1
|
Shen C, Zhang S, Di H, Wang S, Wang Y, Guan F. The Role of Triterpenoids in Gastric Ulcer: Mechanisms and Therapeutic Potentials. Int J Mol Sci 2025; 26:3237. [PMID: 40244034 PMCID: PMC11990034 DOI: 10.3390/ijms26073237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/25/2025] [Accepted: 03/28/2025] [Indexed: 04/18/2025] Open
Abstract
Gastric ulcer (GU) is a prevalent gastrointestinal disorder impacting millions worldwide, with complex pathogenic mechanisms that may progress to severe illnesses. Conventional therapies relying on anti-secretory agents and antibiotics are constrained by drug abuse and increased bacterial resistance, highlighting the urgent need for safer therapeutic alternatives. Natural medicinal compounds, particularly triterpenoids derived from plants and herbs, have gained significant attention in recent years due to their favorable efficacy and reduced toxicity profiles. Emerging evidence indicates that triterpenoids exhibit potent anti-ulcer properties across various experimental models, modulating key pathways involved in inflammation, oxidative stress, apoptosis, and mucosal protection. Integrating current knowledge of these bioactive compounds facilitates the development of natural triterpenoids, addresses challenges in their clinical translation, deepens mechanistic understanding of GU pathogenesis, and drives innovation of therapeutic strategies for GU. This review comprehensively evaluates the progress of research on triterpenoids in GU treatment since 2000, discussing their biological sources, structural characteristics, pharmacological activities, and mechanisms of action, the animal models employed in the studies, current limitations, and the challenges associated with their clinical application.
Collapse
Affiliation(s)
- Congcong Shen
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shengyu Zhang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Han Di
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Shuang Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
| | - Yanhong Wang
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| | - Feng Guan
- School of Pharmacy, Heilongjiang University of Chinese Medicine, Harbin 150040, China; (C.S.); (S.Z.); (H.D.); (S.W.)
- Key Laboratory of Basic and Application Research of Beiyao, Ministry of Education, Heilongjiang University of Chinese Medicine, Harbin 150040, China
| |
Collapse
|
2
|
Chen M, Li Y, Chen P. Restore intestinal steady-state: new advances in the clinical management of chemotherapy-associated diarrhea and constipation. J Mol Histol 2025; 56:101. [PMID: 40056250 PMCID: PMC11890403 DOI: 10.1007/s10735-025-10367-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Accepted: 02/02/2025] [Indexed: 03/10/2025]
Abstract
Chemotherapy remains the primary therapeutic strategy for most tumors, particularly those at advanced stages with distant metastases and resistance to molecularly targeted therapy or immunotherapy. There are many manifestations of chemotherapy-induced gastrointestinal toxicity (CIGT), including chemotherapy-induced diarrhea (CID) and chemotherapy-induced constipation (CIC). Although the World Health Organisation and the International Association Against Cancer have different grading criteria and strategies for the prevention and treatment of CIGT, there are still many unanswered questions that need to be clarified. This review critically describes pathological mechanisms and clinical research, analyzing the variability in diagnostic criteria and the absence of standardization in grading severity. We identify a critical gap in understanding the molecular underpinnings of CID and CIC and suggest targeted areas for future research, including developing personalized treatment approaches based on genetic profiling. The findings suggest a comprehensive treatment approach combining pharmacological and non-pharmacological strategies to enhance life quality and treatment adherence. This review will offer a comprehensive bird-eye of pathophysiological mechanisms, clinical manifestations, and therapeutic strategies of CIGT, thereby enriching accessible references to clinicians, and helping them to prevent and control CID and CIC.
Collapse
Affiliation(s)
| | - Yamao Li
- Ningxia Medical University, Yinchuan, China
| | - Peijun Chen
- Yancheng Sixth People's Hospital, Yancheng, Jiangsu, China
| |
Collapse
|
3
|
do Carmo Filho JRL, Lima IC, de Barros Silva PG, Alves APNN, Sousa FB, Assreuy AMS, Mota MRL. Photobiomodulation Exerts Anti-Inflammatory and Antioxidant Effects Reducing the Development of Tumors Elicited by 4-NQO in the Mice Tongue. JOURNAL OF BIOPHOTONICS 2025; 18:e202400390. [PMID: 39844584 DOI: 10.1002/jbio.202400390] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2024] [Revised: 12/31/2024] [Accepted: 01/02/2025] [Indexed: 01/24/2025]
Abstract
OBJECTIVE Evaluate the influence of photobiomodulation in a model of oral carcinogenesis induced by 4-nitroquinoline-n-oxide (4-NQO). SUBJECTIVE Ninety-six Swiss mice received topical application of 1% 4-NQO on tongue dorsum, for 20 weeks. The tongue was subjected to photobiomodulation with red (71.4 J/cm2) and infrared laser (142.8 J/cm2) starting at week 0, 12, and 16. After 20 weeks, tongues were removed for the following analyzes: histological assessment, immunohistochemical reactions (cyclin D1/Ki-67/TGF-β1), quantification of MPO, n-AG, MDA, GSH, total proteins, TNF-α, IL-1β, and IL-6 levels. RESULTS 4-NQO showed significant increase in the frequency of carcinoma (p < 0.001), and in the immunostaining for cyclin D1/Ki-67/TGF-β1 (p < 0.005), along with increased levels of TNF- α, IL-1β, IL-6, MPO, n-AG, MDA, and total proteins (p < 0.001), that were reduced by photobiomodulation with red and infrared lasers (p < 0.005). CONCLUSION Photobiomodulation reduces tumor development, accompanied by reduced inflammatory cells and content of cytokines and oxidative markers associated with carcinogenesis.
Collapse
Affiliation(s)
- José Ronildo Lins do Carmo Filho
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Iásly Costa Lima
- Superior Institute of Biomedical Sciences, State University of Ceará, Fortaleza, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Fabricio Bitu Sousa
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Mário Rogério Lima Mota
- Department of Dental Clinic, Division of Oral Pathology and Stomatology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
4
|
Lemos JVM, Martins JODL, Machado LC, Aragão LR, Verde MEQL, Pessoa CDÓ, Bezerra MJB, Alves APNN, de Barros Silva PG. Digoxin attenuates bisphosphonate related osteonecrosis of the jaws by RORγt-dependent Th17 response in male rats. Oral Surg Oral Med Oral Pathol Oral Radiol 2024; 138:781-793. [PMID: 39304414 DOI: 10.1016/j.oooo.2024.08.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/19/2024] [Accepted: 08/25/2024] [Indexed: 09/22/2024]
Abstract
OBJECTIVE The study aimed to evaluate digoxin, an RORγt inhibitor, in Medication-Related Osteonecrosis of the Jaws (MRONJ) in male rats treated with zoledronic acid (ZA). STUDY DESIGN Forty male Wistar rats were divided into a negative control group (0.1 mL/kg saline), a positive control group (ZA, 0.20 mg/kg), and three test groups treated with ZA and digoxin at 1 (DG1), 2 (DG2), or 4 (DG4) mg/kg. These groups received treatment three times weekly. ZA was administered intravenously on days 0, 7, and 14, followed by extraction of the left lower first molar on day 42, a final ZA dose on day 49, and euthanasia on day 70. Analyses included radiographic, histomorphometric, and immunohistochemical evaluation of the mandibles, western blotting of gingiva, and mechanical tests on femurs. Statistical analysis was performed using ANOVA/Bonferroni tests (P < .05). RESULTS Digoxin reduced radiolucency of MRONJ (P < .001), inflammatory cells, empty osteocyte lacunae (P < .001), apoptotic osteoclasts (P < .001), and Caspase-3-positive osteocytes (P = .021). ZA increased immunoreactivity for most markers except c-Fos, while digoxin reduced interleukin 17, TNF-α, IL-6, IL-2, FOXP3, c-Jun, NFκB (P < .001), TGF-β (P = .009), RANKL (P = .035), and OPG (P = .034). Digoxin also reversed RORγt expression (P < .001), increased diarrhea scores (P = .028), renal and cardiac indexes (P < .001), and enhanced femur mechanical properties (P < .013). CONCLUSIONS Digoxin attenuated MRONJ by inhibiting RORγt and reducing the Th17 response.
Collapse
Affiliation(s)
- José Vitor Mota Lemos
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Joyce Ohana de Lima Martins
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | | | - Lara Rabelo Aragão
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil
| | | | - Cláudia do Ó Pessoa
- Department of Physiology and Pharmacology at the Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Maria Júlia Barbosa Bezerra
- Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Goberlânio de Barros Silva
- Department of Dentistry, Laboratory of Oral Pathology, Unichristus, Fortaleza, Ceará, Brazil; Department of Clinical Dentistry, Division of Oral Pathology, School of Pharmacy, Dentistry and Nursing, Universidade Federal do Ceará, Fortaleza, Ceará, Brazil; Department and Laboratory of Molecular Biology and Genetics of the Instituto do Câncer do Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
5
|
Svec J, Onhajzer J, Korinek V. Origin, development and therapy of colorectal cancer from the perspective of a biologist and an oncologist. Crit Rev Oncol Hematol 2024; 204:104544. [PMID: 39490796 DOI: 10.1016/j.critrevonc.2024.104544] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2024] [Revised: 10/22/2024] [Accepted: 10/22/2024] [Indexed: 11/05/2024] Open
Abstract
The intestinal epithelium, a rapidly renewing tissue, is characterized by a continuous cell turnover that occurs through a well-coordinated process of cell proliferation and differentiation. This dynamic is crucial for the long-term function of the gastrointestinal tract. Disruption of this process can lead to colorectal carcinoma, a common malignancy worldwide. The first part of the review focuses on the cellular composition of the epithelium and the molecular mechanisms that control its functions, and describes the pathways that lead to epithelial transformation and tumor progression. This forms the basis for understanding the development and progression of advanced colorectal cancer. The second part deals with current therapeutic approaches and presents the latest treatment options, ongoing clinical trials and new drugs. In addition, the biological and medical perspectives of the adverse effects of therapies and models of regeneration of the intestinal epithelium are highlighted and, finally, future treatment options are discussed.
Collapse
Affiliation(s)
- Jiri Svec
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic; Department of Oncology, Third Faculty of Medicine, Charles University, University Hospital Kralovske Vinohrady, Prague, Czech Republic
| | - Jakub Onhajzer
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic
| | - Vladimir Korinek
- Laboratory of Cell and Developmental Biology, Institute of Molecular Genetics of the Czech Academy of Sciences, Prague, Czech Republic.
| |
Collapse
|
6
|
Wang Y, Deng H, Xiao L, Pan Y. Escherichia coli Nissle 1917 Protects against Sepsis-Induced Intestinal Damage by Regulating the SCFA/GPRs Signaling Pathway. Microorganisms 2024; 12:1622. [PMID: 39203464 PMCID: PMC11356217 DOI: 10.3390/microorganisms12081622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 08/05/2024] [Accepted: 08/07/2024] [Indexed: 09/03/2024] Open
Abstract
This study explores whether Escherichia coli Nissle 1917 (EcN) can preserve the integrity of the intestinal barrier by modulating the metabolism pathway of short-chain fatty acids (SCFAs) in a C57BL/6J mouse model of lipopolysaccharide (LPS)-induced acute enteritis and a model of a Caco-2 monolayer. The study involved establishing a septic shock model in mice through lipopolysaccharide (LPS) injection. Clinical scores and intestinal permeability were meticulously documented. Immunofluorescence was utilized to localize the tight junction proteins. A quantitative real-time polymerase chain reaction (qRT-PCR) was employed to assess the expression of G protein-coupled receptors (GPRs) signaling. Additionally, the supplement of acetate and butyrate with Caco-2 monolayers to elucidate the potential of EcN in augmenting the intestinal barrier primarily via the modulation of SCFAs and qRT-PCR was performed to detect the expression of tight junction proteins and the activation of the GPRs protein signaling pathway. EcN mitigated the clinical symptoms and reduced intestinal permeability in the colon of LPS-induced mice. It also enhanced the production of SCFAs in the gut and upregulated the expression of SCFA receptor proteins GPR41 and GPR43 in the colon tissue. Our findings reveal that EcN activates the SCFA/GPRs pathway, thereby preserving intestinal barrier function and alleviating inflammation in a mouse sepsis model.
Collapse
Affiliation(s)
| | | | | | - Yisheng Pan
- Department of Gastrointestinal Surgery, Peking University First Hospital, Beijing 100034, China; (Y.W.); (H.D.); (L.X.)
| |
Collapse
|
7
|
Pinto MR, da Silva Medeiros KI, Maia LM, Coelho AA, Negreiros Nunes Alves AP, Caetano CFF, Mesquita KC, de Barros Silva PG, Sousa FB. Role of induced nitric oxide synthases in orofacial nociception/discomfort after dental tooth bleaching with hydrogen peroxide. Arch Oral Biol 2024; 161:105937. [PMID: 38442471 DOI: 10.1016/j.archoralbio.2024.105937] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 02/18/2024] [Accepted: 02/21/2024] [Indexed: 03/07/2024]
Abstract
OBJECTIVE To evaluate the role of induced nitric oxide synthase (iNOS) in nociception/orofacial discomfort in rats submitted to tooth whitening with hydrogen peroxide (H₂O₂). DESIGN Wistar rats were divided into three groups (n = 24/group): a sham group not submitted to whitening treatment, a saline group submitted to whitening treatment, and a test group submitted to whitening treatment and blockade of iNOS with aminoguanidine 50 mg/kg/day. After 24 and 48 h, and 7 days, the animals were euthanized to collect trigeminal ganglia and maxillae to histomorphometric analysis (size of neuronal bodies and percentage of pulp area filled by vessels) and behavior/nociception (Grimace scales, scratching and biting counting, weight loss and nociception assay). ANOVA-1- or - 2-way tests were used (p < 0.05, GraphPadPrism 5.0). RESULTS The aminoguanidine-treated group showed a reduction in nociceptive threshold in the masseteric region (p < 0.001), Grimace scale scores (p < 0.001), number of scratching (p = 0.011) and body mass loss (p = 0.007). After 24 and 48 h of tooth bleaching, the saline group showed a significant increase in the mean area of the blood vessels (p = 0.020) and iNOS immunostaining in odontoblasts (p = 0.002) and non-odontoblasts cells (p = 0.025). Aminoguanidine reversed both increases. Tooth bleaching reduced the mean area of neuronal bodies, and aminoguanidine significantly reversed it (p = 0.019), but an increase in GFAP immunostaining in neuronal bodies did not reduce after seven-days or after aminoguanidine treatment (p = 0.003). CONCLUSION iNOS blockage by aminoguanidine plays an important role in nociception and orofacial discomfort by control of inflammation in dental pulp after tooth bleaching with hydrogen peroxide (H₂O₂) 35%.
