1
|
Padhiyar SM, Kheni J, Bhatt SB, Desai H, Tomar RS. Transcriptome profiling of barnyard millet ( Echinochloa frumentacea L.) during grain development to reveal the genomic insights into iron accumulation. Heliyon 2024; 10:e30925. [PMID: 38778996 PMCID: PMC11109794 DOI: 10.1016/j.heliyon.2024.e30925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 05/06/2024] [Accepted: 05/08/2024] [Indexed: 05/25/2024] Open
Abstract
In the realm of food nutritional security, the development of mineral-rich grains assumes a pivotal role in combating malnutrition. Within the scope of the current investigation, we endeavoured to discern the transcripts accountable for the improved accumulation of grain-Fe within Indian barnyard millet. This pursuit entailed transcriptome sequencing of genotypes BAR-1433 (with high Fe content) and BAR-1423 (with low Fe content) during two distinct stages of spike development-spike emergence and milking stage. In the context of spike emergence, we identified a cohort of 895 up-regulated transcripts and 126 down-regulated transcripts that delineated the difference between the high and low grain-Fe genotypes. In contrast, during the milking stage, the tally of up-regulated transcripts reached 436, while down-regulated transcripts numbered 285. The transcripts that consistently ascended in both developmental stages underwent functional annotation, aligning their roles with nucleolar proteins, metal-nicotianamine transporters, ribonucleoprotein complexes, vinorine synthases, cellulose synthases, auxin response factors, embryogenesis abundant proteins, cytochrome c oxidases, and zinc finger BED domain-containing proteins. Meanwhile, a heterogeneous spectrum of transcripts exhibited differential expression and upregulation throughout the distinct stages. These transcripts encompassed various facets, such as ABC Transporter family proteins, Calcium-dependent kinase family, Ferritin, Metal ion binding, Iron-sulfur cluster binding, Cytochrome family, Zinc finger transcription factor family, Ferredoxin-NADP reductase type 1 family, Putative laccase, Multicopper oxidase family, and Terpene synthase family. To authenticate the reliability of these transcripts, six contigs representing probable functions, including metal transporters, iron sulfur coordination, metal ion binding, auxin-responsive GH3-like protein 2, and cytochrome P450 71B16, were harnessed for primer design. Subsequently, these primers were utilized in the validation process through qRT-PCR, with the outcomes aligning harmoniously with the transcriptome results. This study chronicles a constellation of genes linked to elevated iron content within barnyard millet, showcasing a proof of concept for leveraging transcriptome insights in marker-assisted selection to fortify barnyard millet with iron. This marks the inaugural comprehensive transcriptome analysis delineating transcripts associated with varying levels of grain-iron content during the panicle developmental stages within the barnyard millet paradigm.
Collapse
Affiliation(s)
- Shital M. Padhiyar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Jasminkumar Kheni
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Shraddha B. Bhatt
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Hiral Desai
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| | - Rukam S. Tomar
- Department of Biotechnology, Junagadh Agricultural University, Junagadh, 362001, Gujarat, India
| |
Collapse
|
2
|
Nelson BE, Tsimberidou AM, Fu X, Fu S, Subbiah V, Sood AK, Rodon J, Karp DD, Blumenschein G, Kopetz S, Pant S, Piha-Paul SA. A Phase I Trial of Bevacizumab and Temsirolimus in Combination With Valproic Acid in Advanced Solid Tumors. Oncologist 2023; 28:1100-e1292. [PMID: 37311055 PMCID: PMC10712705 DOI: 10.1093/oncolo/oyad158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2023] [Accepted: 05/07/2023] [Indexed: 06/15/2023] Open
Abstract
