutrition and Health, Zurich, Switzerland
| | | |
Collapse
|
6
|
Takasu K, Nagamoto Y, Takemoto Y. Stereocontrolled Synthesis of Spiro[n.2]alkenes by Ring Contraction of Fused-Cyclobutanols. Chemistry 2010; 16:8427-32. [DOI: 10.1002/chem.201000930] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
7
|
Mohamed IE, Gross H, Pontius A, Kehraus S, Krick A, Kelter G, Maier A, Fiebig HH, König GM. Epoxyphomalin A and B, prenylated polyketides with potent cytotoxicity from the marine-derived fungus Phoma sp. Org Lett 2009; 11:5014-7. [PMID: 19813715 DOI: 10.1021/ol901996g] [Citation(s) in RCA: 61] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
Chemical investigation of a strain of the marine-derived fungus Phoma sp. has led to the discovery of epoxyphomalin A (1) and B (2), two new prenylated polyketides with unusual structural features. Epoxyphomalin A (1) showed superior cytotoxicity at nanomolar concentrations toward 12 of a panel of 36 human tumor cell lines. In COMPARE analyses, the observed cytotoxic selectivity pattern of 1 did not correlate with those of reference anticancer agents with known mechanisms of action.
Collapse
|
8
|
Siegel DS, Piizzi G, Piersanti G, Movassaghi M. Enantioselective total synthesis of (-)-acylfulvene and (-)-irofulven. J Org Chem 2009; 74:9292-304. [PMID: 19938810 PMCID: PMC2805080 DOI: 10.1021/jo901926z] [Citation(s) in RCA: 35] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
We report our full account of the enantioselective total synthesis of (-)-acylfulvene (1) and (-)-irofulven (2), which features metathesis reactions for the rapid assembly of the molecular framework of these antitumor agents. We discuss (1) the application of an Evans Cu-catalyzed aldol addition reaction using a strained cyclopropyl ketenethioacetal, (2) an efficient enyne ring-closing metathesis cascade reaction in a challenging setting, (3) the reagent IPNBSH for a late-stage reductive allylic transposition reaction, and (4) the final RCM/dehydrogenation sequence for the formation of (-)-acylfulvene (1) and (-)-irofulven (2).
Collapse
Affiliation(s)
- Dustin S Siegel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, USA
| | | | | | | |
Collapse
|
9
|
Movassaghi M, Piizzi G, Siegel DS, Piersanti G. Observations in the Synthesis of the Core of the Antitumor Illudins via an Enyne Ring Closing Metathesis Cascade. Tetrahedron Lett 2009; 50:5489-5492. [PMID: 20160945 PMCID: PMC2766079 DOI: 10.1016/j.tetlet.2009.07.102] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
Abstract
Observations concerning the synthesis of the core spirocyclic AB-ring system of illudins using an enyne ring closing metathesis (EYRCM) cascade are discussed. Substituent effects, in addition to optimization of the reaction conditions and the olefin tether for the key EYRCM reaction, are examined.
Collapse
Affiliation(s)
- Mohammad Movassaghi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Grazia Piizzi
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Dustin S. Siegel
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| | - Giovanni Piersanti
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, MA 02139, USA
| |
Collapse
|
10
|
|
11
|
Characterization of the atromentin biosynthesis genes and enzymes in the homobasidiomycete Tapinella panuoides. Fungal Genet Biol 2008; 45:1487-96. [DOI: 10.1016/j.fgb.2008.08.009] [Citation(s) in RCA: 56] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2008] [Revised: 08/06/2008] [Accepted: 08/27/2008] [Indexed: 11/24/2022]
|
12
|
Schobert R, Biersack B, Knauer S, Ocker M. Conjugates of the fungal cytotoxin illudin M with improved tumour specificity. Bioorg Med Chem 2008; 16:8592-8597. [PMID: 18715789 DOI: 10.1016/j.bmc.2008.08.015] [Citation(s) in RCA: 16] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2008] [Revised: 07/31/2008] [Accepted: 08/04/2008] [Indexed: 11/18/2022]
Abstract
A simplified procedure for the isolation of gram quantities of illudin M from culture broths of basidiomycete Omphalotus olearius is described. Esters of illudin M with docosahexaenoic acid, chlorambucil, demethylcantharidinic acid (endothall) and 2,2'-bipyridyl-5,5'-dicarboxylic acid were synthesised and tested for cytotoxicity and induction of apoptosis in two clinically relevant tumour cell lines (Panc-1 pancreas carcinoma and HT-29 colon carcinoma) and in non-malignant human foreskin fibroblasts. The demethylcantharidin and the bipyridine conjugates retained the cytotoxicity of the parent illudin M while displaying an improved specificity for the tumour cells over the fibroblasts.