Collapse
Affiliation(s)
| | | | | | | | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | | | | | | | | |
Collapse
|
8
|
Luisa Valerio de Mello Braga L, Simão G, Silva Schiebel C, Caroline Dos Santos Maia A, Mulinari Turin de Oliveira N, Barbosa da Luz B, Rita Corso C, Soares Fernandes E, Maria Ferreira D. Rodent models for anticancer toxicity studies: contributions to drug development and future perspectives. Drug Discov Today 2023:103626. [PMID: 37224998 DOI: 10.1016/j.drudis.2023.103626] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 05/08/2023] [Accepted: 05/17/2023] [Indexed: 05/26/2023]
Abstract
Antineoplastic treatment induces a type of gastrointestinal toxicity known as mucositis. Findings in animal models are usually easily reproducible, and standardized treatment regimens are often used, thus supporting translational science. Essential characteristics of mucositis, including intestinal permeability, inflammation, immune and oxidative responses, and tissue repair mechanisms, can be easily investigated in these models. Given the effects of mucositis on the quality of life of patients with cancer, and the importance of experimental models in the development of more effective new therapeutic alternatives, this review discusses progress and current challenges in using experimental models of mucositis in translational pharmacology research. Teaser Experimental models for studying gastrointestinal mucositis have provided a wealth of information improving the understanding of antineoplastic toxicity.
Collapse
Affiliation(s)
- Lara Luisa Valerio de Mello Braga
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Gisele Simão
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Carolina Silva Schiebel
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Andressa Caroline Dos Santos Maia
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Natalia Mulinari Turin de Oliveira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Bruna Barbosa da Luz
- Departamento de Farmacologia, Universidade Federal do Paraná, Curitiba, PR, Brazil
| | - Claudia Rita Corso
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Elizabeth Soares Fernandes
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil
| | - Daniele Maria Ferreira
- Instituto de Pesquisa Pelé Pequeno Príncipe, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil; Programa de Pós-graduação em Biotecnologia Aplicada à Saúde da Criança e do Adolescente, Faculdades Pequeno Príncipe, Curitiba, PR, Brazil.
| |
Collapse
|
9
|
Huang J, Hwang AYM, Jia Y, Kim B, Iskandar M, Mohammed AI, Cirillo N. Experimental Chemotherapy-Induced Mucositis: A Scoping Review Guiding the Design of Suitable Preclinical Models. Int J Mol Sci 2022; 23:15434. [PMID: 36499758 PMCID: PMC9737148 DOI: 10.3390/ijms232315434] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2022] [Revised: 12/01/2022] [Accepted: 12/04/2022] [Indexed: 12/12/2022] Open
Abstract
Mucositis is a common and most debilitating complication associated with the cytotoxicity of chemotherapy. The condition affects the entire alimentary canal from the mouth to the anus and has a significant clinical and economic impact. Although oral and intestinal mucositis can occur concurrently in the same individual, these conditions are often studied independently using organ-specific models that do not mimic human disease. Hence, the purpose of this scoping review was to provide a comprehensive yet systematic overview of the animal models that are utilised in the study of chemotherapy-induced mucositis. A search of PubMed/MEDLINE and Scopus databases was conducted to identify all relevant studies. Multiple phases of filtering were conducted, including deduplication, title/abstract screening, full-text screening, and data extraction. Studies were reported according to the updated Preferred Reporting Items for Systematic reviews and Meta-Analyses Extension for Scoping Reviews (PRISMA-ScR) guidelines. An inter-rater reliability test was conducted using Cohen's Kappa score. After title, abstract, and full-text screening, 251 articles met the inclusion criteria. Seven articles investigated both chemotherapy-induced intestinal and oral mucositis, 198 articles investigated chemotherapy-induced intestinal mucositis, and 46 studies investigated chemotherapy-induced oral mucositis. Among a total of 205 articles on chemotherapy-induced intestinal mucositis, 103 utilised 5-fluorouracil, 34 irinotecan, 16 platinum-based drugs, 33 methotrexate, and 32 other chemotherapeutic agents. Thirteen articles reported the use of a combination of 5-fluorouracil, irinotecan, platinum-based drugs, or methotrexate to induce intestinal mucositis. Among a total of 53 articles on chemotherapy-induced oral mucositis, 50 utilised 5-fluorouracil, 2 irinotecan, 2 methotrexate, 1 topotecan and 1 with other chemotherapeutic drugs. Three articles used a combination of these drugs to induce oral mucositis. Various animal models such as mice, rats, hamsters, piglets, rabbits, and zebrafish were used. The chemotherapeutic agents were introduced at various dosages via three routes of administration. Animals were mainly mice and rats. Unlike intestinal mucositis, most oral mucositis models combined mechanical or chemical irritation with chemotherapy. In conclusion, this extensive assessment of the literature revealed that there was a large variation among studies that reproduce oral and intestinal mucositis in animals. To assist with the design of a suitable preclinical model of chemotherapy-induced alimentary tract mucositis, animal types, routes of administration, dosages, and types of drugs were reported in this study. Further research is required to define an optimal protocol that improves the translatability of findings to humans.
Collapse
Affiliation(s)
| | | | | | | | | | | | - Nicola Cirillo
- Melbourne Dental School, The University of Melbourne, Carlton, VIC 3053, Australia
| |
Collapse
|
10
|
Therapeutic effects of a lipid transfer protein isolated from Morinda citrifolia L. (noni) seeds on irinotecan-induced intestinal mucositis in mice. Naunyn Schmiedebergs Arch Pharmacol 2022; 395:1097-1107. [PMID: 35776167 DOI: 10.1007/s00210-022-02267-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2022] [Accepted: 06/21/2022] [Indexed: 10/17/2022]
Abstract
This work aimed to evaluate the activity of a lipid transfer protein isolated from Morinda citrifolia L. seeds, McLTP1, on the development of intestinal mucositis following irinotecan administration. McLTP1 (0.5, 2, and 8 mg/kg, i.v.) was injected into mice 1h before irinotecan administration (75 mg/kg, i.p.; 4 days), and then for additional 6 days. Seven days after the first dose of irinotecan, diarrhea was assessed, and the intestine was removed for histological evaluation, assessment of intestinal over-contractility, measurement of myeloperoxidase (MPO), proinflammatory cytokines and chemokine (IL-1, IL-6, and KC levels - a murine homolog of human IL-8 chemokine), analysis of cyclooxygenase 2 (COX-2), nuclear factor kappa B (NF-κB), and nitric oxide synthase (iNOS) expression. At the two highest doses, McLTP1 administration decreased mortality and diarrhea. McLTP1 (8 mg/kg, i.v.) significantly prevented irinotecan-induced intestinal damage and led to a reduction in over-contractility of the intestinal muscle (p < 0.05). Moreover, McLTP1 decreased the MPO, IL-1β, IL-6, and KC levels by 74.7%, 42%, 92.9%, and 95.9%, respectively. Also, the expression of COX-2, NF-κB, and iNOS was reduced. Our study provides a potential new therapeutic for preventing irinotecan-induced mucositis, improved clinical parameters, and reduced inflammation.
Collapse
|
11
|
Leite CHB, Lopes CDH, Leite CAVG, Terceiro DA, Lima GS, Freitas JA, Cunha FQ, Almeida PRC, Wong DVT, Lima-Júnior RCP. A Novel Murine Model of a High Dose Brachytherapy-Induced Actinic Proctitis. Front Oncol 2022; 12:802621. [PMID: 35280725 PMCID: PMC8909144 DOI: 10.3389/fonc.2022.802621] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2021] [Accepted: 01/28/2022] [Indexed: 12/19/2022] Open
Abstract
Background Radiation proctitis affects 1-20% of cancer patients undergoing radiation exposure due to pelvic malignancies, including prostate, gynecological and rectum cancers. The patients manifest rectal discomfort, pain, discharge, and bleeding. Notably, the efficacy of prophylactic measures remains controversial due to the lack of adequate animal models that mimic this condition. Objective The present study then aimed to develop a murine model of high-dose-rate (HDR) brachytherapy-induced proctitis. Material/Methods C57BL/6 male mice were subjected to HDR (radiation source: iridium-192 [Ir-192]) through a cylindrical propylene tube inserted 2 cm far from the anal verge into the rectum. The animals received radiation doses once a day for three consecutive days (fractions of 9.5 Grays [Gy]), 3.0 mm far from the applicator surface. The sham group received only the applicator with no radiation source. The survival rate was recorded, and a colonoscopy was performed to confirm the tissue lesion development. Following euthanasia, samples of the rectum were collected for histopathology, cytokines dosage (IL-6 and KC), and immunohistochemical analysis (TNF-α and COX-2). Results HDR significantly reduced animals’ survival ten days post first radiation exposure (14% survival vs. 100% in the non-irradiated group). Day seven was then used for further investigation. Mice exposed to radiation presented with rectum injury confirmed by colonoscopy and histopathology (P < 0.05 vs. the control group). The tissue damage was accompanied by an inflammatory response, marked by increased KC and IL-6 tissue levels, and immunostaining for TNF-α and COX-2 (P < 0.05 vs. control group). Conclusions We established a novel animal model of actinic proctitis induced by HDR brachytherapy, marked by inflammatory damage and low animal mortality.
Collapse
Affiliation(s)
- Carlos Heli Bezerra Leite
- Radiation Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceara (ICC), Fortaleza, Brazil
| | - Carlos Diego Holanda Lopes
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Caio Abner Vitorino Gonçalves Leite
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Dulce Andrade Terceiro
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Gabriel Silva Lima
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Jéssica Andrade Freitas
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, Ribeirão Preto, Brazil
| | | | - Deysi Viviana Tenazoa Wong
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | - Roberto César Pereira Lima-Júnior
- Drug Research and Development Center, Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| |
Collapse
|
12
|
Ávila TV, Menezes-Garcia Z, do Nascimento Arifa RD, Soriani FM, Machado ADMV, Teixeira MM, Fagundes CT, Souza DG. Mitochondrial DNA as a Possible Ligand for TLR9 in Irinotecan-induced Small Intestinal Mucositis. Immunol Invest 2022; 51:1756-1771. [PMID: 35152824 DOI: 10.1080/08820139.2022.2026379] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
Cancer chemotherapy and radiotherapy may result in mucositis characterized by stem cell damage and inflammation in the gastrointestinal tract. The molecular mechanisms underlying this pathology remain unknown. Based on the assumption that mitochondrial CPG-DNA (mtDNA) released and sensed by TLR9 could underlie mucositis pathology, we analyzed the mtDNA levels in sera as well as inflammatory and disease parameters in the small intestine from wild-type (WT) and TLR9-deficient mice (TLR9-/-) in an experimental model of intestinal mucositis induced by irinotecan. Additionally, we verified the ability of WT and TLR9-/- macrophages to respond to CpG-DNA in vitro. WT mice injected with irinotecan presented a progressive increase in mtDNA in the serum along with increased hematocrit, shortening of small intestine length, reduction of intestinal villus:crypt ratio and increased influx of neutrophils, which were followed by higher expression of Nlrp3 and Casp1 mRNA and increased IL-1β levels in the ileum when compared to vehicle-injected mice. TLR9-deficient mice were protected in all these parameters when compared to WT mice. Furthermore, TLR9 was required for the production of IL-1β and NO after macrophage stimulation with CpG-DNA. Overall, our findings show that the amount of circulating free CpG-DNA is increased upon chemotherapy and that TLR9 activation is important for NLRP3 inflammasome transcription and further IL-1β release, playing a central role in the development of irinotecan-induced intestinal mucositis. We suggest that TLR9 antagonism may be a new therapeutic strategy for limiting irinotecan-induced intestinal inflammation.
Collapse
Affiliation(s)
- Thiago Vinicius Ávila
- Department of Pharmacology, Universidade Federal de Juiz de Fora, Juiz de Fora, Brazil
| | - Zélia Menezes-Garcia
- Department of Microbiology and Biochemistry, The University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Raquel Duque do Nascimento Arifa
- Laboratório de Interação Microorganismo-Hospedeiro, Department de Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | | | | | - Mauro Martins Teixeira
- Department of Biochemistry and Immunology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Caio Tavares Fagundes
- Laboratório de Interação Microorganismo-Hospedeiro, Department de Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| | - Daniele G Souza
- Laboratório de Interação Microorganismo-Hospedeiro, Department de Microbiology, Universidade Federal de Minas Gerais, Belo Horizonte, Brazil
| |
Collapse
|
13
|
Arifa RDN, Brito CB, de Paula TP, Lima RL, Menezes‐Garcia Z, Cassini‐Vieira P, Vilas Boas FA, Queiroz‐Junior CM, da Silva JM, da Silva TA, Barcelos LS, Fagundes CT, Teixeira MM, Souza DG. Eosinophil plays a crucial role in intestinal mucositis induced by antineoplastic chemotherapy. Immunology 2021; 165:355-368. [DOI: 10.1111/imm.13442] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2021] [Revised: 12/01/2021] [Accepted: 12/15/2021] [Indexed: 12/01/2022] Open
Affiliation(s)
- Raquel D N Arifa
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Camila B Brito
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Talles P de Paula
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | - Renata L Lima
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| | | | | | | | - Celso M Queiroz‐Junior
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Janine M da Silva
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | - Tarcília A da Silva
- Department of Oral Pathology and Surgery Faculty of Dentistry Universidade Federal de Minas Gerais Belo Horizonte, Minas Gerais Brazil
| | | | - Caio T. Fagundes
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
- Center for Drug Research and Development of Pharmaceuticals
| | - Mauro M Teixeira
- Center for Drug Research and Development of Pharmaceuticals
- Department of Biochemistry and Immunology Institute of Biological Sciences
| | - Daniele G. Souza
- Laboratory of Microorganism‐Host Interaction Department of Microbiology
| |
Collapse
|
14
|
Oliveira MMB, de Araújo AA, Ribeiro SB, de Sales Mota PCM, Marques VB, da Silva Martins Rebouças C, Figueiredo JG, Barra PB, de Castro Brito GA, de Carvalho Leitão RF, Guerra GCB, de Medeiros CACX. Losartan improves intestinal mucositis induced by 5-fluorouracil in mice. Sci Rep 2021; 11:23241. [PMID: 34853351 PMCID: PMC8636633 DOI: 10.1038/s41598-021-01969-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Accepted: 11/01/2021] [Indexed: 02/07/2023] Open
Abstract
Intestinal mucositis (IM) is a common side effect of 5-fluorouracil (5-FU)-based chemotherapy, which negatively impacts therapeutic outcomes and delays subsequent cycles of chemotherapy resulting in dose reductions and treatment discontinuation. In search of new pharmacological alternatives that minimize your symptoms, this work set out to study the effect of losartan (LOS), a receptor type I (AT1) angiotensin II antagonist, on intestinal mucositis induced by 5-FU. Intestinal mucositis was induced by a single intraperitoneal administration of 5-FU (450 mg/kg) in Swiss mice. Losartan (5, 25 or 50 mg/kg) or saline was orally administered 30 min before 5-FU and daily for 4 days. On 4th day, the animals were euthanized and segments of small intestine were collected to evaluate histopathological alterations (morphometric analysis), concentration of inflammatory cytokines, oxidative stress markers and genic expression of NF-κB p65, Fn-14 and TWEAK. Weight evaluation and changes in leukogram were also analyzed. 5-FU induced intense weight loss, leukopenia and reduction in villus height compared to saline group. Losartan (50 mg/kg) prevented 5-FU-induced inflammation by decreasing in the analyzed parameters compared to the 5-FU group. Our findings suggest that 50 mg/kg of losartan prevents the effects of 5-FU on intestinal mucosa in mice.
