1
|
Bintee B, Banerjee R, Hegde M, Vishwa R, Alqahtani MS, Abbas M, Alqahtani A, Rangan L, Sethi G, Kunnumakkara AB. Exploring bile acid transporters as key players in cancer development and treatment: Evidence from preclinical and clinical studies. Cancer Lett 2025; 609:217324. [PMID: 39571783 DOI: 10.1016/j.canlet.2024.217324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2024] [Revised: 11/09/2024] [Accepted: 11/11/2024] [Indexed: 12/01/2024]
Abstract
Bile acid transporters (BATs) are integral membrane proteins belonging to various families, such as solute carriers, organic anion transporters, and ATP-binding cassette families. These transporters play a crucial role in bile acid transportation within the portal and systemic circulations, with expression observed in tissues, including the liver, kidney, and small intestine. Bile acids serve as signaling molecules facilitating the absorption and reabsorption of fats and lipids. Dysregulation of bile acid concentration has been implicated in tumorigenesis, yet the role of BATs in this process remains underexplored. Emerging evidence suggests that BATs may modulate various stages of cancer progression, including initiation, development, proliferation, metastasis, and tumor microenvironment regulation. Targeting BATs using siRNAs, miRNAs, and small compound inhibitors in preclinical models and their polymorphisms are well-studied for transporters like BSEP, MDR1, MRP2, OATP1A2, etc., and have shed light on their involvement in tumorigenesis, particularly in cancers such as those affecting the liver and gastrointestinal tract. While BATs' role in diseases like Alagille syndrome, biliary atresia, and cirrhosis have been extensively studied, their implications in cancer warrant further investigation. This review highlights the expression and function of BATs in cancer development and emphasizes the potential of targeting these transporters as a novel therapeutic strategy for various malignancies.
Collapse
Affiliation(s)
- Bintee Bintee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ruchira Banerjee
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India; Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mangala Hegde
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Ravichandran Vishwa
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Mohammed S Alqahtani
- Radiological Sciences Department, College of Applied Medical Sciences, King Khalid University, Abha, 61421, Saudi Arabia; BioImaging Unit, Space Research Centre, Michael Atiyah Building, University of Leicester, Leicester, LE1 7RH, United Kingdom
| | - Mohamed Abbas
- Electrical Engineering Department, College of Engineering, King Khalid University, Abha, 61421, Saudi Arabia
| | - Athba Alqahtani
- Research Centre, King Fahad Medical City, P.O. Box: 59046, Riyadh, 11525, Saudi Arabia
| | - Latha Rangan
- Applied Biodiversity Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India
| | - Gautam Sethi
- Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117600, Singapore; NUS Centre for Cancer Research, Yong Loo Lin School of Medicine, National University of Singapore, Singapore, 117699, Singapore.
| | - Ajaikumar B Kunnumakkara
- Cancer Biology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati (IITG), Guwahati, 781039, Assam, India.
| |
Collapse
|
2
|
Wang Y, Gan X, Cheng X, Jia Y, Wang G, Tang X, Du H, Li X, Liu X, Xing X, Ji J, Li Z. ABCC2 induces metabolic vulnerability and cellular ferroptosis via enhanced glutathione efflux in gastric cancer. Clin Transl Med 2024; 14:e1754. [PMID: 39095325 PMCID: PMC11296884 DOI: 10.1002/ctm2.1754] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/30/2024] [Accepted: 06/16/2024] [Indexed: 08/04/2024] Open
Abstract
BACKGROUND Although it is traditionally believed that ATP binding cassette subfamily C member 2 (ABCC2) is a multidrug resistance-associated protein correlated with a worse prognosis, our previous and several other studies demonstrated the contrary to be true in gastric cancer (GC). We aim to explore the underlying mechanism of this discovery. METHODS Our study utilized whole-exome sequencing (WES), RNA sequencing, and droplet digital PCR (ddPCR) analysis of 80 gastric cancer samples, along with comprehensive immunohistochemical (IHC) analysis of 1044 human GC tissue samples.By utilizing CRISPRCas9 to genetically modify cell lines with the ABCC2-24C > T (rs717620) point mutation and conducting dual-luciferase reporter assays, we identified that transcription factors SOX9 and ETS1 serve as negative regulators of ABCC2 expression. Seahorse assay and mass spectrometry were used to discover altered metabolic patterns. Gain and loss-of-function experiments in GC cell lines and preclinical models were carried out to validate ABCC2 biological function. RESULTS ABCC2 high expression correlated with better prognosis, and rs717620 can influence ABCC2 expression by disrupting the binding of ETS1 and SOX9. Gain and loss-of-function experiments in GC cell lines demonstrated amino acid deprivation reduces proliferation, migration, and drug resistance in ABCC2-high GC cells. ABCC2 leads to reduced intracellular amino acid pools and disruption of cellular energy metabolism. This phenomenon depended on ABCC2-mediated GSH extrusion, resulting in alterations in redox status, thereby increasing the cell's susceptibility to ferroptosis. Furthermore, patient-derived organoids and patient-derived tumor-like cell clusters were used to observe impact of ABCC2 on therapeutic effect. In the xenograft model with high ABCC2 expression, we observed that constricting amino acid intake in conjunction with GPX4 inactivation resulted in notable tumor regression. CONCLUSIONS Our findings demonstrate a significant role of ABCC2 in amino acid metabolism and ferroptosis by mediating GSH efflux in GC. This discovery underlines the potential of combining multiple ferroptosis targets as a promising therapeutic strategy for GC with high ABCC2 expression. HIGHLIGHTS ABCC2 plays a crucial role in inducing metabolic vulnerability and ferroptosis in gastric cancer through enhanced glutathione efflux. The ABCC2 24C > T polymorphism is a key factor influencing its expression. These results highlight the potential of ABCC2 as a predictive biomarker and therapeutic target in gastric cancer.
Collapse
Affiliation(s)
- Yiding Wang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xuejun Gan
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaojing Cheng
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Yongning Jia
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Gangjian Wang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaohuan Tang
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Hong Du
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xiaomei Li
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Xijuan Liu
- Department of Central LaboratoryKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education/Beijing)Peking University Cancer Hospital & InstituteBeijingChina
| | - Xiaofang Xing
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
| | - Jiafu Ji
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| | - Ziyu Li
- Department of Gastrointestinal Cancer Translational ResearchKey Laboratory of Carcinogenesis and Translational Research (Ministry of Education)Peking University Cancer Hospital & InstituteBeijingP.R. China
- Department of Gastrointestinal Cancer CenterWard IPeking University Cancer Hospital & InstituteBeijingP.R. China
| |
Collapse
|
3
|
Tiongco RE, Cayanan ND, Catacata M, Dominguez MJ. Ile105Val polymorphism in the GSTP1 gene is associated with susceptibility to acute myeloid leukemia: an updated systematic review and meta-analysis. Biomarkers 2024; 29:134-142. [PMID: 38428950 DOI: 10.1080/1354750x.2024.2326538] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Accepted: 02/28/2024] [Indexed: 03/03/2024]
Abstract
BACKGROUND AND OBJECTIVE Several genetic variations are associated with acute myeloid leukemia (AML) susceptibility, including the GSTP1 Ile105Val polymorphism. Even with the existing meta-analysis conducted on the topic, no consensus has been reached since none of the studies available performed in-depth data analysis. Hence, we performed an updated systematic review and meta-analysis in this paper to obtain more precise estimates. MATERIALS AND METHODS We searched various databases and calculated the odds ratio (OR) and 95% confidence interval (CI) to examine whether the GSTP1 Ile105Val polymorphism is associated with AML susceptibility. Further statistical analysis was also done to obtain more accurate and reliable findings. RESULTS A total of 15 studies are included in the systematic review, but only 9 were included in the meta-analysis due to the studies deviating from the Hardy-Weinberg equilibrium. The analysis showed significantly increased susceptibility to AML in the allelic, co-dominant, and recessive models. Furthermore, subgroup analysis noted increased AML susceptibility in the non-Asian population. Comparing the proportions of the genotypes and alleles showed a significantly higher proportion of the Val/Val genotype and Val allele in the non-Asian cohort. CONCLUSION The GSTP1 Ile105Val polymorphism is significantly associated with AML susceptibility, especially among non-Asians. Further investigation should be performed to strengthen the current results.
Collapse
Affiliation(s)
- Raphael Enrique Tiongco
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Neil David Cayanan
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Miljun Catacata
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
| | - Michael John Dominguez
- Department of Medical Technology, College of Allied Medical Professions, Angeles University Foundation, Angeles City, Philippines
- School of Medicine, Angeles University Foundation, Angeles City, Philippines
| |
Collapse
|
4
|
Sito H, Tan SC. Genetic polymorphisms as potential pharmacogenetic biomarkers for platinum-based chemotherapy in non-small cell lung cancer. Mol Biol Rep 2024; 51:102. [PMID: 38217759 DOI: 10.1007/s11033-023-08915-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2023] [Accepted: 11/08/2023] [Indexed: 01/15/2024]
Abstract
Platinum-based chemotherapy (PBC) is a widely used treatment for various solid tumors, including non-small cell lung cancer (NSCLC). However, its efficacy is often compromised by the emergence of drug resistance in patients. There is growing evidence that genetic variations may influence the susceptibility of NSCLC patients to develop resistance to PBC. Here, we provide a comprehensive overview of the mechanisms underlying platinum drug resistance and highlight the important role that genetic polymorphisms play in this process. This paper discussed the genetic variants that regulate DNA repair, cellular movement, drug transport, metabolic processing, and immune response, with a focus on their effects on response to PBC. The potential applications of these genetic polymorphisms as predictive indicators in clinical practice are explored, as are the challenges associated with their implementation.
Collapse
Affiliation(s)
- Hilary Sito
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| | - Shing Cheng Tan
- UKM Medical Molecular Biology Institute, Universiti Kebangsaan Malaysia, Kuala Lumpur, Malaysia.
| |
Collapse
|
5
|
Mostaid MS, Aziz MA, Maisha JA, Islam MS, Maruf AA. A review of pharmacogenetic studies in the Bangladeshi population. Drug Metab Pers Ther 2023:dmdi-2022-0194. [PMID: 36854045 DOI: 10.1515/dmpt-2022-0194] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Accepted: 01/25/2023] [Indexed: 03/02/2023]
Abstract
Pharmacogenetics (PGx)-guided prescribing is an evidence-based precision medicine strategy. Although the past two decades have reported significant advancements in both the quality and quantity of PGx research studies, they are seldom done in developing countries like Bangladesh. This review identified and summarized PGx studies conducted in the Bangladeshi population by searching PubMed and Google Scholar. Additionally, a quality evaluation of the identified studies was also carried out. Eleven PGx studies were identified that looked at the effects of genetic variants on blood thinners (CYP2C9, VKORC1, and ITGB3), cancer drugs (TPMT, MTHFR, DPYD, ERCC1, GSTP1, XPC, XRCC1, TP53, XPD, and ABCC4), statins (COQ2, CYP2D6, and CYP3A5), and prednisolone (ABCB1, CYP3A5, and NR3C1) in the Bangladeshi population. Most studies were of low to moderate quality. Although the identified studies demonstrated the potential for PGx testing, the limited PGx literature in the Bangladeshi population poses a significant challenge in the widespread implementation of PGx testing in Bangladesh.
Collapse
Affiliation(s)
- Md Shaki Mostaid
- Department of Pharmaceutical Sciences, North South University, Dhaka, Bangladesh
| | - Md Abdul Aziz
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Jeba Atkia Maisha
- Department of Mathematics and Natural Sciences, Brac University, Dhaka, Bangladesh
| | - Mohammad Safiqul Islam
- Laboratory of Pharmacogenomics and Molecular Biology, Department of Pharmacy, Noakhali Science and Technology University, Noakhali, Bangladesh
| | - Abdullah Al Maruf
- The Mathison Centre for Mental Health Research & Education, Cumming School of Medicine, University of Calgary, Calgary, Canada
| |
Collapse
|
6
|
Kautiainen R, Aleksonis H, King TZ. A Systematic Review of Host Genomic Variation and Neuropsychological Outcomes for Pediatric Cancer Survivors. Neuropsychol Rev 2023; 33:278-306. [PMID: 35305234 DOI: 10.1007/s11065-022-09539-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2021] [Accepted: 01/25/2022] [Indexed: 10/18/2022]
Abstract
Pediatric survivors of brain tumors and acute lymphoblastic leukemia (ALL) are at risk for long-term deficits in their neuropsychological functioning. Researchers have begun examining associations between germline single nucleotide polymorphisms (SNPs), which interact with cancer treatment, and neuropsychological outcomes. This review synthesizes the impact of treatment-related toxicity from germline SNPs by neuropsychological domain (i.e., working memory, processing speed, psychological functioning) in pediatric survivors. By focusing on specific neuropsychological domains, this review will examine outcome measurement and critique methodology. Fourteen studies were identified and included in this review using the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA). All studies were published in peer-reviewed journals in English by November 24th, 2021. Reviewed studies were not of sufficient quality for a meta-analysis due to varying measurement strategies, gaps in reported descriptive variables, and low power. All neuropsychological domains evaluated in this review had associations with SNPs, except fine motor and visual integration abilities. Only five SNPs had consistent neuropsychological findings in more than one study or cohort. Future research and replication studies should use validated measures of discrete skills that are central to empirically validated models of survivors' long-term outcomes (i.e., attention, working memory, processing speed). Researchers should examine SNPs across pathophysiological pathways to investigate additive genetic risk in pediatric cancer survivors. Two SNPs were identified that confer resiliency in neuropsychological functioning, and future work should investigate resiliency genotypes and their underlying biological mechanisms.
