1
|
Githaka JM, Kirschenman R, Patel N, Tripathi N, Wang J, Li L, Muranyi H, Pirayeshfard L, Montpetit R, Glubrecht DD, Lerner EP, Perry T, Danial NN, Nation PN, Godbout R, Goping IS. Multiple anti-tumor programs are activated by blocking BAD phosphorylation. Oncogene 2025:10.1038/s41388-025-03420-1. [PMID: 40316741 DOI: 10.1038/s41388-025-03420-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 04/10/2025] [Accepted: 04/14/2025] [Indexed: 05/04/2025]
Abstract
The Bcl-2 family member BAD is a candidate disease modulator because it stimulates apoptosis in a cell context basis and inhibits cell migration during normal mammary gland morphogenesis. This activity depends on 3 key regulatory serines (S75, 99, 118) in the unphosphorylated state. Given that developmental programs are often hijacked in cancer, we hypothesized that BAD would impede breast cancer progression. We generated breast cancer mouse models representing loss-of-function or phosphorylation deficient mutations (PyMT-Bad-/- and PyMT-Bad3SA/3SA, respectively). Preventing BAD phosphorylation significantly decreased breast cancer progression and metastasis. The knock-out phenocopied the control PyMT-Bad+/+ suggesting that phosphorylated BAD protein was inert. Thus, the BAD3SA mutation unmasked latent anti-tumor activity. Indeed, transcriptomics showed PyMT-Bad3SA/3SA activated multiple anti-tumor programs including apoptosis, inflammation, cellular differentiation, and diminished cell migration. This anti-tumor effect associated with clinical survival of breast cancer patients whose tumors had high levels of unphosphorylated BAD. Kinase screens identified ERK as the major BAD kinase in breast cells, and ERK inhibition impeded tumoroid invasion. Our data suggest that unphosphorylated BAD modulates anti-tumor pathways that contribute to excellent patient prognosis. Thus, targeting ERK to dephosphorylate BAD may be an exciting therapeutic opportunity in the future.
Collapse
Affiliation(s)
| | - Raven Kirschenman
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namrata Patel
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Namita Tripathi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Joy Wang
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Laiji Li
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | - Heather Muranyi
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - Rachel Montpetit
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada
| | | | - E Paul Lerner
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Troy Perry
- Department of Surgery, University of Alberta, Edmonton, AB, Canada
| | - Nika N Danial
- Department of Cancer Biology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - P Nick Nation
- Animal Pathology Services (APS) Ltd., Canmore, AB, Canada
| | - Roseline Godbout
- Department of Oncology, University of Alberta, Edmonton, AB, Canada
| | - Ing Swie Goping
- Department of Biochemistry, University of Alberta, Edmonton, AB, Canada.
- Department of Oncology, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
2
|
Jiang Y, Yu Z, Zheng H, Zhou X, Zhou M, Geng X, Zhu Y, Huang S, Gong Y, Guo L. An immune biomarker associated with EMT serves as a predictor for prognosis and drug response in bladder cancer. Aging (Albany NY) 2024; 16:10813-10831. [PMID: 38980253 PMCID: PMC11272103 DOI: 10.18632/aging.205927] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 04/22/2024] [Indexed: 07/10/2024]
Abstract
BACKGROUND Bladder cancer (BLCA), which develops from the upper endometrial of the bladder, is the sixth most prevalent cancer across the globe. WDHD1 (WD repeat and HMG-box DNA binding protein 1 gene) directly affects signaling, the cell cycle, and the development of the cell skeleton. Uncertainty surrounds WDHD1's function in BLCA immunity and prognosis, though. MATERIALS AND METHODS Using weighed gene co-expression network analysis (WGCNA), initially, we first identified 32 risk factors in genes with differential expression for this investigation. Then, using a variety of bioinformatic techniques and experimental validation, we examined the connections between WDHD1 and BLCA expression, clinical pathological traits, WDHD1-related proteins, upper-skin-intermediate conversion (EMT), immune cell immersion, convergence factors, immune markers, and drug sensitivity. RESULT The findings demonstrated that we constructed a 32-gene risk-predicting model where WDHD1 was elevated as a representative gene expression in BLCA and related to a range of clinical traits. Furthermore, high WDHD1 expression was a standalone predictor associated with a worse survival rate. The most commonly recruited cells and their evolutionary patterns were highlighted to better comprehend WDHD1's function in cancer. High WDHD1 expression was associated with many aspects of immunology. Finally, the study found that individuals with high expression of WDHD1 were drug-sensitive to four different broad-spectrum anti-cancer drugs. CONCLUSION These results describe dynamic changes in the tumor microenvironment in BLCA and provide evidence for the hypothesis that WDHD1 is a novel biomarker of tumor development. WDHD1 may therefore be a useful target for the detection and management of BLCA.
Collapse
Affiliation(s)
- Yike Jiang
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Zichuan Yu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Hao Zheng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xuanrui Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Minqin Zhou
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Xitong Geng
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yanting Zhu
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Shuhan Huang
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Yiyang Gong
- Second College of Clinical Medicine, Nanchang University, Nanchang, Jiangxi 330000, China
| | - Liangyun Guo
- Department of Ultrasonography, Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi 330000, China
| |
Collapse
|
3
|
Ram T, Singh AK, Kumar A, Singh H, Pathak P, Grishina M, Khalilullah H, Jaremko M, Emwas AH, Verma A, Kumar P. MEK inhibitors in cancer treatment: structural insights, regulation, recent advances and future perspectives. RSC Med Chem 2023; 14:1837-1857. [PMID: 37859720 PMCID: PMC10583825 DOI: 10.1039/d3md00145h] [Citation(s) in RCA: 21] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/12/2023] [Indexed: 10/21/2023] Open
Abstract
MEK1/2 are critical components of the RAS-RAF-MEK-ERK or MAPK signalling pathway that regulates a variety of cellular functions including proliferation, survival, and differentiation. In 1997, a lung cancer cell line was first found to have a MEK mutation (encoding MEK2P298L). MEK is involved in various human cancers such as non-small cell lung cancer (NSCLC), spurious melanoma, and pancreatic, colorectal, basal, breast, and liver cancer. To date, 4 MEK inhibitors i.e., trametinib, cobimetinib, selumetinib, and binimetinib have been approved by the FDA and several are under clinical trials. In this review, we have highlighted structural insights into the MEK1/2 proteins, such as the αC-helix, catalytic loop, P-loop, F-helix, hydrophobic pocket, and DFG motif. We have also discussed current issues with all FDA-approved MEK inhibitors or drugs under clinical trials and combination therapies to improve the efficacy of clinical drugs. Finally, this study addressed recent developments on synthetic MEK inhibitors (from their discovery in 1997 to 2022), their unique properties, and their relevance to MEK mutant inhibition.
Collapse
Affiliation(s)
- Teja Ram
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Ankit Kumar Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Adarsh Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Harshwardhan Singh
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| | - Prateek Pathak
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
- Pharmaceutical Analysis and Quality Assurance and Pharmaceutical Chemistry, GITAM School of Pharmacy at "Hyderabad Campus", GITAM (Deemed to be University) India
| | - Maria Grishina
- Laboratory of Computational Modeling of Drugs, Higher Medical and Biological School, South Ural State University Chelyabinsk 454008 Russia
| | - Habibullah Khalilullah
- Department of Pharmaceutical Chemistry and Pharmacognosy, Unaizah College of Pharmacy, Qassim University Unayzah 51911 Saudi Arabia
| | - Mariusz Jaremko
- Smart-Health Initiative (SHI) and Red Sea Research Center (RSRC), Division of Biological and Environmental Sciences and Engineering (BESE), King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Abdul-Hamid Emwas
- Core Labs, King Abdullah University of Science and Technology (KAUST) Thuwal 23955-6900 Saudi Arabia
| | - Amita Verma
- Bioorganic and Med. Chem. Res., Laboratory, Department of Pharmaceutical Sciences, Sam Higginbottom University of Agriculture, Technology and Sciences Prayagraj 211007 India
| | - Pradeep Kumar
- Department of Pharmaceutical Sciences and Natural Products, Central University of Punjab Ghudda Bathinda 151401 India
| |
Collapse
|
4
|
Rossor AM, Manji H. Toxic neuropathies. Curr Opin Neurol 2023; 36:402-409. [PMID: 37639472 DOI: 10.1097/wco.0000000000001193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/31/2023]
Abstract
PURPOSE OF REVIEW Immunotherapy has had a significant impact on the treatment of an increasing number of cancers as well as in inflammatory, rheumatological and gastroenterological conditions.Recreational nitrous oxide use is now a global epidemic. Linezolid is now recommended for the treatment of drug-resistant tuberculosis (TB); neuropathy is a significant cause of morbidity.Global warming will result in increasing toxin exposure, such as ciguatera, in previously unaffected areas. RECENT FINDINGS With increasing experience, the pathophysiology underlying the neuropathic complications of these drugs has become clear with guidelines now available, for the complications of immune check-point inhibitors and nitrous oxide toxicity. The optimum dose and duration of treatment for resistant TB with regimens, including linezolid, has been ascertained. SUMMARY Although neuropathic complications with immunotherapy are relatively rare, it is essential that they are recognized and treated early. Nitrous oxide toxicity should be in the differential diagnosis for all patients, particularly those of younger age, presenting with a neuropathy or myleo-neuropathy. Ciguatera toxicity is under recognized and its geographical spread will increase due to global warming. Further research is necessary on the mechanisms and treatment of both acute and chronic effects, which at present, are only symptomatic.
Collapse
Affiliation(s)
- Alexander M Rossor
- Queen Square Centre for Neuromuscular Diseases, National Hospital for Neurology, London, UK
| | | |
Collapse
|
5
|
Hao C, Li X, Wang Z, Liu L, He F, Pan Z. Optically activated MEK1/2 inhibitors (Opti-MEKi) as potential antimelanoma agents. Eur J Med Chem 2023; 251:115236. [PMID: 36924668 DOI: 10.1016/j.ejmech.2023.115236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 02/13/2023] [Accepted: 02/22/2023] [Indexed: 03/09/2023]
Abstract
Mitogen-activated protein kinase kinases 1/2 (MEK1/2) play critical roles in the canonical RAS/RAF/MEK/ERK pathway. Highly selective and potent non-ATP-competitive allosteric MEK1/2 inhibitors have been developed, and three of them were clinically approved for the treatment of BRAFV600 -mutant melanoma. However, the accompanying side effects of the systemically administered MEK1/2 drugs largely constrain their tolerable doses and efficacy. In this study, a series of mirdametinib-based optically activatable MEK1/2 inhibitors (opti-MEKi) were designed and synthesized. A structural-based design led to the discovery of photocaged compounds with dramatically diminished efficacy in vitro, whose activities can be spatiotemporally induced by short durations of irradiation of ultraviolet (365 nm) light. We demonstrated the robust photoactivation of MEK1/2 inhibition and antimelanoma activity in cultured human cells, as well as in a xenograft zebrafish model. Taken together, the modular approach presented herein provides a method for the optical control of MEK1/2 inhibitor activity, and these data support the further development of optically activatable agents for light-mediated antimelanoma phototherapy.