Collapse
Affiliation(s)
| | - Aurigena Antunes de Araújo
- Post Graduate Program in Pharmaceutical Science, Post Graduate Program Dental Sciences, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Susana Barbosa Ribeiro
- Junior Postdoctoral Student CNPq-Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | | | | | | | - Jozi Godoy Figueiredo
- Department of Biochemistry, Faculty of Vale do São Lourenço (EDUVALE), Jaciara, MT, Brazil
| | - Patrícia Batista Barra
- Post Graduate Program in Biology Teaching in National Network-PROFBIO, Department of Biomedical Sciences, State University of Rio Grande do Norte (UERN), Mossoró, RN, Brazil
| | - Gerly Anne de Castro Brito
- Post Graduate Program Morphofunctional Sciences, Post Graduate Program Medical Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Renata Ferreira de Carvalho Leitão
- Post Graduate Program Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University of Ceará (UFC), Fortaleza, CE, Brazil
| | - Gerlane Coelho Bernardo Guerra
- Post Graduate Program Biochemistry and Molecular Biology, Post Graduate Program Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil
| | - Caroline Addison Carvalho Xavier de Medeiros
- Post Graduate Program Biotechnology-RENORBIO, Post Graduate Program Biochemistry and Molecular Biology, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte (UFRN), Natal, RN, Brazil.
| |
Collapse
|
15
|
Commiphora myrrh Supplementation Protects and Cures Ethanol-Induced Oxidative Alterations of Gastric Ulceration in Rats. Antioxidants (Basel) 2021; 10:antiox10111836. [PMID: 34829707 PMCID: PMC8614819 DOI: 10.3390/antiox10111836] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/11/2021] [Accepted: 11/14/2021] [Indexed: 12/21/2022] Open
Abstract
Gastric ulceration is a multifactorial disease defined as a defect in the gastric wall that extends through the muscularis mucosae into the deeper layers of the wall. The most common cause of gastric ulceration is alcohol consumption. In the current study, rats were gavaged by ethanol to investigate the protective (before ethanol) and curative (after ethanol) ability of Commiphora myrrh (myrrh) oil and extract against gastric ulcer oxidative alterations induced by ethanol. Myrrh significantly improved ulcer index, histomorphology, and periodic acid Schiff (PAS) impaired by ethanol. In addition, myrrh improved the antioxidant potential of gastric mucosa through enhancement of nuclear factor related to erythroid 2 (Nrf2), total glutathione (GSH), reduced GSH, and oxidized glutathione (GSSG), along with significant reduction in malondialdehyde (MDA) levels. Amelioration of gastric oxidative stress by myrrh enables gastric mucosa to counteract the ethanol’s inflammatory and apoptotic processes leading to improved gastric proliferation and healing. Interestingly, myrrh extract showed better protective and curative effects than myrrh oil against gastric ulceration.
Collapse
|
16
|
Boeing T, Speca S, de Souza P, Mena AM, Bertin B, Desreumax P, Mota da Silva L, Faloni de Andrade S, Dubuqoy L. The PPARγ-dependent effect of flavonoid luteolin against damage induced by the chemotherapeutic irinotecan in human intestinal cells. Chem Biol Interact 2021; 351:109712. [PMID: 34699766 DOI: 10.1016/j.cbi.2021.109712] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2021] [Revised: 10/01/2021] [Accepted: 10/20/2021] [Indexed: 01/25/2023]
Abstract
Irinotecan (CPT-11) is one of the main agents used to treat colorectal cancer; unfortunately, it is associated with increased intestinal mucositis developing. Luteolin has been shown to prevent damage induced by this chemotherapeutic in mice; thus, in this research, we have investigated luteolin's action mechanism in human intestinal epithelial cells. The potential of luteolin in reducing inflammation and oxidative stress induced by irinotecan in Caco-2 cells was evaluated by PCR through mRNA expression of inflammatory and oxidative genes and by ELISA at the protein level. To assess whether luteolin's ability to control irinotecan-induced damage occurs in a PPARγ dependent manner, experiments were performed on PPARγ downregulated cells. Irinotecan downregulated PPARγ expression and upregulated inflammatory and oxidative genes, while luteolin upregulated PPARγ, HO-1, SOD and decreased expression of IL-1β and iNOS. Interestingly, when the cells were co-stimulated with luteolin and irinotecan, the flavonoid reversed the inflammation and oxidative imbalance evoked by the chemotherapeutic. However, when these experiments were performed in cells downregulated for PPARγ, luteolin lost the capacity to increase PPARγ and reverse the effect of irinotecan in all tested genes, except by IL-1β. The present study showed that the protective effect of luteolin against irinotecan is PPARγ dependent.
Collapse
Affiliation(s)
- Thaise Boeing
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France.
| | - Silvia Speca
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Priscila de Souza
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Anthony Martin Mena
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Benjamin Bertin
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Pierre Desreumax
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| | - Luisa Mota da Silva
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil
| | - Sérgio Faloni de Andrade
- Postgraduate Program in Pharmaceutical Sciences (PPGCF), Nucleus for Chemical-Pharmaceutical Investigations (NIQFAR), University of Vale do Itajaí (UNIVALI), Itajaí-SC, Brazil; CBIOS, Research Center for Biosciences and Health Technologies, Universidade Lusófona, Lisboa, Portugal
| | - Laurent Dubuqoy
- Université Lille 2, CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), U995, Lille, France
| |
Collapse
|
17
|
Mast Cells Modulate the Immune Response and Redox Status of the Gastrointestinal Tract in Induced Venom Pathogenesis. Inflammation 2021; 45:509-527. [PMID: 34608585 DOI: 10.1007/s10753-021-01562-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2021] [Revised: 09/06/2021] [Accepted: 09/07/2021] [Indexed: 10/20/2022]
Abstract
The pathogenesis of Androctonus autralis hector (Aah) scorpion venom involved cellular and molecular mechanisms resulting in multi-organ dysfunction. However, little is reported about the effects of venom on the gastrointestinal axis. Mast cells (MCs) are known to play a crucial role in modulating immune response of the gut. This study aims to investigate the involvement of this cell type in venom-induced gastric and intestinal disorders in a time course (3 and 24h). The obtained results revealed that Aah scorpion venom induced inflammatory cell infiltration as shown by the increase of the myeloperoxidase and eosinophil peroxidase activities. Overexpression of the c-kit receptor (CD117) severely imbalanced the redox status with depletion of antioxidant systemic accompanied by gastrointestinal tissue damage. Moreover, an increased level of lactate dehydrogenase in the serum was correlated with tissue injuries. Pharmacological inhibition of MCs targeting tyrosine kinase (TK) reduces the generation of reactive oxygen species and normalizes catalase, and gluthation S-transferase activities to their physiological levels. In addition, histopathological alterations were restored after pretreatment with c-kit receptor inhibitor associated with a considerable reduction of MC density. Interestingly, obtained results indicate that MCs might be involved in gastric modulation and intestinal inflammation through c-kit signaling following sub-cutaneous Aah venom injection.
Collapse
|
18
|
Wong DVT, Holanda RBF, Cajado AG, Bandeira AM, Pereira JFB, Amorim JO, Torres CS, Ferreira LMM, Lopes MHS, Oliveira RTG, Pereira AF, Sant'Ana RO, Arruda LM, Ribeiro-Júnior HL, Pinheiro RF, Almeida PRC, Carvalho RF, Chaves FF, Rocha-Filho DR, Cunha FQ, Lima-Júnior RCP. TLR4 deficiency upregulates TLR9 expression and enhances irinotecan-related intestinal mucositis and late-onset diarrhoea. Br J Pharmacol 2021; 178:4193-4209. [PMID: 34216140 DOI: 10.1111/bph.15609] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 06/12/2021] [Accepted: 06/19/2021] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND AND PURPOSE Severe diarrhoea, a common gastrointestinal manifestation of anticancer treatment with irinotecan, might involve single nucleotide polymorphisms (SNPs) of toll-like receptors (TLRs), described as critical bacterial sensors in the gut. Here, colorectal cancer patients carrying missense TLR4 A896G (rs4986790) or C1,196T (rs4986791) SNPs and Tlr4 knockout (Tlr4-/-) mice were given irinotecan to investigate the severity of the induced diarrhoea. EXPERIMENTAL APPROACH Forty-six patients treated with irinotecan-based regimens had diarrhoea severity analysed according to TLR4 genotypes. In the experimental setting, wild-type (WT) or Tlr4-/- mice were given irinotecan (45 or 75 mg·kg-1 , i.p.) or saline (3 ml·kg-1 ). Diarrhoea severity was evaluated by measuring intestinal injury and inflammatory markers expression after animals were killed. KEY RESULTS All patients with TLR4 SNPs chemotherapy-treated presented diarrhoea, whereas gastrointestinal toxicity was observed in 50% of the wild homozygous individuals. Mice injected with irinotecan presented systemic bacterial translocation and increased TLR4 immunostaining in the intestine. In line with the clinical findings, Tlr4 gene deficiency enhanced irinotecan-related diarrhoea and TLR9 expression in mice. An increased myeloperoxidase activity and Il-18 expression along with IL-10 decreased production in Tlr4-/- mice also indicated an intensified intestinal damage and inflammatory response. CONCLUSION AND IMPLICATIONS TLR4 deficiency upregulates TLR9 expression and enhances intestinal damage and the severity of late-onset diarrhoea during irinotecan-based treatment. Identifying patients genetically predisposed to chemotherapy-associated diarrhoea is a strategy toward precision medicine.
Collapse
Affiliation(s)
- Deysi Viviana Tenazoa Wong
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil.,Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Renata Brito Falcão Holanda
- Graduate Program in Pharmaceutical Sciences, Department of Pharmacy, Faculty of Pharmacy, Nursing and Dentistry, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Aurilene Gomes Cajado
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Alessandro Maia Bandeira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Jorge Fernando Bessa Pereira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Joice Oliveira Amorim
- Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Clarice Sampaio Torres
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Luana Maria Moura Ferreira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Marina Helena Silva Lopes
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Roberta Taiane Germano Oliveira
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Anamaria Falcão Pereira
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Rosane Oliveira Sant'Ana
- Laboratory of Molecular Biology and Genetics, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil.,Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Larissa Mont'alverne Arruda
- Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Howard Lopes Ribeiro-Júnior
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Ronald Feitosa Pinheiro
- Cancer Cytogenomic Laboratory, Drug Research and Development Center (NPDM), Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Roberto Carvalho Almeida
- Graduate Program in Pathology, Department of Pathology and Forensic Medicine, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Robson Francisco Carvalho
- Department of Structural and Functional Biology, Institute of Biosciences, São Paulo State University (UNESP), Botucatu, São Paulo, Brazil
| | - Fábio Figueiredo Chaves
- Clinical Oncology Service, Haroldo Juaçaba Hospital, Cancer Institute of Ceará (ICC), Fortaleza, Ceará, Brazil
| | - Duílio Reis Rocha-Filho
- Clinical Oncology Service, Walter Cantídio University Hospital, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Fernando Queiroz Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, State of São Paulo, Brazil
| | - Roberto César Pereira Lima-Júnior
- Laboratory of Inflammation and Cancer Pharmacology, Drug Research and Development Center (NPDM), Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, Ceará, Brazil
| |
Collapse
|
19
|
Boeing T, de Souza P, Speca S, Somensi LB, Mariano LNB, Cury BJ, Ferreira Dos Anjos M, Quintão NLM, Dubuqoy L, Desreumax P, da Silva LM, de Andrade SF. Luteolin prevents irinotecan-induced intestinal mucositis in mice through antioxidant and anti-inflammatory properties. Br J Pharmacol 2020; 177:2393-2408. [PMID: 31976547 DOI: 10.1111/bph.14987] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2019] [Revised: 11/21/2019] [Accepted: 01/08/2020] [Indexed: 12/11/2022] Open
Abstract
BACKGROUND AND PURPOSE Intestinal mucositis refers to mucosal damage caused by cancer treatment, and irinotecan is one of the agents most associated with this condition. Focusing on the development of alternatives to prevent this important adverse effect, we evaluated the activity of the flavonoid luteolin, which has never been tested for this purpose despite its biological potential. EXPERIMENTAL APPROACH The effects of luteolin were examined on irinotecan-induced intestinal mucositis in mice. Clinical signs were evaluated. Moreover, histological, oxidative, and inflammatory parameters were analysed, as well as the possible interference of luteolin in the anti-tumour activity of irinotecan. KEY RESULTS Luteolin (30 mg·kg-1 ; p.o. or i.p.) prevented irinotecan-induced intestinal damage by reducing weight loss and diarrhoea score and attenuating the shortening of the duodenum and colon. Histological analysis confirmed that luteolin (p.o.) prevented villous shortening, vacuolization, and apoptosis of cells and preserved mucin production in the duodenum and colon. Moreover, luteolin treatment mitigated irinotecan-induced oxidative stress, by reducing the levels of ROS and LOOH and augmenting endogenous antioxidants, and inflammation by decreasing MPO enzymic activity, TNF, IL-1β, and IL-6 levels and increasing IL-4 and IL-10. Disruption of the tight junctions ZO-1 and occludin was also prevented by luteolin treatment. Importantly, luteolin did not interfere with the anti-tumour activity of irinotecan. CONCLUSION AND IMPLICATIONS Luteolin prevents intestinal mucositis induced by irinotecan and therefore could be a potential adjunct in anti-tumour therapy to control this adverse effect, increasing treatment adherence and consequently the chances of cancer remission.
Collapse
Affiliation(s)
- Thaise Boeing
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Priscila de Souza
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Silvia Speca
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Lincon Bordignon Somensi
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Luisa Nathália Bolda Mariano
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Benhur Judah Cury
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Mariana Ferreira Dos Anjos
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Nara Lins Meira Quintão
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Laurent Dubuqoy
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Pierre Desreumax
- CHRU de Lille, Inserm, Lille Inflammation Research International Center (LIRIC), Université Lille 2, Lille, France
| | - Luisa Mota da Silva
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| | - Sérgio Faloni de Andrade
- Programa de Pós-Graduação em Ciências Farmacêuticas (PPGCF), Núcleo de Investigações Químico-Farmacêuticas (NIQFAR), Universidade do Vale do Itajaí (UNIVALI), Itajaí, Brazil
| |
Collapse
|
20
|
Ferreira-Junior AEC, Barros-Silva PGD, Oliveira CCD, Lima Verde MEQ, Sousa FB, Mota MRL, Lima-Júnior RCP, Alves APNN. Influence of infliximab therapy on bone healing post-dental extraction in rats. Arch Oral Biol 2020; 112:104680. [PMID: 32078944 DOI: 10.1016/j.archoralbio.2020.104680] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2019] [Revised: 01/06/2020] [Accepted: 01/31/2020] [Indexed: 10/25/2022]
Abstract
OBJECTIVE TNF-α, which acts directly on osteoclastogenesis, may modify bone turnover. Thus, the objective of this study was to evaluate the influence of infliximab on extraction socket healing. MATERIAL AND METHODS Eighty-four Wistar rats were randomized into two groups (infliximab EV 5 mg / kg or saline EV 1 ml / kg) and submitted to lower first molar extraction protocol. The animals were sacrificed 1, 3, 7, 14, 21 and 28 days after surgery. The jaws were subjected to radiographic, histomorphometric, histochemical (picrosirius red) and immunohistochemical (TNF-α, RANKL and OPG) analysis. RESULTS No differences were observed between the groups in surgical difficulty parameters: mass of teeth, number of root fractures and surgical time. Lower area filling with bone as well as increased amounts of remaining cicatricial tissue were observed in the infliximab group at 14 days (p < 0.001). Lower scores for polymorphonuclear neutrophils were seen at 3 (p < 0.01) and 7 days (p < 0.001), lower mononuclear counts at 7 days (p < 0.01) and lower osteoclast counts at 7 and 14 days (p < 0.01 and p < 0.001, respectively). Additionally, reduced TNF-α, RANKL and OPG immunoreactivity were observed, especially at 7 days (p < 0.05). CONCLUSION TNF-α inhibitor may alter the bone repair capacity after tooth extraction, especially in the initial repair periods, by lower expression of TNF α, RANKL and OPG. Thus, additional caution may be needed in patients who use this class of medication after dental extraction.