Collapse
Affiliation(s)
- Rella Kautiainen
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Holly Aleksonis
- Department of Psychology, Georgia State University, Atlanta, Georgia
| | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University, Atlanta, Georgia.
| |
Collapse
|
7
|
Zhang Y, Huang S, Zhong W, Chen W, Yao B, Wang X. 3D organoids derived from the small intestine: An emerging tool for drug transport research. Acta Pharm Sin B 2021; 11:1697-1707. [PMID: 34386316 PMCID: PMC8343122 DOI: 10.1016/j.apsb.2020.12.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 08/29/2020] [Accepted: 09/23/2020] [Indexed: 12/14/2022] Open
Abstract
Small intestine in vitro models play a crucial role in drug transport research. Although conventional 2D cell culture models, such as Caco-2 monolayer, possess many advantages, they should be interpreted with caution because they have relatively poor physiologically reproducible phenotypes and functions. With the development of 3D culture technology, pluripotent stem cells (PSCs) and adult somatic stem cells (ASCs) show remarkable self-organization characteristics, which leads to the development of intestinal organoids. Based on previous studies, this paper reviews the application of intestinal 3D organoids in drug transport mediated by P-glycoprotein (P-gp), breast cancer resistance protein (BCRP) and multidrug resistance protein 2 (MRP2). The advantages and limitations of this model are also discussed. Although there are still many challenges, intestinal 3D organoid model has the potential to be an excellent tool for drug transport research.
Collapse
Key Words
- 3D organoid
- ASCs, adult somatic stem cells
- BCRP, breast cancer resistance protein
- BMP, bone morphogenetic protein
- CDF, 5(6)-carboxy-2′,7′-dichlorofluorescein
- Caco-2 cell monolayer
- DDI, drug–drug interactions
- Drug transporter
- EGF, epidermal growth factor
- ER, efflux ratio
- ESCs, embryonic stem cells
- FGF, fibroblast growth factor
- Lgr5+, leucine-rich-repeat-containing G-protein-coupled receptor 5 positive
- MCT, monocarboxylate transporter protein
- MRP2, multidrug resistance protein 2
- NBD, nucleotide-binding domain
- OATP, organic anion transporting polypeptide
- OCT, organic cation transporter
- OCTN, carnitine/organic cation transporter
- P-glycoprotein
- P-gp, P-glycoprotein
- PEPT, peptide transporter protein
- PMAT, plasma membrane monoamine transporter
- PSCs, pluripotent stem cells
- Papp, apparent permeability coefficient
- Rh123, rhodamine 123
- SLC, solute carrier
- Small intestine
- TEER, transepithelial electrical resistance
- TMDs, transmembrane domains
- cMOAT, canalicular multispecific organic anion transporter
- iPSCs, induced pluripotent stem cells
Collapse
Affiliation(s)
- Yuanjin Zhang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Shengbo Huang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
| | - Weiguo Zhong
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Wenxia Chen
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Bingyi Yao
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
| | - Xin Wang
- Changning Maternity and Infant Health Hospital, East China Normal University, Shanghai 200051, China
- Shanghai Key Laboratory of Regulatory Biology, Institute of Biomedical Sciences and School of Life Sciences, East China Normal University, Shanghai 200241, China
- Corresponding author. Tel.: +86 21 2420 6564; fax: +86 21 5434 4922.
| |
Collapse
|
8
|
Glutathione S-Transferase M3 Is Associated with Glycolysis in Intrinsic Temozolomide-Resistant Glioblastoma Multiforme Cells. Int J Mol Sci 2021; 22:ijms22137080. [PMID: 34209254 PMCID: PMC8268701 DOI: 10.3390/ijms22137080] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 06/28/2021] [Accepted: 06/28/2021] [Indexed: 12/16/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a malignant primary brain tumor. The 5-year relative survival rate of patients with GBM remains <30% on average despite aggressive treatments, and secondary therapy fails in 90% of patients. In chemotherapeutic failure, detoxification proteins are crucial to the activity of chemotherapy drugs. Usually, glutathione S-transferase (GST) superfamily members act as detoxification enzymes by activating xenobiotic metabolites through conjugation with glutathione in healthy cells. However, some overexpressed GSTs not only increase GST activity but also trigger chemotherapy resistance and tumorigenesis-related signaling transductions. Whether GSTM3 is involved in GBM chemoresistance remains unclear. In the current study, we found that T98G, a GBM cell line with pre-existing temozolomide (TMZ) resistance, has high glycolysis and GSTM3 expression. GSTM3 knockdown in T98G decreased glycolysis ability through lactate dehydrogenase A activity reduction. Moreover, it increased TMZ toxicity and decreased invasion ability. Furthermore, we provide next-generation sequencing-based identification of significantly changed messenger RNAs of T98G cells with GSTM3 knockdown for further research. GSTM3 was downregulated in intrinsic TMZ-resistant T98G with a change in the expression levels of some essential glycolysis-related genes. Thus, GSTM3 was associated with glycolysis in chemotherapeutic resistance in T98G cells. Our findings provide new insight into the GSTM3 mechanism in recurring GBM.
Collapse
|
9
|
Dai X, Bui DS, Lodge C. Glutathione S-Transferase Gene Associations and Gene-Environment Interactions for Asthma. Curr Allergy Asthma Rep 2021; 21:31. [PMID: 33970355 DOI: 10.1007/s11882-021-01005-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/05/2021] [Indexed: 10/21/2022]
Abstract
PURPOSE OF REVIEW Asthma is one of the most common chronic inflammatory airway diseases. Airway oxidative stress is defined as an imbalance between oxidative and antioxidative processes in the airways. There is evidence that chronic damage caused by oxidative stress may be involved in asthmatic inflammation and reduced lung function. Given their biological antioxidant function, the antioxidant genes in the glutathione S-transferase (GST) family are believed to be associated with development and progression of asthma. This review aims to summarize evidence on the relationship between GST gene polymorphisms and asthma and interactions with environmental exposures. RECENT FINDINGS The current evidence on the association between GST genes and asthma is still weak or inconsistent. Failure to account for environmental exposures may explain the lack of consistency. It is highly likely that environmental exposures interact with GST genes involved in the antioxidant pathway. According to current knowledge, carriers of GSTM1(rs366631)/T1(rs17856199) null genotypes and GSTP1 Val105 (rs1695) genotypes are more susceptible to environmental oxidative exposures and have a higher risk of asthma. Some doubt remains regarding the presence or absence of interactions with different environmental exposures in different study scenarios. The GST-environment interaction may depend on exposure type, asthma phenotype or endotype, ethnics, and other complex gene-gene interaction. Future studies could be improved by defining precise asthma endotypes, involving multiple gene-gene interactions, and increasing sample size and power. Although there is evidence for an interaction between GST genes, and environmental exposures in relation to asthma, results are not concordant. Further investigations are needed to explore the reasons behind the inconsistency.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Dinh S Bui
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia
| | - Caroline Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Level 3 207 Bouverie Street, Parkville, VIC, 3010, Australia.
| |
Collapse
|
10
|
Nastase A, Lupo A, Laszlo V, Damotte D, Dima S, Canny E, Alifano M, Popescu I, Klepetko W, Grigoroiu M. Platinum Drug Sensitivity Polymorphisms in Stage III Non-small Cell Lung Cancer With Invasion of Mediastinal Lymph Nodes. Cancer Genomics Proteomics 2021; 17:587-595. [PMID: 32859637 DOI: 10.21873/cgp.20215] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/21/2020] [Accepted: 06/22/2020] [Indexed: 01/22/2023] Open
Abstract
BACKGROUND/AIM Patients with stage IIIA (N2) non-small cell lung cancer (NSCLC) with no progression after induction chemotherapy are usually selected for surgery. Nowadays, response to chemotherapy is not predictable. We aimed to identify genomic predictive markers for response to induction chemotherapy in stage IIIA (N2) NSCLC patients. PATIENTS AND METHODS Whole-exome sequencing (WES) was performed on samples from 11 patients with no response after induction chemotherapy and 6 patients with documented pathological response, admitted to the Hotel Dieu Hospital, Paris or Allegemeines Krakenhaus University, Vienna. RESULTS A higher alternative allele frequency was found on SENP5, rs63736860, rs1602 and NCBP2, rs553783 in the non-responder group, and on RGP1, rs1570248, SLFN12L, rs2304968, rs9905892, and GBA2, rs3833700 in the responder group. CONCLUSION These polymorphisms contribute to inter-individual sensibility to chemotherapy response. Interrogation of these genetic variations may have potential applicability when deciding the treatment strategy for patients with stage III NSCLC (N2).
Collapse
Affiliation(s)
- Anca Nastase
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Audrey Lupo
- Department of Pathology, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Victoria Laszlo
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Diane Damotte
- Department of Pathology, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Simona Dima
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Emelyne Canny
- Department of Pathology, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Marco Alifano
- Department of Pathology, Hôpital Cochin, AP-HP, Université de Paris, Paris, France
| | - Irinel Popescu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| | - Walter Klepetko
- Department of Thoracic Surgery, Vienna General Hospital, Vienna, Austria
| | - Madalina Grigoroiu
- Center of Digestive Diseases and Liver Transplantation, Fundeni Clinical Institute, Bucharest, Romania
| |
Collapse
|
11
|
Bruckmueller H, Cascorbi I. ABCB1, ABCG2, ABCC1, ABCC2, and ABCC3 drug transporter polymorphisms and their impact on drug bioavailability: what is our current understanding? Expert Opin Drug Metab Toxicol 2021; 17:369-396. [PMID: 33459081 DOI: 10.1080/17425255.2021.1876661] [Citation(s) in RCA: 41] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Interindividual differences in drug response are a frequent clinical challenge partly due to variation in pharmacokinetics. ATP-binding cassette (ABC) transporters are crucial determinants of drug disposition. They are subject of gene regulation and drug-interaction; however, it is still under debate to which extend genetic variants in these transporters contribute to interindividual variability of a wide range of drugs. AREAS COVERED This review discusses the current literature on the impact of genetic variants in ABCB1, ABCG2 as well as ABCC1, ABCC2, and ABCC3 on pharmacokinetics and drug response. The aim was to evaluate if results from recent studies would increase the evidence for potential clinically relevant pharmacogenetic effects. EXPERT OPINION Although enormous efforts have been made to investigate effects of ABC transporter genotypes on drug pharmacokinetics and response, the majority of studies showed only weak if any associations. Despite few unique results, studies mostly failed to confirm earlier findings or still remained inconsistent. The impact of genetic variants on drug bioavailability is only minor and other factors regulating the transporter expression and function seem to be more critical. In our opinion, the findings on the so far investigated genetic variants in ABC efflux transporters are not suitable as predictive biomarkers.
Collapse
Affiliation(s)
- Henrike Bruckmueller
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Campus Kiel, 24105 Kiel, Germany
| |
Collapse
|
12
|
Lei K, Gu X, Alvarado AG, Du Y, Luo S, Ahn EH, Kang SS, Ji B, Liu X, Mao H, Fu H, Kornblum HI, Jin L, Li H, Ye K. Discovery of a dual inhibitor of NQO1 and GSTP1 for treating glioblastoma. J Hematol Oncol 2020; 13:141. [PMID: 33087132 PMCID: PMC7579906 DOI: 10.1186/s13045-020-00979-y] [Citation(s) in RCA: 37] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Accepted: 10/13/2020] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND Glioblastoma (GBM) is a universally lethal tumor with frequently overexpressed or mutated epidermal growth factor receptor (EGFR). NADPH quinone oxidoreductase 1 (NQO1) and glutathione-S-transferase Pi 1 (GSTP1) are commonly upregulated in GBM. NQO1 and GSTP1 decrease the formation of reactive oxygen species (ROS), which mediates the oxidative stress and promotes GBM cell proliferation. METHODS High-throughput screen was used for agents selectively active against GBM cells with EGFRvIII mutations. Co-crystal structures were revealed molecular details of target recognition. Pharmacological and gene knockdown/overexpression approaches were used to investigate the oxidative stress in vitro and in vivo. RESULTS We identified a small molecular inhibitor, "MNPC," that binds to both NQO1 and GSTP1 with high affinity and selectivity. MNPC inhibits NQO1 and GSTP1 enzymes and induces apoptosis in GBM, specifically inhibiting the growth of cell lines and primary GBM bearing the EGFRvIII mutation. Co-crystal structures between MNPC and NQO1, and molecular docking of MNPC with GSTP1 reveal that it binds the active sites and acts as a potent dual inhibitor. Inactivation of both NQO1 and GSTP1 with siRNA or MNPC results in imbalanced redox homeostasis, leading to apoptosis and mitigated cancer proliferation in vitro and in vivo. CONCLUSIONS Thus, MNPC, a dual inhibitor for both NQO1 and GSTP1, provides a novel lead compound for treating GBM via the exploitation of specific vulnerabilities created by mutant EGFR.