BACKGROUND Preclinical models suggest synergy between anti-angiogenesis therapy, mammalian target of rapamycin (mTOR), and histone deacetylase inhibitors to promote anticancer activity. METHODS This phase I study enrolled 47 patients between April 2012 and 2018 and determined safety, maximum tolerated dose (MTD), and dose-limiting toxicities (DLTs) when combining bevacizumab, temsirolimus, and valproic acid in patients with advanced cancer. RESULTS Median age of enrolled patients was 56 years. Patients were heavily pretreated with a median of 4 lines of prior therapy. Forty-five patients (95.7%) experienced one or more treatment-related adverse events (TRAEs). Grade 3 TRAEs were lymphopenia (14.9%), thrombocytopenia (8.5%), and mucositis (6.4%). Grade 4 TRAEs included lymphopenia (2.1%) and CNS cerebrovascular ischemia (2.1%). Six patients developed DLTs across 10 dose levels with grade 3 infection, rash, mucositis, bowel perforation, elevated lipase, and grade 4 cerebrovascular ischemia. The MTD was dose level 9 (bevacizumab 5 mg/kg days 1 and 15 intravenously (IV) plus temsirolimus 25 mg days 1, 8, 15, and 22 IV and valproic acid 5 mg/kg on days 1-7 and 15-21 per orally (PO)). Objective response rate (ORR) was 7.9% with confirmed partial response (PRs) in 3 patients (one each in parotid gland, ovarian, and vaginal cancers). Stable disease (SD) ≥+6 months was seen in 5 patients (13.1%). Clinical benefit state (CBR: PR + SD ≥+6 months) was 21%. CONCLUSION Combination therapy with bevacizumab, temsirolimus, and valproic acid was feasible, but there were numerous toxicities, which will require careful management for future clinical development (ClinicalTrials.gov Identifier: NCT01552434).
Collapse
Affiliation(s)
- Blessie Elizabeth Nelson
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Apostolia M Tsimberidou
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Xueyao Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Siqing Fu
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Vivek Subbiah
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Anil K Sood
- Department of Gynecologic Oncology and Reproductive Medicine, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Jordi Rodon
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Daniel D Karp
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - George Blumenschein
- Department of Thoracic and Head and Neck Medical Oncology, University of Texas, MD Anderson Cancer Center, Houston, TX, USA
| | - Scott Kopetz
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Shubham Pant
- Department of Gastrointestinal Medical Oncology, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| | - Sarina A Piha-Paul
- Department of Investigational Cancer Therapeutics, University of Texas MD Anderson Cancer Center, Houston, TX, USA
| |
Collapse
|
3
|
Adeshakin AO, Adeshakin FO, Yan D, Wan X. Regulating Histone Deacetylase Signaling Pathways of Myeloid-Derived Suppressor Cells Enhanced T Cell-Based Immunotherapy. Front Immunol 2022; 13:781660. [PMID: 35140716 PMCID: PMC8818783 DOI: 10.3389/fimmu.2022.781660] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2021] [Accepted: 01/03/2022] [Indexed: 12/12/2022] Open
Abstract
Immunotherapy has emerged as a promising approach to combat immunosuppressive tumor microenvironment (TME) for improved cancer treatment. FDA approval for the clinical use of programmed death receptor 1/programmed death-ligand 1 (PD-1/PD-L1) inhibitors revolutionized T cell-based immunotherapy. Although only a few cancer patients respond to this treatment due to several factors including the accumulation of immunosuppressive cells in the TME. Several immunosuppressive cells within the TME such as regulatory T cells, myeloid cells, and cancer-associated fibroblast inhibit the activation and function of T cells to promote tumor progression. The roles of epigenetic modifiers such as histone deacetylase (HDAC) in cancer have long been investigated but little is known about their impact on immune cells. Recent studies showed inhibiting HDAC expression on myeloid-derived suppressor cells (MDSCs) promoted their differentiation to less suppressive cells and reduced their immunosuppressive effect in the TME. HDAC inhibitors upregulated PD-1 or PD-L1 expression level on tumor or immune cells sensitizing tumor-bearing mice to anti-PD-1/PD-L1 antibodies. Herein we discuss how inhibiting HDAC expression on MDSCs could circumvent drawbacks to immune checkpoint inhibitors and improve cancer immunotherapy. Furthermore, we highlighted current challenges and future perspectives of HDAC inhibitors in regulating MDSCs function for effective cancer immunotherapy.