Collapse
Affiliation(s)
| | | | | | | | - Fabrício Bitu Sousa
- Departament of Dental Clinic - Federal University of Ceara, Fortaleza, Ceará, Brazil
| | | | | | | |
Collapse
|
21
|
Li M, Yu Y, Shi Y, Zhou Y, Zhang W, Hua H, Ge J, Zhang Z, Ye D, Yang C, Wang S. Decreased Osteogenic Ability of Periodontal Ligament Stem Cells Leading to Impaired Periodontal Tissue Repair in BRONJ Patients. Stem Cells Dev 2020; 29:156-168. [PMID: 31801410 DOI: 10.1089/scd.2019.0151] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
Abstract
Bisphosphonate-related osteonecrosis of the jaws (BRONJ) is a severe adverse reaction, which results in progressive bone destruction in the maxillofacial region of patients. To date, the pathological mechanisms remain largely unclear. Recently, we found that BRONJ patient had significantly deep periodontal pockets and severe periodontal bone defects before the exposed necrotic bone. Human periodontal ligament stem cells (hPDLSCs) play key roles in physiological maintenance and regeneration of periodontal tissues. However, the activities of hPDLSCs derived from BRONJ lesions and the role of hPDLSCs in BRONJ periodontal defect repair remain poorly understood. The aim of the present study was to elucidate the role of hPDLSCs in BRONJ. In this study, we found that the capacities of cell proliferation, adhesion, and migration of hPDLSCs derived from BRONJ lesions (BRONJ-hPDLSCs) were significantly decreased compared with control-hPDLSCs. BRONJ-hPDLSCs underwent early apoptosis compared with control-hPDLSCs. Importantly, we first demonstrated that BRONJ-hPDLSCs exhibited impaired osteogenic differentiation abilities in ectopic osteogenesis of nude mice. The above results suggested that the impaired BRONJ-hPDLSCs may be an important factor in deficient periodontal repair of BRONJ lesions and provide new insight into the underlying mechanism of BRONJ.
Collapse
Affiliation(s)
- Mengyu Li
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yejia Yu
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yueqi Shi
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Yuqiong Zhou
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Wenjie Zhang
- Department of Prosthodontics, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Hongfei Hua
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Jing Ge
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Zhiyuan Zhang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Dongxia Ye
- Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Chi Yang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| | - Shaoyi Wang
- Department of Oral Surgery, Shanghai Ninth People's Hospital, College of Stomatology, Shanghai Jiao Tong University School of Medicine, Shanghai, China.,National Clinical Research Center of Oral Disease, Shanghai, China.,Shanghai Key Laboratory of Stomatology, Shanghai Research Institute of Stomatology, Shanghai, China
| |
Collapse
|
22
|
Sun R, Basu S, Zeng M, Sunsong R, Li L, Ghose R, Wang W, Liu Z, Hu M, Gao S. Xiao-Chai-Hu-Tang (XCHT) Intervening Irinotecan’s Disposition: The Potential of XCHT in Alleviating Irinotecan-Induced Diarrhea. Curr Cancer Drug Targets 2019; 19:551-560. [DOI: 10.2174/1568009618666181029153255] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Revised: 09/23/2018] [Accepted: 09/28/2018] [Indexed: 12/14/2022]
Abstract
<P>Background: Diarrhea is a severe side effect of irinotecan, a pro-drug of SN-38 used for the treatment of many types of cancers. Pre-clinical and clinical studies showed that decreasing the colonic exposure of SN-38 can mitigate irinotecan-induced diarrhea. </P><P> Objective: The purpose of this study is to evaluate the anti-diarrhea potential of Xiao-Chai-Hu-Tang (XCHT), a traditional Chinese herbal formula, against irinotecan-induced diarrhea by determining if and how XCHT alters the disposition of SN-38. </P><P> Methods: LC-MS/MS was used to quantify the concentrations of irinotecan and its major metabolites (i.e., SN-38, SN-38G). An Intestinal perfusion model was used to determine the effect of XCHT on the biliary and intestinal secretions of irinotecan, SN-38, and SN-38G. Pharmacokinetic (PK) studies were performed to determine the impact of XCHT on the blood and fecal concentrations of irinotecan, SN-38, and SN-38G. </P><P> Results: The results showed that XCHT significantly inhibits both biliary and intestinal excretions of irinotecan, SN-38, and SN-38G (range: 35% to 95%). PK studies revealed that the fecal concentrations of irinotecan and SN-38 were significantly decreased from 818.35 ± 120.2 to 411.74 ± 138.83 µg/g or from 423.95 ± 76.44 to 245.63 ± 56.72 µg/g (p<0.05) by XCHT, respectively, suggesting the colonic exposure of SN-38 is significantly decreased by XCHT. PK studies also showed that the plasma concentrations of irinotecan, SN-38, and SN-38G were not affected by XCHT. </P><P> Conclusion: In conclusion, XCHT significantly decreased the exposure of SN-38 in the gut without affecting its plasma level, thereby possessing the potential of alleviating irinotecan-induced diarrhea without negatively impacting its therapeutic efficacy.</P>
Collapse
Affiliation(s)
- Rongjin Sun
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Sumit Basu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Min Zeng
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Robin Sunsong
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| | - Li Li
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Romi Ghose
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Wei Wang
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Zhongqiu Liu
- International Institute for Translational Chinese Medicine, Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, 51006, China
| | - Ming Hu
- Department of Pharmacological and Pharmaceutical Sciences, The University of Houston, 1441 Moursund Street, Houston, TX 77030, United States
| | - Song Gao
- Department of Pharmaceutical and Environmental Sciences, Texas Southern University, 3100 Cleburne Street, Houston, TX 77004, United States
| |
Collapse
|
23
|
Wang Y, Sun L, Chen S, Guo S, Yue T, Hou Q, Feng M, Xu H, Liu Y, Wang P, Pan Y. The administration of Escherichia coli Nissle 1917 ameliorates irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in mice. Life Sci 2019; 231:116529. [PMID: 31173781 DOI: 10.1016/j.lfs.2019.06.004] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2019] [Revised: 05/28/2019] [Accepted: 06/02/2019] [Indexed: 02/08/2023]
Abstract
AIMS The present study investigated the effect of Escherichia coli Nissle 1917 (EcN) on irinotecan-induced intestinal barrier dysfunction and gut microbial dysbiosis in a mouse model and in the human colonic cells lines Caco-2. MATERIALS AND METHODS Male BALB/c mice received irinotecan intraperitoneal injection with or without EcN administration intragastrically. Body weight, diarrhea severity, intestinal permeability and histopathological analysis of ileum epithelia of mice from different groups were assessed. The expression and localization of tight junction proteins were examined using western blot and immunofluorescence. Gut microbiota structure and diversity were measured with 16 S rRNA sequencing. Caco-2 monolayers were incubated with EcN culture supernatant (EcNsup) or SN-38 and the monolayer barrier function was assessed by transepithelial electrical resistance (TER) and FITC-dextran 4000 Da (FD-4) flux. KEY FINDINGS Pretreatment with EcN significantly attenuated irinotecan-induced weight loss and diarrhea in mice. In addition, EcN inhibited the increased intestinal permeability and decreased Claudin-1 expression in irinotecan-treated mice. Furthermore, irinotecan treatment decreased the diversity of gut microbiota and increased the relative abundance of Proteobacteria compared to control group. EcN administration ameliorated the gut microbiota dysbiosis. In Caco-2 monolayers, EcNsup ameliorated the decreased TER and increased FD-4 flux elicited by SN-38. Moreover, EcNsup attenuated SN-38-induced altered localization and distribution of Claudin-1 in Caco-2 monolayers. SIGNIFICANCE Our results indicated that the administration of EcN protected against irinotecan-induced intestinal injury by regulating intestinal barrier function and gut microbiota.
Collapse
Affiliation(s)
- Yurong Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Lie Sun
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Shanwen Chen
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Shihao Guo
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Taohua Yue
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Qisheng Hou
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Mei Feng
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Hao Xu
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Yucun Liu
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Pengyuan Wang
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China
| | - Yisheng Pan
- Division of General Surgery, Peking University First Hospital, Peking University, 8 Xi ShiKu Street, Beijing 100034, People's Republic of China.
| |
Collapse
|
24
|
Qiu Y, Zhang J, Ji R, Zhou Y, Shao L, Chen D, Tan J. Preventative effects of selenium-enriched Bifidobacterium longum on irinotecan-induced small intestinal mucositis in mice. Benef Microbes 2019; 10:569-577. [PMID: 30964326 DOI: 10.3920/bm2018.0096] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Intestinal mucositis is a frequent side effect in cancer patients who are treated with chemotherapy. There are no effective treatment strategies to date. To find a novel way to alleviate mucositis, the effects of selenium-enriched Bifidobacterium longum (Se-B. longum) in preventing irinotecan (CPT-11)-induced intestinal mucositis in a mouse model were investigated. We tested the ability of Se-B. longum (Se 0.6 mg/kg, 5×108 cfu/mice) to reduce small intestinal mucositis induced by CPT-11 (75 mg/kg, daily) injected intraperitoneally for four consecutive days in mice. Se-B. longum significantly decreased mortality induced by CPT-11 from 71.4% to 16.7%. CPT-11 induced body weight loss, which was alleviated by preventative and simultaneous administration of Se-B. longum. Se-B. longum significantly decreased the severity of diarrhoea from 11 to 4% compared to the CPT-11 group. Inflammation, including intestinal shortening and upregulation of tumour necrosis factor-α and interleukin-1β induced by CPT- 11, were prevented by Se-B. longum. Se-B. longum is effective in preventing small intestinal mucositis induced by CPT-11 and therefore has potential to be used clinically by cancer patients.
Collapse
Affiliation(s)
- Y Qiu
- 1 School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 201203, China P.R.,3 Pharmacy Department, Shanghai Tenth People's hospital, 301 Yanchang Middle Road, Shanghai 201203, China P. R
| | - J Zhang
- 2 State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China P.R
| | - R Ji
- 2 State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China P.R
| | - Y Zhou
- 2 State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China P.R
| | - L Shao
- 4 Shanghai University of Medicine and Health Sciences, 279 Zhouzhu Road, Shanghai 201203, China P.R
| | - D Chen
- 1 School of Pharmacy, Shanghai Jiao Tong University, 800 Dongchuan Road, Shanghai 201203, China P.R
| | - J Tan
- 2 State Key Laboratory of New Drug and Pharmaceutical Process, Shanghai Institute of Pharmaceutical Industry, 285 Gebaini Road, Shanghai 201203, China P.R
| |
Collapse
|
25
|
Thorpe D, Sultani M, Stringer A. Irinotecan induces enterocyte cell death and changes to muc2 and muc4 composition during mucositis in a tumour-bearing DA rat model. Cancer Chemother Pharmacol 2019; 83:893-904. [PMID: 30815720 DOI: 10.1007/s00280-019-03787-5] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/03/2018] [Accepted: 01/29/2019] [Indexed: 11/25/2022]
Abstract
Irinotecan-induced mucositis is a major oncological problem. Goblet cells secrete mucus, protecting the intestinal mucosa, with secretion altered during mucositis. The enteric nervous system is involved in regulating gut motility and secretion. The aim of this study was to determine whether enteric neural cells and goblet cells are altered following irinotecan treatment. Tumour-bearing Dark Agouti rats were administered a single dose of 175 mg/kg of irinotecan intraperitoneally and 0.01 mg/kg atropine subcutaneously. Experimental and untreated control rats were killed at times 6, 24, 48, 72, 96 and 120 h after treatment. Jejunum and colon samples were formalin fixed. Haematoxylin and eosin staining, Alcian Blue-PAS staining, and immunohistochemistry with S-100 antibody (neural cell marker) were carried out. Statistical analyses were carried out using Kruskal-Wallis test with Dunns post test, Mann Whitney U test, and nonlinear regression. Total goblet cells decreased at 72 h compared with controls in the colon (p < 0.05). The percentage of cavitated goblet cells decreased compared to all other time points at 120 h in the colon. The number of S-100-positive cells in the submucosal plexus decreased in the colon (p = 0.0046) and in the myenteric plexus of the jejunum and colon (p = 0.0058 and p = 0.0022, respectively), on comparing treated with control. Enteric ganglia in the myenteric plexus of the jejunum decreased at 24 h and 96 h. Irinotecan-induced mucositis is associated with increases in mucus secretion and enteric neural cell change. These changes may contribute to the pathophysiology of mucositis through the dysregulation of neural signalling.
Collapse
Affiliation(s)
- Daniel Thorpe
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia.
| | - Masooma Sultani
- School of Medical Sciences, Adelaide University, Adelaide, 5001, Australia
| | - Andrea Stringer
- School of Pharmacy and Medical Sciences, University of South Australia, Adelaide, 5001, Australia
| |
Collapse
|
26
|
Barbosa SCM, Pereira VBM, Wong DVT, Santana APM, Lucetti LT, Carvalho LL, Barbosa CRN, Callado RB, Silva CAA, Lopes CDH, Brito GAC, Alencar NMN, Lima-Júnior RCP. Amifostine reduces inflammation and protects against 5-fluorouracil-induced oral mucositis and hyposalivation. ACTA ACUST UNITED AC 2019; 52:e8251. [PMID: 30810625 PMCID: PMC6393848 DOI: 10.1590/1414-431x20188251] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2018] [Accepted: 11/23/2018] [Indexed: 01/30/2023]
Abstract
Oral mucositis (OM) is a common and dose-limiting side effect of cancer treatment, including 5-fluorouracil (5-FU) and radiotherapy. The efficacy of the therapeutic measures to prevent OM is limited and disease prevention is not fully observable. Amifostine is a cytoprotective agent with a described anti-inflammatory potential. It is clinically used to reduce radiotherapy and chemotherapy-associated xerostomia. This study investigated the protective effect of amifostine on an experimental model of OM. Hamsters were divided into six groups: saline control group (5 mL/kg), mechanical trauma (scratches) of the right cheek pouch; 5-FU (60 and 40 mg/kg, ip, respectively, administered on days 1 and 2); amifostine (12.5, 25, or 50 mg/kg) + 5-FU + scratches. Salivation rate was assessed and the animals were euthanized on day 10 for the analysis of macroscopic and microscopic injury by scores. Tissue samples were harvested for the measurement of neutrophil infiltration and detection of inflammatory markers by ELISA and immunohistochemistry. 5-FU induced pronounced hyposalivation, which was prevented by amifostine (P<0.05). In addition, 5-FU injection caused pronounced tissue injury accompanied by increased neutrophil accumulation, tumor necrosis factor-alpha (TNF-α), and interleukin-1 beta (IL-1β) tissue levels, and positive immunostaining for TNF-α, IL-1β, and inducible nitric oxide synthase (iNOS). Interestingly, amifostine prevented the inflammatory reaction and consequently improved macroscopic and microscopic damage (P<0.05 vs 5-FU group). Amifostine reduced inflammation and protected against 5-FU-associated oral mucositis and hyposalivation.