Collapse
Affiliation(s)
- Chenzhou Hao
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Xiaofeng Li
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhunchao Wang
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Lihong Liu
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Fengli He
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China
| | - Zhengying Pan
- State Key Laboratory of Chemical Oncogenomics, Provincial Key Laboratory of Chemical Genomics, Engineering Laboratory for Chiral Drug Synthesis, School of Chemical Biology and Biotechnology, Shenzhen Graduate School, Peking University, Shenzhen, 518055, China.
| |
Collapse
|
6
|
Wu CWK, Reid M, Leedham S, Lui RN. The emerging era of personalized medicine in advanced colorectal cancer. J Gastroenterol Hepatol 2022; 37:1411-1425. [PMID: 35815339 PMCID: PMC7617119 DOI: 10.1111/jgh.15937] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/06/2022] [Revised: 07/01/2022] [Accepted: 07/05/2022] [Indexed: 12/09/2022]
Abstract
Colorectal cancer (CRC) is a genetically heterogeneous disease with its pathogenesis often driven by varying genetic or epigenetic alterations. This has led to a substantial number of patients developing chemoresistance and treatment failure, resulting in a high mortality rate for advanced disease. Deep molecular analysis has allowed for the discovery of key intestinal signaling pathways which impacts colonic epithelial cell fate, and the integral role of the tumor microenvironment on cancer growth and dissemination. Through transitioning pre-clinical knowledge in research into clinical practice, many potential druggable targets within these pathways have been discovered in the hopes of overcoming the roadblocks encountered by conventional therapies. A personalized approach tailoring treatment according to the histopathological and molecular features of individual tumors can hopefully translate to better patient outcomes, and reduce the rate of recurrence in patients with advanced CRC. Herein, the latest understanding on the molecular science behind CRC tumorigenesis, and the potential treatment targets currently at the forefront of research are summarized.
Collapse
Affiliation(s)
- Claudia WK Wu
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
| | - Madeleine Reid
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Simon Leedham
- Translational Gastroenterology Unit, John Radcliffe hospital, University of Oxford, Oxford, United Kingdom
- Wellcome Centre for Human Genetics, Nuffield Department of Medicine, University of Oxford, Oxford, United Kingdom
| | - Rashid N Lui
- Institute of Digestive Disease, Chinese University of Hong Kong, Hong Kong, China
- Division of Gastroenterology and Hepatology, Department of Medicine and Therapeutics, Prince of Wales Hospital, Hong Kong, China
- Department of Clinical Oncology, Chinese University of Hong Kong, Hong Kong, China
| |
Collapse
|
7
|
Liu X, Zhao X, He Y, Tang Y, Yan XL, Zhao B, Dai Y. Dropped head syndrome: a rare adverse drug reaction identified in the FDA adverse event reporting system and review of case reports in the literature. Expert Opin Drug Saf 2022; 21:1329-1336. [PMID: 35315301 DOI: 10.1080/14740338.2022.2054986] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Abstract
BACKGROUND Dropped head syndrome (DHS) is a relatively rare disease, and its potential relationship with drug exposure has been postulated but is poorly understood. RESEARCH DESIGN AND METHODS This retrospective study evaluated the adverse event reports of DHS in the FDA adverse event reporting system (FAERS) between 1 January 2004, to 31 March 2021. Empirical Bayes Geometric Means (EBGM) and the lower 95% one-sided CI of EBGM were calculated to identify disproportionate reporting of DHS associated with drugs. In addition, published case reports were identified in the PubMed, Embase and Cochrane Library up to 5 August 2021. RESULTS There were 193 reports of DHS in the FAERS, in which nervous system agents were most frequently reported, followed by antineoplastic and immunomodulating agents. Pramipexole, ropinirole, levodopa, pregabalin, rotigotine, cisplatin, imatinib and botulinum toxin showed disproportionality signal based each on more than 5 cases. Ten published DHS case reports were identified in the literature. CONCLUSION Our study provides a more explicit profile on the occurrences and characteristics of DHS associated with drugs by analyzing the FAERS data and indicates that exposure of certain drug showed disproportionality signal with the increased DHS risk, which suggests the importance of further clinical and observational investigations.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,Dongcheng, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China
| | - Xiaoyue Zhao
- Institute of Materia Medica, Chinese Academy of Medical Sciences & Peking Union Medical College, Beijing, Dongcheng, China.,Departments of Obstetrics and Gynecology, China Medical Science Research Center, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,Dongcheng, China
| | - Yangyang He
- College of Traditional Chinese Medicine, Henan University, Kaifeng, Henan, China
| | - Yan Tang
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,Dongcheng, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China
| | - Xue-Lian Yan
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,Dongcheng, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China
| | - Bin Zhao
- Department of Pharmacy, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing,Dongcheng, China.,State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China
| | - Yi Dai
- State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China.,Department of Neurology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, Dongcheng, China
| |
Collapse
|
8
|
Ngan HL, Law CH, Choi YCY, Chan JYS, Lui VWY. Precision drugging of the MAPK pathway in head and neck cancer. NPJ Genom Med 2022; 7:20. [PMID: 35296678 PMCID: PMC8927572 DOI: 10.1038/s41525-022-00293-1] [Citation(s) in RCA: 32] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Accepted: 02/15/2022] [Indexed: 01/12/2023] Open
Abstract
The mitogen-activating protein kinase (MAPK) pathway is central for cell proliferation, differentiation, and senescence. In human, germline defects of the pathway contribute to developmental and congenital head and neck disorders. Nearly 1/5 of head and neck squamous cell carcinoma (HNSCC) harbors MAPK pathway mutations, which are largely activating mutations. Yet, previous approaches targeting the MAPK pathway in HNSCC were futile. Most recent clinical evidences reveal remarkable, or even exceptional pharmacologic vulnerabilities of MAPK1-mutated, HRAS-mutated, KRAS-germline altered, as well as BRAF-mutated HNSCC patients with various targeted therapies, uncovering diverse opportunities for precision drugging this pathway at multiple “genetically condemned” nodes. Further, recent patient tumor omics unveil novel effects of MAPK aberrations on direct induction of CD8+ T cell recruitment into the HNSCC microenvironment, providing evidences for future investigation of precision immunotherapy for this large subset of patients. MAPK pathway-mutated HNSCC should warrant precision therapy assessments in vigorous manners.
Collapse
Affiliation(s)
- Hoi-Lam Ngan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Chun-Ho Law
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | | | - Jenny Yu-Sum Chan
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong
| | - Vivian Wai Yan Lui
- School of Biomedical Sciences, Faculty of Medicine, The Chinese University of Hong Kong, Hong Kong SAR, Hong Kong. .,Georgia Cancer Center, and Department of Medicine, Medical College of Georgia, Augusta University, Georgia, GA, 30912, USA.
| |
Collapse
|
9
|
Nguyen LH, Leiser SC, Song D, Brunner D, Roberds SL, Wong M, Bordey A. Inhibition of MEK-ERK signaling reduces seizures in two mouse models of tuberous sclerosis complex. Epilepsy Res 2022; 181:106890. [PMID: 35219048 PMCID: PMC8930622 DOI: 10.1016/j.eplepsyres.2022.106890] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Revised: 02/02/2022] [Accepted: 02/17/2022] [Indexed: 12/25/2022]
Abstract
Tuberous sclerosis complex (TSC) is a monogenic disorder characterized by hyperactivation of the mTOR signaling pathway and developmental brain malformations leading to intractable epilepsy. Although treatment with the recently approved mTOR inhibitor, everolimus, results in clinically relevant seizure suppression in up to 40% of TSC patients, seizures remain uncontrolled in a large number of cases, underscoring the need to identify novel treatment targets. The MEK-ERK signaling pathway has been found to be aberrantly activated in TSC and inhibition of MEK-ERK activity independently of mTOR rescued neuronal dendrite overgrowth in mice modeling TSC neuropathology. Here, we evaluated the efficacy of MEK-ERK inhibition on seizures in two mouse models of TSC. We found that treatment with the MEK inhibitor PD0325901 (mirdametinib) significantly reduced seizure activity in both TSC mouse models. These findings support inhibiting MEK-ERK activity as a potential alternative strategy to treat seizures in TSC.
Collapse
Affiliation(s)
- Lena H. Nguyen
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA,Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA
| | - Steven C. Leiser
- Department of Translational EEG, PsychoGenics, Inc., Paramus, NJ, USA
| | - Dekun Song
- Department of Translational EEG, PsychoGenics, Inc., Paramus, NJ, USA
| | | | | | - Michael Wong
- Department of Neurology, Washington University School of Medicine, St. Louis, MO, USA
| | - Angelique Bordey
- Department of Neurosurgery, Yale University School of Medicine, New Haven, CT, USA; Department of Cellular & Molecular Physiology, Yale University School of Medicine, New Haven, CT, USA.
| |
Collapse
|
10
|
Wang S, Li J, Wang Y. WMMDCA: Prediction of Drug Responses by Weight-Based Modular Mapping in Cancer Cell Lines. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2021; 18:2733-2740. [PMID: 32142453 DOI: 10.1109/tcbb.2020.2976997] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Due to the high consumption of cost and time for experimental verification in clinical trials, drug response prediction by computational models have become important challenges. The existing drug response data in diverse cell lines enable prediction of potential sensitive associations. Here, we propose a weight-based modular mapping method, named as WMMDCA, to predict drug-cell line associations. The method fully considers the effects of drugs' chemical structural feature, and adds modular information into the network projection. Leave-one-out cross-validation was used to evaluate the predictive ability of WMMDCA, which showed the best performance among several state-of-the-art methods in not only the whole dataset but also the major tissue types of cell lines. Literature support of highly ranked potential associations was found manually, demonstrating the effectiveness of WMMDCA on drug response prediction.
Collapse
|
11
|
Teo MYM, Fong JY, Lim WM, In LLA. Current Advances and Trends in KRAS Targeted Therapies for Colorectal Cancer. Mol Cancer Res 2021; 20:30-44. [PMID: 34462329 DOI: 10.1158/1541-7786.mcr-21-0248] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 06/25/2021] [Accepted: 08/24/2021] [Indexed: 11/16/2022]
Abstract
Kirsten Rat Sarcoma (KRAS) gene somatic point mutations is one of the most prominently mutated proto-oncogenes known to date, and accounts for approximately 60% of all colorectal cancer cases. One of the most exciting drug development areas against colorectal cancer is the targeting of undruggable kinases and kinase-substrate molecules, although whether and how they can be integrated with other therapies remains a question. Current clinical trial data have provided supporting evidence on the use of combination treatment involving MEK inhibitors and either one of the PI3K inhibitors for patients with metastatic colorectal cancer to avoid the development of resistance and provide effective therapeutic outcome rather than using a single agent alone. Many clinical trials are also ongoing to evaluate different combinations of these pathway inhibitors in combination with immunotherapy for patients with colorectal cancer whose current palliative treatment options are limited. Nevertheless, continued assessment of these targeted cancer therapies will eventually allow patients with colorectal cancer to be treated using a personalized medicine approach. In this review, the most recent scientific approaches and clinical trials targeting KRAS mutations directly or indirectly for the management of colorectal cancer are discussed.
Collapse
Affiliation(s)
- Michelle Yee Mun Teo
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Jung Yin Fong
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Wan Ming Lim
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia
| | - Lionel Lian Aun In
- Department of Biotechnology, Faculty of Applied Sciences, UCSI University, Kuala Lumpur, Malaysia.
| |
Collapse
|
12
|
Solares I, Viñal D, Morales-Conejo M, Rodriguez-Salas N, Feliu J. Novel molecular targeted therapies for patients with neurofibromatosis type 1 with inoperable plexiform neurofibromas: a comprehensive review. ESMO Open 2021; 6:100223. [PMID: 34388689 PMCID: PMC8363824 DOI: 10.1016/j.esmoop.2021.100223] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 11/30/2022] Open
Abstract
Neurofibromatosis type 1 (NF1) is a genetic disorder that carries a higher risk of tumor development. Plexiform neurofibromas (PNs) are present in 50% of NF1 and cause significant morbidity when surgery is not feasible. Systemic therapies had not succeeded to reduce PN tumor volume until 2016 when the first trial with an MAPK/extracellular-signal-regulated kinase (MEK) inhibitor was published. We performed a systematic research on novel targeted therapies for patients with NF1 and PNs in PubMed, EMBASE, and conference abstracts with the last update in February 2021. Since 2016, seven trials have reported positive results with MEK inhibitors and other molecular targeted therapies (cabozantinib). Selumetinib has shown an overall response rate of 68% in children with NF1 and symptomatic inoperable PNs, and was associated with pain improvement and a manageable adverse events profile. This led to Food and Drug Administration (FDA) approval of selumetinib in May 2020. Recently, cabozantinib and mirdametinib have also proven their efficacy in adult population. Other MEK inhibitors such as trametinib and binimetinib have also communicated promising preliminary results. Ongoing trials in different populations and with intermittent dosing strategies are underway.