Collapse
Affiliation(s)
- Adeleye O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- Department of Bone Marrow Transplantation and Cellular Therapy, St. Jude Children’s Research Hospital, Memphis, TN, United States
| | - Funmilayo O. Adeshakin
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
| | - Dehong Yan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| | - Xiaochun Wan
- Guangdong Immune Cell Therapy Engineering and Technology Research Center, Center for Protein and Cell-Based Drugs, Institute of Biomedicine and Biotechnology, Shenzhen Institutes of Advanced Technology, Chinese Academy of Sciences, Shenzhen, China
- University of Chinese Academy of Sciences, Beijing , China
- *Correspondence: Dehong Yan, ; Xiaochun Wan,
| |
Collapse
|
4
|
Unraveling the Epigenetic Role and Clinical Impact of Histone Deacetylases in Neoplasia. Diagnostics (Basel) 2021; 11:diagnostics11081346. [PMID: 34441281 PMCID: PMC8394077 DOI: 10.3390/diagnostics11081346] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2021] [Revised: 07/23/2021] [Accepted: 07/25/2021] [Indexed: 02/07/2023] Open
Abstract
Histone deacetylases (HDACs) have long been implicated in tumorigenesis and tumor progression demonstrating their important participation in neoplasia. Therefore, numerous studies have been performed, highlighting the mechanism of HDACs action in tumor cells and demonstrating the potential role of HDAC inhibitors in the treatment of different cancer types. The outcome of these studies further delineated and strengthened the solid role that HDACs and epigenetic modifications exert in neoplasia. These results have spread promise regarding the potential use of HDACs as prospective therapeutic targets. Nevertheless, the clinical significance of HDAC expression and their use as biomarkers in cancer has not been extensively elucidated. The aim of our study is to emphasize the clinical significance of HDAC isoforms expression in different tumor types and the correlations noted between the clinicopathological parameters of tumors and patient outcomes. We further discuss the obstacles that the next generation HDAC inhibitors need to overcome, for them to become more potent.
Collapse
|
5
|
Hu P, Sun M, Lu F, Wang S, Hou L, Yu Y, Zhang Y, Sun L, Yao J, Yang F, Wang C, Ma Z. Polymerized vorinostat mediated photodynamic therapy using lysosomal spatiotemporal synchronized drug release complex. Colloids Surf B Biointerfaces 2021; 205:111903. [PMID: 34144323 DOI: 10.1016/j.colsurfb.2021.111903] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2021] [Revised: 06/01/2021] [Accepted: 06/03/2021] [Indexed: 01/16/2023]
Abstract
A combination of photodynamic therapy (PDT) and histone deacetylase inhibitor (HDACis) could potentiate single-mode anti-tumor activity of HDACis or PDT to inhibit tumor relapse and metastasis. However, poor solubility and heterogeneity in cellular uptake and tissue distribution hamper the dual mode antitumor effect. For a controlled drug release of photosensitizers and HDACis in cytoplasm, photosensitizer pyropheophorbide-a (Pyro) encapsulated in polymer polyethylene glycol-b-poly (asparaginyl-vorinostat) (simplified as Pyro@FPPS) are fabricated to achieve their lysosomal spatiotemporal synchronized release. With HDACis modeling PDT in vitro and in vivo, it seems that polymerized Vorinostat encapsulated photosensitizers significantly inhibited the tumor proliferation and metastasis by spatiotemporal synchronized drugs release, and Pyro@FPPS reported here reveals a promising prospect to exert drugs' synergistic effect in a spatiotemporal synchronized manner and can be an effective strategy to inhibit tumor growth, recurrence and metastasis in clinic.