Collapse
Affiliation(s)
- S C M Barbosa
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - V B M Pereira
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - D V T Wong
- Departamento de Patologia e Medicina Legal, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - A P M Santana
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - L T Lucetti
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - L L Carvalho
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - C R N Barbosa
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - R B Callado
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - C A A Silva
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - C D H Lopes
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - G A C Brito
- Departamento de Morfologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - N M N Alencar
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| | - R C P Lima-Júnior
- Departamento de Fisiologia e Famacologia, Faculdade de Medicina, Universidade Federal do Ceará, Fortaleza, Brasil
| |
Collapse
|
27
|
Barbosa MM, de Araújo AA, de Araújo Júnior RF, Guerra GCB, de Castro Brito GA, Leitão RC, Ribeiro SB, de Aragão Tavares E, Vasconcelos RC, Garcia VB, de Medeiros CACX. Telmisartan Modulates the Oral Mucositis Induced by 5-Fluorouracil in Hamsters. Front Physiol 2018; 9:1204. [PMID: 30210365 PMCID: PMC6123383 DOI: 10.3389/fphys.2018.01204] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2018] [Accepted: 08/10/2018] [Indexed: 01/20/2023] Open
Abstract
Oral mucositis (OM) is a common adverse effect resulting from cancer therapy. The OM it has implications that may compromise oncologic treatment and decrease the patient's quality of life. The therapeutic options to prevent or treat the symptoms of OM are scarce; there is no effective therapy that improves the symptoms. Based on the need for further research for the treatment of OM, the present study objective was to evaluate the effect of telmisartan (TELM) on the OM induced by 5-fluorouracil (5-FU), using as animal model Golden Syrian hamsters. 5-FU followed by mechanical trauma on day 4 was used to induce OM in hamsters. Euthanasia occurred on the day 10. The experiments were constituted by the groups saline, mechanical trauma, 5-FU, and TELM in three doses (1, 5, or 10 mg/kg). Macroscopic, histopathological, and immunohistochemical analyses as well as immunofluorescence experiments were performed on the oral mucosa of the animals. The samples also were used for analysis enzyme-linked immunosorbent assays and quantitative real-time polymerase chain reactions (qPCR). TELM (5 or 10 mg/kg) was able to reduce the inflammatory ulceration and infiltration in the oral mucosa of the animals, decreasing the levels of the cytokines TNF-α and IL-1β. These treatments was minimize the immunostaining for cyclooxygenase-2, matrix metalloproteinase-9, transforming growth factor-β, and smad 2/3. The nuclear transcription factor kappa B (NFκB) p65 and inducible nitric oxide synthase were reduced in the oral mucosa. Finally, TELM (10 mg/kg) increased the PPARγ gene expression and reduced STAT1 and NFκB p65 gene expression relative to the 5-FU group. Therefore, TELM prevents the OM produced by 5-FU on animal model.
Collapse
Affiliation(s)
- Maisie M Barbosa
- Post Graduation Program in Biological Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Aurigena A de Araújo
- Post Graduation Program Public Health/Post Graduation Program in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Raimundo F de Araújo Júnior
- Post Graduation Program in Functional and Structural Biology/Post Graduation Program Health Science, Department of Morphology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gerlane C B Guerra
- Post Graduation Program in Biological Sciences/Post Graduation Program in Pharmaceutical Science, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Gerly A de Castro Brito
- Post Graduation Program of Morphological Science, Department of Morphology, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Renata C Leitão
- Post Graduation Program of Morphological Science, Department of Morphology, Universidade Federal do Ceará, Fortaleza, Brazil
| | - Susana B Ribeiro
- Post Graduation Program in Biotechnology RENORBIO, Federal University of Rio Grande do Norte, Natal, Brazil
| | | | - Roseane C Vasconcelos
- Post Graduation Program Public Health, Department of Dentistry, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Vinícius B Garcia
- Post Graduation in Program of Health Sciences, Federal University of Rio Grande do Norte, Natal, Brazil
| | - Caroline A C X de Medeiros
- Post Graduation Program in Biological Sciences/Post Graduation Program in Biotechnology RENORBIO, Department of Biophysics and Pharmacology, Federal University of Rio Grande do Norte, Natal, Brazil
| |
Collapse
|
28
|
Fernandes C, Wanderley CWS, Silva CMS, Muniz HA, Teixeira MA, Souza NRP, Cândido AGF, Falcão RB, Souza MHLP, Almeida PRC, Câmara LMC, Lima-Júnior RCP. Role of regulatory T cells in irinotecan-induced intestinal mucositis. Eur J Pharm Sci 2018; 115:158-166. [PMID: 29307857 DOI: 10.1016/j.ejps.2018.01.006] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2017] [Revised: 11/27/2017] [Accepted: 01/03/2018] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis (IM) is a common side effect of irinotecan-based chemotherapy. The involvement of inflammatory mediators, such as TNF-α, IL1-β, IL-18 and IL-33, has been demonstrated. However, the role of adaptive immune system cells, whose activation is partially regulated by these cytokines, is yet unknown. Thus, we investigated the role of regulatory T cells (Tregs) in irinotecan-induced IM. C57BL/6 mice were injected with saline or irinotecan (75mgkg-1, i.p.), once a day for 4days, and euthanized at day 1, 3, 5 or 7 following the first dose of irinotecan. For Treg depletion, the mice were pretreated with a low single dose of cyclophosphamide (100mgkg-1, i.p). Intestinal lamina propria lymphocytes were harvested and purified by Percoll gradient. Treg and Th17 cells were identified by flow cytometry. Blood leukocyte count was obtained and ileum samples were collected for histopathological analysis and myeloperoxidase assay. IM caused an accumulation of Tregs and Th17 cells over time. Treg depletion exacerbated intestinal damage, diarrhea, neutrophil infiltration and animal mortality, despite a reduction in Th17 cell number. The frequency of other Th cells increased and was positively correlated with neutrophil infiltration. Tregs showed a negative correlation with neutrophils and the frequency of non-regulatory Th cells. In conclusion, Tregs are important in the control of intestinal damage induced by irinotecan, and their depletion showed a deleterious effect on IM. Activation of these cells appears to be a compensatory mechanism for intestinal inflammation.
Collapse
Affiliation(s)
- Camila Fernandes
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil.
| | | | | | - Heitor Amorim Muniz
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | - Maraiza Alves Teixeira
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | - Renata Brito Falcão
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Brazil
| | | | | | | | | |
Collapse
|
29
|
Alvarenga EM, Sousa NA, de Araújo S, Júnior JLP, Araújo AR, Iles B, Pacífico DM, Brito GAC, Souza EP, Sousa DP, Medeiros JVR. Carvacryl acetate, a novel semisynthetic monoterpene ester, binds to the TRPA1 receptor and is effective in attenuating irinotecan-induced intestinal mucositis in mice. J Pharm Pharmacol 2017; 69:1773-1785. [PMID: 28940490 DOI: 10.1111/jphp.12818] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Accepted: 08/26/2017] [Indexed: 12/15/2022]
Abstract
OBJECTIVES We aimed to determine whether carvacryl acetate acts as a TRPA1 receptor agonist and its effects against irinotecan (CPT-11) induced intestinal mucositis in mice. METHODS TRPA1 structure was obtained from a protein databank, and the 3D structure of carvacryl acetate was determined. Appropriate binding conformations were discovered via automatic docking simulations. To determine the effect of carvacryl acetate in vivo, mice were treated with either DMSO 2%, CPT-11, carvacryl acetate followed by CPT-11, or HC-030031, a TRPA1 antagonist, followed by carvacryl acetate. Jejunum samples were taken and structural, inflammatory and antioxidant parameters were studied. KEY FINDINGS Eight amino acids residues in TRPA1 established stable interactions with carvacryl acetate, which led to pharmacological efficacy against CPT-11-induced intestinal mucositis via reduction of both neutropenia and bacteremia, increase in villi height and crypt depth, decrease in pro-inflammatory cytokines (interleukin-1β, keratinocyte chemoattractant and tumour necrosis factor-α) and decrease in malondialdehyde and nitric oxide metabolite levels in the jejunum. CONCLUSIONS Carvacryl acetate is a promising anti-inflammatory and antioxidant agent, a fact confirmed through observations of its interactions with TRPA1 in CPT-11-induced intestinal mucositis in mice.
Collapse
Affiliation(s)
- Elenice M Alvarenga
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Nayara A Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Simone de Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - José L P Júnior
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Alyne R Araújo
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Bruno Iles
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Dvison M Pacífico
- Department of Morphology, Faculty of Medicine, Postgraduate Program in Morphofunctional Sciences, Federal University Ceará, Fortaleza, CE, Brazil
| | - Gerly Anne C Brito
- Department of Morphology, Faculty of Medicine, Postgraduate Program in Morphofunctional Sciences, Federal University Ceará, Fortaleza, CE, Brazil
| | - Emmanuel P Souza
- Department of Morphology, Faculty of Medicine, Postgraduate Program in Morphofunctional Sciences, Federal University Ceará, Fortaleza, CE, Brazil
| | - Damião P Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| |
Collapse
|
30
|
de Barros Silva PG, Ferreira Junior AEC, de Oliveira CC, Brizeno LAC, Wong DVT, Lima Júnior RCP, Sousa FB, Mota MRL, Alves APNN. Chronic treatment with zoledronic acid increases inflammatory markers in periodontium of rats. J Oral Pathol Med 2017; 46:1046-1053. [PMID: 28865081 DOI: 10.1111/jop.12640] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/29/2017] [Indexed: 11/30/2022]
Abstract
BACKGROUND Bisphosphonates (BF) rise proinflammatory markers and irreversibly bind to bone. Chronically, BF can lead to an inflammatory status and can increase the local oxidative stress in periodontium. Therefore, the objective of this study was to evaluate whether the chronic infusion of Zoledronic Acid (ZA) increases inflammatory markers in periodontium of rats. METHODS AND RESULTS Chronically, infusion therapy was performed with ZA (0.04, 0.2 or 1 mg/kg or saline) by four doses in over a 70-day period to analyze periodontium of the first right inferior molar using histologic, histochemical (toluidine blue), and immunohistochemical (CD68, tumor necrosis factor-α (TNF-α), interleukin-1beta (IL-1β), inducible nitric oxide synthase (iNOS) and nuclear factor kappa B (NF-kB)) tests. The experiment was replicated (ZA 0.2 mg/kg versus saline) for myeloperoxidase (MPO) assay and dose TNF-α, IL-1β, malondialdehyde (MDA) and glutathione (GSH) in gingiva of the same tooth. Despite there is no alteration in mast cells (P = .608) and CD68 mononuclear-positive cells (P = .351), in the periodontium of the ZA-treated group, was observed an increase in the presence of inflammatory cells (P = .001) and cytoplasmic immunostaining for TNF-α (P = .003), IL-1b (P = .004), iNOS (P = .008), and NF-kB (P = .025). Levels of MPO (P < .001), TNF-α (P = .002), IL-1β (P < .001), and GSH (P = .005) were augmented in gingiva of ZA-treated group but MDA (P = .993) levels and NF-kB nuclear staining (P = .923) were not altered. CONCLUSIONS Chronic treatment with ZA increase proinflammatory cytokines and the number of inflammatory cells in periodontium of rats and GSH are expressed probably in a compensatory manner.