Collapse
Affiliation(s)
- Rainer Schobert
- Organic Chemistry Laboratory, University of Bayreuth, Universitätsstrasse 30, 95440 Bayreuth, Germany.
| | | | | | | |
Collapse
|
13
|
Schneider P, Misiek M, Hoffmeister D. In Vivo and In Vitro Production Options for Fungal Secondary Metabolites. Mol Pharm 2008; 5:234-42. [DOI: 10.1021/mp7001544] [Citation(s) in RCA: 53] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Affiliation(s)
- Patrick Schneider
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| | - Mathias Misiek
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| | - Dirk Hoffmeister
- Pharmaceutical Biology and Biotechnology, Albert-Ludwigs-Universität, Stefan-Meier-Strasse 19, 79104 Freiburg, Germany, and Department of Plant Pathology, University of Minnesota—Twin Cities Campus, 1991 Upper Buford Circle, St. Paul, Minnesota 55108
| |
Collapse
|
14
|
Neels JF, Gong J, Yu X, Sturla SJ. Quantitative correlation of drug bioactivation and deoxyadenosine alkylation by acylfulvene. Chem Res Toxicol 2007; 20:1513-9. [PMID: 17900171 DOI: 10.1021/tx7001756] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Acylfulvenes (AFs) are a class of antitumor agents that exert their cytotoxic effects by forming covalent adducts with biomolecules, including DNA and proteins; clinical trials are ongoing for (-)-(hydroxymethyl)AF. Recently, depurinating DNA adducts N3-AF-deoxyadenosine (dAdo) and N7-AF-deoxyguanosine (dGuo) were identified from reactions of the parent compound, AF, with calf thymus DNA in the presence of the reductase enzyme alkenal/one oxidoreductase (AOR) and cofactor NADPH. We report here the development of a structure-specific quantitative analytical method for evaluating levels of the major base adduct N3-AF-adenine (Ade), which results from depurination of N3-AF-dAdo, and its utilization to further probe the relationship between AOR-mediated bioactivation and adduct formation in a cell-free system. As an internal standard, the isotopomer N3-AF-Ade-d3 was synthesized, and electrospray-ionization mass spectrometry coupled with high-performance liquid chromatography (HPLC-ESI-MS/MS) was used to detect and quantitate the adduct. This method was validated and found to be accurate (R2>or=0.99) and precise (relative standard deviation 5.8-6.4%), with a limit of detection of 2 fmol. DNA samples, to which the stable-isotope-labeled internal standard was added, were subjected to neutral thermal hydrolysis yielding N3-AF-Ade. Adducts were isolated by a simple solid-liquid methanol extraction procedure, and adduct formation was examined in the presence of either high (1-3 micromol) or low (15 nmol) levels of DNA. Absolute amounts of N3-AF-Ade were measured in cell-free reaction mixtures containing varying levels of AOR as the only drug-activating enzyme. The increase in adduct formation (5-100 adducts per 10(5) DNA bases) over a range of enzyme concentrations (1-24 nM of AOR) showed saturation type behavior. This study reports a sensitive HPLC-ESI-MS/MS method for quantitation of the major DNA adduct induced by AF and illustrates a correlation between N3-AF-Ade formation and AOR-mediated enzymatic activation in a cell-free system, thus providing a template for further studies of drug toxicity in cells and in vivo.
Collapse
Affiliation(s)
- James F Neels
- Department of Medicinal Chemistry and The Cancer Center, University of Minnesota, Minneapolis 55455, USA
| | | | | | | |
Collapse
|
15
|
Lam KS. New aspects of natural products in drug discovery. Trends Microbiol 2007; 15:279-89. [PMID: 17433686 DOI: 10.1016/j.tim.2007.04.001] [Citation(s) in RCA: 330] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2006] [Revised: 03/26/2007] [Accepted: 04/02/2007] [Indexed: 11/20/2022]
Abstract
During the past 15 years, most large pharmaceutical companies have decreased the screening of natural products for drug discovery in favor of synthetic compound libraries. Main reasons for this include the incompatibility of natural product libraries with high-throughput screening and the marginal improvement in core technologies for natural product screening in the late 1980s and early 1990 s. Recently, the development of new technologies has revolutionized the screening of natural products. Applying these technologies compensates for the inherent limitations of natural products and offers a unique opportunity to re-establish natural products as a major source for drug discovery. Examples of these new advances and technologies are described in this review.
Collapse
Affiliation(s)
- Kin S Lam
- Nereus Pharmaceuticals Inc., 10480 Wateridge Circle, San Diego, CA 92121, USA.
| |
Collapse
|