Collapse
Affiliation(s)
- Pengwei Hu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Harbin Institute of Technology (Shenzhen), School of Science, Shenzhen, People's Republic of China; Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Sizhen Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lei Hou
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China; Department of Pharmacy, Hebei North University, Zhangjiakou, People's Republic of China
| | - Yingjie Yu
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Jianzhong Yao
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Feng Yang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| | - Chen Wang
- Department of Oncology, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
6
|
Zada S, Hwang JS, Ahmed M, Lai TH, Pham TM, Elashkar O, Kim DR. Cross talk between autophagy and oncogenic signaling pathways and implications for cancer therapy. Biochim Biophys Acta Rev Cancer 2021; 1876:188565. [PMID: 33992723 DOI: 10.1016/j.bbcan.2021.188565] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 05/05/2021] [Accepted: 05/08/2021] [Indexed: 02/07/2023]
Abstract
Autophagy is a highly conserved metabolic process involved in the degradation of intracellular components including proteins and organelles. Consequently, it plays a critical role in recycling metabolic energy for the maintenance of cellular homeostasis in response to various stressors. In cancer, autophagy either suppresses or promotes cancer progression depending on the stage and cancer type. Epithelial-mesenchymal transition (EMT) and cancer metastasis are directly mediated by oncogenic signal proteins including SNAI1, SLUG, ZEB1/2, and NOTCH1, which are functionally correlated with autophagy. In this report, we discuss the crosstalk between oncogenic signaling pathways and autophagy followed by possible strategies for cancer treatment via regulation of autophagy. Although autophagy affects EMT and cancer metastasis, the overall signaling pathways connecting cancer progression and autophagy are still illusive. In general, autophagy plays a critical role in cancer cell survival by providing a minimum level of energy via self-digestion. Thus, cancer cells face nutrient limitations and challenges under stress during EMT and metastasis. Conversely, autophagy acts as a potential cancer suppressor by degrading oncogenic proteins, which are essential for cancer progression, and by removing damaged components such as mitochondria to enhance genomic stability. Therefore, autophagy activators or inhibitors represent possible cancer therapeutics. We further discuss the regulation of autophagy-dependent degradation of oncogenic proteins and its functional correlation with oncogenic signaling pathways, with potential applications in cancer therapy.
Collapse
Affiliation(s)
- Sahib Zada
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Jin Seok Hwang
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Mahmoud Ahmed
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Huyen Lai
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Trang Minh Pham
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Omar Elashkar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Health Sciences, Gyeongsang National University College of Medicine, Jinju 527-27, Republic of Korea.
| |
Collapse
|
7
|
Jenke R, Reßing N, Hansen FK, Aigner A, Büch T. Anticancer Therapy with HDAC Inhibitors: Mechanism-Based Combination Strategies and Future Perspectives. Cancers (Basel) 2021; 13:634. [PMID: 33562653 PMCID: PMC7915831 DOI: 10.3390/cancers13040634] [Citation(s) in RCA: 91] [Impact Index Per Article: 22.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Revised: 01/30/2021] [Accepted: 02/02/2021] [Indexed: 12/26/2022] Open
Abstract
The increasing knowledge of molecular drivers of tumorigenesis has fueled targeted cancer therapies based on specific inhibitors. Beyond "classic" oncogene inhibitors, epigenetic therapy is an emerging field. Epigenetic alterations can occur at any time during cancer progression, altering the structure of the chromatin, the accessibility for transcription factors and thus the transcription of genes. They rely on post-translational histone modifications, particularly the acetylation of histone lysine residues, and are determined by the inverse action of histone acetyltransferases (HATs) and histone deacetylases (HDACs). Importantly, HDACs are often aberrantly overexpressed, predominantly leading to the transcriptional repression of tumor suppressor genes. Thus, histone deacetylase inhibitors (HDACis) are powerful drugs, with some already approved for certain hematological cancers. Albeit HDACis show activity in solid tumors as well, further refinement and the development of novel drugs are needed. This review describes the capability of HDACis to influence various pathways and, based on this knowledge, gives a comprehensive overview of various preclinical and clinical studies on solid tumors. A particular focus is placed on strategies for achieving higher efficacy by combination therapies, including phosphoinositide 3-kinase (PI3K)-EGFR inhibitors and hormone- or immunotherapy. This also includes new bifunctional inhibitors as well as novel approaches for HDAC degradation via PROteolysis-TArgeting Chimeras (PROTACs).
Collapse
Affiliation(s)
- Robert Jenke
- University Cancer Center Leipzig (UCCL), University Hospital Leipzig, D-04103 Leipzig, Germany
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Nina Reßing
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Finn K. Hansen
- Department of Pharmaceutical and Cell Biological Chemistry, Pharmaceutical Institute, Rheinische Fried-rich-Wilhelms-Universität Bonn, D-53121 Bonn, Germany; (N.R.); (F.K.H.)