Collapse
Affiliation(s)
- I Solares
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain
| | - D Viñal
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain.
| | - M Morales-Conejo
- Department of Internal Medicine, Reference Center for Inherited Metabolic Disease - MetabERN, University Hospital 12 de Octubre, UCM Madrid, Madrid, Spain; Grupo de Enfermedades Mitocondriales y Neuromusculares, Instituto de Investigación Hospital 12 de Octubre (i+12), Centro de Investigación Biomédica en Red de Enfermedades Raras (CIBERER), Madrid, Spain
| | - N Rodriguez-Salas
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| | - J Feliu
- Department of Medical Oncology, Hospital Universitario La Paz, Madrid, Spain; Translational Oncology Group, IdiPAZ, Madrid, Spain; Faculty of Medicine, Universidad Autónoma de Madrid, Madrid, Spain; CIBERONC, Madrid, Spain
| |
Collapse
|
13
|
Koh SB, Ross K, Isakoff SJ, Melkonjan N, He L, Matissek KJ, Schultz A, Mayer EL, Traina TA, Carey LA, Rugo HS, Liu MC, Stearns V, Langenbucher A, Saladi SV, Ramaswamy S, Lawrence MS, Ellisen LW. RASAL2 Confers Collateral MEK/EGFR Dependency in Chemoresistant Triple-Negative Breast Cancer. Clin Cancer Res 2021; 27:4883-4897. [PMID: 34168046 DOI: 10.1158/1078-0432.ccr-21-0714] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2021] [Revised: 04/30/2021] [Accepted: 06/18/2021] [Indexed: 12/12/2022]
Abstract
PURPOSE While chemotherapy remains the standard treatment for triple-negative breast cancer (TNBC), identifying and managing chemoresistant tumors has proven elusive. We sought to discover hallmarks and therapeutically actionable features of refractory TNBC through molecular analysis of primary chemoresistant TNBC specimens. EXPERIMENTAL DESIGN We performed transcriptional profiling of tumors from a phase II clinical trial of platinum chemotherapy for advanced TNBC (TBCRC-009), revealing a gene expression signature that identified de novo chemorefractory tumors. We then employed pharmacogenomic data mining, proteomic and other molecular studies to define the therapeutic vulnerabilities of these tumors. RESULTS We reveal the RAS-GTPase-activating protein (RAS-GAP) RASAL2 as an upregulated factor that mediates chemotherapy resistance but also an exquisite collateral sensitivity to combination MAP kinase kinase (MEK1/2) and EGFR inhibitors in TNBC. Mechanistically, RASAL2 GAP activity is required to confer kinase inhibitor sensitivity, as RASAL2-high TNBCs sustain basal RAS activity through suppression of negative feedback regulators SPRY1/2, together with EGFR upregulation. Consequently, RASAL2 expression results in failed feedback compensation upon co-inhibition of MEK1/2 and EGFR that induces synergistic apoptosis in vitro and in vivo. In patients with TNBC, high RASAL2 levels predict clinical chemotherapy response and long-term outcomes, and are associated via direct transcriptional regulation with activated oncogenic Yes-Associated Protein (YAP). Accordingly, chemorefractory patient-derived TNBC models exhibit YAP activation, high RASAL2 expression, and tumor regression in response to MEK/EGFR inhibitor combinations despite well-tolerated intermittent dosing. CONCLUSIONS These findings identify RASAL2 as a mediator of TNBC chemoresistance that rewires MAPK feedback and cross-talk to confer profound collateral sensitivity to combination MEK1/2 and EGFR inhibitors.
Collapse
Affiliation(s)
- Siang-Boon Koh
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Kenneth Ross
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Steven J Isakoff
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Nsan Melkonjan
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Lei He
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Karina J Matissek
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Andrew Schultz
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts
| | - Erica L Mayer
- Harvard Medical School, Boston, Massachusetts.,Dana-Farber Cancer Institute, Boston, Massachusetts
| | | | - Lisa A Carey
- University of North Carolina at Chapel Hill, Chapel Hill, North Carolina
| | - Hope S Rugo
- University of California San Francisco, San Francisco, California
| | - Minetta C Liu
- Georgetown Lombardi Comprehensive Cancer Center, Washington, District of Columbia
| | - Vered Stearns
- Johns Hopkins University and Sidney Kimmel Cancer Center, Baltimore, Maryland
| | - Adam Langenbucher
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Srinivas Vinod Saladi
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts
| | - Sridhar Ramaswamy
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| | - Michael S Lawrence
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts.,Harvard Medical School, Boston, Massachusetts.,Broad Institute of MIT and Harvard University, Cambridge, Massachusetts
| | - Leif W Ellisen
- Massachusetts General Hospital Cancer Center, Boston, Massachusetts. .,Harvard Medical School, Boston, Massachusetts.,Ludwig Center at Harvard, Harvard University, Boston, Massachusetts
| |
Collapse
|
14
|
Retinal toxicities of systemic anticancer drugs. Surv Ophthalmol 2021; 67:97-148. [PMID: 34048859 DOI: 10.1016/j.survophthal.2021.05.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2020] [Revised: 05/08/2021] [Accepted: 05/10/2021] [Indexed: 01/07/2023]
Abstract
Newer anticancer drugs have revolutionized cancer treatment in the last decade, but conventional chemotherapy still occupies a central position in many cancers, with combination therapy and newer methods of delivery increasing their efficacy while minimizing toxicities. We discuss the retinal toxicities of anticancer drugs with an emphasis on the mechanism of toxicity. Uveitis is seen with the use of v-raf murine sarcoma viral oncogene homolog B editing anticancer inhibitors as well as immunotherapy. Most of the cases are mild with only anterior uveitis, but severe cases of posterior uveitis, panuveitis, and Vogt-Koyanagi-Harada-like disease may also occur. In the retina, a transient neurosensory detachment is observed in almost all patients on mitogen-activated protein kinase kinase (MEK) inhibitors. Microvasculopathy is often seen with interferon α, but vascular occlusion is a more serious toxicity caused by interferon α and MEK inhibitors. Crystalline retinopathy with or without macular edema may occur with tamoxifen; however, even asymptomatic patients may develop cavitatory spaces seen on optical coherence tomography. A unique macular edema with angiographic silence is characteristic of taxanes. Delayed dark adaptation has been observed with fenretinide. Interestingly, this drug is finding potential application in Stargardt disease and age-related macular degeneration.
Collapse
|
15
|
Weiss BD, Wolters PL, Plotkin SR, Widemann BC, Tonsgard JH, Blakeley J, Allen JC, Schorry E, Korf B, Robison NJ, Goldman S, Vinks AA, Emoto C, Fukuda T, Robinson CT, Cutter G, Edwards L, Dombi E, Ratner N, Packer R, Fisher MJ. NF106: A Neurofibromatosis Clinical Trials Consortium Phase II Trial of the MEK Inhibitor Mirdametinib (PD-0325901) in Adolescents and Adults With NF1-Related Plexiform Neurofibromas. J Clin Oncol 2021; 39:797-806. [PMID: 33507822 PMCID: PMC8078274 DOI: 10.1200/jco.20.02220] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022] Open
Abstract
Patients with neurofibromatosis type 1 (NF1) frequently develop plexiform neurofibromas (PNs), which can cause significant morbidity. We performed a phase II trial of the MAPK/ERK kinase inhibitor, mirdametinib (PD-0325901), in patients with NF1 and inoperable PNs. The primary objective was response rate based on volumetric magnetic resonance imaging analysis.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Bruce Korf
- University of Alabama-Birmingham, Birmingham, AL
| | | | | | | | - Chie Emoto
- Cincinnati Children's Hospital, Cincinnati, OH
| | | | | | - Gary Cutter
- University of Alabama-Birmingham, Birmingham, AL
| | | | - Eva Dombi
- NCI, Center for Cancer Research, Bethesda, MD
| | | | | | | |
Collapse
|
16
|
Zhao J, Galvez C, Beckermann KE, Johnson DB, Sosman JA. Novel insights into the pathogenesis and treatment of NRAS mutant melanoma. EXPERT REVIEW OF PRECISION MEDICINE AND DRUG DEVELOPMENT 2021; 6:281-294. [PMID: 34485698 PMCID: PMC8415440 DOI: 10.1080/23808993.2021.1938545] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
INTRODUCTION NRAS was the first mutated oncogene identified in melanoma and is currently the second most common driver mutation in this malignancy. For patients with NRASmutant advanced stage melanoma refractory to immunotherapy or with contraindications to immune-based regimens, there are few therapeutic options including low-efficacy chemotherapy regimens and binimetinib monotherapy. Here, we review recent advances in preclinical studies of molecular targets for NRAS mutant melanoma as well as the failures and successes of early-phase clinical trials. While there are no targeted therapies for NRAS-driven melanoma, there is great promise in approaches combining MEK inhibition with inhibitors of the focal adhesion kinase (FAK), inhibitors of autophagy pathways, and pan-RAF inhibitors. AREAS COVERED This review surveys new developments in all aspects of disease pathogenesis and potential treatment - including those that have failed, stalled, or progressed through various phases of preclinical and clinical development. EXPERT OPINION There are no currently approved targeted therapies for BRAF wild-type melanoma patients harboring NRAS driver mutations though an array of agents are in early phase clinical trials. The diverse strategies taken exploit combined MAP kinase signaling blockade with inhibition of cell cycle mediators, inhibition of the autophagy pathway, and alteration of kinases involved in actin cytoskeleton signaling. Future advances of developmental therapeutics into late stage trials may yield new options beyond immunotherapy for patients with advanced stage disease and NRAS mutation status.
Collapse
Affiliation(s)
- Jeffrey Zhao
- Northwestern University Feinberg School of Medicine
| | - Carlos Galvez
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| | - Kathryn Eby Beckermann
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Douglas B Johnson
- Vanderbilt University Medical Center, Department of Medicine, Division of Hematology and Oncology, 1301 Medical Center Drive, Nashville, 37232, USA
| | - Jeffrey A Sosman
- Northwestern Medicine, Division of Hematology and Oncology.,Robert H. Lurie Comprehensive Cancer Center
| |
Collapse
|
17
|
Non-Steroidal Anti-Inflammatory Drugs Increase Cisplatin, Paclitaxel, and Doxorubicin Efficacy against Human Cervix Cancer Cells. Pharmaceuticals (Basel) 2020; 13:ph13120463. [PMID: 33333716 PMCID: PMC7765098 DOI: 10.3390/ph13120463] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/03/2020] [Accepted: 11/05/2020] [Indexed: 12/26/2022] Open
Abstract
This study shows that the non-steroidal anti-inflammatory drug (NSAID) celecoxib and its non-cyclooxygenase-2 (COX2) analogue dimethylcelecoxib (DMC) exert a potent inhibitory effect on the growth of human cervix HeLa multi-cellular tumor spheroids (MCTS) when added either at the beginning (“preventive protocol”; IC50 = 1 ± 0.3 nM for celecoxib and 10 ± 2 nM for DMC) or after spheroid formation (“curative protocol”; IC50 = 7.5 ± 2 µM for celecoxib and 32 ± 10 µM for DMC). These NSAID IC50 values were significantly lower than those attained in bidimensional HeLa cells (IC50 = 55 ± 9 µM celecoxib and 48 ± 2 µM DMC) and bidimensional non-cancer cell cultures (3T3 fibroblasts and MCF-10A mammary gland cells with IC50 from 69 to >100 µM, after 24 h). The copper-based drug casiopeina II-gly showed similar potency against HeLa MCTS. Synergism analysis showed that celecoxib, DMC, and casiopeinaII-gly at sub-IC50 doses increased the potency of cisplatin, paclitaxel, and doxorubicin to hinder HeLa cell proliferation through a significant abolishment of oxidative phosphorylation in bidimensional cultures, with no apparent effect on non-cancer cells (therapeutic index >3.6). Similar results were attained with bidimensional human cervix cancer SiHa and human glioblastoma U373 cell cultures. In HeLa MCTS, celecoxib, DMC and casiopeina II-gly increased cisplatin toxicity by 41–85%. These observations indicated that celecoxib and DMC used as adjuvant therapy in combination with canonical anti-cancer drugs may provide more effective alternatives for cancer treatment.