Collapse
Affiliation(s)
- Kecheng Lei
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China
| | - Xiaoxia Gu
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China
| | - Alvaro G Alvarado
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Yuhong Du
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Shilin Luo
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Eun Hee Ahn
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Seong Su Kang
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Bing Ji
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Xia Liu
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA
| | - Hui Mao
- Department of Radiology and Imaging Sciences, Emory University School of Medicine, Atlanta, GA, 30322, USA
| | - Haian Fu
- Department of Pharmacology and Chemical Biology, Emory Chemical Biology Discovery Center, Atlanta, USA
| | - Harley I Kornblum
- Intellectual and Developmental Disabilities Research Center, David Geffen School of Medicine at UCLA, Los Angeles, CA, 90095, USA
| | - Lingjing Jin
- Neurotoxin Research Center of Key Laboratory of Spine and Spinal Cord Injury Repair and Regeneration of Ministry of Education, Neurological Department of Tongji Hospital, Tongji University School of Medicine, Shanghai, 200065, People's Republic of China.
| | - Hua Li
- School of Pharmacy, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, 430030, People's Republic of China.
- Wuya College of Innovation, Shenyang Pharmaceutical University, Shenyang, People's Republic of China.
| | - Keqiang Ye
- Department of Pathology and Laboratory Medicine, Emory University School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
13
|
Possible Susceptibility Genes for Intervention against Chemotherapy-Induced Cardiotoxicity. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2020; 2020:4894625. [PMID: 33110473 PMCID: PMC7578723 DOI: 10.1155/2020/4894625] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2020] [Revised: 07/07/2020] [Accepted: 07/30/2020] [Indexed: 12/12/2022]
Abstract
Recent therapeutic advances have significantly improved the short- and long-term survival rates in patients with heart disease and cancer. Survival in cancer patients may, however, be accompanied by disadvantages, namely, increased rates of cardiovascular events. Chemotherapy-related cardiac dysfunction is an important side effect of anticancer therapy. While advances in cancer treatment have increased patient survival, treatments are associated with cardiovascular complications, including heart failure (HF), arrhythmias, cardiac ischemia, valve disease, pericarditis, and fibrosis of the pericardium and myocardium. The molecular mechanisms of cardiotoxicity caused by cancer treatment have not yet been elucidated, and they may be both varied and complex. By identifying the functional genetic variations responsible for this toxicity, we may be able to improve our understanding of the potential mechanisms and pathways of treatment, paving the way for the development of new therapies to target these toxicities. Data from studies on genetic defects and pharmacological interventions have suggested that many molecules, primarily those regulating oxidative stress, inflammation, autophagy, apoptosis, and metabolism, contribute to the pathogenesis of cardiotoxicity induced by cancer treatment. Here, we review the progress of genetic research in illuminating the molecular mechanisms of cancer treatment-mediated cardiotoxicity and provide insights for the research and development of new therapies to treat or even prevent cardiotoxicity in patients undergoing cancer treatment. The current evidence is not clear about the role of pharmacogenomic screening of susceptible genes. Further studies need to done in chemotherapy-induced cardiotoxicity.
Collapse
|
14
|
Genetic polymorphisms of GSTP1, XRCC1, XPC and ERCC1: prediction of clinical outcome of platinum-based chemotherapy in advanced non-small cell lung cancer patients of Bangladesh. Mol Biol Rep 2020; 47:7073-7082. [PMID: 32880833 DOI: 10.1007/s11033-020-05771-2] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2020] [Accepted: 08/28/2020] [Indexed: 10/23/2022]
Abstract
Inter-individual genetic makeup can trigger variability in platinum-based chemotherapeutic responses and corresponding adverse drug reactions and toxicities. Exploring the genetic causes behind these inter-individual variabilities in platinum-based chemotherapeutic responses by investigating the effects of GSTP1 (rs1695), XRCC1 (rs25487), XPC (rs2228001) and ERCC1 (rs11615) genetic polymorphisms on toxicity and therapeutic response of this treatment among Bangladeshi advanced non-small cell lung cancer (NSCLC) patients was the aim of this study. 285 Clinically proven either stage IIIB or IV (advanced) NSCLC patients aging not less than 18 years old and receiving platinum-based chemotherapy were recruited to assess the influence of these four single nucleotide polymorphisms (SNPs) on peripheral leukocytes. Toxicity and response were evaluated by multivariate regression analyses using SPSS statistical software (version 17.0). XRCC1 (rs25487) polymorphism was found to act as a predictive factor for not only grade 3 and 4 anemia (p = 0.008), neutropenia (p = 0.010), thrombocytopenia (p = 0.025) and gastrointestinal toxicity (p = 0.002) but also for therapeutic response (p = 0.012) in platinum-based chemotherapy. Although GSTP1 (rs1695) polymorphism might serve as prognostic factor regarding grade 3 or 4 neutropenia, a significant (p = 0.044) improvement in response to platinum-based chemotherapy was observed. However, XPC (rs2228001) and ERCC1 (rs11615) polymorphisms could not establish any significant relation with toxicity or therapeutic response. XRCC1 (rs2228001) and GSTP1 (rs1695) polymorphisms might explain platinum-induced clinical outcomes in terms of both toxicity and therapeutic response variations among Bangladeshi advanced NSCLC patients.
Collapse
|
15
|
Lian G, Yuan J, Gao Y. In vitro Transport Ability of ABCC2 (G1249A) Polymorphic Variant Towards Anticancer Drugs. Onco Targets Ther 2020; 13:1413-1419. [PMID: 32110040 PMCID: PMC7035141 DOI: 10.2147/ott.s207613] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2019] [Accepted: 05/01/2019] [Indexed: 11/23/2022] Open
Abstract
Objective Multidrug resistance-associated protein 2 (MRP2), encoded by ABCC2 gene, is involved in the efflux of certain anticancer drugs. Here we observed whether the ABCC2 (G1249A) polymorphism impacts the transport abilities of MRP2-dependent paclitaxel, docetaxel, and doxorubicin in recombinant LLC-PK1 cell lines. Methods LLC-PK1 cell lines transfected with ABCC21249G wild-type and ABCC21249A variant alleles were used to evaluate the sensitivity, intracellular accumulation, and transmembrane transport of paclitaxel, docetaxel, and doxorubicin. Results The recombinant ABCC21249A variant cell line showed higher IC50 values for paclitaxel and doxorubicin than ABCC21249G wild-type cell system (p<0.01). Intracellular accumulations of paclitaxel and doxorubicin in cells transfected with ABCC21249A variant allele were significantly decreased compared to cells transfected with ABCC21249G wild-type allele (p<0.01). The efflux ratios of paclitaxel and doxorubicin across ABCC21249A cell line were significantly increased compared with ABCC21249G cell system (p<0.01). However, ABCC2 (G1249A) polymorphism had no effect on the transport activity of MRP2-mediated docetaxel. Conclusion Our results indicate that ABCC2 (G1249A) polymorphism affects the transport activities of MRP2-dependent paclitaxel and doxorubicin, resulting in greater efflux of these anticancer drugs.
Collapse
Affiliation(s)
- Guo Lian
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Jia Yuan
- Department of Oncology, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Ats and Science, Xiangyang, Hubei 441021, People's Republic of China
| | - Yuan Gao
- Department of Pharmacy, Xiangyang Central Hospital, Affiliated Hospital of Hubei University of Arts and Science, Xiangyang, Hubei 441021, People's Republic of China
| |
Collapse
|
16
|
Kautiainen RJ, Dwivedi B, MacDonald TJ, King TZ. GSTP1 polymorphisms sex-specific association with verbal intelligence in survivors of pediatric medulloblastoma tumors. Child Neuropsychol 2020; 26:739-753. [PMID: 32054423 DOI: 10.1080/09297049.2020.1726886] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Glutathione S-transferase (GST) single nucleotide polymorphisms (SNPs) have been associated with a lower intellectual quotient (IQ) in medulloblastoma survivors. We investigated the association of GSTP1 polymorphisms with intellectual, neurocognitive skills (e.g., attention span, working memory, and processing speed), and adaptive outcomes for long-term pediatric medulloblastoma survivors. We hypothesized that genetic risk and sex-specific risk would contribute to significantly lower performances across all measures. Eighteen long-term pediatric medulloblastoma survivors completed the Wechsler Abbreviated Scale Intelligence, California Verbal Learning Test-II, Auditory Consonant Trigrams, and Oral Symbol Digit Modality Test. Informants were interviewed with the Scales of Independent Behavior-Revised (SIB-R). After controlling for the false discovery rate, females with a polymorphism performed significantly worse than females without a polymorphism on verbal IQ (p = .005) and SIB-R (p = .012). There was a significant interaction between sex and polymorphism status for verbal IQ (b = -1.8, SE = 0.827, CI: -3.58, -.036). The main effect of this interaction was significant for females (p = .004) and not for males (p = .557). We found large effect sizes between males with the polymorphism and females with the polymorphism across measures of attention span (g = .877), working memory (g = 1.12), and processing speed (g = 1.53). Female medulloblastoma survivors with a GSTP1 polymorphism may have increased vulnerability to deficits in core cognitive skills, IQ, and everyday functional outcomes. Sex-specific genetic risk contributes to the variability in long-term verbal intelligence for medulloblastoma survivors.
Collapse
Affiliation(s)
| | - Bhakti Dwivedi
- Winship Cancer Institute, Emory University , Atlanta, USA
| | | | - Tricia Z King
- Department of Psychology and the Neuroscience Institute, Georgia State University , Atlanta, USA
| |
Collapse
|
17
|
Dai X, Dharmage SC, Bowatte G, Waidyatillake NT, Perret JL, Hui J, Erbas B, Abramson MJ, Lowe AJ, Burgess JA, Svanes C, Lodge CJ. Interaction of Glutathione S-Transferase M1, T1, and P1 Genes With Early Life Tobacco Smoke Exposure on Lung Function in Adolescents. Chest 2019; 155:94-102. [PMID: 30616740 DOI: 10.1016/j.chest.2018.08.1079] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2018] [Revised: 07/14/2018] [Accepted: 08/24/2018] [Indexed: 01/08/2023] Open
Abstract
BACKGROUND Glutathione S-transferase (GST) genes are involved in the management of oxidative stress in the lungs. We aimed to determine whether they modify the associations between early life smoke exposure and adverse lung health outcomes. METHODS The Melbourne Atopy Cohort study (a high-risk birth cohort) enrolled 620 children and followed them prospectively from birth. We recorded perinatal tobacco smoke exposure, asthma, and lung function at 12 (59%) and 18 years (66%) and genotyped for GSTM1, GSTT1, and GSTP1 (69%). RESULTS GST genotypes were found to interact with tobacco smoke exposure on lung function outcomes (P interaction ≤ .05). Only among children with GSTT1 null genotypes was exposure to mother's, father's, or parental tobacco smoke in early life associated with an increased risk of reductions in prebronchodilator (BD) FEV1 and FVC at both 12 and 18 years. These associations were not seen in children with GSTT1 present. Similarly, only among children with GSTM1 null genotypes was exposure to father's or parental smoking associated with reductions in pre- and post-BD FEV1 and FVC at 18 years. Only among children with Ile/Ile genotypes of GSTP1 was exposure to mother's smoking associated with increased risk of reduced FEV1 at 18 years, but this was not the case among children with Val/Val or Ile/Val genotypes. CONCLUSIONS Our study provides evidence of interaction between early tobacco smoke exposure and GST genotypes on lung function. Carriers of GST null mutations and GSTP1 Ile/Ile alleles may be more susceptible when exposed to tobacco smoke in early life. These findings support stronger recommendations to protect all infants from tobacco smoke exposure. TRIAL REGISTRY Australian and New Zealand Clinical Trials Registry; No.: ACTRN12609000734268; URL: http://www.anzctr.org.au/.
Collapse
Affiliation(s)
- Xin Dai
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Shyamali C Dharmage
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia.
| | - Gayan Bowatte
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; National Institute of Fundamental Studies, Kandy, Sri Lanka
| | - Nilakshi T Waidyatillake
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennifer L Perret
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Jennie Hui
- PathWest Laboratory Medicine of West Australia, Perth, WA, Australia; School of Population and Global Health and School of Pathology and Laboratory Medicine, The University of Western Australia, WA, Australia; Busselton Population Medical Research Institute, WA, Australia
| | - Bircan Erbas
- School of Psychology and Public Health, La Trobe University, Melbourne, VIC, Australia; Centre for International Health, University of Bergen, Bergen, Norway
| | - Michael J Abramson
- School of Public Health & Preventive Medicine, Monash University, Melbourne, VIC, Australia
| | - Adrian J Lowe
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia; Centre for Food and Allergy Research, Murdoch Children's Research Institute, Parkville, VIC, Australia
| | - John A Burgess
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| | - Cecilie Svanes
- Department of Occupational Medicine, Haukeland University Hospital, Bergen, Norway
| | - Caroline J Lodge
- Allergy and Lung Health Unit, Centre for Epidemiology and Biostatistics, Melbourne School of Population and Global Health, The University of Melbourne, Melbourne, VIC, Australia
| |
Collapse
|
18
|
ABCB1 c.3435C>T polymorphism is associated with platinum toxicity: a preliminary study. Cancer Chemother Pharmacol 2019; 83:803-808. [DOI: 10.1007/s00280-019-03794-6] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Accepted: 02/03/2019] [Indexed: 10/27/2022]
|
19
|
Dong SC, Sha HH, Xu XY, Hu TM, Lou R, Li H, Wu JZ, Dan C, Feng J. Glutathione S-transferase π: a potential role in antitumor therapy. Drug Des Devel Ther 2018; 12:3535-3547. [PMID: 30425455 PMCID: PMC6204874 DOI: 10.2147/dddt.s169833] [Citation(s) in RCA: 49] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Glutathione S-transferase π (GSTπ) is a Phase II metabolic enzyme that is an important facilitator of cellular detoxification. Traditional dogma asserts that GSTπ functions to catalyze glutathione (GSH)-substrate conjunction to preserve the macromolecule upon exposure to oxidative stress, thus defending cells against various toxic compounds. Over the past 20 years, abnormal GSTπ expression has been linked to the occurrence of tumor resistance to chemotherapy drugs, demonstrating that this enzyme possesses functions beyond metabolism. This revelation reveals exciting possibilities in the realm of drug discovery, as GSTπ inhibitors and its prodrugs offer a feasible strategy in designing anticancer drugs with the primary purpose of reversing tumor resistance. In connection with the authors' current research, we provide a review on the biological function of GSTπ and current developments in GSTπ-targeting drugs, as well as the prospects of future strategies.