Collapse
Affiliation(s)
- Paulo Goberlânio de Barros Silva
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil.,Department of Dental Clinic, Unichristus, Fortaleza, Brazil
| | | | - Camila Carvalho de Oliveira
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | | | - Deysi Viviana Tenazoa Wong
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Brazil
| | | | - Fabrício Bitú Sousa
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil.,Department of Dental Clinic, Unichristus, Fortaleza, Brazil
| | - Mário Rogério Lima Mota
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| | - Ana Paula Negreiros Nunes Alves
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceará, Fortaleza, Brazil
| |
Collapse
|
31
|
Chemotherapy-induced gastrointestinal toxicity is associated with changes in serum and urine metabolome and fecal microbiota in male Sprague-Dawley rats. Cancer Chemother Pharmacol 2017. [PMID: 28646338 PMCID: PMC5532424 DOI: 10.1007/s00280-017-3364-z] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
Purpose Chemotherapy-induced gastrointestinal toxicity (CIGT) is a complex process that involves multiple pathophysiological mechanisms. We have previously shown that commonly used chemotherapeutics 5-fluorouracil, oxaliplatin, and irinotecan damage the intestinal mucosa and increase intestinal permeability to iohexol. We hypothesized that CIGT is associated with alterations in fecal microbiota and metabolome. Our aim was to characterize these changes and examine how they relate to the severity of CIGT. Methods A total of 48 male Sprague–Dawley rats were injected intraperitoneally either with 5-fluorouracil (150 mg/kg), oxaliplatin (15 mg/kg), or irinotecan (200 mg/kg). Body weight change was measured daily after drug administration and the animals were euthanized after 72 h. Blood, urine, and fecal samples were collected at baseline and at the end of the experiment. The changes in the composition of fecal microbiota were analyzed with 16S rRNA gene sequencing. Metabolic changes in serum and urine metabolome were measured with 1 mm proton nuclear magnetic resonance (1H-NMR). Results Irinotecan increased the relative abundance of Fusobacteria and Proteobacteria, while 5-FU and oxaliplatin caused only minor changes in the composition of fecal microbiota. All chemotherapeutics increased the levels of serum fatty acids and N(CH3)3 moieties and decreased the levels of Krebs cycle metabolites and free amino acids. Conclusions Chemotherapeutic drugs, 5-fluorouracil, oxaliplatin, and irinotecan, induce several microbial and metabolic changes which may play a role in the pathophysiology of CIGT. The observed changes in intestinal permeability, fecal microbiota, and metabolome suggest the activation of inflammatory processes. Electronic supplementary material The online version of this article (doi:10.1007/s00280-017-3364-z) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Tong T, Niu YH, Yue Y, Wu SC, Ding H. Beneficial effects of anthocyanins from red cabbage (Brassica oleracea L. var. capitata L.) administration to prevent irinotecan-induced mucositis. J Funct Foods 2017. [DOI: 10.1016/j.jff.2017.01.051] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
33
|
Nogueira LT, Costa DVS, Gomes AS, Martins CS, Silva AMHP, Coelho-Aguiar JM, Castelucci P, Lima-Júnior RCP, Leitão RFC, Moura-Neto V, Brito GAC. The involvement of mast cells in the irinotecan-induced enteric neurons loss and reactive gliosis. J Neuroinflammation 2017; 14:79. [PMID: 28388962 PMCID: PMC5384042 DOI: 10.1186/s12974-017-0854-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2016] [Accepted: 03/27/2017] [Indexed: 02/06/2023] Open
Abstract
Background The irinotecan (CPT-11) causes intestinal mucositis and diarrhea that may be related to changes in the enteric nervous system (ENS). In inflammatory condition, mast cells release a variety of pro-inflammatory mediators that can interact with the ENS cells. It has not been explored whether CPT-11 is able to alter the enteric glial and neuronal cell, and the role of mast cells in this effect. Therefore, this study was conducted to investigate the effect of CPT-11 on the enteric glial and neuronal cells, as well as to study the role of mast cells in the CPT-11-induced intestinal mucositis. Methods Intestinal mucositis was induced in Swiss mice by the injection of CPT-11 (60 mg/kg, i.p.) once a day for 4 days following by euthanasia on the fifth day. To investigate the role of mast cells, the mice were pretreated with compound 48/80 for 4 days (first day, 0.6 mg/kg; second day, 1.0 mg/kg; third day, 1.2 mg/kg; fourth day, 2.4 mg/kg) to induce mast cell degranulation before the CPT-11 treatment. Results Here, we show that CPT-11 increased glial fibrillary acidic protein (GFAP) and S100β gene and S100β protein expressions and decreased HuC/D protein expression in the small intestine segments. Concomitantly, CPT-11 enhanced tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) levels and inducible nitric oxide synthase (iNOS) gene expression, associated with an increase in the total number macrophages (positive cells for ionized calcium-binding adapter molecule, Iba-1) and degranulated mast cells in the small intestine segments and caused significant weight loss. The pretreatment with compound 48/80, an inductor of mast cells degranulation, significantly prevented these CPT-11-induced effects. Conclusions Our data suggests the participation of mast cells on the CPT-11-induced intestinal mucositis, macrophages activation, enteric reactive gliosis, and neuron loss. Electronic supplementary material The online version of this article (doi:10.1186/s12974-017-0854-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ludmila T Nogueira
- Department of Morphology, Federal University of Piauí, Teresina, Piauí, Brazil
| | - Deiziane V S Costa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Antoniella S Gomes
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Conceição S Martins
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Angeline M H P Silva
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Juliana M Coelho-Aguiar
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | | | - Roberto C P Lima-Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Renata F C Leitão
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil
| | - Vivaldo Moura-Neto
- Paulo Niemeyer Brain Institute, Federal University of Rio de Janeiro, UFRJ, Rio de Janeiro, RJ, Brazil
| | - Gerly A C Brito
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Farias Delmiro street, Fortaleza, CE, 60430170, Brazil.
| |
Collapse
|
34
|
Yao Y, Zhang P, Wang J, Chen J, Wang Y, Huang Y, Zhang Z, Xu F. Dissecting Target Toxic Tissue and Tissue Specific Responses of Irinotecan in Rats Using Metabolomics Approach. Front Pharmacol 2017; 8:122. [PMID: 28344557 PMCID: PMC5344918 DOI: 10.3389/fphar.2017.00122] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2016] [Accepted: 02/27/2017] [Indexed: 12/26/2022] Open
Abstract
As an anticancer agent, irinotecan (CPT-11) has been widely applied in clinical, especially in the treatment of colorectal cancer. However, its clinical use has long been limited by the side effects and potential tissue toxicity. To discriminate the target toxic tissues and dissect the specific response of target tissues after CPT-11 administration in rats, untargeted metabolomic study was conducted. First, differential metabolites between CPT-11 treated group and control group in each tissue were screened out. Then, based on fold changes of these differential metabolites, principal component analysis and hierarchical cluster analysis were performed to visualize the degree and specificity of the influences of CPT-11 on the metabolic profiles of nine tissues. Using this step-wise method, ileum, jejunum, and liver were finally recognized as target toxic tissues. Furthermore, tissue specific responses of liver, ileum, and jejunum to CPT-11 were dissected and specific differential metabolites were screened out. Perturbations in Krebs cycle, amino acid, purine and bile acid metabolism were observed in target toxic tissues. In conclusion, our study put forward a new approach to dissect target toxic tissues and tissue specific responses of CPT-11 using metabolomics.
Collapse
Affiliation(s)
- Yiran Yao
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| | - Pei Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| | - Jing Wang
- School of Pharmacy, Shanxi University of Chinese Medicine Xianyang, China
| | - Jiaqing Chen
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| | - Yong Wang
- Jiangsu Institute for Food and Drug Control Nanjing, China
| | - Yin Huang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| | - Zunjian Zhang
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| | - Fengguo Xu
- Key Laboratory of Drug Quality Control and Pharmacovigilance, Ministry of Education, China Pharmaceutical UniversityNanjing, China; Jiangsu Key Laboratory of Drug Screening, China Pharmaceutical UniversityNanjing, China; State Key Laboratory of Natural Medicine, China Pharmaceutical UniversityNanjing, China
| |
Collapse
|
35
|
Melo RB, de Barros Silva PG, Oriá RB, Melo JUDS, da Silva Martins C, Cunha AM, Vasconcelos PRL. Anti-inflammatory effect of a fatty acid mixture with high ω-9:ω-6 ratio and low ω-6:ω-3 ratio on rats submitted to dental extraction. Arch Oral Biol 2017; 74:63-68. [DOI: 10.1016/j.archoralbio.2016.11.009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2016] [Revised: 10/30/2016] [Accepted: 11/11/2016] [Indexed: 11/25/2022]
|
36
|
de Alencar NMN, da Silveira Bitencourt F, de Figueiredo IST, Luz PB, Lima-Júnior RCP, Aragão KS, Magalhães PJC, de Castro Brito GA, Ribeiro RA, de Freitas APF, Ramos MV. Side-Effects of Irinotecan (CPT-11), the Clinically Used Drug for Colon Cancer Therapy, Are Eliminated in Experimental Animals Treated with Latex Proteins fromCalotropis procera(Apocynaceae). Phytother Res 2016; 31:312-320. [DOI: 10.1002/ptr.5752] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/03/2016] [Revised: 10/30/2016] [Accepted: 11/04/2016] [Indexed: 12/23/2022]
Affiliation(s)
| | | | | | - Patrícia Bastos Luz
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Roberto César P. Lima-Júnior
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Karoline Sabóia Aragão
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Pedro Jorge Caldas Magalhães
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | | | - Ronaldo Albuquerque Ribeiro
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Ana Paula Fragoso de Freitas
- Departamento de Fisiologia e Farmacologia/UFC; Coronel Nunes de Melo, 1127 Rodolfo Teófilo 60430-270 Ceará Brazil
| | - Marcio Viana Ramos
- Departamento de Bioquímica e Biologia Molecular/UFC; Campus do Pici, Caixa Postal 6033 60451-970 Ceará Brazil
| |
Collapse
|
37
|
Alvarenga EM, Souza LKM, Araújo TSL, Nogueira KM, Sousa FBM, Araújo AR, Martins CS, Pacífico DM, de C Brito GA, Souza EP, Sousa DP, Medeiros JVR. Carvacrol reduces irinotecan-induced intestinal mucositis through inhibition of inflammation and oxidative damage via TRPA1 receptor activation. Chem Biol Interact 2016; 260:129-140. [PMID: 27838229 DOI: 10.1016/j.cbi.2016.11.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 10/17/2016] [Accepted: 11/08/2016] [Indexed: 02/07/2023]
Abstract
Intestinal mucositis is an inflammatory process occurring in the intestinal mucosa and is a common side effect of irinotecan hydrochloride (CPT-11) based anticancer regimens. The transient receptor potential cation channel, subfamily A, member 1 (TRPA1) receptor is highly expressed in the intestinal mucosa and has the ability to identify cell damage signaling indicates its possible association with intestinal mucositis. Carvacrol is an agonist of the TRPA1 receptor and has anti-inflammatory properties. Thus, the aim of the present study was to verify the supposed anti-inflammatory and protective action of carvacrol via TRPA1 activation against intestinal mucositis induced by CPT-11 in mice. Briefly, mice were treated with either DMSO 2% or CPT-11 (75 mg/kg, per 4 days, i.p.) or the carvacrol (25, 75 or 150 mg/kg, per 8 days, i.p.) before CPT-11. In other group, the animals were pretreated with HC-030031, a TRPA1 antagonist, 30 min before treatment with carvacrol. On day 7, animal survival and bacteremia were assessed, and following euthanasia, samples of the jejunum were obtained for morphometric analysis and measurement of antioxidant and pro-inflammatory markers. Carvacrol was found to exert an anti-inflammatory action against CPT-11-induced intestinal mucositis through strong interactions with TRPA1 receptors; reduction in the production or release or both of pro-inflammatory cytokines (TNF-α, IL-1β, and KC); and decrease in other indicators of inflammation (MPO, NF-κB, COX-2) and oxidative stress (GSH, MDA, and NOx levels). It also contributed to the restoration of the tissue architecture of the villi and crypts in the small intestine, and improved clinical parameters such as survival, body mass variation, leukogram, and blood bacterial count. Thus, TRPA1 could be a target for future therapeutic approaches in the treatment of intestinal mucositis.
Collapse
Affiliation(s)
- Elenice M Alvarenga
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Luan K M Souza
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Thiago S L Araújo
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Kerolayne M Nogueira
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Francisca Beatriz M Sousa
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil
| | - Alyne R Araújo
- Biotechnology and Biodiversity Center Research, BIOTEC, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Conceição S Martins
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, CE, Brazil
| | - Dvison M Pacífico
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, CE, Brazil
| | - Gerly Anne de C Brito
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, CE, Brazil
| | - Emmanuel P Souza
- Postgraduate Program in Morphofunctional Sciences, Department of Morphology, Faculty of Medicine, Federal University Ceará, Fortaleza, CE, Brazil
| | - Damião P Sousa
- Department of Pharmaceutical Sciences, Federal University of Paraíba, João Pessoa, Paraíba, Brazil
| | - Jand Venes R Medeiros
- Laboratory of Pharmacology of Inflammation and Gastrointestinal Disorders (Lafidg), Federal University of Piauí, Parnaíba, PI, Brazil.
| |
Collapse
|
38
|
Mayo BJ, Stringer AM, Bowen JM, Bateman EH, Keefe DM. Irinotecan-induced mucositis: the interactions and potential role of GLP-2 analogues. Cancer Chemother Pharmacol 2016; 79:233-249. [PMID: 27770239 DOI: 10.1007/s00280-016-3165-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2016] [Accepted: 10/06/2016] [Indexed: 12/11/2022]
Abstract
PURPOSE A common side effect of irinotecan administration is gastrointestinal mucositis, often manifesting as severe diarrhoea. The damage to the structure and function of the gastrointestinal tract caused by this cytotoxic agent is debilitating and often leads to alterations in patients' regimens, hospitalisation or stoppage of treatment. The purpose of this review is to identify mechanisms of irinotecan-induced intestinal damage and a potential role for GLP-2 analogues for intervention. METHODS This is a review of current literature on irinotecan-induced mucositis and GLP-2 analogues mechanisms of action. RESULTS Recent studies have found alterations that appear to be crucial in the development of severe intestinal mucositis, including early apoptosis, alterations in proliferation and cell survival pathways, as well as induction of inflammatory cascades. Several studies have indicated a possible role for glucagon-like peptide-2 analogues in treating this toxicity, due to its proven intestinotrophic, anti-apoptotic and anti-inflammatory effects in other models of gastrointestinal disease. CONCLUSION This review provides evidence as to why and how this treatment may improve mucositis through the possible molecular crosstalk that may be occurring in models of severe intestinal mucositis.
Collapse
Affiliation(s)
- Bronwen J Mayo
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia. .,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia.
| | - Andrea M Stringer
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia.,School of Pharmacy and Medical Sciences, Sansom Institute for Health Sciences, University of South Australia, Adelaide, South Australia, Australia
| | - Joanne M Bowen
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Emma H Bateman
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| | - Dorothy M Keefe
- School of Medicine, University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
39
|
Irinotecan- and 5-fluorouracil-induced intestinal mucositis: insights into pathogenesis and therapeutic perspectives. Cancer Chemother Pharmacol 2016; 78:881-893. [PMID: 27590709 DOI: 10.1007/s00280-016-3139-y] [Citation(s) in RCA: 104] [Impact Index Per Article: 11.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Accepted: 08/23/2016] [Indexed: 12/20/2022]
Abstract
PURPOSE Intestinal mucositis and diarrhea are common manifestations of anticancer regimens that include irinotecan, 5-fluorouracil (5-FU), and other cytotoxic drugs. These side effects negatively impact therapeutic outcomes and delay subsequent cycles of chemotherapy, resulting in dose reductions and treatment discontinuation. Here, we aimed to review the experimental evidence regarding possible new targets for the management of irinotecan- and 5-FU-related intestinal mucositis. METHODS A literature search was performed using the PubMed and MEDLINE databases. No publication time limit was set for article inclusion. RESULTS Here, we found that clinical management of intestinal mucositis and diarrhea is somewhat ineffective at reducing symptoms, possibly due to a lack of specific targets for modulation. We observed that IL-1β contributes to the apoptosis of enterocytes in mucositis induced by 5-FU. However, 5-FU-related mucositis is far less thoroughly investigated with regard to specific molecular targets when compared to irinotecan-related disease. Several studies have proposed that a correlation exists between the intestinal microbiota, the enterohepatic recirculation of active metabolites of irinotecan, and the establishment of mucositis. However, as reviewed here, this association seems to be controversial. In addition, the pathogenesis of irinotecan-induced mucositis appears to be orchestrated by interleukin-1/Toll-like receptor family members, leading to epithelial cell apoptosis. CONCLUSIONS IL-1β, IL-18, and IL-33 and the receptors IL-1R, IL-18R, ST2, and TLR-2 are potential therapeutic targets that can be modulated to minimize anticancer agent-associated toxicity, optimize cancer treatment dosing, and improve clinical outcomes. In this context, the pathogenesis of mucositis caused by other anticancer agents should be further investigated.