Collapse
|
18
|
Wu X, Ouyang Y, Wang B, Lin J, Bai Y. Hypermethylation of the IRAK3-Activated MAPK Signaling Pathway to Promote the Development of Glioma. Cancer Manag Res 2020; 12:7043-7059. [PMID: 32848462 PMCID: PMC7425661 DOI: 10.2147/cmar.s252772] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2020] [Accepted: 06/25/2020] [Indexed: 12/21/2022] Open
Abstract
Objective This study aimed to elucidate the molecular mechanism underlying the involvement of abnormal DNA methylation in the development of glioma and identify potential new targets for glioma therapy. Methods The GSE79122 chip achieved from the Gene Expression Omnibus (GEO) database containing 69 glioma samples and 9 normal samples was analyzed. Methylation-specific polymerase chain reaction (MS-PCR or MSP), reverse transcription-PCR, and Western blot analysis were used to confirm the methylation level and expression level of the interleukin receptor-associated kinase (IRAK3) gene in glioma cells, 36 glioma samples, and the corresponding normal samples. In vitro, the proliferation, apoptosis rate, migration, and invasion abilities of glioma cells were detected by Cell Counting Kit-8 assay, Transwell assay, enzyme-linked immunosorbent assay, and flow cytometry, respectively. Besides, the xenograft assay of nude mice was used to confirm the effect of the IRAK3 on glioma in vivo. Results Microarray analysis showed that the IRAK3 was one of the most hypermethylated genes in glioma, and the related mitogen-activated protein kinase (MAPK) signaling pathway was activated. More experiments supported the higher methylation level and lower expression level of the IRAK3 in glioma tissues and cell lines. The viability, migration, and invasion ability of glioma cells significantly reduced and the apoptosis rate increased with the overexpression and demethylation of the IRAK3 in vitro. Besides, treatment with the MAPK signaling pathway inhibitor PD325901 alone or the overexpression or demethylation of the IRAK3 had a similar effect as the overexpression or demethylation of the IRAK3 alone in glioma cells. In vivo, xenotransplantation experiments in nude mice confirmed that the overexpression and demethylation of the IRAK3 and suppression of the MAPK signaling pathway inhibited the development of glioma. Conclusion IRAK3 inhibited the development of glioma progression through the MAPK signaling pathway.
Collapse
Affiliation(s)
- Xinghai Wu
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Yian Ouyang
- Department of Neurosurgery, First Affiliated Hospital of Gannan Medical College, Jiangxi, People's Republic of China
| | - Bin Wang
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Jian Lin
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| | - Yun Bai
- Department of Neurosurgery, Zhangye People's Hospital Affiliated to Hexi University, Gansu, People's Republic of China
| |
Collapse
|
19
|
Safety of BRAF+MEK Inhibitor Combinations: Severe Adverse Event Evaluation. Cancers (Basel) 2020; 12:cancers12061650. [PMID: 32580351 PMCID: PMC7352287 DOI: 10.3390/cancers12061650] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2020] [Revised: 06/12/2020] [Accepted: 06/15/2020] [Indexed: 12/12/2022] Open
Abstract
Aim: The selective BRAF and MEK inhibitors (BRAFi+MEKi) have substantially improved the survival of melanoma patients with BRAF V600 mutations. However, BRAFi+MEKi can also cause severe or fatal outcomes. We aimed to identify and compare serious adverse events (sAEs) that are significantly associated with BRAFi+MEKi. Methods: In this pharmacovigilance study, we reviewed FDA Adverse Event Reporting System (FAERS) data in order to detect sAE reporting in patients treated with the combination therapies vemurafenib+cobimetinib (V+C), dabrafenib+trametinib (D+T) and encorafenib+binimetinib (E+B). We evaluated the disproportionate reporting of BRAFi+MEKi-associated sAEs. Significant associations were further analyzed to identify combination-specific safety signals among BRAFi+MEKi. Results: From January 2018 through June 2019, we identified 11,721 sAE reports in patients receiving BRAFi+MEKi. Comparison of BRAFi+MEKi combinations demonstrates that skin toxicities, including Stevens–Johnson syndrome, were disproportionally reported using V+C, with an age-adjusted reporting odds ratio (adj. ROR) of 3.4 (95%CI, 2.9–4.0), whereas fever was most significantly associated with D+T treatment with an adj. ROR of 1.9 (95%CI, 1.5–2.4). Significant associations using E+B treatment include peripheral neuropathies (adj. ROR 2.7; 95%CI, 1.2–6.1) and renal disorders (adj. ROR 4.1; 95%CI, 1.3–12.5). Notably, we found an increase in the proportion of Guillain–Barré syndrome reports (adj. ROR 8.5; 95%CI, 2.1–35.0) in patients administered E+B. Conclusion: BRAFi+MEKi combinations share a similar safety profile attributed to class effects, yet concomitantly, these combinations display distinctive effects that can dramatically impact patients’ health. Owing to the limitations of pharmacovigilance studies, some findings warrant further validation. However, the possibility of an increased risk for these events should be considered in patient care.
Collapse
|
20
|
Song K, Lu H, Jin L, Wang K, Guo W, Zheng H, Li K, He C, You T, Fu Y, Yang J, Zhao W, Guo Z. Qualitative Ras pathway signature for cetuximab therapy reveals resistant mechanism in colorectal cancer. FEBS J 2020; 287:5236-5248. [PMID: 32216031 DOI: 10.1111/febs.15306] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2019] [Revised: 02/16/2020] [Accepted: 03/18/2020] [Indexed: 01/26/2023]
Abstract
Cetuximab therapy, which heavily relies on the activation of Ras pathway, has been used in KRAS, NRAS, BRAF, and PIK3CA wild-type colorectal cancer (CRC) (Ras-normal). However, the response rate only reached 60%, due to false-negative mutation detection and mutation-like transcriptome features in wild-type patients. Herein, by integrating RNA-seq, microarray, and mutation data, we developed a Ras pathway signature by characterizing KRAS/NRAS/BRAF/PIK3CA mutations to identify the hidden nonresponders from the Ras-normal patients by mutation detection. Using public and in-house data of CRC patients treated with cetuximab, discovery of the signature could identify cetuximab-resistant samples from the Ras-normal samples. Cetuximab resistance-related genes, such as PTEN, were significantly and frequently mutated in the identified Ras-activated samples, whereas two cetuximab sensitivity-related genes, APC and TP53, showed comutation and significantly higher mutation frequencies in the remaining Ras-normal samples. Furthermore, all the NF1- and BCL2L1-mutated samples were identified as Ras-activated from the Ras-normal samples by the Ras pathway signature with significantly under-regulated expression. Genes co-expressed with the two genes were both involved in Ras signaling pathway, the out-of-control of which could be attributed by the genes' loss-of-function mutations. To improve the treatment of cetuximab in CRC, NF1 and BCL2L1 could be used as complementary detection technique to those applied in clinical. In conclusion, the proposed Ras pathway signature could identify the hidden CRC patients resistant to cetuximab therapy and help to reveal resistance mechanisms.
Collapse
Affiliation(s)
- Kai Song
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Haibo Lu
- The GI Department, Harbin Medical University Cancer Hospital, China
| | - Liangliang Jin
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Kai Wang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Wenbing Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Hailong Zheng
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Keru Li
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Chuchu He
- The GI Department, Harbin Medical University Cancer Hospital, China
| | - Tianyi You
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Yelin Fu
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Jing Yang
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Wenyuan Zhao
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| | - Zheng Guo
- Department of Systems Biology, College of Bioinformatics Science and Technology, Harbin Medical University, China
| |
Collapse
|
21
|
Current Advances in the Treatment of BRAF-Mutant Melanoma. Cancers (Basel) 2020; 12:cancers12020482. [PMID: 32092958 PMCID: PMC7072236 DOI: 10.3390/cancers12020482] [Citation(s) in RCA: 128] [Impact Index Per Article: 25.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2020] [Revised: 02/02/2020] [Accepted: 02/14/2020] [Indexed: 12/12/2022] Open
Abstract
Melanoma is the most lethal form of skin cancer. Melanoma is usually curable with surgery if detected early, however, treatment options for patients with metastatic melanoma are limited and the five-year survival rate for metastatic melanoma had been 15-20% before the advent of immunotherapy. Treatment with immune checkpoint inhibitors has increased long-term survival outcomes in patients with advanced melanoma to as high as 50% although individual response can vary greatly. A mutation within the MAPK pathway leads to uncontrollable growth and ultimately develops into cancer. The most common driver mutation that leads to this characteristic overactivation in the MAPK pathway is the B-RAF mutation. Current combinations of BRAF and MEK inhibitors that have demonstrated improved patient outcomes include dabrafenib with trametinib, vemurafenib with cobimetinib or encorafenib with binimetinib. Treatment with BRAF and MEK inhibitors has met challenges as patient responses began to drop due to the development of resistance to these inhibitors which paved the way for development of immunotherapies and other small molecule inhibitor approaches to address this. Resistance to these inhibitors continues to push the need to expand our understanding of novel mechanisms of resistance associated with treatment therapies. This review focuses on the current landscape of how resistance occurs with the chronic use of BRAF and MEK inhibitors in BRAF-mutant melanoma and progress made in the fields of immunotherapies and other small molecules when used alone or in combination with BRAF and MEK inhibitors to delay or circumvent the onset of resistance for patients with stage III/IV BRAF mutant melanoma.
Collapse
|
22
|
Cai J, Cai H, Chen J, Yang X. Identifying "Many-to-Many" Relationships between Gene-Expression Data and Drug-Response Data via Sparse Binary Matching. IEEE/ACM TRANSACTIONS ON COMPUTATIONAL BIOLOGY AND BIOINFORMATICS 2020; 17:165-176. [PMID: 29994482 DOI: 10.1109/tcbb.2018.2849708] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
Identifying gene-drug patterns is a critical step in pharmacology for unveiling disease mechanisms and drug discovery. The availability of high-throughput technologies accumulates massive large-scale pharmacological and genomic data, and thus provides a new substantial opportunity to deeply understand how the oncogenic genes and the therapeutic drugs relate to each other. However, most previous studies merely used the pharmacological and genomic datasets without any prior knowledge to infer the gene-drug patterns. Here, we proposed a novel network-guided sparse binary matching model (NSBM) to decode these relationships hidden in the datasets. Not only the large-scale gene-expression data and drug-response data are jointly analyzed in our method, but also the additional prior information of genes and drugs are integrated into the form of network-based regularization. The essential structure of the NSBM model is a convex quadratic minimization problem with network-based penalties. It was demonstrated to be superior when compared with two benchmark methods through extensive experiments on both synthetic and empirical data. Posterior validation, including gene-ontology and enrichment analysis, confirmed the effectiveness of NSBM in revealing gene-drug patterns on a large-scale heterogeneous data source.