| | - Achim Aigner
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| | - Thomas Büch
- Clinical Pharmacology, Rudolf-Boehm-Institute for Pharmacology and Toxicology, Medical Faculty, University of Leipzig, D-04107 Leipzig, Germany;
| |
Collapse
|
8
|
Miao J, Meng C, Wu H, Shan W, Wang H, Ling C, Zhang J, Yang T. Novel Hybrid CHC from β-carboline and N-Hydroxyacrylamide Overcomes Drug-Resistant Hepatocellular Carcinoma by Promoting Apoptosis, DNA Damage, and Cell Cycle Arrest. Front Pharmacol 2021; 11:626065. [PMID: 33536926 PMCID: PMC7848139 DOI: 10.3389/fphar.2020.626065] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Accepted: 12/17/2020] [Indexed: 12/15/2022] Open
Abstract
A novel hybrid CHC was designed and synthesized by conjugating β-carboline with an important active fragment N-hydroxyacrylamide of histone deacetylase (HDAC) inhibitor by an amide linkage to enhance antitumor efficacy/potency or even block drug resistance. CHC displayed high antiproliferative effects against drug-sensitive SUMM-7721, Bel7402, Huh7, and HCT116 cells and drug-resistant Bel7402/5FU cells with IC50 values ranging from 1.84 to 3.27 μM, which were two-to four-fold lower than those of FDA-approved HDAC inhibitor SAHA. However, CHC had relatively weak effect on non-tumor hepatic LO2 cells. Furthermore, CHC exhibited selective HDAC1/6 inhibitory effects and simultaneously augmented the acetylated histone H3/H4 and α-tubulin, which may make a great contribution to their antiproliferative effects. In addition, CHC also electrostatically interacted with CT-DNA, exerted remarkable cellular apoptosis by regulating the expression of apoptosis-related proteins and DNA damage proteins in Bel7402/5FU cells, and significantly accumulated cancer cells at the G2/M phase of the cell cycle by suppressing CDK1 and cyclin B protein with greater potency than SAHA-treated groups. Finally, CHC displayed strong inhibitory potency to drug-resistant hepatic tumors in mice. Our designed and synthetic hybrid CHC could be further developed as a significant and selective anticancer agent to potentially treat drug-resistant hepatocellular carcinoma.
Collapse
Affiliation(s)
- Jiefei Miao
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Chi Meng
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Hongmei Wu
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Wenpei Shan
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Haoran Wang
- School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| | - Changchun Ling
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China
| | - Jinlin Zhang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,Department of Pharmacy, Affiliated Cancer Hospital of Nantong University, Nantong University, Nantong, China
| | - Tao Yang
- The Affiliated Hospital of Nantong University, Nantong University, Nantong, China.,School of Pharmacy and Jiangsu Province Key Laboratory for Inflammation and Molecular Drug Target, Nantong University, Nantong, China
| |
Collapse
|
9
|
Neves KB, Montezano AC, Lang NN, Touyz RM. Vascular toxicity associated with anti-angiogenic drugs. Clin Sci (Lond) 2020; 134:2503-2520. [PMID: 32990313 DOI: 10.1042/cs20200308] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/15/2020] [Accepted: 09/21/2020] [Indexed: 02/07/2023]
Abstract
Over the past two decades, the treatment of cancer has been revolutionised by the highly successful introduction of novel molecular targeted therapies and immunotherapies, including small-molecule kinase inhibitors and monoclonal antibodies that target angiogenesis by inhibiting vascular endothelial growth factor (VEGF) signaling pathways. Despite their anti-angiogenic and anti-cancer benefits, the use of VEGF inhibitors (VEGFi) and other tyrosine kinase inhibitors (TKIs) has been hampered by potent vascular toxicities especially hypertension and thromboembolism. Molecular processes underlying VEGFi-induced vascular toxicities still remain unclear but inhibition of endothelial NO synthase (eNOS), reduced nitric oxide (NO) production, oxidative stress, activation of the endothelin system, and rarefaction have been implicated. However, the pathophysiological mechanisms still remain elusive and there is an urgent need to better understand exactly how anti-angiogenic drugs cause hypertension and other cardiovascular diseases (CVDs). This is especially important because VEGFi are increasingly being used in combination with other anti-cancer dugs, such as immunotherapies (immune checkpoint inhibitors (ICIs)), other TKIs, drugs that inhibit epigenetic processes (histone deacetylase (HDAC) inhibitor) and poly (adenosine diphosphate-ribose) polymerase (PARP) inhibitors, which may themselves induce cardiovascular injury. Here, we discuss vascular toxicities associated with TKIs, especially VEGFi, and provide an up-to-date overview on molecular mechanisms underlying VEGFi-induced vascular toxicity and cardiovascular sequelae. We also review the vascular effects of VEGFi when used in combination with other modern anti-cancer drugs.