Collapse
Affiliation(s)
- Shu-Chen Dong
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huan-Huan Sha
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Xiao-Yue Xu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Tian-Mu Hu
- Department of Biological Science, Purdue University, West Lafayette, IN, USA
| | - Rui Lou
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Huizi Li
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jian-Zhong Wu
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Chen Dan
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| | - Jifeng Feng
- Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research and Nanjing Medical University Affiliated Cancer Hospital, Nanjing 210009, China, ;
| |
Collapse
|
20
|
Wang H, Gao X, Zhang X, Gong W, Peng Z, Wang B, Wang L, Chang S, Ma P, Wang S. Glutathione S-Transferase Gene Polymorphisms are Associated with an Improved Treatment Response to Cisplatin-Based Chemotherapy in Patients with Non-Small Cell Lung Cancer (NSCLC): A Meta-Analysis. Med Sci Monit 2018; 24:7482-7492. [PMID: 30341887 PMCID: PMC6204655 DOI: 10.12659/msm.912373] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023] Open
Abstract
BACKGROUND Previous studies have shown an association with glutathione S-transferase (GST) gene polymorphisms in patients with non-small cell lung cancer (NSCLC) and treatment response. This study aimed to undertake a literature review and meta-analysis of GST gene polymorphisms, including GSTT1, GSTM1, and GSTP1 IIe105Val, and the treatment response to cisplatin-based chemotherapy in patients with NSCLC. MATERIAL AND METHODS A literature search was undertaken of the main medical publication databases for publications, up to March 2017, on the association between GSTT1, GSTM1, and GSTP1 IIe105Val polymorphisms and the clinical outcome in patients with NSCLC treated with cisplatin-based chemotherapy. A random fixed-effects model was used to calculate the pooled odds ratio (OR) and 95% confidence interval (CI) to evaluate the associations, considering multiple genetic models. A subgroup analysis according to ethnicity was performed. RESULTS Twenty-three published studies were identified that showed that both the null GSTM1 and the GG genotype of GSTP1 IIe105Val were associated with improved treatment response to cisplatin-based chemotherapy (GSTT1 present/null: OR=1.328; 95% CI, 1.074-1.643) (GSTP1 GG + AG vs. AA: OR=0.596; 95% CI, 0.468-0.759). In subgroup analysis, the GSTP1 polymorphism was significantly associated with treatment response in East-Asian patients, but not in Caucasian patients. CONCLUSIONS Meta-analysis showed that the GG genotype of GSTP1 IIe105Val and the null GSTM1 genotype were associated with an improved treatment response to cisplatin-based chemotherapy in patients with NSCLC, especially in East-Asian patients.
Collapse
Affiliation(s)
- Hongyan Wang
- Department of Thoracic Surgery, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xuehan Gao
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Xiaolin Zhang
- Hebei Province Key Laboratory of Environment and Human Health, Department of Epidemiology and Statistics, School of Public Health, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Wenjian Gong
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Ziheng Peng
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Bingshuang Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, Christmas island
| | - Li Wang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Saishuo Chang
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Peiru Ma
- School of Basic Medical Sciences, Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| | - Shijie Wang
- Department of Endoscopy, Fourth Hospital of Hebei Medical University, Shijiazhuang, Hebei, China (mainland)
| |
Collapse
|
21
|
Sági JC, Egyed B, Kelemen A, Kutszegi N, Hegyi M, Gézsi A, Herlitschke MA, Rzepiel A, Fodor LE, Ottóffy G, Kovács GT, Erdélyi DJ, Szalai C, Semsei ÁF. Possible roles of genetic variations in chemotherapy related cardiotoxicity in pediatric acute lymphoblastic leukemia and osteosarcoma. BMC Cancer 2018; 18:704. [PMID: 29970035 PMCID: PMC6029426 DOI: 10.1186/s12885-018-4629-6] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2017] [Accepted: 06/22/2018] [Indexed: 12/26/2022] Open
Abstract
Background The treatment of acute lymphoblastic leukemia (ALL) and osteosarcoma (OSC) is very effective: the vast majority of patients recover and survive for decades. However, they still need to face serious adverse effects of chemotherapy. One of these is cardiotoxicity which may lead to progressive heart failure in the long term. Cardiotoxicity is contributed mainly to the use of anthracyclines and might have genetic risk factors. Our goal was to test the association between left ventricular function and genetic variations of candidate genes. Methods Echocardiography data from medical records of 622 pediatric ALL and 39 OSC patients were collected from the period 1989–2015. Fractional shortening (FS) and ejection fraction (EF) were determined, 70 single nucleotide polymorphisms (SNPs) in 26 genes were genotyped. Multivariate logistic regression and multi-adjusted general linear model were performed to investigate the influence of genetic polymorphisms on the left ventricular parameters. Bayesian network based Bayesian multilevel analysis of relevance (BN-BMLA) method was applied to test for the potential interaction of the studied cofactors and SNPs. Results Our results indicate that variations in ABCC2, CYP3A5, NQO1, SLC22A6 and SLC28A3 genes might influence the left ventricular parameters. CYP3A5 rs4646450 TT was 17% among ALL cases with FS lower than 28, and 3% in ALL patients without pathological FS (p = 5.60E-03; OR = 6.94 (1.76–27.39)). SLC28A3 rs7853758 AA was 12% in ALL cases population, while only 1% among controls (p = 6.50E-03; OR = 11.56 (1.98–67.45)). Patients with ABCC2 rs3740066 GG genotype had lower FS during the acute phase of therapy and 5–10 years after treatment (p = 7.38E-03, p = 7.11E-04, respectively). NQO1 rs1043470 rare T allele was associated with lower left ventricular function in the acute phase and 5–10 years after the diagnosis (p = 4.28E-03 and 5.82E-03, respectively), and SLC22A6 gene rs6591722 AA genotype was associated with lower mean FS (p = 1.71E-03), 5–10 years after the diagnosis. Conclusions Genetic variants in transporters and metabolic enzymes might modulate the individual risk to cardiac toxicity after chemotherapy. Electronic supplementary material The online version of this article (10.1186/s12885-018-4629-6) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Judit C Sági
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Bálint Egyed
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Andrea Kelemen
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Nóra Kutszegi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Márta Hegyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - András Gézsi
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Martina Ayaka Herlitschke
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Andrea Rzepiel
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Lili E Fodor
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary
| | - Gábor Ottóffy
- Department of Pediatrics, Oncohaematology Division, Pécs University, József Attila út 7, Pécs, H-7623, Hungary
| | - Gábor T Kovács
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Dániel J Erdélyi
- Second Department of Pediatrics, Semmelweis University, Tűzoltó utca 7-9, Budapest, H-1094, Hungary
| | - Csaba Szalai
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.,Central Laboratory, Heim Pal Children Hospital, Üllői út 86, Budapest, H-1089, Hungary
| | - Ágnes F Semsei
- Department of Genetics, Cell- and Immunobiology, Semmelweis University, 1089 Nagyvárad tér 4., 6 em, Budapest, 611, Hungary.
| |
Collapse
|
22
|
Chen J, Wang Z, Zou T, Cui J, Yin J, Zheng W, Jiang W, Zhou H, Liu Z. Pharmacogenomics of platinum-based chemotherapy response in NSCLC: a genotyping study and a pooled analysis. Oncotarget 2018; 7:55741-55756. [PMID: 27248474 PMCID: PMC5342450 DOI: 10.18632/oncotarget.9688] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Accepted: 05/23/2016] [Indexed: 12/24/2022] Open
Abstract
Published data showed inconsistent results about associations of extensively studied polymorphisms with platinum-based chemotherapy response. Our study aimed to provide reliable conclusions of these associations by detecting genotypes of the SNPs in a larger sample size and summarizing a comprehensive pooled analysis. 13 SNPs in 8 genes were genotyped in 1024 NSCLC patients by SequenomMassARRAY. 39 published studies and our study were included in meta-analysis. Patients with GA or GG genotypes of XRCC1 G1196 had better response than AA genotype carriers (Genotyping study: OR = 0.72, 95%CI: 0.53-0.96, P = 0.028; Meta-analysis: OR = 0.74, 95%CI: 0.62-0.89, P = 0.001). Patients carrying CT or TT genotypes of XRCC1 C580T could be more sensitive to platinum-based chemotherapy compared to patients with CC genotype (OR = 0.54, 95%CI: 0.37-0.80, P = 0.002). CC genotype of XRCC3 C18067T carriers showed more resistance to platinum-based chemotherapy when compared to those with CT or TT genotypes (OR = 0.69, 95%CI: 0.52-0.91, P = 0.009). Our study indicated that XRCC1 G1196A/C580T and XRCC3 C18067T should be paid attention for personalized platinum-based chemotherapy in NSCLC patients.
Collapse
Affiliation(s)
- Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Zhan Wang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Ting Zou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jiajia Cui
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Jiye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Wei Zheng
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China
| | - Wuzhong Jiang
- Department of Oncology, Xiangya Hospital, Central South University, Changsha, P. R. China
| | - Honghao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| | - Zhaoqian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, P. R. China
| |
Collapse
|
23
|
Li Z, Xing X, Shan F, Li S, Li Z, Xiao A, Xing Z, Xue K, Li Z, Hu Y, Jia Y, Miao R, Zhang L, Bu Z, Wu A, Ji J. ABCC2-24C > T polymorphism is associated with the response to platinum/5-Fu-based neoadjuvant chemotherapy and better clinical outcomes in advanced gastric cancer patients. Oncotarget 2018; 7:55449-55457. [PMID: 27487151 PMCID: PMC5342428 DOI: 10.18632/oncotarget.10961] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2016] [Accepted: 06/29/2016] [Indexed: 01/18/2023] Open
Abstract
Several studies have evaluated the efficacy of neoadjuvant treatment using oxaliplatin and fluoropyrimidines in advanced gastric cancer (GC). However, preoperative biomarkers predictive of clinical outcome remain lacking. We examined polymorphisms in the MTHFR, DPYD, UMPS, ABCB1, ABCC2, GSTP1, ERCC1, and XRCC1 genes to evaluate their usefulness as pharmacogenetic markers in a cohort of 103 GC patients treated with preoperative chemotherapy. DNA was extracted from peripheral blood cells, and the genotypes were analyzed using a SNaPShotTM assay, polymerase chain reaction amplification, and sequencing. The ABCC2-24C > T (rs717620) genotype was associated with pathologic response to neoadjuvant chemotherapy. Patients with the TT and TC genotypes responded to neoadjuvant chemotherapy 3.80 times more often than those with the CC genotype (95% CI: 1.27–11.32). Patients with the CC genotype also had poorer outcomes than those with other genotypes. Thus, ABCC2-24C > T polymorphism may help to predict the response to preoperative chemotherapy in GC patients.
Collapse
Affiliation(s)
- Ziyu Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Xiaofang Xing
- Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Fei Shan
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Shuangxi Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhongwu Li
- Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Aitang Xiao
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaodong Xing
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Kan Xue
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhemin Li
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Ying Hu
- Tissue Bank, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Yongning Jia
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Rulin Miao
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Lianhai Zhang
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Zhaode Bu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Aiwen Wu
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| | - Jiafu Ji
- Department of Gastrointestinal Surgery, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.,Department of Gastrointestinal Translational Research, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China.,Department of Pathology, Key Laboratory of Carcinogenesis and Translational Research (Ministry of Education), Peking University Cancer Hospital and Institute, Beijing, China
| |
Collapse
|
24
|
Gao B, Lu Y, Nieuweboer AJM, Xu H, Beesley J, Boere I, de Graan AJM, de Bruijn P, Gurney H, J Kennedy C, Chiew YE, Johnatty SE, Beale P, Harrison M, Luccarini C, Conroy D, Mathijssen RHJ, R Harnett P, Balleine RL, Chenevix-Trench G, Macgregor S, de Fazio A. Genome-wide association study of paclitaxel and carboplatin disposition in women with epithelial ovarian cancer. Sci Rep 2018; 8:1508. [PMID: 29367611 PMCID: PMC5784122 DOI: 10.1038/s41598-018-19590-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2017] [Accepted: 01/04/2018] [Indexed: 12/12/2022] Open
Abstract
Identifying single nucleotide polymorphisms (SNPs) that influence chemotherapy disposition may help to personalize cancer treatment and limit toxicity. Genome-wide approaches are unbiased, compared with candidate gene studies, but usually require large cohorts. As most chemotherapy is given cyclically multiple blood sampling is required to adequately define drug disposition, limiting patient recruitment. We found that carboplatin and paclitaxel disposition are stable phenotypes in ovarian cancer patients and tested a genome-wide association study (GWAS) design to identify SNPs associated with chemotherapy disposition. We found highly significant SNPs in ABCC2, a known carboplatin transporter, associated with carboplatin clearance (asymptotic P = 5.2 × 106, empirical P = 1.4 × 10−5), indicating biological plausibility. We also identified novel SNPs associated with paclitaxel disposition, including rs17130142 with genome-wide significance (asymptotic P = 2.0 × 10−9, empirical P = 1.3 × 10−7). Although requiring further validation, our work demonstrated that GWAS of chemotherapeutic drug disposition can be effective, even in relatively small cohorts, and can be adopted in drug development and treatment programs.