Collapse
|
23
|
Turturro SB, Najor MS, Yung T, Portt L, Malarkey CS, Abukhdeir AM, Cobleigh MA. Somatic loss of PIK3R1 may sensitize breast cancer to inhibitors of the MAPK pathway. Breast Cancer Res Treat 2019; 177:325-333. [PMID: 31209687 DOI: 10.1007/s10549-019-05320-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Accepted: 06/10/2019] [Indexed: 01/04/2023]
Abstract
PURPOSE The PI3K pathway, which includes the PI3K catalytic subunits p110α (PIK3CA) and the PI3K regulatory subunit p85α (PIK3R1), is the most frequently altered pathway in cancer. We encountered a breast cancer patient whose tumor contained a somatic alteration in PIK3R1. Some commercial sequencing platforms suggest that somatic mutations in PIK3R1 may sensitize cancers to drugs that inhibit the mammalian target of rapamycin (mTOR). However, a review of the preclinical and clinical literature did not find evidence substantiating that hypothesis. The purpose of this study was to knock out PIK3R1 in order to determine the optimal therapeutic approach for breast cancers lacking p85α. METHODS We created an isogenic cellular system by knocking out both alleles of the PIK3R1 gene in the non-tumorigenic human breast cell line MCF-10A. Knockout cells were compared with wild-type cells by measuring growth, cellular signaling, and response to drugs. RESULTS We observed hyperphosphorylation of MEK in these knockouts, which sensitized PIK3R1-null cells to a MEK inhibitor, trametinib. However, they were not sensitized to the mTOR inhibitor, everolimus. CONCLUSIONS Our findings suggest that breast cancers with loss of p85α may not respond to mTOR inhibition, but may be sensitive to MEK inhibition.
Collapse
Affiliation(s)
- Sanja B Turturro
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Matthew S Najor
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Timothy Yung
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Liam Portt
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| | - Christopher S Malarkey
- School of Pharmacy, Rueckert-Hartman College for Health Professions, Regis University, 3333 Regis Boulevard, H-28, Denver, CO, 80221-1099, USA
| | - Abde M Abukhdeir
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA.
| | - Melody A Cobleigh
- Division of Hematology, Oncology, and Cell Therapy, Department of Internal Medicine, Rush University Medical Center, 1725 W. Harrison St., Chicago, IL, 60612, USA
| |
Collapse
|
24
|
Savoia P, Fava P, Casoni F, Cremona O. Targeting the ERK Signaling Pathway in Melanoma. Int J Mol Sci 2019; 20:ijms20061483. [PMID: 30934534 PMCID: PMC6472057 DOI: 10.3390/ijms20061483] [Citation(s) in RCA: 118] [Impact Index Per Article: 19.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2019] [Revised: 03/17/2019] [Accepted: 03/19/2019] [Indexed: 12/24/2022] Open
Abstract
The discovery of the role of the RAS/RAF/MEK/ERK pathway in melanomagenesis and its progression have opened a new era in the treatment of this tumor. Vemurafenib was the first specific kinase inhibitor approved for therapy of advanced melanomas harboring BRAF-activating mutations, followed by dabrafenib and encorafenib. However, despite the excellent results of first-generation kinase inhibitors in terms of response rate, the average duration of the response was short, due to the onset of genetic and epigenetic resistance mechanisms. The combination therapy with MEK inhibitors is an excellent strategy to circumvent drug resistance, with the additional advantage of reducing side effects due to the paradoxical reactivation of the MAPK pathway. The recent development of RAS and extracellular signal-related kinases (ERK) inhibitors promises to add new players for the ultimate suppression of this signaling pathway and the control of pathway-related drug resistance. In this review, we analyze the pharmacological, preclinical, and clinical trial data of the various MAPK pathway inhibitors, with a keen interest for their clinical applicability in the management of advanced melanoma.
Collapse
Affiliation(s)
- Paola Savoia
- Department of Health Science, University of Eastern Piedmont, via Solaroli 17, 28100 Novara, Italy.
| | - Paolo Fava
- Section of Dermatology, Department of Medical Science, University of Turin, 10124 Turin, Italy.
| | - Filippo Casoni
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| | - Ottavio Cremona
- San Raffaele Scientific Institute, Division of Neuroscience, via Olgettina 58, 20132 Milano, Italy.
- Università Vita Salute San Raffaele, via Olgettina 58, 20132 Milano, Italy.
| |
Collapse
|
25
|
Acute motor and sensory axonal neuropathy related to treatment with MEK inhibitors in a patient with advanced melanoma. Melanoma Res 2018; 27:632-634. [PMID: 28872488 DOI: 10.1097/cmr.0000000000000390] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
Abstract
Approximately one-half of advanced cutaneous melanomas have a V600 mutation in the BRAF gene that activates the mitogen-activated protein kinase pathway. The combination of BRAF plus MEK inhibitors is one of the most effective treatments for these patients. Severe neurological toxicities have been reported in the literature. However, these toxicities are very rare. Here, we present one patient with acute motor and sensory axonal neuropathy, which is a subtype of Guillain-Barre syndrome, secondary to treatment with MEK inhibitors. This side effect had never been described as related to these agents. However, the mitogen-activated protein kinase pathway can be involved in Guillain-Barre syndrome, and awareness of early neurological injury signs is important in patients treated with MEK inhibitors.
Collapse
|
26
|
Way GP, Sanchez-Vega F, La K, Armenia J, Chatila WK, Luna A, Sander C, Cherniack AD, Mina M, Ciriello G, Schultz N, Sanchez Y, Greene CS. Machine Learning Detects Pan-cancer Ras Pathway Activation in The Cancer Genome Atlas. Cell Rep 2018; 23:172-180.e3. [PMID: 29617658 PMCID: PMC5918694 DOI: 10.1016/j.celrep.2018.03.046] [Citation(s) in RCA: 96] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2017] [Revised: 02/23/2018] [Accepted: 03/12/2018] [Indexed: 12/25/2022] Open
Abstract
Precision oncology uses genomic evidence to match patients with treatment but often fails to identify all patients who may respond. The transcriptome of these "hidden responders" may reveal responsive molecular states. We describe and evaluate a machine-learning approach to classify aberrant pathway activity in tumors, which may aid in hidden responder identification. The algorithm integrates RNA-seq, copy number, and mutations from 33 different cancer types across The Cancer Genome Atlas (TCGA) PanCanAtlas project to predict aberrant molecular states in tumors. Applied to the Ras pathway, the method detects Ras activation across cancer types and identifies phenocopying variants. The model, trained on human tumors, can predict response to MEK inhibitors in wild-type Ras cell lines. We also present data that suggest that multiple hits in the Ras pathway confer increased Ras activity. The transcriptome is underused in precision oncology and, combined with machine learning, can aid in the identification of hidden responders.
Collapse
Affiliation(s)
- Gregory P Way
- Genomics and Computational Biology Graduate Group, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA 19104, USA; Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA
| | - Francisco Sanchez-Vega
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Konnor La
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Joshua Armenia
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Walid K Chatila
- Marie-Josée & Henry R. Kravis Center for Molecular Oncology, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Augustin Luna
- cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Chris Sander
- cBio Center, Department of Biostatistics and Computational Biology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Cell Biology, Harvard Medical School, Boston, MA 02115, USA
| | - Andrew D Cherniack
- The Eli and Edythe L. Broad Institute of Massachusetts Institute of Technology and Harvard University, Cambridge, MA 02142, USA; Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA
| | - Marco Mina
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Giovanni Ciriello
- Department of Computational Biology, University of Lausanne, Lausanne, Switzerland
| | - Nikolaus Schultz
- Department of Epidemiology and Biostatistics, Memorial Sloan Kettering Cancer Center, New York, NY 10065, USA
| | - Yolanda Sanchez
- Department of Molecular Systems Biology, Norris Cotton Cancer Center, Geisel School of Medicine at Dartmouth, Hanover, NH 03755, USA
| | - Casey S Greene
- Department of Systems Pharmacology and Translational Therapeutics, University of Pennsylvania, Philadelphia, PA 19104, USA.
| |
Collapse
|
27
|
Kleemann J, Hrgovic I, Hempel K, Kaufmann R, Meissner M. Dropped-head syndrome in a patient under treatment with the MEK inhibitor trametinib for NRAS-mutated metastatic melanoma. Clin Exp Dermatol 2018; 43:195-196. [DOI: 10.1111/ced.13297] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 02/08/2017] [Indexed: 11/28/2022]
Affiliation(s)
- J. Kleemann
- Department of Dermatology, Venereology and Allergy; University Hospital Frankfurt; Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany
| | - I. Hrgovic
- Department of Dermatology, Venereology and Allergy; University Hospital Frankfurt; Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany
| | - K. Hempel
- Department of Dermatology, Venereology and Allergy; University Hospital Frankfurt; Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany
| | - R. Kaufmann
- Department of Dermatology, Venereology and Allergy; University Hospital Frankfurt; Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany
| | - M. Meissner
- Department of Dermatology, Venereology and Allergy; University Hospital Frankfurt; Theodor-Stern-Kai 7 D-60590 Frankfurt am Main Germany
| |
Collapse
|
28
|
Longvert C, Maisonobe T, Saiag P, Auré K. On/off dropped head syndrome: A severe adverse event after prolonged treatment with MEK inhibitor. Eur J Cancer 2017; 91:174-176. [PMID: 29254632 DOI: 10.1016/j.ejca.2017.11.027] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2017] [Accepted: 11/23/2017] [Indexed: 11/28/2022]
Affiliation(s)
- C Longvert
- Dermatology Department, Paris Ile-de-France Ouest Hospital Group, AP-HP, 92100 Boulogne-Billancourt, France; EA4340, Versailles Saint-Quentin-en-Yvelines University, Health Sciences UFR, 92100 Boulogne-Billancourt, France
| | - T Maisonobe
- Neurophysiology and Neuropathology Departments, La Pitié-Salpêtrière-Charles-Foix Universitary Hospitals, AP-HP, 75013 Paris, France
| | - P Saiag
- Dermatology Department, Paris Ile-de-France Ouest Hospital Group, AP-HP, 92100 Boulogne-Billancourt, France; EA4340, Versailles Saint-Quentin-en-Yvelines University, Health Sciences UFR, 92100 Boulogne-Billancourt, France
| | - K Auré
- U1179 Inserm, Physiology Laboratory TITAN, Health Sciences UFR, Versailles Saint-Quentin-en-Yvelines University, 78180 Montigny-le-Bretonneux, France; Physiology- Functional Explorations Department, Paris Ile-de-France Ouest Hospital Group, AP-HP, 92100 Boulogne-Billancourt, France.
| |
Collapse
|
29
|
Current Development Status of MEK Inhibitors. Molecules 2017; 22:molecules22101551. [PMID: 28954413 PMCID: PMC6151813 DOI: 10.3390/molecules22101551] [Citation(s) in RCA: 174] [Impact Index Per Article: 21.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2017] [Revised: 09/11/2017] [Accepted: 09/12/2017] [Indexed: 01/13/2023] Open
Abstract
The current development status of mitogen-activated protein kinase kinase (MEK) inhibitors, including the preclinical data and clinical study progress, has been summarized in this review. Different MEK inhibitors, possessing specific physicochemical properties and bioactivity characteristics, may provide different options for patients seeking treatment for cancer. Moreover, the combination of the MEK inhibitors with other therapies-such as chemotherapy, targeted therapy, and immunotherapy-may be a promising approach for clinical use.
Collapse
|
30
|
Heterogeneity Aware Random Forest for Drug Sensitivity Prediction. Sci Rep 2017; 7:11347. [PMID: 28900181 PMCID: PMC5595802 DOI: 10.1038/s41598-017-11665-4] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Accepted: 08/29/2017] [Indexed: 12/26/2022] Open
Abstract
Samples collected in pharmacogenomics databases typically belong to various cancer types. For designing a drug sensitivity predictive model from such a database, a natural question arises whether a model trained on diverse inter-tumor heterogeneous samples will perform similar to a predictive model that takes into consideration the heterogeneity of the samples in model training and prediction. We explore this hypothesis and observe that ensemble model predictions obtained when cancer type is known out-perform predictions when that information is withheld even when the samples sizes for the former is considerably lower than the combined sample size. To incorporate the heterogeneity idea in the commonly used ensemble based predictive model of Random Forests, we propose Heterogeneity Aware Random Forests (HARF) that assigns weights to the trees based on the category of the sample. We treat heterogeneity as a latent class allocation problem and present a covariate free class allocation approach based on the distribution of leaf nodes of the model ensemble. Applications on CCLE and GDSC databases show that HARF outperforms traditional Random Forest when the average drug responses of cancer types are different.