Collapse
Affiliation(s)
- Karla B Neves
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Augusto C Montezano
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Ninian N Lang
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, U.K
| |
Collapse
|
10
|
Avallone A, Piccirillo MC, Di Gennaro E, Romano C, Calabrese F, Roca MS, Tatangelo F, Granata V, Cassata A, Cavalcanti E, Maurea N, Maiolino P, Silvestro L, De Stefano A, Giuliani F, Rosati G, Tamburini E, Aprea P, Vicario V, Nappi A, Vitagliano C, Casaretti R, Leone A, Petrillo A, Botti G, Delrio P, Izzo F, Perrone F, Budillon A. Randomized phase II study of valproic acid in combination with bevacizumab and oxaliplatin/fluoropyrimidine regimens in patients with RAS-mutated metastatic colorectal cancer: the REVOLUTION study protocol. Ther Adv Med Oncol 2020; 12:1758835920929589. [PMID: 32849914 PMCID: PMC7425244 DOI: 10.1177/1758835920929589] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2020] [Accepted: 05/04/2020] [Indexed: 01/30/2023] Open
Abstract
Background Despite effective treatments, metastatic colorectal cancer (mCRC) prognosis is still poor, mostly in RAS-mutated tumors, thus suggesting the need for novel combinatorial therapies. Epigenetic alterations play an important role in initiation and progression of cancers, including CRC. Histone-deacetylase inhibitors (HDACi) have shown activity in combination with chemotherapy in the treatment of solid tumors. Owing to its HDACi activity and its safe use for epileptic disorders, valproic acid (VPA) is a good candidate for anticancer therapy that we have largely explored preclinically translating our findings in currently ongoing clinical studies. We have shown in CRC models that HDACi, including VPA, induces synergistic antitumor effects in combination with fluoropyrimidines. Furthermore, unpublished results from our group demonstrated that VPA induces differentiation and sensitization of CRC stem cells to oxaliplatin. Moreover, preclinical and clinical data suggest that HDACi may prevent/reverse anti-angiogenic resistance. Methods/Design A randomized, open-label, two-arm, multicenter phase-II study will be performed to explore whether the addition of VPA to first line bevacizumab/oxaliplatin/fluoropyrimidine regimens (mFOLFOX-6/mOXXEL) might improve progression-free survival (PFS) in RAS-mutated mCRC patients. A sample size of 200 patients was calculated under the hypothesis that the addition of VPA to chemotherapy/bevacizumab can improve PFS from 9 to 12 months, with one-sided alpha of 0.20 and a power of 0.80. Secondary endpoints are overall survival, objective response rate, metastases resection rate, toxicity, and quality of life. Moreover, the study will explore several prognostic and predictive biomarkers on blood samples, primary tumors, and on resected metastases. Discussion The "Revolution" study aims to improve the treatment efficacy of RAS-mutated mCRC through an attractive strategy evaluating the combination of VPA with standard cancer treatment. Correlative studies could identify novel biomarkers and could add new insight in the mechanism of interaction between VPA, fluoropyrimidine, oxaliplatin, and bevacizumab. Trial Registration EudraCT: 2018-001414-15; ClinicalTrials.gov identifier: NCT04310176.