Collapse
Affiliation(s)
- Bo Gao
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yi Lu
- QIMR Berghofer Medical Research Institute, Brisbane, Australia
| | | | | | | | - Ingrid Boere
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Anne-Joy M de Graan
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Peter de Bruijn
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Howard Gurney
- Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia
| | - Catherine J Kennedy
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | - Yoke-Eng Chiew
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia.,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia
| | | | | | | | - Craig Luccarini
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Don Conroy
- Centre for Cancer Genetic Epidemiology, Department of Oncology, Cambridge University, Cambridge, UK
| | - Ron H J Mathijssen
- Department of Medical Oncology, Erasmus MC Cancer Institute, Rotterdam, The Netherlands
| | - Paul R Harnett
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia
| | - Rosemary L Balleine
- The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia.,Sydney West Translational Cancer Research Centre, Sydney, Australia.,Pathology West, Institute for Clinical Pathology and Medical Research (ICPMR), Westmead, Sydney, Australia
| | | | | | - Anna de Fazio
- Department of Gynaecological Oncology, Westmead Hospital, Sydney, Australia. .,The Westmead Institute for Medical Research, Sydney Medical School, The University of Sydney, Sydney, Australia. .,Crown Princess Mary Cancer Centre, Westmead Hospital, Sydney, Australia. .,Sydney West Translational Cancer Research Centre, Sydney, Australia.
| |
Collapse
|
25
|
Tan LM, Qiu CF, Zhu T, Jin YX, Li X, Yin JY, Zhang W, Zhou HH, Liu ZQ. Genetic Polymorphisms and Platinum-based Chemotherapy Treatment Outcomes in Patients with Non-Small Cell Lung Cancer: A Genetic Epidemiology Study Based Meta-analysis. Sci Rep 2017; 7:5593. [PMID: 28717179 PMCID: PMC5514117 DOI: 10.1038/s41598-017-05642-0] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2016] [Accepted: 06/01/2017] [Indexed: 12/16/2022] Open
Abstract
Data regarding genetic polymorphisms and platinum-based chemotherapy (PBC) treatment outcomes in patients with NSCLC are published at a growing pace, but the results are inconsistent. This meta-analysis integrated eligible candidate genes to better evaluate the pharmacogenetics of PBC in NSCLC patients. Relevant studies were retrieved from PubMed, Chinese National Knowledge Infrastructure and WANFANG databases. A total of 111 articles comprising 18,196 subjects were included for this study. The associations of genetic polymorphisms with treatment outcomes of PBC including overall response rate (ORR), overall survival (OS) and progression-free survival (PFS) were determined by analyzing the relative risk (RR), hazard ration (HR), corresponding 95% confidence interval (CI). Eleven polymorphisms in 9 genes, including ERCC1 rs11615 (OS), rs3212986 (ORR), XPA rs1800975 (ORR), XPD rs1052555 (OS, PFS), rs13181 (OS, PFS), XPG rs2296147 (OS), XRCC1 rs1799782 (ORR), XRCC3 rs861539 (ORR), GSTP1 rs1695 (ORR), MTHFR rs1801133 (ORR) and MDR1 rs1045642 (ORR), were found significantly associated with PBC treatment outcomes. These variants were mainly involved in DNA repair (EXCC1, XPA, XPD, XPG, XRCC1 and XRCC3), drug influx and efflux (MDR1), metabolism and detoxification (GSTP1) and DNA synthesis (MTHFR), and might be considered as potential prognostic biomarkers for assessing objective response and progression risk in NSCLC patients receiving platinum-based regimens.
Collapse
Affiliation(s)
- Li-Ming Tan
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Cheng-Feng Qiu
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Tao Zhu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Yuan-Xiang Jin
- Department of Pharmacy, The First People's Hospital of Huaihua City, Huaihua, 418000, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Wei Zhang
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China.,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, P.R. China. .,Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha, 410078, P.R. China.
| |
Collapse
|
26
|
Ye H, Shao M, Shi X, Wu L, Xu B, Qu Q, Qu J. Predictive assessment in pharmacogenetics of Glutathione S-transferases genes on efficacy of platinum-based chemotherapy in non-small cell lung cancer patients. Sci Rep 2017; 7:2670. [PMID: 28572675 PMCID: PMC5453955 DOI: 10.1038/s41598-017-02833-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 04/18/2017] [Indexed: 12/15/2022] Open
Abstract
The influences of glutathione s-transferase P1, M1, and T1 variants on the efficacy of platinum-based chemotherapy in non-small cell lung cancer (NSCLC) patients were inconsistent in previous studies. Our meta-analysis enrolled 31 publications including 5712 patients and provided more convincing and reliable conclusions. Results showed that GSTP1 IIe105Val IIe/Val and Val/Val Asian patients were more likely to have better response rates compared to IIe/IIe patients (odds ratio (OR) = 1.592, 95% confidence intervals (CIs), 1.087-2.332, P = 0.017). The Asian patients bearing the favorable GSTM1 null genotype were more likely to have better response rates to platinum-based chemotherapy compared to those patients with the unfavorable GSTM1 present genotype (OR = 1.493 (1.192-1.870), P < 0.001). Caucasian lung cancer patients bearing GSTT1 null genotype might be more closely associated with shorter survival time and higher risks of death than the GSTT1 present patients (hazard ratio (HR) = 1.423, CI = 1.084-1.869, P = 0.011). Our meta-analysis suggested that the GSTP1 IIe105Val, GSTM1 and GSTT1 null variants might be predictive factors for the efficacy of platinum-based chemotherapy to NSCLC patients. The use of GSTP1 IIe105Val, GSTM1 and GSTT1 null polymorphisms as predictive factors of efficacy of personalized platinum-based chemotherapy to NSCLC patients requires further verification with multi-center, multi-ethnic and large-sample-size pharmacogenetic studies.
Collapse
Affiliation(s)
- Huan Ye
- Department of Respiratory, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Meiqin Shao
- Department of Respiratory, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Xiaohong Shi
- Department of Respiratory, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Lifeng Wu
- Department of Respiratory, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Bing Xu
- Department of Respiratory, Wenzhou People's Hospital, Wenzhou, 325000, People's Republic of China
| | - Qiang Qu
- Department of Pharmacy, Xiangya Hospital, Central South University, Changsha, 410078, People's Republic of China.
| | - Jian Qu
- Department of Pharmacy, the Second Xiangya Hospital, Central South University; Institute of Clinical Pharmacy, Central South University, Changsha, 410011, People's Republic of China.
| |
Collapse
|
27
|
Predictive role of GSTP1-containing exosomes in chemotherapy-resistant breast cancer. Gene 2017; 623:5-14. [PMID: 28438694 DOI: 10.1016/j.gene.2017.04.031] [Citation(s) in RCA: 99] [Impact Index Per Article: 12.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2017] [Revised: 04/11/2017] [Accepted: 04/19/2017] [Indexed: 01/29/2023]
Abstract
Anthracycline/taxane-based chemotherapy regimens are usually used as neoadjuvant chemotherapies to decrease tumour size and prevent metastasis of advanced breast cancer. However, patients have a high risk of developing chemo-resistance during treatment through still unknown mechanisms. Glutathione S-transferase P1 (GSTP1), which belongs to the family of phase II metabolic enzymes, has been reported to function in detoxifying several anti-cancer drugs by conjugating them with glutathione. Previous studies have identified GSTP1 as a predictor of prognosis and chemo-resistance in breast cancer patients, but the mechanisms governing GSTP1-dependent drug resistance are still unclear. We have found that GSTP1 expression is much higher in adriamycin-resistant cells and their corresponding exosomes. The role of GSTP1-containing exosomes in conferring drug resistance was analysed through cell apoptosis and immunofluorescence staining assays. Furthermore, we analysed 42 cases of paired breast cancer tissues collected before and after anthracycline/taxane-based neoadjuvant chemotherapy by immunohistochemistry. Higher GSTP1 expression was shown in the progressive disease (PD)/stable disease (SD) group than in the partial response (PR)/complete response (CR) group both in the samples collected before and after the chemotherapy treatment. Interestingly, GSTP1 partly re-localized from the cell nucleus to the cytoplasm upon treatment, and similar results were obtained for the exosomal marker Tumour susceptibility gene 101 protein (TSG101), which also increased in the cytoplasm after chemotherapy. After analysing the serum exosomes of 30 patients treated with anthracycline/taxane-based neoadjuvant chemotherapy, we discovered that the levels of GSTP1 in exosomes from patients in the PD/SD group were significantly higher than those in the PR/CR group. Here, for the first time, we investigated a novel role for GSTP1-containing exosomes and their capability to transfer drug resistance and evaluated their clinical use in predicting chemo-resistance.
Collapse
|
28
|
Basharat Z, Yasmin A. Energy landscape of a GSTP1 polymorph linked with cytological function decay in response to chemical stressors. Gene 2017; 609:19-27. [PMID: 28153749 DOI: 10.1016/j.gene.2017.01.034] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2016] [Revised: 11/20/2016] [Accepted: 01/27/2017] [Indexed: 12/19/2022]
Abstract
Gene polymorphisms lead to varied structure and functional properties. A single nucleotide polymorphism (SNP) i.e. Ile105Val (rs1695) in glutathione S-transferase P1 (GSTP1) gene influences cytological toxicity and modulates the risk to occupational diseases. Apart from this, cancer, neuropathy, NOx, SOx and ozone mediated respiratory function decline including lung inflammation, asthma, allergy etc., have been reported in people with this missense mutation. Here, the functional properties of rs1695 polymorph are revisited through a computational approach. Changes incurred by GSTP1 antioxidant protein as a result of alteration in its sequence, have been studied through docking followed by Poisson-Boltzmann electrostatic equation interpretation, grid and coulombic energy profile mapping for protein polymorphs with DelPhi. Molecular docking simulation of variant and wild type (WT) protein was carried out with eight FDA approved compounds that target GSTP1 for treatment of various diseases. This was to observe binding pattern variation upon mutation induction. Grid, reaction field and coulombic energy calculation of WT and mutated polymorph, complexed with and without these moieties was then attempted. Alteration in conformation and energy was observed in apo- and holo- form of GSTP1 and their ligand-bound complexes as a result of this mutation. This study is a demo of appraising gene-environment interaction based deleteriousness through molecular docking and dynamics simulation approach.
Collapse
Affiliation(s)
- Zarrin Basharat
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan.
| | - Azra Yasmin
- Microbiology & Biotechnology Research Lab, Department of Environmental Sciences, Fatima Jinnah Women University, Rawalpindi 46000, Pakistan
| |
Collapse
|
29
|
Contribution of genetic factors to platinum-based chemotherapy sensitivity and prognosis of non-small cell lung cancer. MUTATION RESEARCH-REVIEWS IN MUTATION RESEARCH 2017; 771:32-58. [DOI: 10.1016/j.mrrev.2016.11.003] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2016] [Accepted: 11/16/2016] [Indexed: 11/20/2022]
|
30
|
Pharmacogenetic analysis of advanced non-small-cell lung cancer patients treated with first-line paclitaxel and carboplatin chemotherapy. Pharmacogenet Genomics 2016; 26:116-25. [PMID: 26641474 DOI: 10.1097/fpc.0000000000000196] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Genetic polymorphisms contribute toward interindividual variations in drug response. We investigated the effects of genetic polymorphisms on the clinical outcome of advanced non-small-cell lung cancer patients with first-line paclitaxel and carboplatin. MATERIALS AND METHODS A total of 194 non-small-cell lung cancer patients were prospectively enrolled from January 2010 to January 2013. We genotyped 11 polymorphisms in seven genes involved in the glycolysis pathway and the related pharmacokinetic/pharmacodynamic pathway. Genetic associations with PET-SUV, survival outcome, and toxicity were analyzed, and in-vitro drug transport activity was measured in the oocyte system. RESULTS Patients with the c.334 T>G and c.699 G>A homozygous variant in SLCO1B3 showed a higher incidence of grade 3/4 anemia (P=0.002). Transport activities of oocyte that overexpress the SLCO1B3 c.699 G>A variant showed a significantly decreased uptake of paclitaxel compared with the wild-type expressing oocytes. In addition, patients with GG/GA/AA genotypes of ABCB1, c.2677 T>G/A locus showed inferior progression-free survival (hazard ratio=1.49, P=0.017) compared with other genotypes. The GA genotype of HIF1A, c.1834 G>A locus was associated with inferior progression-free survival compared with the GG genotype (hazard ratio=2.47, P=0.008). CONCLUSION This study showed that the SLCO1B3 c.699 G>A polymorphism may predict anemia and ABCB1, HIF1A polymorphism are highly predictive for worse survival in advanced NSCLC with first-line paclitaxel and carboplatin.