Collapse
|
31
|
TAMH: A Useful In Vitro Model for Assessing Hepatotoxic Mechanisms. BIOMED RESEARCH INTERNATIONAL 2016; 2016:4780872. [PMID: 28074186 PMCID: PMC5198153 DOI: 10.1155/2016/4780872] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Revised: 11/10/2016] [Accepted: 11/24/2016] [Indexed: 02/07/2023]
Abstract
In vitro models for hepatotoxicity can be useful tools to predict in vivo responses. In this review, we discuss the use of the transforming growth factor-α transgenic mouse hepatocyte (TAMH) cell line, which is an attractive model to study drug-induced liver injury due to its ability to retain a stable phenotype and express drug-metabolizing enzymes. Hepatotoxicity involves damage to the liver and is often associated with chemical exposure. Since the liver is a major site for drug metabolism, drug-induced liver injury is a serious health concern for certain agents. At the molecular level, various mechanisms may protect or harm the liver during drug-induced hepatocellular injury including signaling pathways and endogenous factors (e.g., Bcl-2, GSH, Nrf2, or MAPK). The interplay between these and other pathways in the hepatocyte can change upon drug or drug metabolite exposure leading to intracellular stress and eventually cell death and liver injury. This review focuses on mechanistic studies investigating drug-induced toxicity in the TAMH line and how alterations to hepatotoxic mechanisms in this model relate to the in vivo situation. The agents discussed herein include acetaminophen (APAP), tetrafluoroethylcysteine (TFEC), flutamide, PD0325901, lapatinib, and flupirtine.
Collapse
|
32
|
Wong CH, Li YJ, Chen YC. Therapeutic potential of targeting acinar cell reprogramming in pancreatic cancer. World J Gastroenterol 2016; 22:7046-57. [PMID: 27610015 PMCID: PMC4988312 DOI: 10.3748/wjg.v22.i31.7046] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/09/2016] [Revised: 06/10/2016] [Accepted: 06/28/2016] [Indexed: 02/06/2023] Open
Abstract
Pancreatic ductal adenocarcinoma (PDAC) is a common pancreatic cancer and the fourth leading cause of cancer death in the United States. Treating this life-threatening disease remains challenging due to the lack of effective prognosis, diagnosis and therapy. Apart from pancreatic duct cells, acinar cells may also be the origin of PDAC. During pancreatitis or combined with activating KRas(G12D) mutation, acinar cells lose their cellular identity and undergo a transdifferentiation process called acinar-to-ductal-metaplasia (ADM), forming duct cells which may then transform into pancreatic intraepithelial neoplasia (PanIN) and eventually PDAC. During ADM, the activation of mitogen-activated protein kinases, Wnt, Notch and phosphatidylinositide 3-kinases/Akt signaling inhibits the transcription of acinar-specific genes, including Mist and amylase, but promotes the expression of ductal genes, such as cytokeratin-19. Inhibition of this transdifferentiation process hinders the development of PanIN and PDAC. In addition, the transdifferentiated cells regain acinar identity, indicating ADM may be a reversible process. This provides a new therapeutic direction in treating PDAC through cancer reprogramming. Many studies have already demonstrated the success of switching PanIN/PDAC back to normal cells through the use of PD325901, the expression of E47, and the knockdown of Dickkopf-3. In this review, we discuss the signaling pathways involved in ADM and the therapeutic potential of targeting reprogramming in order to treat PDAC.
Collapse
|
33
|
Chua KN, Kong LR, Sim WJ, Ng HC, Ong WR, Thiery JP, Huynh H, Goh BC. Combinatorial treatment using targeted MEK and SRC inhibitors synergistically abrogates tumor cell growth and induces mesenchymal-epithelial transition in non-small-cell lung carcinoma. Oncotarget 2016; 6:29991-30005. [PMID: 26358373 PMCID: PMC4745777 DOI: 10.18632/oncotarget.5031] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2015] [Accepted: 08/07/2015] [Indexed: 12/24/2022] Open
Abstract
Oncogenesis in non-small cell lung cancer (NSCLC) is regulated by a complex signal transduction network. Single-agent targeted therapy fails frequently due to treatment insensitivity and acquired resistance. In this study, we demonstrate that co-inhibition of the MAPK and SRC pathways using a PD0325901 and Saracatinib kinase inhibitor combination can abrogate tumor growth in NSCLC. PD0325901/Saracatinib at 0.25:1 combination was screened against a panel of 28 NSCLC cell lines and 68% of cell lines were found to be sensitive (IC50 < 2 μM) to this combination. In Snail1 positive NSCLC lines, the drug combination complementarily enhanced mesenchymal-epithelial transition (MET), increasing both E-cadherin and Plakoglobin expression, and reducing Snail1, FAK and PXN expression. In addition, the drug combination abrogated cell migration and matrigel invasion. The co-inhibition of MAPK and SRC induced strong G1/G0 cell cycle arrest in the NSCLC lines, inhibited anchorage independent growth and delayed tumor growth in H460 and H358 mouse xenografts. These data provide rationale for further investigating the combination of MAPK and SRC pathway inhibitors in advanced stage NSCLC.
Collapse
Affiliation(s)
- Kian Ngiap Chua
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Li Ren Kong
- Cancer Science Institute of Singapore, National University of Singapore, Singapore
| | - Wen Jing Sim
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | - Hsien Chun Ng
- Institute of Molecular and Cell Biology, A*STAR, Singapore
| | | | - Jean Paul Thiery
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Institute of Molecular and Cell Biology, A*STAR, Singapore.,Department of Biochemistry, Yong Loo Lin School of Medicine, National University of Singapore, Singapore
| | | | - Boon Cher Goh
- Cancer Science Institute of Singapore, National University of Singapore, Singapore.,Department of Hematology-Oncology, National University Hospital, Singapore.,National University Cancer Institute, Singapore
| |
Collapse
|
34
|
Tseng D, Mason XL, Neilan TG, Sullivan RJ. Cardiogenic Shock and Respiratory Failure in a Patient With Metastatic Melanoma Receiving Trametinib Therapy. Oncologist 2016; 21:1136-7. [PMID: 27388234 DOI: 10.1634/theoncologist.2016-0080] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Affiliation(s)
- Diane Tseng
- Department of Medicine, Massachusetts General Hospital, Boston, Massachusetts, USA; Harvard University, Cambridge, Massachusetts, USA
| | - Xenos L Mason
- Harvard University, Cambridge, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| | - Tomas G Neilan
- Harvard University, Cambridge, Massachusetts, USA; Department of Medicine, Department of Cardiology, Cardio-Oncology Program, Massachusetts General Hospital, Boston, Massachusetts, USA
| | - Ryan J Sullivan
- Harvard University, Cambridge, Massachusetts, USA; Department of Medicine, Brigham and Women's Hospital, Boston, Massachusetts, USA
| |
Collapse
|
35
|
Shang J, Lu S, Jiang Y, Zhang J. Allosteric modulators of MEK1: drug design and discovery. Chem Biol Drug Des 2016; 88:485-97. [PMID: 27115708 DOI: 10.1111/cbdd.12780] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2015] [Revised: 04/01/2016] [Accepted: 04/18/2016] [Indexed: 12/20/2022]
Abstract
Mitogen-activated protein kinase kinase (MAPKK, MEK) mediates signal transduction, controlling cell proliferation and survival. MEK occupies a key downstream position in the Ras-Raf-MEK-ERK signaling pathway, implying that inhibition of MEK will potently suppress tumor cell growth, with potential applications in cancer therapy. Based on the promising therapeutic effects of MEK modulators, continued efforts have been made in this class. Here, we review the discovery and development of MEK1 allosteric modulators, classifying them into four structural groups. The allosteric mechanisms and recent clinical progress involving these modulators are also reviewed.
Collapse
Affiliation(s)
- Jialin Shang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Shaoyong Lu
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China
| | - Yongjun Jiang
- School of Biotechnology and Chemical Engineering, Ningbo Institute of Technology, Zhejiang University, Ningbo, China
| | - Jian Zhang
- Department of Pathophysiology, Key Laboratory of Cell Differentiation and Apoptosis of Chinese Ministry of Education, Shanghai Jiao Tong University, School of Medicine, Shanghai, China. .,Medicinal Bioinformatics Center, Shanghai Jiao Tong University, School of Medicine, Shanghai, China.
| |
Collapse
|
36
|
|
37
|
Jousma E, Rizvi TA, Wu J, Janhofer D, Dombi E, Dunn RS, Kim MO, Masters AR, Jones DR, Cripe TP, Ratner N. Preclinical assessments of the MEK inhibitor PD-0325901 in a mouse model of Neurofibromatosis type 1. Pediatr Blood Cancer 2015; 62:1709-16. [PMID: 25907661 PMCID: PMC4546559 DOI: 10.1002/pbc.25546] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/13/2014] [Accepted: 03/16/2015] [Indexed: 01/10/2023]
Abstract
BACKGROUND Neurofibromatosis type 1 (NF1) is a genetic disorder that predisposes affected individuals to formation of benign neurofibromas, peripheral nerve tumors that can be associated with significant morbidity. Loss of the NF1 Ras-GAP protein causes increased Ras-GTP, and we previously found that inhibiting MEK signaling downstream of Ras can shrink established neurofibromas in a genetically engineered murine model. PROCEDURES We studied effects of MEK inhibition using 1.5 mg/kg/day PD-0325901 prior to neurofibroma onset in the Nf1 (flox/flox); Dhh-Cre mouse model. We also treated mice with established tumors at 0.5 and 1.5 mg/kg/day doses of PD-0325901. We monitored tumor volumes using MRI and volumetric measurements, and measured pharmacokinetic and pharmacodynamic endpoints. RESULTS Early administration significantly delayed neurofibroma development as compared to vehicle controls. When treatment was discontinued neurofibromas grew, but no rebound effect was observed and neurofibromas remained significantly smaller than controls. Low dose treatment of mice with PD-0325901 resulted in neurofibroma shrinkage equivalent to that observed at higher doses. Tumor cell proliferation decreased, although less than at higher doses with drug. Tumor blood vessels per area correlated with tumor shrinkage. CONCLUSIONS Neurofibroma development was not prevented by MEK inhibition, beginning at 1 month of age, but tumor size was controlled by early treatment. Moreover, treatment with PD-0325901 at very low doses may shrink neurofibromas while minimizing toxicity. These studies highlight how genetically engineered mouse models can guide clinical trial design.