Collapse
Affiliation(s)
- Antonio Avallone
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| | | | - Elena Di Gennaro
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carmela Romano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Filomena Calabrese
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Maria Serena Roca
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Fabiana Tatangelo
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Vincenza Granata
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonio Cassata
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Ernesta Cavalcanti
- Laboratory Medicine Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Nicola Maurea
- Cardiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Piera Maiolino
- Pharmacy Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Lucrezia Silvestro
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfonso De Stefano
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | | | - Gerardo Rosati
- Medical Oncology Unit, S. Carlo Hospital, Potenza, Italy
| | - Emiliano Tamburini
- Dipartimento di Oncologia e Cure Palliative, Azienda Ospedaliera Cardinale G. Panico, Tricase-Lecce, Italy
| | - Pasquale Aprea
- Vascular Access Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Valeria Vicario
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Anna Nappi
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Carlo Vitagliano
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Rossana Casaretti
- Experimental Clinical Abdominal Oncology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alessandra Leone
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Antonella Petrillo
- Radiology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Gerardo Botti
- Pathology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Paolo Delrio
- Colorectal Oncological Surgery, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Izzo
- Hepatobiliary Surgery Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Francesco Perrone
- Clinical Trials Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Napoli, Italy
| | - Alfredo Budillon
- Experimental Pharmacology Unit, Istituto Nazionale Tumori- IRCCS-Fondazione G. Pascale, Via M. Semmola, Napoli, 80131, Italy
| |
Collapse
|
11
|
Guo C, Wang Q, Zhang X, Lu F, Sun M, Zeng P, Sun L, She L, Wang B, Zhang Y, Wang C, Ma Z, Yang F. Gelated Vorinostat with inner-lysosome triggered release for tumor-targeting chemotherapy. Colloids Surf B Biointerfaces 2020; 194:111144. [PMID: 32535244 DOI: 10.1016/j.colsurfb.2020.111144] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2020] [Revised: 05/13/2020] [Accepted: 05/16/2020] [Indexed: 12/16/2022]
Abstract
Histonedeacetylase inhibitor (HDACi) has great potential in targeted antitumor therapy by inhibiting tumor migration, invasion, and metastasis. As one of the typical HDACis, vorinostat (Suberoylanilide Hydroxamic Acid, SAHA) was approved as a therapeutic agent for cancer therapy, however, challenges remain due to their poor solubility, short half-life and low efficiency in cellular penetration. Considering the disadvantages of usual drug carriers, folate and vorinostat bound BSA nanogel (FVBN)was fabricated to implement higher solubility, stability, cellular uptake, and lipase-responsive release. With good dispersion and stability, FVBN significantly increased the cellular uptake of vorinostat through folate-mediated endocytosis. FVBN exhibited comparable cytotoxicity with free SAHA, and the growth of tumor cells was blocked in G1/G0 phase just like SAHA performed in cell cycle arrest tests. Moreover, FVBN not only effectively inhibited the growth of melanoma but also observably prevented pulmonary metastasis of melanoma. In the experiment against nude mice bearing solid ovarian cancer, FVBN showed excellent antitumor effect without liver damage, demonstrating the superiority of gelated and inner-lysosome triggered release strategies to the free SAHA, and it is promising to expand the scope of application of HDACi in clinical cancer therapy.
Collapse
Affiliation(s)
- Changyong Guo
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China
| | - Qirong Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Xingjie Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Fengkun Lu
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China; School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Miao Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Peiyu Zeng
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Linhong Sun
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Lan She
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Bingkai Wang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Yunchang Zhang
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China
| | - Chen Wang
- Department of Oncology, Ruijin North Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, People's Republic of China.
| | - Zhiqiang Ma
- School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| | - Feng Yang
- Department of Pharmacy, Hebei North University Hebei Key Laboratory of Neuropharmacology, Zhangjiakou, People's Republic of China; School of Pharmacy, Second Military Medical University, Shanghai, People's Republic of China.