Collapse
|
31
|
Biochemical Characterization of the Detoxifying Enzyme Glutathione Transferase P1-1 from the Camel Camelus Dromedarius. Cell Biochem Biophys 2016; 74:459-472. [PMID: 27639582 DOI: 10.1007/s12013-016-0761-6] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 08/26/2016] [Indexed: 12/23/2022]
Abstract
Glutathione transferase (GST, EC 2.5.1.18) is a primary line of defense against toxicities of electrophile compounds and oxidative stress and therefore is involved in stress-response and cell detoxification. In the present study, we investigated the catalytic and structural properties of the glutathione transferase (GST) isoenzyme P1-1 from Camelus dromedarius (CdGSTP1-1). Recombinant CdGSTP1-1 was produced in Escherichia coli BL21(DE3) and purified to electrophoretic homogeneity. Kinetic analysis revealed that CdGSTP1-1 displays broad substrate specificity and shows high activity towards halogenated aryl-compounds, isothiocyanates and hydroperoxides. Computation analysis and structural comparison of the catalytic and ligand binding sites of CdGSTP1-1 with other pi class GSTs allowed the identification of major structural variations that affect the active site pocket and the catalytic mechanism., Affinity labeling and kinetic inhibition studies identified key regions that form the ligandin-binding site (L-site) and gave further insights into the mechanism of non-substrate ligand recognition. The results of the present study provide new information into camelid detoxifying mechanism and new knowledge into the diversity and complex enzymatic functions of GST superfamily.
Collapse
|
32
|
Qian CY, Zheng Y, Wang Y, Chen J, Liu JY, Zhou HH, Yin JY, Liu ZQ. Associations of genetic polymorphisms of the transporters organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), and ATP-binding cassette subfamily C member 2 (ABCC2) with platinum-based chemotherapy response and toxicity in non-small cell lung cancer patients. CHINESE JOURNAL OF CANCER 2016; 35:85. [PMID: 27590272 PMCID: PMC5010769 DOI: 10.1186/s40880-016-0145-8] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/13/2015] [Accepted: 02/02/2016] [Indexed: 01/13/2023]
Abstract
Background Platinum-based chemotherapy is the first-line treatment of non-small cell lung cancer (NSCLC); it is therefore important to discover biomarkers that can be used to predict the efficacy and toxicity of this treatment. Four important transporter genes are expressed in the kidney, including organic cation transporter 2 (OCT2), multidrug and toxin extrusion 1 (MATE1), ATP-binding cassette subfamily B member 1 (ABCB1), and ATP-binding cassette subfamily C member 2 (ABCC2), and genetic polymorphisms in these genes may alter the efficacy and adverse effects of platinum drugs. This study aimed to evaluate the association of genetic polymorphisms of these transporters with platinum-based chemotherapy response and toxicity in NSCLC patients. Methods A total of 403 Chinese NSCLC patients were recruited for this study. All patients were newly diagnosed with NSCLC and received at least two cycles of platinum-based chemotherapy. The tumor response and toxicity were evaluated after two cycles of treatment, and the patients’ genomic DNA was extracted. Seven single-nucleotide polymorphisms in four transporter genes were selected to investigate their associations with platinum-based chemotherapy toxicity and response. Results OCT2 rs316019 was associated with hepatotoxicity (P = 0.026) and hematological toxicity (P = 0.039), and MATE1 rs2289669 was associated with hematological toxicity induced by platinum (P = 0.016). In addition, ABCC2 rs717620 was significantly associated with the platinum-based chemotherapy response (P = 0.031). ABCB1 polymorphisms were associated with neither response nor toxicity. Conclusion OCT2 rs316019, MATE1 rs2289669, and ABCC2 rs717620 might be potential clinical markers for predicting chemotherapy toxicity and response induced by platinum-based treatment in NSCLC patients. Trial registration Chinese Clinical Trial Registry ChiCTR-RNC-12002892
Collapse
Affiliation(s)
- Chen-Yue Qian
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan, P. R. China
| | - Yi Zheng
- Key Laboratory of Hunan Province for Traditional Chinese Medicine in Obstetrics & Gynecology Research, The Maternal and Child Health Hospital of Hunan Province, Changsha, 410008, Hunan, P. R. China
| | - Ying Wang
- The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Juan Chen
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan, P. R. China
| | - Jun-Yan Liu
- Xiangya School of Medicine, Central South University, Changsha, 410008, Hunan, P. R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan, P. R. China
| | - Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China.,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, P. R. China.,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan, P. R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha, 410008, Hunan, P. R. China. .,Institute of Clinical Pharmacology, Hunan Key Laboratory of Pharmacogenetics, Central South University, Changsha, 410078, Hunan, P. R. China. .,Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang, 421001, Hunan, P. R. China.
| |
Collapse
|
33
|
Yin JY, Li X, Zhou HH, Liu ZQ. Pharmacogenomics of platinum-based chemotherapy sensitivity in NSCLC: toward precision medicine. Pharmacogenomics 2016; 17:1365-78. [PMID: 27462924 DOI: 10.2217/pgs-2016-0074] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Lung cancer is one of the leading causes of cancer-related death in the world. Platinum-based chemotherapy is the first-line treatment for non-small-cell lung cancer (NSCLC), however, the therapeutic efficiency varies remarkably among individuals. A large number of pharmacogenomics studies aimed to identify genetic variations which can be used to predict platinum response. Those studies are leading NSCLC treatment to the new era of precision medicine. In the current review, we provided a comprehensive update on the main recent findings of genetic variations which can be used to predict platinum sensitivity in the NSCLC patients.
Collapse
Affiliation(s)
- Ji-Ye Yin
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Xi Li
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Hong-Hao Zhou
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| | - Zhao-Qian Liu
- Department of Clinical Pharmacology, Xiangya Hospital, Central South University, Changsha 410008, P.R. China
- Institute of Clinical Pharmacology, Central South University, Hunan Key Laboratory of Pharmacogenetics, Changsha 410078, P.R. China
- Hunan Province Cooperation Innovation Center for Molecular Target New Drug Study, Hengyang 421001, P.R. China
| |
Collapse
|
34
|
Genetic Polymorphisms of Glutathione S-Transferase P1 (GSTP1) and the Incidence of Anti-Tuberculosis Drug-Induced Hepatotoxicity. PLoS One 2016; 11:e0157478. [PMID: 27281183 PMCID: PMC4900521 DOI: 10.1371/journal.pone.0157478] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2015] [Accepted: 05/31/2016] [Indexed: 02/05/2023] Open
Abstract
Background Anti-tuberculosis drug-induced hepatotoxicity (ATDH) is one of the most common adverse effects associated with tuberculosis (TB) therapy. Animal studies have demonstrated important roles of glutathione S-transferases in the prevention of chemical-induced hepatotoxicity. The aim of this study was to investigate the relationship between single nucleotide polymorphisms (SNPs) of glutathione S-transferase P1 (GSTP1) and ATDH in TB patients. Methods We used two independent samples for this genetic association study. In the initial prospective study, 322 newly diagnosed TB patients were followed up for three months after initiating anti-TB therapy. In an independent retrospective study, 115 ATDH patients and 116 patients without ATDH were selected to verify the results of the prospective study. Tag-SNPs of GSTP1 were genotyped either with the MassARRAY platform or the improved multiple ligase detection reaction (iMLDR) method. The associations between SNPs and ATDH were analyzed by logistic regression analysis adjusting for confounding factors. Results Of the 322 patients recruited in the prospective cohort, 35 were excluded during the 3 months of follow-up, and 30 were diagnosed with ATDH and were considered as the ATDH group. The remaining 257 subjects without ATDH were considered as the non-ATDH group. After correction for potential confounding factors, significant differences were found for rs1695 (A>G) under an allelic model (OR = 3.876, 95%CI: 1.258011.905; P = 0.018). In the retrospective study, rs1695 allele A also had a higher risk of ATDH (OR = 2.10, 95%CI: 1.17–3.76; P = 0.012). We only found rs4147581AA genotype under a dominant model was related to ATDH in the prospective study (OR = 2.578, 95%CI: 1.076–6.173; P = 0.034). Conclusions This is the first study to suggest that GSTP1 genotyping can be an important tool for identifying patients who are susceptible to ATDH. This result should be verified in independent large sample studies and also in other ethnic populations.
Collapse
|
35
|
Moorthy B, Chu C, Carlin DJ. Polycyclic aromatic hydrocarbons: from metabolism to lung cancer. Toxicol Sci 2016; 145:5-15. [PMID: 25911656 DOI: 10.1093/toxsci/kfv040] [Citation(s) in RCA: 490] [Impact Index Per Article: 54.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Excessive exposure to polycyclic aromatic hydrocarbons (PAHs) often results in lung cancer, a disease with the highest cancer mortality in the United States. After entry into the lung, PAHs induce phase I metabolic enzymes such as cytochrome P450 (CYP) monooxygenases, i.e. CYP1A1/2 and 1B1, and phase II enzymes such as glutathione S-transferases, UDP glucuronyl transferases, NADPH quinone oxidoreductases (NQOs), aldo-keto reductases (AKRs), and epoxide hydrolases (EHs), via the aryl hydrocarbon receptor (AhR)-dependent and independent pathways. Humans can also be exposed to PAHs through diet, via consumption of charcoal broiled foods. Metabolism of PAHs through the CYP1A1/1B1/EH pathway, CYP peroxidase pathway, and AKR pathway leads to the formation of the active carcinogens diol-epoxides, radical cations, and o-quinones. These reactive metabolites produce DNA adducts, resulting in DNA mutations, alteration of gene expression profiles, and tumorigenesis. Mutations in xenobiotic metabolic enzymes, as well as polymorphisms of tumor suppressor genes (e.g. p53) and/or genes involved in gene expression (e.g. X-ray repair cross-complementing proteins), are associated with lung cancer susceptibility in human populations from different ethnicities, gender, and age groups. Although various metabolic activation/inactivation pathways, AhR signaling, and genetic susceptibilities contribute to lung cancer, the precise points at which PAHs induce tumor initiation remain unknown. The goal of this review is to provide a current state-of-the-science of the mechanisms of human lung carcinogenesis mediated by PAHs, the experimental approaches used to study this complex class of compounds, and future directions for research of these compounds.
Collapse
Affiliation(s)
- Bhagavatula Moorthy
- *Department of Pediatrics, Baylor College of Medicine, Houston, Texas and Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Chun Chu
- *Department of Pediatrics, Baylor College of Medicine, Houston, Texas and Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| | - Danielle J Carlin
- *Department of Pediatrics, Baylor College of Medicine, Houston, Texas and Division of Extramural Research and Training, National Institute of Environmental Health Sciences, Research Triangle Park, North Carolina 27709
| |
Collapse
|
36
|
Rumiato E, Boldrin E, Malacrida S, Battaglia G, Bocus P, Castoro C, Cagol M, Chiarion-Sileni V, Ruol A, Amadori A, Saggioro D. A germline predictive signature of response to platinum chemotherapy in esophageal cancer. Transl Res 2016; 171:29-37.e1. [PMID: 26772957 DOI: 10.1016/j.trsl.2015.12.011] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/10/2015] [Revised: 11/26/2015] [Accepted: 12/16/2015] [Indexed: 11/25/2022]
Abstract
Platinum-based neoadjuvant therapy is the standard treatment for esophageal cancer (EC). At present, no reliable response markers exist, and patient therapeutic outcome is variable and very often unpredictable. The aim of this study was to understand the contribution of host constitutive DNA polymorphisms in discriminating between responder and nonresponder patients. DNA collected from 120 EC patients treated with platinum-based neoadjuvant chemotherapy was analyzed using drug metabolism enzymes and transporters (DMET) array platform that interrogates polymorphisms in 225 genes of drug metabolism and disposition. Four gene variants of DNA repair machinery, 2 in ERCC1 (rs11615; rs3212986), and 2 in XPD (rs1799793; rs13181) were also studied. Association analysis was performed with pTest software and corrected by permutation test. Predictive models of response were created using the receiver-operating characteristics curve approach and adjusted by the bootstrap procedure. Sixteen single nucleotide polymorphisms (SNPs) of the DMET array resulted significantly associated with either good or poor response; no association was found for the 4 variants mapping in DNA repair genes. The predictive power of 5 DMET SNPs mapping in ABCC2, ABCC3, CYP2A6, PPARG, and SLC7A8 genes was greater than that of clinical factors alone (area under the curve [AUC] = 0.74 vs 0.62). Interestingly, their combination with the clinical variables significantly increased the predictivity of the model (AUC = 0.78 vs 0.62, P = 0.0016). In conclusion, we identified a genetic signature of response to platinum-based neoadjuvant chemotherapy in EC patients. Our results also disclose the potential benefit of combining genetic and clinical variables for personalized EC management.