Collapse
|
40
|
de Barros Silva PG, de Oliveira CC, Brizeno L, Wong D, Lima Júnior R, Gonçalves RP, Sousa FB, Mota M, de Albuquerque Ribeiro R, Alves A. Immune cellular profile of bisphosphonate-related osteonecrosis of the jaw. Oral Dis 2016; 22:649-57. [PMID: 27232600 DOI: 10.1111/odi.12513] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2016] [Revised: 04/09/2016] [Accepted: 05/02/2016] [Indexed: 01/19/2023]
Abstract
OBJECTIVES Characterize the cell profile and immunostaining of proinflammatory markers in an experimental model of bisphosphonate-related osteonecrosis of the jaw (BRONJ). MATERIALS AND METHODS Male Wistar rats (n = 6-7) were treated chronically with saline solution or zoledronic acid (ZA) at 0.04, 0.20, and 1.00 mg kg(-1) (1.4 × 10(-7) , 6.9 × 10(-6) , and 3.4 × 10(-5) mol kg(-1) ), and subsequently, the first left inferior molar was extracted. Were performed counting of viable and empty osteocyte lacunae, viable and apoptotic osteoclasts, polymorphonuclear neutrophil, mast cells (toluidine blue), and the positive presence cells for CD68, tumor necrosis factor-alpha (TNF-α), IL (interleukin)-1β, inducible nitric oxide synthase (iNOS), nuclear factor-kappa B (NF-kB) and IL-18 binding protein (IL-18 bp). RESULTS BRONJ was showed in ZA treated with 0.20 and 1.00 mg kg(-1) . There is a dose dependent increase in percentage of empty osteocyte lacunae (P < 0.001) and apoptotic osteoclasts (P < 0.001), counting of total osteoclasts (P = 0.003), polymorphonuclear neutrophil cells (P = 0.009), cytoplasmic-positive cells of CD68 (P < 0.001), TNF-α (P = 0.001), IL-1β (P = 0.001), iNOS (P < 0.001), NF-kB (P = 0.006), and nuclear-positive cells of NF-kB (P = 0.011). Consequently, there is no difference in mast cells (P = 0.957), and IL-18 bp immunostaining decreases dose dependently (P = 0.005). CONCLUSIONS BRONJ is characterized by increases in immunostaining for proinflammatory markers and NF-kB and inversely associated with cells exhibiting IL-18 bp.
Collapse
Affiliation(s)
- P G de Barros Silva
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil.
| | - C C de Oliveira
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Lac Brizeno
- Department of Biotechnology, Faculty of Biotechnology, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Dvt Wong
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Rcp Lima Júnior
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - R P Gonçalves
- Department of Clinical Analysis, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - F B Sousa
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Mrl Mota
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - R de Albuquerque Ribeiro
- Department of Physiology and Pharmacology, Faculty of Medicine, Federal University of Ceara, Fortaleza, Ceara, Brazil
| | - Apnn Alves
- Department of Dental Clinic, Division of Oral Pathology, Faculty of Pharmacy, Dentistry and Nursing, Federal University of Ceara, Fortaleza, Ceara, Brazil
| |
Collapse
|
41
|
Costa CL, López-Ureña D, de Oliveira Assis T, Ribeiro RA, Silva ROS, Rupnik M, Wilcox MH, de Carvalho AF, do Carmo AO, Dias AAM, de Carvalho CBM, Chaves-Olarte E, Rodríguez C, Quesada-Gómez C, de Castro Brito GA. A MLST Clade 2 Clostridium difficile strain with a variant TcdB induces severe inflammatory and oxidative response associated with mucosal disruption. Anaerobe 2016; 40:76-84. [PMID: 27311833 DOI: 10.1016/j.anaerobe.2016.06.005] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2016] [Revised: 06/10/2016] [Accepted: 06/12/2016] [Indexed: 01/13/2023]
Abstract
The epidemiology of Clostridium difficile infections is highly dynamic as new strains continue to emerge worldwide. Here we present a detailed analysis of a new C. difficile strain (ICC-45) recovered from a cancer patient in Brazil that died from severe diarrhea. A polyphasic approach assigned a new PCR-ribotype and PFGE macrorestriction pattern to strain ICC-45, which is toxigenic (tcdA(+), tcdB(+) and ctdB(+)) and classified as ST41 from MLST Clade 2 and toxinotype IXb. Strain ICC-45 encodes for a variant TcdB that induces a distinct CPE in agreement with its toxinotype. Unlike epidemic NAP1/027 strains, which are also classified to MLST Clade 2, strain ICC-45 is susceptible to fluoroquinolones and does not overproduce toxins TcdA and TcdB. However, supernatants from strain ICC-45 and a NAP1/027 strain produced similar expression of pro-inflammatory cytokines, epithelial damage, and oxidative stress response in the mouse ileal loop model. These results highlight inflammation and oxidative stress as common features in the pathogenesis of C. difficile Clade 2 strains. Finally, this work contributes to the description of differences in virulence among various C. difficile strains.
Collapse
Affiliation(s)
- Cecília Leite Costa
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Diana López-Ureña
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Thiago de Oliveira Assis
- Department of Morphology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil; Department of Morphology, Federal University of Paraíba, João Pessoa, PB, Brazil
| | - Ronaldo A Ribeiro
- Haroldo Juaçaba Hospital, Cancer Institute of Ceará, Fortaleza, CE, Brazil; Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | | | - Maja Rupnik
- University of Maribor, Faculty of Medicine and National Laboratory for Health, Environment and Food, Maribor, Slovenia
| | - Mark H Wilcox
- Department of Microbiology, Leeds Teaching Hospitals NHS Trust, The General Infirmary, Leeds, UK
| | - Alex Fiorini de Carvalho
- Experimental Genetics and Laboratory Animal Science, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Anderson Oliveira do Carmo
- Experimental Genetics and Laboratory Animal Science, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Adriana Abalen Martins Dias
- Experimental Genetics and Laboratory Animal Science, Department of General Biology, Institute of Biological Sciences, Federal University of Minas Gerais, Belo Horizonte, MG, Brazil
| | - Cibele Barreto Mano de Carvalho
- Laboratory of Bacteriology, Department of Pathology, Faculty of Medicine, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Esteban Chaves-Olarte
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - César Rodríguez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica
| | - Carlos Quesada-Gómez
- Facultad de Microbiología and Centro de Investigación en Enfermedades Tropicales, Universidad de Costa Rica, San José, Costa Rica.
| | | |
Collapse
|
42
|
Sousa LH, Linhares EVM, Alexandre JT, Lisboa MR, Furlaneto F, Freitas R, Ribeiro I, Val D, Marques M, Chaves HV, Martins C, Brito GAC, Goes P. Effects of Atorvastatin on Periodontitis of Rats Subjected to Glucocorticoid-Induced Osteoporosis. J Periodontol 2016; 87:1206-16. [PMID: 27240474 DOI: 10.1902/jop.2016.160075] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022]
Abstract
BACKGROUND Atorvastatin (ATV) has shown pleiotropic effects on bone tissue, and osteoporosis can aggravate periodontitis. Thus, the effects of ATV on experimental periodontitis (EP) in rats subjected to glucocorticoid-induced osteoporosis (GIOP) was assessed. METHODS Male Wistar rats were divided into the following groups: 1) naive; 2) EP; 3) GIOP + EP; and 4) ATV. Groups GIOP + EP and ATV received 7 mg/kg dexamethasone intramuscularly once per week for 5 weeks, and the others received saline (SAL). Groups EP, GIOP + EP, and ATV were submitted to EP by ligature around the maxillary left second molars for 11 days. Group ATV received 27 mg/kg ATV orally, and the others received SAL 30 minutes before EP. Periodontium was analyzed by macroscopy, microtomography, and histopathology; by immunohistochemical examination of receptor activator of nuclear factor-κB ligand (RANKL), osteoprotegerin (OPG), wingless (WNT) 10b, dickkopf-related protein 1 (DKK-1), and β-catenin; and by enzyme-linked immunosorbent assay analysis of myeloperoxidase (MPO), tumor necrosis factor (TNF)-α, interleukin (IL)-1β, IL-6, IL-8, IL10, reduced glutathione (GSH), superoxide dismutase (SOD), and catalase (CAT). Leukogram, liver and kidney enzymes, and bone-specific alkaline phosphatase (BALP) serum levels were evaluated. RESULTS ATV decreased bone loss, reduced MPO, TNF-α, IL-1β, IL-6, and IL-8, and increased IL-10, GSH, SOD, and CAT levels. ATV reduced RANKL and DKK-1 and increased OPG, WNT10b, and β-catenin expressions and BALP activity. CONCLUSION ATV reduced inflammation, oxidative stress, and bone loss in rats with EP and GIOP, with participation of the WNT signaling pathway.
Collapse
Affiliation(s)
- Luzia Hermínia Sousa
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil
| | - Eveline V M Linhares
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil
| | | | - Mario Roberto Lisboa
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | - Flávia Furlaneto
- Department of Oral and Maxillofacial Surgery and Periodontology, Ribeirao Preto School of Dentistry, University of São Paulo, Ribeirão Preto, São Paulo, Brazil
| | - Raul Freitas
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | | | - Danielle Val
- Renorbio Postgraduate Program, Federal University of Pernambuco, Recife, Pernambuco, Brazil
| | - Mirna Marques
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,School of Medicine, Federal University of Ceará
| | - Hellíada Vasconcelos Chaves
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,School of Dentistry, Federal University of Ceará
| | - Conceição Martins
- Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará
| | - Gerly A C Brito
- School of Dentistry, Federal University of Ceará.,Department of Morphology, Medical School, Federal University of Ceará
| | - Paula Goes
- Postgraduate Program of Health Science, Medical School, Federal University of Ceará, Sobral, Ceará, Brazil.,Postgraduate Program of Morphological Science, Department of Morphology, Medical School, Federal University of Ceará.,Department of Pathology and Legal Medicine, Medical School, Federal University of Ceará
| |
Collapse
|
43
|
Zheng H, Chen Y, Zhang J, Wang L, Jin Z, Huang H, Man S, Gao W. Evaluation of protective effects of costunolide and dehydrocostuslactone on ethanol-induced gastric ulcer in mice based on multi-pathway regulation. Chem Biol Interact 2016; 250:68-77. [PMID: 26970604 DOI: 10.1016/j.cbi.2016.03.003] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2015] [Revised: 02/22/2016] [Accepted: 03/01/2016] [Indexed: 10/22/2022]
Abstract
The aim of the present study was to evaluate the anti-ulcerogenic activity of costunolide (Co) and dehydrocostuslactone (De) on ethanol-induced gastric ulcer in mice and to elucidate the potential mechanisms of the action involved. Mice were pretreated orally with Co (5 or 20 mg/kg), De (5 or 20 mg/kg) and omeprazole (OME, 20 mg/kg) for 7 consecutive days, followed by ulcer induction using absolute ethanol (0.2 mL/20 g body weight). Treatment with Co had a remarkable gastroprotection compared to the ethanol-ulcerated mice that significantly reduced the ulcerative lesion index (ULI) and histopathological damage. Daily intragastric administration of Co exerted a powerful anti-inflammatory activity as evidenced by the suppression of nuclear factor (NF)-κB, tumor necrosis factor (TNF)-α, nitric oxide (NO), inducible nitric oxide synthase (iNOS), cyclooxygenase (COX)-2, as well as increased interleukin (IL)-10. Also, pretreatment with Co effectively inhibited ethanol-induced malondialdehyde (MDA) overproduction, increased the depleted superoxide dismutase (SOD) and promoted gastric mucosa epithelial cell proliferation by up-regulating proliferating cell nuclear antigen (PCNA) expression. Similarly, De had a protective effect on ethanol-induced ulcer, which was dependent on the inhibition of inflammatory cytokines and MDA generation, but independent of IL-10, SOD and PCNA improvement. Conclusively, the results have clearly demonstrated the anti-ulcerogenic potential of Co and De on ethanol-induced gastric ulcer; nevertheless, the gastroprotective activity of Co was superior to De due to more multi-pathway regulation than De. These findings suggested that Co or De could be a new useful natural gastroprotective tool against gastric ulcer, which provided a scientific basis for the gastroprotection of sesquiterpene lactones.
Collapse
Affiliation(s)
- Hong Zheng
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Yuling Chen
- Tianjin University of Traditional Chinese Medicine, Tianjin 300193, China
| | - Jingze Zhang
- Special Drugs R & D Center of People's Armed Police Forces, Department of Pharmacy, Logistics University of Chinese People's Armed Police Forces, Tianjin 300162, China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory, Tianjin Zhongxin Pharmaceutical Group Co., Ltd., Tianjin 300380, China
| | - Hanhan Huang
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China
| | - Shuli Man
- College of Biotechnology, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology, Tianjin University, Tianjin 300072, China.
| |
Collapse
|
44
|
Chen Y, Zheng H, Zhang J, Wang L, Jin Z, Gao W. Reparative activity of costunolide and dehydrocostus in a mouse model of 5-fluorouracil-induced intestinal mucositis. RSC Adv 2016. [DOI: 10.1039/c5ra22371g] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The aim of the study was to investigate the protective effects of costunolide (Co) and dehydrocostus (De) in 5-fluorouracil (5-FU)-induced intestinal mucositis (IM) as well as the potential mechanisms involved.
Collapse
Affiliation(s)
- Yuling Chen
- Tianjin University of Traditional Chinese Medicine
- Tianjin 300193
- China
| | - Hong Zheng
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| | - Jingze Zhang
- Department of Pharmacy
- Logistics University of Chinese People's Armed Police Forces
- Special Drugs R & D Center of People's Armed Police Forces
- Tianjin 300162
- China
| | - Lei Wang
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Zhaoxiang Jin
- Tianjin Lerentang Pharmaceutical Factory
- Tianjin Zhongxin Pharmaceutical Group Co., Ltd
- Tianjin 300380
- China
| | - Wenyuan Gao
- School of Pharmaceutical Science and Technology
- Tianjin University
- Tianjin 300072
- China
| |
Collapse
|
45
|
A new animal model of intestinal mucositis induced by the combination of irinotecan and 5-fluorouracil in mice. Cancer Chemother Pharmacol 2015; 77:323-32. [PMID: 26666645 DOI: 10.1007/s00280-015-2938-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Accepted: 12/01/2015] [Indexed: 12/30/2022]
Abstract
PURPOSE Intestinal mucositis (IM) is a common side effect of anticancer agents. Despite polychemotherapy use in clinical practice, the pathogenesis of IM has been investigated in single drug injection animal models. However, the progression of IM could vary according to drug regimens. Thus, we aimed to develop a new experimental mucositis model induced by combining irinotecan and 5-fluorouracil (5-FU) treatments. METHODS IM was induced in male C57BL/6 mice by the intraperitoneal administration of either 0.9 % saline (5 mL/kg), irinotecan (IRI, 30 or 45 mg/kg), 5-FU (25, 37.5, or 50 mg/kg), or the combination of these doses (IRI + 5-FU) for 4 days. Animal survival, body mass variation, and diarrhea scores were evaluated daily. On the 7th day, the mice were euthanized, and intestinal samples were collected for histopathology and morphometric analysis, as well as for the determination of myeloperoxidase activity and cytokine dosage (TNF-α and IL-6). RESULTS The optimal dose combination that induced IM and presented no substantial mortality on the 7th day was IRI (45 mg/kg) + 5-FU (37.5 mg/kg), which was used for subsequent studies. IRI and 5-FU in combination induced significant diarrhea, body weight loss, intestinal damage, inflammatory cell infiltration, and increased levels of cytokines when compared with other groups (P < 0.05). Neither IRI nor 5-FU alone induced IM. CONCLUSIONS We developed a new experimental model of IM induced by combining irinotecan and 5-FU treatments, which will allow us to gain a better knowledge concerning the pathogenesis of this disease through the pharmacological modulation of key inflammatory mediators.