Collapse
Affiliation(s)
- Edwin Jousma
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Tilat A. Rizvi
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Jianqiang Wu
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - David Janhofer
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Eva Dombi
- Pediatric Oncology Branch, National Cancer Institute, Bethesda, Maryland, USA
| | - Richard S. Dunn
- Division of Imaging Resource Center, Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mi-Ok Kim
- Biostatistics and Epidemiology, Department of Pediatrics, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Andrea R. Masters
- Indiana University Simon Cancer Center, Indiana University School of Medicine
| | - David R. Jones
- Division of Clinical Pharmacology, Department of Medicine, Indiana University School of Medicine
| | - Timothy P. Cripe
- Center for Childhood Cancer and Blood Diseases, Nationwide Children’s Hospital, Columbus, OH, USA
| | - Nancy Ratner
- Division of Experimental Hematology and Cancer Biology, Children’s Hospital Medical Center, Cincinnati, Ohio, USA,Correspondence to
| |
Collapse
|
38
|
Sullivan RJ, Flaherty KT. Major therapeutic developments and current challenges in advanced melanoma. Br J Dermatol 2015; 170:36-44. [PMID: 24443912 DOI: 10.1111/bjd.12698] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/10/2013] [Indexed: 12/11/2022]
Abstract
Malignant melanoma is rising in incidence. The treatment options have been very limited but advances in molecular biology and immunology have led to a greater understanding of the pathogenesis of the disease. Four drugs have been approved for the treatment of advanced melanoma in the past 2 years and two new classes of agents have recently been shown to lead to durable responses in a substantial minority of patients. The identification of biomarkers has helped clinicians and researchers segregate patients into molecular subgroups, which facilitates the selection of therapy. Preliminary work has begun on determining the ideal sequences of the various therapies. Investigations have been carried out on why these treatments work and what the mechanisms of resistance are to these therapies. It is hoped that combinations of therapies will emerge that lead to a high percentage of durable responses.
Collapse
Affiliation(s)
- R J Sullivan
- Massachusetts General Hospital Cancer Center, 55 Fruit Street, Yawkey 9E, Boston, MA, 02114, U.S.A
| | | |
Collapse
|
39
|
Pénzváltó Z, Lánczky A, Lénárt J, Meggyesházi N, Krenács T, Szoboszlai N, Denkert C, Pete I, Győrffy B. MEK1 is associated with carboplatin resistance and is a prognostic biomarker in epithelial ovarian cancer. BMC Cancer 2014; 14:837. [PMID: 25408231 PMCID: PMC4247127 DOI: 10.1186/1471-2407-14-837] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Accepted: 11/04/2014] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND Primary systemic treatment for ovarian cancer is surgery, followed by platinum based chemotherapy. Platinum resistant cancers progress/recur in approximately 25% of cases within six months. We aimed to identify clinically useful biomarkers of platinum resistance. METHODS A database of ovarian cancer transcriptomic datasets including treatment and response information was set up by mining the GEO and TCGA repositories. Receiver operator characteristics (ROC) analysis was performed in R for each gene and these were then ranked using their achieved area under the curve (AUC) values. The most significant candidates were selected and in vitro functionally evaluated in four epithelial ovarian cancer cell lines (SKOV-3-, CAOV-3, ES-2 and OVCAR-3), using gene silencing combined with drug treatment in viability and apoptosis assays. We collected 94 tumor samples and the strongest candidate was validated by IHC and qRT-PCR in these. RESULTS All together 1,452 eligible patients were identified. Based on the ROC analysis the eight most significant genes were JRK, CNOT8, RTF1, CCT3, NFAT2CIP, MEK1, FUBP1 and CSDE1. Silencing of MEK1, CSDE1, CNOT8 and RTF1, and pharmacological inhibition of MEK1 caused significant sensitization in the cell lines. Of the eight genes, JRK (p = 3.2E-05), MEK1 (p = 0.0078), FUBP1 (p = 0.014) and CNOT8 (p = 0.00022) also correlated to progression free survival. The correlation between the best biomarker candidate MEK1 and survival was validated in two independent cohorts by qRT-PCR (n = 34, HR = 5.8, p = 0.003) and IHC (n = 59, HR = 4.3, p = 0.033). CONCLUSION We identified MEK1 as a promising prognostic biomarker candidate correlated to response to platinum based chemotherapy in ovarian cancer.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | - Balázs Győrffy
- MTA-TTK Lendület Cancer Biomarker Research Group, Budapest, Hungary.
| |
Collapse
|
40
|
Abstract
New drugs targeting the mitogen-activated protein kinase (MAPK) pathway have generated striking clinical response in melanoma therapy. From the discovery of BRAF mutation in melanoma in 2002, to the approval of first BRAF inhibitor vemurafenib for melanoma treatment by the US Food and Drug Administration in 2011, therapies targeting the MAPK pathway have been proven effective in less than a decade. The success of vemurafenib stimulated more intensive investigation of the molecular mechanisms of melanoma pathogenesis and development of new treatment strategies targeting specific molecules in MAPK pathway. Although selective BRAF inhibitors and MEK inhibitors demonstrated improved overall survival of metastatic melanoma patients, limited duration or development of resistance to BRAF inhibitors have been reported. Patients with metastatic melanoma still face very poor prognosis and lack of clarified therapies. Studies and multiple clinical trials on more potent and selective small molecule inhibitory compounds to further improve the clinical effects and overcome drug resistance are underway. In this review, we analyzed the therapeutic potentials of each member of the MAPK signaling pathway, summarized important MAPK-inhibiting drugs, and discussed the promising combination treatment targeting multiple targets in melanoma therapy, which may overcome the drawbacks of current drugs treatment.
Collapse
Affiliation(s)
- Yabin Cheng
- Department of Dermatology and Skin Science, Research Pavilion, Vancouver Coastal Health Research Institute, University of British Columbia, Vancouver, BC, Canada
| | | | | |
Collapse
|
41
|
Pitts TM, Newton TP, Bradshaw-Pierce EL, Addison R, Arcaroli JJ, Klauck PJ, Bagby SM, Hyatt SL, Purkey A, Tentler JJ, Tan AC, Messersmith WA, Eckhardt SG, Leong S. Dual pharmacological targeting of the MAP kinase and PI3K/mTOR pathway in preclinical models of colorectal cancer. PLoS One 2014; 9:e113037. [PMID: 25401499 PMCID: PMC4234626 DOI: 10.1371/journal.pone.0113037] [Citation(s) in RCA: 37] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2014] [Accepted: 10/17/2014] [Indexed: 01/10/2023] Open
Abstract
BACKGROUND The activation of the MAPK and PI3K/AKT/mTOR pathways is implicated in the majority of cancers. Activating mutations in both of these pathways has been described in colorectal cancer (CRC), thus indicating their potential as therapeutic targets. This study evaluated the combination of a PI3K/mTOR inhibitor (PF-04691502/PF-502) in combination with a MEK inhibitor (PD-0325901/PD-901) in CRC cell lines and patient-derived CRC tumor xenograft models (PDTX). MATERIALS AND METHODS The anti-proliferative effects of PF-502 and PD-901 were assessed as single agents and in combination against a panel of CRC cell lines with various molecular backgrounds. Synergy was evaluated using the Bliss Additivity method. In selected cell lines, we investigated the combination effects on downstream effectors by immunoblotting. The combination was then evaluated in several fully genetically annotated CRC PDTX models. RESULTS The in vitro experiments demonstrated a wide range of IC50 values for both agents against a cell line panel. The combination of PF-502 and PD-901 demonstrated synergistic anti-proliferative activity with Bliss values in the additive range. As expected, p-AKT and p-ERK were downregulated by PF-502 and PD-901, respectively. In PDTX models, following a 30-day exposure to PF-502, PD-901 or the combination, the combination demonstrated enhanced reduction in tumor growth as compared to either single agent regardless of KRAS or PI3K mutational status. CONCLUSIONS The combination of a PI3K/mTOR and a MEK inhibitor demonstrated enhanced anti-proliferative effects against CRC cell lines and PDTX models.
Collapse
Affiliation(s)
- Todd M. Pitts
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
- * E-mail:
| | - Timothy P. Newton
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Erica L. Bradshaw-Pierce
- Department of Pharmaceutical Sciences, Skaggs School of Pharmacy and Pharmaceutical Sciences, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Rebecca Addison
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Arcaroli
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Peter J. Klauck
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stacey M. Bagby
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephanie L. Hyatt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Alicia Purkey
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - John J. Tentler
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Aik Choon Tan
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Wells A. Messersmith
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - S. Gail Eckhardt
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| | - Stephen Leong
- Division of Medical Oncology, School of Medicine, University of Colorado, Anschutz Medical Campus, Aurora, Colorado, United States of America
- University of Colorado Cancer Center, University of Colorado Anschutz Medical Campus, Aurora, Colorado, United States of America
| |
Collapse
|
42
|
Paulo JA, McAllister FE, Everley RA, Beausoleil SA, Banks AS, Gygi SP. Effects of MEK inhibitors GSK1120212 and PD0325901 in vivo using 10-plex quantitative proteomics and phosphoproteomics. Proteomics 2014; 15:462-73. [PMID: 25195567 DOI: 10.1002/pmic.201400154] [Citation(s) in RCA: 59] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2014] [Revised: 08/05/2014] [Accepted: 09/01/2014] [Indexed: 12/11/2022]
Abstract
Multiplexed isobaric tag based quantitative proteomics and phosphoproteomics strategies can comprehensively analyze drug treatments effects on biological systems. Given the role of mitogen-activated protein/extracellular signal-regulated kinase (MEK) signaling in cancer and mitogen-activated protein kinase (MAPK)-dependent diseases, we sought to determine if this pathway could be inhibited safely by examining the downstream molecular consequences. We used a series of tandem mass tag 10-plex experiments to analyze the effect of two MEK inhibitors (GSK1120212 and PD0325901) on three tissues (kidney, liver, and pancreas) from nine mice. We quantified ∼ 6000 proteins in each tissue, but significant protein-level alterations were minimal with inhibitor treatment. Of particular interest was kidney tissue, as edema is an adverse effect of these inhibitors. From kidney tissue, we enriched phosphopeptides using titanium dioxide (TiO2 ) and quantified 10 562 phosphorylation events. Further analysis by phosphotyrosine peptide immunoprecipitation quantified an additional 592 phosphorylation events. Phosphorylation motif analysis revealed that the inhibitors decreased phosphorylation levels of proline-x-serine-proline (PxSP) and serine-proline (SP) sites, consistent with extracellular-signal-regulated kinase (ERK) inhibition. The MEK inhibitors had the greatest decrease on the phosphorylation of two proteins, Barttin and Slc12a3, which have roles in ion transport and fluid balance. Further studies will provide insight into the effect of these MEK inhibitors with respect to edema and other adverse events in mouse models and human patients.
Collapse
Affiliation(s)
- Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | | | | | | | | | | |
Collapse
|
43
|
Abstract
The RAS-RAF-MEK-ERK pathway is considered to be the most important signal transduction pathway in melanoma, and alterations in this pathway via various genetic mutations, such as BRAF and NRAS mutations, are known to be important drivers of melanomagenesis. As MEK is an essential intermediary kinase protein within this pathway, inhibition of MEK has been of a great interest as a molecular target therapy in melanoma. In fact, trametinib, a selective MEK inhibitor, has been shown to have a survival benefit over cytotoxic chemotherapy in patients with V600 BRAF-mutant metastatic melanoma, leading to the FDA approval for this patient population. MEK inhibitors may also be useful in treatment of advanced melanoma harboring other genetic mutations, such as NRAS and GNAQ/GNA11 mutations. Here, we review and discuss the preclinical and clinical data regarding MEK inhibitors and their role in the treatment of advanced melanoma.