Collapse
Affiliation(s)
- Enrica Rumiato
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Elisa Boldrin
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Sandro Malacrida
- Department of Biomedical Sciences, University of Padova, Padova, Italy
| | - Giorgio Battaglia
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Paolo Bocus
- Endoscopy Unit, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Carlo Castoro
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | - Matteo Cagol
- Oncological Surgery, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy
| | | | - Alberto Ruol
- Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Alberto Amadori
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy; Department of Surgical Sciences, Oncology and Gastroenterology, University of Padova, Padova, Italy
| | - Daniela Saggioro
- Immunology and Molecular Oncology, Veneto Institute of Oncology IOV-IRCCS, Padova, Italy.
| |
Collapse
|
37
|
Cuffe S, Azad AK, Qiu X, Qiu X, Brhane Y, Kuang Q, Marsh S, Savas S, Chen Z, Cheng D, Leighl NB, Goss G, Laurie SA, Seymour L, Bradbury PA, Shepherd FA, Tsao MS, Chen BE, Xu W, Liu G. ABCC2 polymorphisms and survival in the Princess Margaret cohort study and the NCIC clinical trials group BR.24 trial of platinum-treated advanced stage non-small cell lung cancer patients. Cancer Epidemiol 2016; 41:50-6. [PMID: 26816351 DOI: 10.1016/j.canep.2015.12.012] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2015] [Revised: 12/20/2015] [Accepted: 12/31/2015] [Indexed: 01/11/2023]
Abstract
BACKGROUND The drug transporter ABCC2 is upregulated in non-small cell lung cancer (NSCLC) and implicated in platinum resistance. We evaluated the association between germline polymorphisms in the ABCC2 gene and survival outcomes of platinum-treated advanced NSCLC patients. MATERIAL AND METHODS Ten candidate and tagging germline polymorphisms in the ABCC2 gene were genotyped in a discovery cohort of 170 platinum-treated stage IV NSCLC patients from the Princess Margaret Cancer Centre. Associations with overall survival were assessed using multivariate Cox proportional hazard models adjusted for prognostic variables. To validate our results, we analyzed the association of the two top polymorphisms in the ABCC2 gene on survival outcomes of 219 stage IIIB-IV NSCLC patients enrolled on the NCIC Clinical Trials Group BR.24 clinical trial. RESULTS Only one polymorphism was validated across both cohorts for an association with overall survival: the A allele of the ABCC2 polymorphism, rs8187710 (4544G>A), was associated with adverse overall survival (adjusted hazard ratio [aHR] 2.22; 95% CI: 1.2-4.0; p=0.009) among our stage IV NSCLC patients. A significant association with overall survival (aHR 1.73; 95% CI: 1.0-2.9; p=0.036) was observed for the same ABCC2 polymorphism in the BR.24 validation cohort. No other ABCC2 polymorphisms were associated with outcome. CONCLUSION The ABCC2 polymorphism, rs8187710 (4544G>A), is associated with overall survival in platinum-treated advanced NSCLC patients. Additional studies are needed to evaluate the predictive versus prognostic nature of this relationship, and to explore the functional effect of this polymorphism on the pharmacokinetics of platinum drugs.
Collapse
Affiliation(s)
- Sinead Cuffe
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada; HOPE Directorate, St James's Hospital, Dublin 8, Ireland.
| | - Abul Kalam Azad
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Xiaoping Qiu
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Xin Qiu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Yonathan Brhane
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Qin Kuang
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Sharon Marsh
- Faculty of Pharmacy and Pharmaceutical Sciences, University of Alberta, Edmonton, AB, Canada
| | - Sevtap Savas
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada; Discipline of Genetics, Memorial University of Newfoundland, St. John's, NL, Canada
| | - Zhuo Chen
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Dangxiao Cheng
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Natasha B Leighl
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Glenwood Goss
- Division of Medical Oncology, Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada
| | - Scott A Laurie
- Division of Medical Oncology, Ottawa Hospital Cancer Centre, University of Ottawa, Ottawa, ON, Canada
| | - Lesley Seymour
- NCIC Clinical Trials Group, Queens University, Kingston, ON, Canada
| | - Penelope A Bradbury
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada; NCIC Clinical Trials Group, Queens University, Kingston, ON, Canada
| | - Frances A Shepherd
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| | - Ming Sound Tsao
- Department of Pathology, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Bingshu E Chen
- NCIC Clinical Trials Group, Queens University, Kingston, ON, Canada
| | - Wei Xu
- Department of Biostatistics, Princess Margaret Cancer Centre, University Health Network, University of Toronto, Toronto, ON, Canada
| | - Geoffrey Liu
- Department of Medical Oncology and Hematology, Princess Margaret Cancer Centre, University Health Network, and Ontario Cancer Institute, University of Toronto, Toronto, ON, Canada
| |
Collapse
|
38
|
Amable L. Cisplatin resistance and opportunities for precision medicine. Pharmacol Res 2016; 106:27-36. [PMID: 26804248 DOI: 10.1016/j.phrs.2016.01.001] [Citation(s) in RCA: 417] [Impact Index Per Article: 46.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/28/2015] [Accepted: 01/01/2016] [Indexed: 01/11/2023]
Abstract
Cisplatin is one of the most commonly used chemotherapy drugs, treating a wide range of cancer types. Unfortunately, many cancers initially respond to platinum treatment but when the tumor returns, drug resistance frequently occurs. Resistance to cisplatin is attributed to three molecular mechanisms: increased DNA repair, altered cellular accumulation, and increased drug inactivation. The use of precision medicine to make informed decisions on a patient's cisplatin resistance status and predicting the tumor response would allow the clinician to tailor the chemotherapy program based on the biology of the disease. In this review, key biomarkers of each molecular mechanism will be discussed along with the current clinical research. Additionally, known polymorphisms for each biomarker will be discussed in relation to their influence on cisplatin resistance.
Collapse
Affiliation(s)
- Lauren Amable
- National Institute on Minority Health and Health Disparities, National Institutes of Health, 9000 Rockville Pike, Bethesda, MD 20892, United States.
| |
Collapse
|
39
|
GSTP1 and GSTO1 single nucleotide polymorphisms and the response of bladder cancer patients to intravesical chemotherapy. Sci Rep 2015; 5:14000. [PMID: 26354850 PMCID: PMC4564850 DOI: 10.1038/srep14000] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2015] [Accepted: 07/31/2015] [Indexed: 02/07/2023] Open
Abstract
SNPs may restrict cell detoxification activity and be a potential risk factor for cancer chemosensitivity. We evaluated the predictive value of these polymorphisms on the sensitivity of bladder cancer patients to epirubicin and mitomycin chemotherapy instillation as well as their toxicities. SNPs were analyzed by TaqMan genotyping assays in 130 patients treated with epirubicin and 114 patients treated with mitomycin. Recurrence-free survival (RFS) was estimated by the Kaplan-Meier method, and hazard ratios (HRs) and 95% confidence intervals (CIs) of the HRs were derived from multivariate Cox proportional hazard models. GSTP1 rs1695 and GSTO1 rs4925 were also associated with RFS in the epirubicin group. Patients carrying the GSTP1 AG+GG and GSTO1 AC+AA genotypes had an unfavorable RFS. Patients with the GSTP1 AA and GSTO1 CC genotypes had a reduced risk of recurrence after the instillation of epirubicin. In addition, patients with the GSTP1 rs1695 AA genotype had an increased risk of irritative voiding symptoms; while patients with the GSTO1 rs4925 CC genotype had a decreased risk of hematuria. Our results suggest that GSTP1 and GSTO1 polymorphisms are associated with epirubicin treatment outcomes as well as with epirubicin-related toxicity.
Collapse
|
40
|
Abstract
INTRODUCTION The enormous biological complexity and high mortality rate of lung cancer highlights the need for new global approaches for the discovery of reliable early diagnostic biomarkers. The study of bronchoalveolar lavage samples by proteomic techniques could identify new lung cancer biomarkers and may provide promising noninvasive diagnostic tools able to enhance the sensitivity of current methods. METHODS First, an observational prospective study was designed to assess protein expression differences in bronchoalveolar lavages from patients with (n = 139) and without (n = 49) lung cancer, using two-dimensional gel electrophoresis and subsequent protein identification by mass spectrometry. Second, validation of candidate biomarkers was performed by bead-based immunoassays with a different patient cohort (204 patients, 48 controls). RESULTS Thirty-two differentially expressed proteins were identified in bronchoalveolar lavages, 10 of which were confirmed by immunoassays. The expression levels of APOA1, CO4A, CRP, GSTP1, and SAMP led to a lung cancer diagnostic panel that reached 95% sensitivity and 81% specificity, and the quantification of STMN1 and GSTP1 proteins allowed the two main lung cancer subtypes to be discriminated with 90% sensitivity and 57% specificity. CONCLUSIONS Bronchoalveolar lavage represents a promising noninvasive source of lung cancer specific protein biomarkers with high diagnostic accuracy. Measurement of APOA1, CO4A, CRP, GSTP1, SAMP, and STMN1 in this fluid may be a useful tool for lung cancer diagnosis, although a further validation in a larger clinical set is required for early stages.
Collapse
|
41
|
Association of UBASH3A gene polymorphisms and systemic lupus erythematosus in a Chinese population. Gene 2015; 565:116-21. [DOI: 10.1016/j.gene.2015.04.005] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2015] [Revised: 03/18/2015] [Accepted: 04/01/2015] [Indexed: 01/01/2023]
|
42
|
Yuan ZJ, Zhou WW, Liu W, Wu BP, Zhao J, Wu W, He Y, Yang S, Su J, Luo Y. Association of GSTP1 and RRM1 Polymorphisms with the Response and Toxicity of Gemcitabine-cisplatin Combination Chemotherapy in Chinese Patients with Non-small Cell Lung Cancer. Asian Pac J Cancer Prev 2015; 16:4347-51. [PMID: 26028097 DOI: 10.7314/apjcp.2015.16.10.4347] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Previous studies showed that genetic polymorphisms of glutathione S-transferase P1 (GSTP1) were involved in glutathione metabolism and genetic polymorphisms of ribonucleotide reductase (RRM1) were correlated with DNA synthesis. Here we explored the effects of these polymorphisms on the chemosensitivity and clinical outcome in Chinese non-small cell lung cancer (NSCLC) patients treated with gemcitabine-cisplatin regimens. MATERIALS AND METHODS DNA sequencing was used to evaluate genetic polymorphisms of GSTP1 Ile105Val and RRM1 C37A-T524C in 47 NSCLC patients treated with gemcitabine-cisplatin regimens. Clinical response was evaluated according to RECIST criteria after 2 cycles of chemotherapy and toxicity was assessed by 1979 WHO criteria (acute and subacute toxicity graduation criteria in chemotherapeutic agents). RESULTS There was no statistical significance between sensitive and non-sensitive groups regarding the genotype frequency distribution of GSTP1 Ile105Val polymorphism (p>0.05). But for RRM1 C37A-T524C genotype, sensitive group had higher proportion of high effective genotype than non-sensitive group (p=0.009). And according to the joint detection of GSTP1 Ile105Val and RRM1 C37A-T524C polymorphisms, the proportion of type A (A/A+high effective genotype) was significantly higher in sensitive group than in non-sensitive group (p=0.009). Toxicity showed no correlation with the genotypes between two groups (p>0.05). CONCLUSIONS Compared with single detection of genetic polymorphisms of GSTP1 Ile105Val or RRM1 C37A-T524C, joint detection of both may be more helpful for patients with NSCLC to receive gemcitabine-cisplatin regimens as the first-line chemotherapy. Especially, genetic polymorphism of RRM1 is more likely to be used as an important biomarker to predict the response and toxicity of gemcitabine-cisplatin combination chemotherapy in NSCLC.
Collapse
Affiliation(s)
- Zhi-Jun Yuan
- Medical Department of Veteran Cadre, Hunan Cancer Hospital, The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, China E-mail :
| | | | | | | | | | | | | | | | | | | |
Collapse
|
43
|
Whitsett TG, Inge LJ, Tran NL. The use of quantitative proteomics towards biomarker discovery in lung squamous cell carcinoma. Transl Lung Cancer Res 2015; 2:457-60. [PMID: 25806270 DOI: 10.3978/j.issn.2218-6751.2013.10.17] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2013] [Accepted: 10/30/2013] [Indexed: 11/14/2022]
Abstract
The high mortality rate in advanced lung cancer, due to a preponderance of tumors discovered at advanced stage, demands the discovery and clinical validation of biomarkers for diagnosing early stage disease. Quantitative proteomics technologies are capable of identifying protein biomarkers with diagnostic, prognostic, and predictive value. Recent works have demonstrated the utility in using quantitative proteomics across normal, pre-cancerous, and cancerous lesions towards the discovery of biomarkers for early stage lung cancer, as well as discovering novel mechanisms of lung carcinogenesis.