Collapse
|
46
|
dos Santos Filho EX, Ávila PHM, Bastos CCC, Batista AC, Naves LN, Marreto RN, Lima EM, Mendonça EF, Valadares MC. Curcuminoids from Curcuma longaL. reduced intestinal mucositis induced by 5-fluorouracil in mice: Bioadhesive, proliferative, anti-inflammatory and antioxidant effects. Toxicol Rep 2015; 3:55-62. [PMID: 28959523 PMCID: PMC5615374 DOI: 10.1016/j.toxrep.2015.10.010] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2015] [Revised: 10/15/2015] [Accepted: 10/16/2015] [Indexed: 12/27/2022] Open
Abstract
Introduction Intestinal mucositis is a frequent limiting factor in anticancer therapy and there is currently no broadly effective treatment targeted to cure this side effect. Objective This study aimed to evaluate the effects of a mucoadhesive formulation containing curcuminoids (MFC) from Curcuma longa L. on the pathogenesis of 5-fluorouracil (5-FU)-induced intestinal mucositis. Methods Three intraperitoneal 5-FU injections (200 mg/kg) were used to induce intestinal mucositis in adult Swiss male mice. Treatment was provided orally (MFC 3.75, 7.5 and 15 mg/kg), thirty minutes before 5-FU injections, daily until euthanasia. Duodenal samples were collected to perform morphometric and histopathological analysis, to investigate the expression of Ki-67, p53, Bax and Bcl-2 by immunohistochemistry, to evaluate neutrophil activity myeloperoxidase (MPO)-mediated and oxidative stress by malondialdehyde (MDA) determination. Mice body weight was assessed as well. Results As expected, 5-FU induced a significant weight loss (∼17%, P < 0.001), shortening in villi height (∼55.4%) and crypts depth (∼47%), and increased (∼64%) the histological severity score when compared to other groups (P < 0.05). These pathological changes were markedly alleviated by the three MFC treatment doses (P < 0.05), in special with the dose MFC 15 mg/kg. This dose also stimulated cell proliferation by ∼90% in the epithelial cells lining from villi and crypts (P < 0.05), reduced MPO levels and MDA formation by 60% and 44%, respectively (P < 0.05). Conclusions Our data suggest the therapeutic potential of the formulation for treating intestinal mucositis in mice. Supplementary studies are underway searching for the elucidation of mechanisms involved in the protective effects of MFC in order to make this formulation a clinical tool for mucositis treatment.
Collapse
Affiliation(s)
| | | | - Carla Caroline Cunha Bastos
- Laboratory of Pharmacology and Cellular Toxicology, Pharmacy Faculty, Federal University of Goiás, Goiânia, Brazil
| | | | - Letícia Nasser Naves
- Laboratory of Pharmaceutical Technology, Pharmacy Faculty, Federal University of Goiás, Goiânia, Brazil
| | - Ricardo Neves Marreto
- Laboratory of Pharmaceutical Technology, Pharmacy Faculty, Federal University of Goiás, Goiânia, Brazil
| | - Eliana Martins Lima
- Laboratory of Pharmaceutical Technology, Pharmacy Faculty, Federal University of Goiás, Goiânia, Brazil
| | | | - Marize Campos Valadares
- Laboratory of Pharmacology and Cellular Toxicology, Pharmacy Faculty, Federal University of Goiás, Goiânia, Brazil
- Corresponding author at: Faculdade de Farmácia – Universidade Federal de Goiás, Rua 240 esquina com 5ª Avenida, s/n, Setor Universitário, Goiânia, Goiás, Brazil. CEP: 74605−170.Fax: +55 62 3209 6039x202.
| |
Collapse
|
47
|
Wong DVT, Lima-Júnior RCP, Carvalho CBM, Borges VF, Wanderley CWS, Bem AXC, Leite CAVG, Teixeira MA, Batista GLP, Silva RL, Cunha TM, Brito GAC, Almeida PRC, Cunha FQ, Ribeiro RA. The Adaptor Protein Myd88 Is a Key Signaling Molecule in the Pathogenesis of Irinotecan-Induced Intestinal Mucositis. PLoS One 2015; 10:e0139985. [PMID: 26440613 PMCID: PMC4595146 DOI: 10.1371/journal.pone.0139985] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 09/21/2015] [Indexed: 01/03/2023] Open
Abstract
Intestinal mucositis is a common side effect of irinotecan-based anticancer regimens. Mucositis causes cell damage, bacterial/endotoxin translocation and production of cytokines including IL–1 and IL–18. These molecules and toll-like receptors (TLRs) activate a common signaling pathway that involves the Myeloid Differentiation adaptor protein, MyD88, whose role in intestinal mucositis is unknown. Then, we evaluated the involvement of TLRs and MyD88 in the pathogenesis of irinotecan-induced intestinal mucositis. MyD88-, TLR2- or TLR9-knockout mice and C57BL/6 (WT) mice were given either saline or irinotecan (75 mg/kg, i.p. for 4 days). On day 7, animal survival, diarrhea and bacteremia were assessed, and following euthanasia, samples of the ileum were obtained for morphometric analysis, myeloperoxidase (MPO) assay and measurement of pro-inflammatory markers. Irinotecan reduced the animal survival (50%) and induced a pronounced diarrhea, increased bacteremia, neutrophil accumulation in the intestinal tissue, intestinal damage and more than twofold increased expression of MyD88 (200%), TLR9 (400%), TRAF6 (236%), IL–1β (405%), IL–18 (365%), COX–2 (2,777%) and NF-κB (245%) in the WT animals when compared with saline-injected group (P<0.05). Genetic deletion of MyD88, TLR2 or TLR9 effectively controlled the signs of intestinal injury when compared with irinotecan-administered WT controls (P<0.05). In contrast to the MyD88-/- and TLR2-/- mice, the irinotecan-injected TLR9-/- mice showed a reduced survival, a marked diarrhea and an enhanced expression of IL–18 versus irinotecan-injected WT controls. Additionally, the expression of MyD88 was reduced in the TLR2-/- or TLR9-/- mice. This study shows a critical role of the MyD88-mediated TLR2 and TLR9 signaling in the pathogenesis of irinotecan-induced intestinal mucositis.
Collapse
Affiliation(s)
- Deysi V. T. Wong
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
- Laboratory of Molecular Biology, Department of Pathology, Cancer Institute of Ceará, Fortaleza, Brazil
| | - Roberto C. P. Lima-Júnior
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Cibele B. M. Carvalho
- Department of Pathology and Forensic Medicine, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Vanessa F. Borges
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Carlos W. S. Wanderley
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Amanda X. C. Bem
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Caio A. V. G. Leite
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Maraiza A. Teixeira
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Gabriela L. P. Batista
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Rangel L. Silva
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Thiago M. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Gerly A. C. Brito
- Department of Morphology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Paulo R. C. Almeida
- Department of Pathology and Forensic Medicine, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
| | - Fernando Q. Cunha
- Department of Pharmacology, School of Medicine of Ribeirão Preto, University of São Paulo, São Paulo, Brazil
| | - Ronaldo A. Ribeiro
- Nucleus for the Study of Toxicities of the Cancer Treatment, Department of Physiology and Pharmacology, Faculty of Medicine–Federal University of Ceará, Fortaleza, Brazil
- Department of Clinical Oncology, Cancer Institute of Ceará, Fortaleza, Brazil
- * E-mail: ;
| |
Collapse
|
48
|
Moura JFB, Mota JMSC, Leite CAV, Wong DVT, Bezerra NP, Brito GADC, Lima V, Cunha FQ, Ribeiro RA. A novel model of megavoltage radiation-induced oral mucositis in hamsters: Role of inflammatory cytokines and nitric oxide. Int J Radiat Biol 2015; 91:500-9. [PMID: 25758466 DOI: 10.3109/09553002.2015.1021964] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
PURPOSE To design a novel model to study Cobalt-60 (Co-60)-induced radiation mucositis and to describe the pathways involved in its development. MATERIALS AND METHODS Hamsters' cheeks were treated with Co-60 radiation (10, 20, 30 or 35 Gy). Three days later, oral mucosa scarification was performed with a needle. The animals were euthanized at day 13 (D + 13) after irradiation. Gross and microscopic alterations were evaluated by a new score system that we developed. Also, neutrophil infiltration, tumor necrosis factor-α (TNF-α), interleukin (IL)-1β, IL-10, inducible nitric oxide synthase (iNOS), nitric oxide (NO) and nitrite were assessed in oral mucosa. We also tried to establish the roles of TNF-α and IL-1β and iNOS in our model using pharmacological approaches with pentoxiphylline (PTX) and aminoguanidine (AMG), respectively. RESULTS We found that a single administration of 35 Gy of Co-60, followed by mechanical scratches 3 days later, induced oral mucositis in hamsters. Animals with mucositis lost weight and had a survival median of 13 days, the time at which peak inflammation occurs. We noticed increased levels of NO, iNOS, TNF-α and IL-1β and a reduced concentration of IL-10. PTX partially prevented the mucositis phenotype by reducing the levels of inflammatory mediators and iNOS expression. Additionally, AMG, a selective inhibitor of iNOS, reduced Co-60-induced oral mucositis through reducing NO production. CONCLUSION We described a novel model of megavoltage radiation-induced oral mucositis in hamsters. TNF-α, IL-1β and NO seem to play a role in the pathophysiology of this model.
Collapse
|
49
|
Santana APM, Tavares BM, Lucetti LT, Gouveia FS, Ribeiro RA, Soares PMG, Sousa EHS, Lopes LGF, Medeiros JVR, Souza MHLP. The nitric oxide donor cis-[Ru(bpy)2(SO3)NO](PF6) increases gastric mucosa protection in mice--involvement of the soluble guanylate cyclase/K(ATP) pathway. Nitric Oxide 2015; 45:35-42. [PMID: 25681154 DOI: 10.1016/j.niox.2015.02.002] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2014] [Revised: 01/28/2015] [Accepted: 02/01/2015] [Indexed: 10/24/2022]
Abstract
Here, we have evaluated the protective effect of the NO donor cis-[Ru(bpy)2(SO3)NO](PF6) (FOR0810) in experimental models of gastric damage induced by naproxen or ethanol in mice, and the involvement of soluble guanylate cyclase (sGC) and ATP-sensitive K(+) channels (KATP) in these events. Swiss mice were pre-treated with saline, ODQ (a soluble guanylate cyclase inhibitor; 10 mg kg(-1)) or glibenclamide (a KATP channels blocker; 10 mg kg(-1)). After either 30 min or 1 h, FOR0810 (3 mg kg(-1)) was administered. At the end of 30 min, the animals received naproxen (300 mg kg(-1)) by gavage. After 6 h, the animals were sacrificed and gastric damage, myeloperoxidase (MPO) activity, and TNF-α and IL-1β gastric concentrations were evaluated. In addition, the effects of FOR0810 on naproxen-induced mesenteric leukocyte adherence were determined by intravital microscopy. Other groups, were pre-treated with saline, ODQ or glibenclamide. After either 30 min or 1 h, FOR0810 was administered. At the end of 30 min, the animals received 50% ethanol by gavage. After 1 h, the animals were sacrificed, and gastric damage, gastric reduced glutathione (GSH) concentration and malondialdehyde (MDA) levels were determined. In naproxen-induced gastric damage, FOR0810 prevented gastric injury, decreased gastric MPO activity and leukocyte adherence, associated with a decrease in TNFα and IL-1β gastric concentrations. FOR0810 also prevented ethanol-induced gastric damage by increase in GSH levels and decrease in MDA levels. ODQ and glibenclamide completely reversed FOR0810's ability to prevent gastric damage by either naproxen or ethanol. We infer that FOR0810 prevented gastric damage through the activation of both sGC and KATP channels, which triggered a decrease in both free radical and cytokine production via the blocking of neutrophil adhesion and infiltration.
Collapse
Affiliation(s)
- Ana Paula M Santana
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Bruno M Tavares
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Larisse T Lucetti
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Florêncio S Gouveia
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Ronaldo A Ribeiro
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Pedro M G Soares
- Department of Morphology, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Eduardo H S Sousa
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Luiz G F Lopes
- Department of Organic and Inorganic Chemistry, Federal University of Ceará, Fortaleza, CE, Brazil
| | - Jand-Venes R Medeiros
- Department of Biotechnology and Biodiversity Center Research, Federal University of Piauí, Parnaíba, PI, Brazil
| | - Marcellus H L P Souza
- Department of Physiology and Pharmacology, Federal University of Ceará, Fortaleza, CE, Brazil.
| |
Collapse
|
50
|
Ortiz F, Acuña-Castroviejo D, Doerrier C, Dayoub JC, López LC, Venegas C, García JA, López A, Volt H, Luna-Sánchez M, Escames G. Melatonin blunts the mitochondrial/NLRP3 connection and protects against radiation-induced oral mucositis. J Pineal Res 2015; 58:34-49. [PMID: 25388914 DOI: 10.1111/jpi.12191] [Citation(s) in RCA: 117] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/16/2014] [Accepted: 11/07/2014] [Indexed: 12/13/2022]
Abstract
Mucositis is a common and distressing side effect of chemotherapy or radiotherapy that has potentially severe consequences, and no treatment is available. The purpose of this study was to analyze the molecular pathways involved in the development of oral mucositis and to evaluate whether melatonin can prevent this pathology. The tongue of male Wistar rats was subjected to irradiation (X-ray YXLON Y.Tu 320-D03 irradiator; the animals received a dose of 7.5 Gy/day for 5 days). Rats were treated with 45 mg/day melatonin or vehicle for 21 days postirradiation, either by local application into their mouths (melatonin gel) or by subcutaneous injection. A connection between reactive oxygen species, generating mitochondria and the NLRP3 (NLR-related protein 3 nucleotide-binding domain leucine-rich repeat containing receptor-related protein 3) inflammasome, has been reported in mucositis. Here, we show that mitochondrial oxidative stress, bioenergetic impairment and subsequent NLRP3 inflammasome activation are involved in the development of oral mucositis after irradiation and that melatonin synthesized in the rat tongue is depleted after irradiation. The application of melatonin gel restores physiological melatonin levels in the tongue and prevents mucosal disruption and ulcer formation. Melatonin gel protects the mitochondria from radiation damage and blunts the NF-κB/NLRP3 inflammasome signaling activation in the tongue. Our results suggest new molecular pathways involved in radiotherapy-induced mucositis that are inhibited by topical melatonin application, suggesting a potential preventive therapy for mucositis in patients with cancer.
Collapse
Affiliation(s)
- Francisco Ortiz
- Centro de Investigación Biomédica, Parque Tecnológico de Ciencias de la Salud, Universidad de Granada, and RETICEF, Granada, Spain
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|