Collapse
Affiliation(s)
- April K S Salama
- Division of Medical Oncology, Duke University Medical Center, DUMC 3476, Durham, NC, 27710, USA,
| | | |
Collapse
|
44
|
El-Hoss J, Kolind M, Jackson MT, Deo N, Mikulec K, McDonald MM, Little CB, Little DG, Schindeler A. Modulation of endochondral ossification by MEK inhibitors PD0325901 and AZD6244 (Selumetinib). Bone 2014; 59:151-61. [PMID: 24269278 DOI: 10.1016/j.bone.2013.11.013] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/19/2013] [Revised: 11/06/2013] [Accepted: 11/15/2013] [Indexed: 01/19/2023]
Abstract
MEK inhibitors (MEKi) PD0325901 and AZD6244 (Selumetinib) are drugs currently under clinical investigation for cancer treatment, however the Ras-MAPK pathway is also an important mediator of normal bone cell differentiation and function. In this study we examined the effects of these compounds on endochondral processes using both in vitro and in vivo models. Treatment with PD0325901 or AZD6244 significantly increased Runx2 and Alkaline phosphate gene expression in calvarial osteoblasts and decreased TRAP+ cells in induced osteoclast cultures. To test the effects of these drugs on bone healing, C57/Bl6 mice underwent a closed tibial fracture and were treated with PD0325901 or AZD6244 at 10mg/kg/day. Animals were culled at day 10 and at day 21 post-fracture for analysis of the fracture callus and the femoral growth plate in the contralateral leg. MEKi treatment markedly increased cartilage volume in the soft callus at day 10 post-fracture (+60% PD0325901, +20% AZD6244) and continued treatment led to a delay in cartilage remodeling. At the growth plate, we observed an increase in the height of the hypertrophic zone relative to the proliferative zone of +78% in PD0325901 treated mice. Osteoclast surface was significantly decreased both at the terminal end of the growth plate and within the fracture calluses of MEKi treated animals. The mechanistic effects of MEKi on genes encoding cartilage matrix proteins and catabolic enzymes were examined in articular chondrocyte cultures. PD0325901 or AZD6244 led to increased matrix protein expression (Col2a1 and Acan) and decreased expression of catabolic factors (Mmp13 and Adamts-5). Taken together, these data support the hypothesis that MEKi treatment can impact chondrocyte hypertrophy, matrix resorption, and fracture healing. These compounds can also affect bone architecture by expanding the hypertrophic zone of the growth plate and reducing osteoclast surface systemically.
Collapse
Affiliation(s)
- J El-Hoss
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - M Kolind
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M T Jackson
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - N Deo
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - K Mikulec
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia
| | - M M McDonald
- Bone Biology Group, Garvan Institute for Medical Research, Sydney, Australia
| | - C B Little
- Raymond Purves Bone and Joint Research Laboratories, Kolling Institute of Medical Research, University of Sydney, Royal North Shore Hospital, Sydney, Australia
| | - D G Little
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia
| | - A Schindeler
- Orthopaedic Research & Biotechnology Unit, The Children's Hospital at Westmead, Sydney, Australia; Discipline of Paediatrics and Child Health, Faculty of Medicine, University of Sydney, Sydney, Australia.
| |
Collapse
|
45
|
Sette G, Fecchi K, Salvati V, Lotti F, Pilozzi E, Duranti E, Biffoni M, Pagliuca A, Martinetti D, Memeo L, Milella M, De Maria R, Eramo A. Mek inhibition results in marked antitumor activity against metastatic melanoma patient-derived melanospheres and in melanosphere-generated xenografts. JOURNAL OF EXPERIMENTAL & CLINICAL CANCER RESEARCH : CR 2013; 32:91. [PMID: 24238212 PMCID: PMC3874650 DOI: 10.1186/1756-9966-32-91] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/28/2013] [Accepted: 11/13/2013] [Indexed: 01/07/2023]
Abstract
One of the key oncogenic pathways involved in melanoma aggressiveness, development and progression is the RAS/BRAF/MEK pathway, whose alterations are found in most patients. These molecular anomalies are promising targets for more effective anti-cancer therapies. Some Mek inhibitors showed promising antitumor activity, although schedules and doses associated with low systemic toxicity need to be defined. In addition, it is now accepted that cancers can arise from and be maintained by the cancer stem cells (CSC) or tumor-initiating cells (TIC), commonly expanded in vitro as tumorspheres from several solid tumors, including melanoma (melanospheres). Here, we investigated the potential targeting of MEK pathway by exploiting highly reliable in vitro and in vivo pre-clinical models of melanomas based on melanospheres, as melanoma initiating cells (MIC) surrogates. MEK inhibition, through PD0325901, provided a successful strategy to affect survival of mutated-BRAF melanospheres and growth of wild type-BRAF melanospheres. A marked citotoxicity was observed in differentated melanoma cells regardless BRAF mutational status. PD0325901 treatment, dramatically inhibited growth of melanosphere-generated xenografts and determined impaired tumor vascularization of both mutated- and wild type-BRAF tumors, in the absence of mice toxicity. These results suggest that MEK inhibition might represent a valid treatment option for patients with both mutated- or wild type-BRAF melanomas, affecting tumor growth through multiple targets.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | | | | | | | | | | | - Adriana Eramo
- Department of Hematology, Oncology and Molecular Medicine, Istituto Superiore di Sanità, viale Regina Elena 299, Rome 00161, Italy.
| |
Collapse
|
46
|
Stansfield BK, Bessler WK, Mali R, Mund JA, Downing BD, Kapur R, Ingram DA. Ras-Mek-Erk signaling regulates Nf1 heterozygous neointima formation. THE AMERICAN JOURNAL OF PATHOLOGY 2013; 184:79-85. [PMID: 24211110 DOI: 10.1016/j.ajpath.2013.09.022] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2013] [Revised: 09/03/2013] [Accepted: 09/20/2013] [Indexed: 11/20/2022]
Abstract
Neurofibromatosis type 1 (NF1) results from mutations in the NF1 tumor-suppressor gene, which encodes neurofibromin, a negative regulator of diverse Ras signaling cascades. Arterial stenosis is a nonneoplastic manifestation of NF1 that predisposes some patients to debilitating morbidity and sudden death. Recent murine studies demonstrate that Nf1 heterozygosity (Nf1(+/-)) in monocytes/macrophages significantly enhances intimal proliferation after arterial injury. However, the downstream Ras effector pathway responsible for this phenotype is unknown. Based on in vitro assays demonstrating enhanced extracellular signal-related kinase (Erk) signaling in Nf1(+/-) macrophages and vascular smooth muscle cells and in vivo evidence of Erk amplification without alteration of phosphatidylinositol 3-kinase signaling in Nf1(+/-) neointimas, we tested the hypothesis that Ras-Erk signaling regulates intimal proliferation in a murine model of NF1 arterial stenosis. By using a well-established in vivo model of inflammatory cell migration and standard cell culture, neurofibromin-deficient macrophages demonstrate enhanced sensitivity to growth factor stimulation in vivo and in vitro, which is significantly diminished in the presence of PD0325901, a specific inhibitor of Ras-Erk signaling in phase 2 clinical trials for cancer. After carotid artery injury, Nf1(+/-) mice demonstrated increased intimal proliferation compared with wild-type mice. Daily administration of PD0325901 significantly reduced Nf1(+/-) neointima formation to levels of wild-type mice. These studies identify the Ras-Erk pathway in neurofibromin-deficient macrophages as the aberrant pathway responsible for enhanced neointima formation.
Collapse
Affiliation(s)
- Brian K Stansfield
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Waylan K Bessler
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Raghuveer Mali
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Julie A Mund
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Brandon D Downing
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana
| | - Reuben Kapur
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana
| | - David A Ingram
- Herman B. Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, Indiana; Department of Pediatrics and Neonatal-Perinatal Medicine, Indiana University School of Medicine, Indianapolis, Indiana; Department of Biochemistry and Molecular Biology, Indiana University School of Medicine, Indianapolis, Indiana.
| |
Collapse
|
47
|
van der Noll R, Leijen S, Neuteboom GH, Beijnen JH, Schellens JH. Effect of inhibition of the FGFR–MAPK signaling pathway on the development of ocular toxicities. Cancer Treat Rev 2013; 39:664-72. [DOI: 10.1016/j.ctrv.2013.01.003] [Citation(s) in RCA: 81] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2012] [Revised: 01/13/2013] [Accepted: 01/16/2013] [Indexed: 10/27/2022]
|
48
|
Sullivan RJ, Lorusso PM, Flaherty KT. The intersection of immune-directed and molecularly targeted therapy in advanced melanoma: where we have been, are, and will be. Clin Cancer Res 2013; 19:5283-91. [PMID: 24089441 PMCID: PMC4100326 DOI: 10.1158/1078-0432.ccr-13-2151] [Citation(s) in RCA: 46] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
In three years, four drugs have gained regulatory approval for the treatment of metastatic and unresectable melanoma, with at least seven other drugs having recently completed, currently in, or soon to be in phase III clinical testing. This amazing achievement has been made following a remarkable increase of knowledge in molecular biology and immunology that led to the identification of high-valued therapeutic targets and the clinical development of agents that effectively engage and inhibit these targets. The discovery of either effective molecularly targeted therapies or immunotherapies would have led to dramatic improvements to the standard-of-care treatment of melanoma. However, through parallel efforts that have showcased the efficacy of small-molecule BRAF and MAP-ERK kinase (MEK) inhibitors, as well as the immune checkpoint inhibitors, namely ipilimumab and the anti-PD1/PDL1 antibodies (lambrolizumab, nivolumab, MPDL3280), an opportunity exists to transform the treatment of melanoma specifically and cancer generally by exploring rational combinations of molecularly targeted therapies, immunotherapies, and molecular targeted therapies with immunotherapies. This overview presents the historical context to this therapeutic revolution, reviews the benefits and limitations of current therapies, and provides a look ahead at where the field is headed.
Collapse
Affiliation(s)
- Ryan J Sullivan
- Authors' Affiliations: Massachusetts General Hospital Cancer Center, Harvard Medical School, Boston, Massachusetts; and Karmanos Cancer Institute, Wayne State University, Detroit, Michigan
| | | | | |
Collapse
|
49
|
Inhibitors of the ERK Mitogen-Activated Protein Kinase Cascade for Targeting RAS Mutant Cancers. INHIBITORS OF THE RAS SUPERFAMILY G-PROTEINS, PART B 2013; 34 Pt. B:67-106. [DOI: 10.1016/b978-0-12-420146-0.00004-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
50
|
Jessen WJ, Miller SJ, Jousma E, Wu J, Rizvi TA, Brundage ME, Eaves D, Widemann B, Kim MO, Dombi E, Sabo J, Hardiman Dudley A, Niwa-Kawakita M, Page GP, Giovannini M, Aronow BJ, Cripe TP, Ratner N. MEK inhibition exhibits efficacy in human and mouse neurofibromatosis tumors. J Clin Invest 2012; 123:340-7. [PMID: 23221341 DOI: 10.1172/jci60578] [Citation(s) in RCA: 258] [Impact Index Per Article: 19.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2012] [Accepted: 10/23/2012] [Indexed: 01/18/2023] Open
Abstract
Neurofibromatosis type 1 (NF1) patients develop benign neurofibromas and malignant peripheral nerve sheath tumors (MPNST). These incurable peripheral nerve tumors result from loss of NF1 tumor suppressor gene function, causing hyperactive Ras signaling. Activated Ras controls numerous downstream effectors, but specific pathways mediating the effects of hyperactive Ras in NF1 tumors are unknown. We performed cross-species transcriptome analyses of mouse and human neurofibromas and MPNSTs and identified global negative feedback of genes that regulate Ras/Raf/MEK/ERK signaling in both species. Nonetheless, ERK activation was sustained in mouse and human neurofibromas and MPNST. We used a highly selective pharmacological inhibitor of MEK, PD0325901, to test whether sustained Ras/Raf/MEK/ERK signaling contributes to neurofibroma growth in a neurofibromatosis mouse model (Nf1(fl/fl);Dhh-Cre) or in NF1 patient MPNST cell xenografts. PD0325901 treatment reduced aberrantly proliferating cells in neurofibroma and MPNST, prolonged survival of mice implanted with human MPNST cells, and shrank neurofibromas in more than 80% of mice tested. Our data demonstrate that deregulated Ras/ERK signaling is critical for the growth of NF1 peripheral nerve tumors and provide a strong rationale for testing MEK inhibitors in NF1 clinical trials.
Collapse
Affiliation(s)
- Walter J Jessen
- Children’s Hospital Medical Center, Division of Experimental Hematology and Cancer Biology, 3333 Burnet Ave., M.L.C. 7013, Cincinnati, Ohio 45229, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|