Collapse
Affiliation(s)
- Timothy G Whitsett
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| | - Landon J Inge
- Center for Thoracic Disease and Transplantation, Heart and Lung Institute, St. Joseph's Hospital and Medical Center, Phoenix, AZ, USA
| | - Nhan L Tran
- Cancer and Cell Biology Division, Translational Genomics Research Institute, Phoenix, AZ, USA
| |
Collapse
|
44
|
Klukovits A, Krajcsi P. Mechanisms and therapeutic potential of inhibiting drug efflux transporters. Expert Opin Drug Metab Toxicol 2015; 11:907-20. [DOI: 10.1517/17425255.2015.1028917] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
|
45
|
Xu Z, Chen Y, Gu D, Lee NP, Sun S, Gong W, Tan Y, Luk JM, Chen J. SOD2 rs4880 CT/CC genotype predicts poor survival for Chinese gastric cancer patients received platinum and fluorouracil based adjuvant chemotherapy. Am J Transl Res 2015; 7:401-410. [PMID: 25901207 PMCID: PMC4399103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2014] [Accepted: 12/25/2014] [Indexed: 06/04/2023]
Abstract
Adjuvant chemotherapy is a standard therapy for gastric cancer patients, however, treatment response is quite heterogeneous. Molecular biomarkers will be highly valuable to guide the therapy and predict the response and prognosis in these patients. The antioxidant enzymes superoxide dismutase 2 (SOD2) and glutathione S-transferase pi 1 (GSTP1) are involved in oxidative stress and drug detoxification, which modulate the efficacy of anticancer drugs. Here, we investigated the clinical associations of two functional single nucleotide polymorphisms of SOD2 and GSTP1 in stage II-III postoperative gastric cancer patients. SOD2 rs4880 and GSTP1 rs1695 were genotyped in 207 patients received postoperative platinum and fluorouracil based chemotherapy and 304 patients who did not. SOD2 rs4880 CT/CC significantly associated with decreased median overall survival time of 23 months when compared to the TT genotype (mean overall survival time of 65.2 months, P=0.002) only for patients received adjuvant chemotherapy. Stratification analysis showed SOD2 rs4880 CT/CC affected most significantly the clinical outcome for patients with tumor arising at gastric body (HR, 5.707, P=0.002), well to moderately differentiated adenocarcinoma (HR, 4.900, P<0.001), tumor of intestinal type (HR, 4.398, P<0.001), or tumor size less or equal to 5 cm (HR, 2.490, P=0.004); while GSTP1 rs1695 GA/GG was significant decreased overall survival time among patients with tumor arising at fundus or cardia (HR, 3.001, P=0.004), or mucinous or signet-ring cell carcinoma (HR, 4.750, P=0.042). The present study suggested the two polymorphisms would affect the adjuvant chemotherapy outcome in specific subtype of gastric cancer. SOD2 rs4880 could be used as a biomarker to predict the prognosis and response to therapy.
Collapse
Affiliation(s)
- Zhi Xu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| | - Yi Chen
- Department of Oncology, Nanjing Pukou Central HospitalNanjing 211800, China
| | - Dongying Gu
- Department of Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
| | - Nikki P Lee
- Department of Surgery, Faculty of Medicine, The University of Hong KongHong Kong
| | - Stella Sun
- Department of Surgery, Faculty of Medicine, The University of Hong KongHong Kong
| | - Weida Gong
- Department of Surgery, Yixing Cancer HospitalYixing, China
| | - Yongfei Tan
- Department of Surgery, Yixing People’s HospitalYixing, China
| | - John M Luk
- Department of Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
- Institute of Molecular and Cell Biology, 61 Biopolis Drive, ProteosSingapore 138673, Singapore
| | - Jinfei Chen
- Department of Oncology, Nanjing First Hospital, Nanjing Medical UniversityNanjing 210006, China
- Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical UniversityNanjing 210029, China
| |
Collapse
|
46
|
Wang J, Li G. Mechanisms of methotrexate resistance in osteosarcoma cell lines and strategies for overcoming this resistance. Oncol Lett 2014; 9:940-944. [PMID: 25621072 PMCID: PMC4301490 DOI: 10.3892/ol.2014.2773] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2014] [Accepted: 09/26/2014] [Indexed: 01/20/2023] Open
Abstract
The aim of the present study was to investigate the underlying mechanisms of methotrexate (MTX) resistance in the human osteosarcoma cell line, Saos-2/MTX4.4, and to evaluate various methods of overcoming the resistance to this chemotherapeutic agent. MMT assays were performed to determine the resistance of the primary (Saos-2) and resistant (Saos-2/MTX4.4) cell lines to MTX, cisplatin [cis-diamminedichloroplatinum II (DDP)], ifosfamide (IFO), Adriamycin (ADM), epirubicin (EPI) and theprubicin (THP). The Saos-2/MTX4.4 cells exhibited a low resistance to IFO, ADM, EPI and THP; however, no resistance to DDP was identified. Overall, the Saos-2/MTX4.4 cells exhibited a greater resistance to all the chemotherapeutic agents investigated compared with the Saos-2 cells. Rhodamine 123 (R123) fluorescence was measured in the Saos-2/MTX4.4 and Saos-2 cells 30 and 60 min after the addition of R123, and R123 plus verapamil (VER). VER administration increased the intracellular accumulation of R123. In addition, reverse transcription-quantitative polymerase chain reaction was performed to determine the mRNA expression levels of multidrug resistance gene 1 (MDR1) in the two cell lines. Although the Saos-2/MTX4.4 cells were more resistant to the chemotherapeutic agents than the Saos-2 cells, no significant difference was identified between the relative mRNA expression levels of MDR1 in the Saos-2/MTX4.4 and Saos-2 cells (0.4350±0.0354 vs. 0.3886±0.0456; P>0.05).
Collapse
Affiliation(s)
- Jianjun Wang
- Department of Oncology, Henan University Huaihe Hospital, Kaifeng, Henan 475001, P.R. China
| | - Guojun Li
- Department of Orthopedics, Henan University Huaihe Hospital, Kaifeng, Henan 475001, P.R. China
| |
Collapse
|
47
|
Xu Y, Pan Q, Wang C, He C, Su Z, Guo X, Zhang J, Kong M, Ke S, Zhang J, Chen B, Sheng H, Zhang X. Genetic polymorphisms in oxidative stress-related genes are associated with clinical outcome in patients with advanced non-small cell lung cancer receiving tyrosine kinase inhibitors. Am J Cancer Res 2014; 4:934-942. [PMID: 25520881 PMCID: PMC4266725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2014] [Accepted: 09/28/2014] [Indexed: 06/04/2023] Open
Abstract
Many types of cancer have high antioxidant capacity that effectively scavenges reactive oxygen species and thus protect cancer cells against oxidative damage. The aim of this study was to examine the effect of 20 single nucleotide polymorphisms (SNPs) in 20 oxidative stress-related genes on clinical outcome in 219 patients with advanced non-small cell lung cancer (NSCLC) who were treated with EGFR tyrosine kinase inhibitors (TKIs). We assessed the associations of SNPs with prognosis in all patients as well as stratified by clinical characteristics. Three SNP (rs1695, rs2333227 and rs699512) were significantly associated with overall survival (OS). In a multivariate analysis, rs1695 AA and rs2333227 AG/GG genotypes were identified as independent prognostic factors for poor OS. Stratification analyses revealed that these 3 SNPs remained significantly associated with OS. Furthermore, there was a strong gene-dosage effect of these 3 SNPs on OS that patients with increasing number of unfavorable genotypes had significantly increased death risk. In conclusion, our findings provide the first evidence that genetic variants in oxidative stress-related genes may influence treatment outcome in advanced NSCLC patients receiving EGFR TKIs.
Collapse
Affiliation(s)
- Yunhua Xu
- Department of Shanghai Lung Cancer Center, Shanghai Chest Hospital, Shanghai Jiaotong UniversityShanghai, China
| | - Qunxiong Pan
- Department of Surgical Oncology, Quanzhou First HospitalQuanzhou, Fujian, China
| | - Chongren Wang
- Department of Surgical Oncology, Quanzhou First HospitalQuanzhou, Fujian, China
| | - Chunya He
- Department of Surgical Oncology, Taizhou Central HospitalTaizhou, Zhejiang, China
| | - Zijian Su
- Department of Surgical Oncology, Quanzhou First HospitalQuanzhou, Fujian, China
| | - Xiaowei Guo
- Department of Surgical Oncology, Taizhou Central HospitalTaizhou, Zhejiang, China
| | - Jian Zhang
- Department of Thoracic Surgery, Taizhou HospitalTaizhou, Zhejiang, China
| | - Min Kong
- Department of Thoracic Surgery, Taizhou HospitalTaizhou, Zhejiang, China
| | - Shaoying Ke
- Department of Surgical Oncology, Quanzhou First HospitalQuanzhou, Fujian, China
| | - Jianhua Zhang
- Department of Surgical Oncology, Quanzhou First HospitalQuanzhou, Fujian, China
| | - Baofu Chen
- Department of Thoracic Surgery, Taizhou HospitalTaizhou, Zhejiang, China
| | - Haihui Sheng
- Shanghai Engineering Center for Molecular Medicine, National Engineering Center for Biochip at ShanghaiShanghai, China
| | - Xuelin Zhang
- Department of Thoracic Surgery, Taizhou Central HospitalTaizhou, Zhejiang, China
| |
Collapse
|
48
|
Roco A, Cayún J, Contreras S, Stojanova J, Quiñones L. Can pharmacogenetics explain efficacy and safety of cisplatin pharmacotherapy? Front Genet 2014; 5:391. [PMID: 25452763 PMCID: PMC4231946 DOI: 10.3389/fgene.2014.00391] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2014] [Accepted: 10/25/2014] [Indexed: 12/12/2022] Open
Abstract
Several recent pharmacogenetic studies have investigated the variability in both outcome and toxicity in cisplatin-based therapies. These studies have focused on the genetic variability of therapeutic targets that could affect cisplatin response and toxicity in diverse type of cancer including lung, gastric, ovarian, testicular, and esophageal cancer. In this review, we seek to update the reader in this area of investigation, focusing primarily on DNA reparation enzymes and cisplatin metabolism through Glutathione S-Transferases (GSTs). Current evidence indicates a potential application of pharmacogenetics in therapeutic schemes in which cisplatin is the cornerstone of these treatments. Therefore, a collaborative effort is required to study these molecular characteristics in order to generate a genetic panel with clinical utility.
Collapse
Affiliation(s)
- Angela Roco
- Servicio de Salud Metropolitano Occidente Santiago, Chile ; Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Juan Cayún
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Stephania Contreras
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Jana Stojanova
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| | - Luis Quiñones
- Laboratory of Chemical Carcinogenesis and Pharmacogenetics (CQF), Molecular and Clinical Pharmacology Program, ICBM - Insituto de Ciencias Biomédicas, Faculty of Medicine, University of Chile Santiago, Chile
| |
Collapse
|
49
|
Rose MC, Kostyanovskaya E, Huang RS. Pharmacogenomics of cisplatin sensitivity in non-small cell lung cancer. GENOMICS PROTEOMICS & BIOINFORMATICS 2014; 12:198-209. [PMID: 25449594 PMCID: PMC4411417 DOI: 10.1016/j.gpb.2014.10.003] [Citation(s) in RCA: 51] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/18/2014] [Revised: 10/11/2014] [Accepted: 10/13/2014] [Indexed: 01/13/2023]
Abstract
Cisplatin, a platinum-based chemotherapeutic drug, has been used for over 30 years in a wide variety of cancers with varying degrees of success. In particular, cisplatin has been used to treat late stage non-small cell lung cancer (NSCLC) as the standard of care. However, therapeutic outcomes vary from patient to patient. Considerable efforts have been invested to identify biomarkers that can be used to predict cisplatin sensitivity in NSCLC. Here we reviewed current evidence for cisplatin sensitivity biomarkers in NSCLC. We focused on several key pathways, including nucleotide excision repair, drug transport and metabolism. Both expression and germline DNA variation were evaluated in these key pathways. Current evidence suggests that cisplatin-based treatment could be improved by the use of these biomarkers.
Collapse
Affiliation(s)
- Maimon C Rose
- Biological Sciences Division, University of Chicago, Chicago, IL 60637, USA
| | | | - R Stephanie Huang
- Department of Medicine, University of Chicago, Chicago, IL 60637, USA.
| |
Collapse
|
50
|
Xu Y, Deng Q, He B, Pan Y, Li R, Gao T, Sun H, Song G, Wang S, Cho WC. The diplotype Fas -1377A/-670G as a genetic marker to predict a lower risk of breast cancer in Chinese women. Tumour Biol 2014; 35:9147-9161. [PMID: 24916571 DOI: 10.1007/s13277-014-2175-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2014] [Accepted: 06/02/2014] [Indexed: 12/22/2022] Open
Abstract
This study was designed to reveal the effects of Fas and FasL polymorphisms of interest on breast cancer risk. A total of 439 patients with breast cancer and 439 controls were enrolled in this study. The genotypes Fas -1377G/A, Fas -670A/G, and FasL -844 T/C were detected by MassARRAY. The protein expressions of estrogen receptor, progesterone receptor, and CerbB-2 were determined by immunohistochemistry. Among the 439 patients, Fas mRNA levels in 22 samples of breast cancer and adjacent normal tissues were detected by real-time polymerase chain reaction, and the soluble Fas and Fas ligand concentrations of 180 patients were measured by enzyme-linked immunosorbent assay. The Fas -1377GA, Fas -1377AA, Fas -670AG, Fas -670GG, and FasL -844TC genotypes were associated with a reduced risk of breast cancer. Haplotype analysis indicated that Fas -1377G/-670A was associated with an increased risk of breast cancer, whereas Fas -1377A/-670A was associated with the opposite effect. Furthermore, gene-gene interaction analysis revealed that the Fas -1377GA/AA (-670AG/GG) and FasL -844CC or TC/TT genotypes were associated with a decreased risk of breast cancer. Meanwhile, -1377GG and -670AA genotypes were associated with higher soluble Fas concentrations than other genotypes. We conclude that Fas and FasL polymorphisms can affect breast cancer risk and that Fas polymorphisms are likely to affect breast cancer risk by regulating the soluble Fas concentration.
Collapse
Affiliation(s)
- Yeqiong Xu
- Central Laboratory, Nanjing First Hospital, Nanjing Medical University, Nanjing, China
| | | | | | | | | | | | | | | | | | | |
Collapse
|