| |
Collapse
|
12
|
Zellmer J, Yen HY, Kaiser L, Mille E, Gildehaus FJ, Böning G, Steiger K, Hacker M, Bartenstein P, Todica A, Haug AR, Ilhan H. Toxicity of a combined therapy using the mTOR-inhibitor everolimus and PRRT with [ 177Lu]Lu-DOTA-TATE in Lewis rats. EJNMMI Res 2020; 10:41. [PMID: 32335736 PMCID: PMC7183514 DOI: 10.1186/s13550-020-00628-y] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2019] [Accepted: 04/07/2020] [Indexed: 02/08/2023] Open
Abstract
PURPOSE Peptide receptor radionuclide therapy (PRRT) with [177Lu]Lu-DOTA0,TYR3-octreotate ([177Lu]Lu-DOTA-TATE) and the mechanistic target of rapamycin (mTOR) inhibitor everolimus are both approved for the treatment of neuroendocrine tumours (NET). However, tumour progression is still frequent, and treatment strategies need further improvement. One possible approach could be to combine different therapy options. In this study, we investigated the toxicity of a combined treatment with everolimus and [177Lu]Lu-DOTA-TATE in female Lewis rats. METHODS Animals received 200 MBq of [177Lu]Lu-DOTA-TATE once and/or 5 mg/kg body weight everolimus or placebo weekly for 16 weeks and were divided into four groups (group 1, placebo; group 2, everolimus; group 3, placebo + [177Lu]Lu-DOTA-TATE; group 4, everolimus + [177Lu]Lu-DOTA-TATE). Blood levels of creatinine and blood urea nitrogen (BUN) were assessed weekly to monitor nephrotoxicity, and a full blood count was performed at the time of euthanasia to monitor myelotoxicity. Additionally, renal function was analysed by sequential [99mTc]Tc-mercaptoacetyltriglycine ([99mTc]Tc-MAG3) scintigraphies. Histopathological examination was performed in all the kidneys using a standardized renal damage score (RDS). RESULTS Rats receiving everolimus showed a significantly lower increase in creatinine levels than those receiving placebo. Everolimus therapy reduced white blood count significantly, which was not observed for [177Lu]Lu-DOTA-TATE. Functional renal scintigraphies using [99mTc]Tc-MAG3 showed a compromised initial tracer uptake after PRRT and slower but still preserved excretion after everolimus. Histology showed no significant RDS differences between groups. CONCLUSION Renal scintigraphy is a highly sensitive tool for the detection of renal function impairment after a combination of everolimus and PRRT. Additional treatment with everolimus does not increase renal and haematological toxicity of PRRT with [177Lu]Lu-DOTA-TATE.
Collapse
Affiliation(s)
- Johannes Zellmer
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Hsi-Yu Yen
- Department of Pathology, Technical University of Munich, Munich, Germany
- German Cancer Consortium (DKTK), German Cancer Research Centre (DKFZ), Heidelberg, Germany
- Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Lena Kaiser
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Erik Mille
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Franz Josef Gildehaus
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Guido Böning
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Katja Steiger
- Department of Pathology, Technical University of Munich, Munich, Germany
- Comparative Experimental Pathology, Technical University of Munich, Munich, Germany
| | - Marcus Hacker
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Peter Bartenstein
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Andrei Todica
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany
| | - Alexander R Haug
- Department of Biomedical Imaging and Image-guided Therapy, Division of Nuclear Medicine, Medical University of Vienna, Vienna, Austria
| | - Harun Ilhan
- Department of Nuclear Medicine, University Hospital, Ludwig-Maxilimians-University Munich, Munich, Germany.
| |
Collapse
|
13
|
Ciesielski O, Biesiekierska M, Panthu B, Vialichka V, Pirola L, Balcerczyk A. The Epigenetic Profile of Tumor Endothelial Cells. Effects of Combined Therapy with Antiangiogenic and Epigenetic Drugs on Cancer Progression. Int J Mol Sci 2020; 21:ijms21072606. [PMID: 32283668 PMCID: PMC7177242 DOI: 10.3390/ijms21072606] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 04/04/2020] [Accepted: 04/06/2020] [Indexed: 02/07/2023] Open
Abstract
Tumors require a constant supply of nutrients to grow which are provided through tumor blood vessels. To metastasize, tumors need a route to enter circulation, that route is also provided by tumor blood vessels. Thus, angiogenesis is necessary for both tumor progression and metastasis. Angiogenesis is tightly regulated by a balance of angiogenic and antiangiogenic factors. Angiogenic factors of the vascular endothelial growth factor (VEGF) family lead to the activation of endothelial cells, proliferation, and neovascularization. Significant VEGF-A upregulation is commonly observed in cancer cells, also due to hypoxic conditions, and activates endothelial cells (ECs) by paracrine signaling stimulating cell migration and proliferation, resulting in tumor-dependent angiogenesis. Conversely, antiangiogenic factors inhibit angiogenesis by suppressing ECs activation. One of the best-known anti-angiogenic factors is thrombospondin-1 (TSP-1). In pathological angiogenesis, the balance shifts towards the proangiogenic factors and an angiogenic switch that promotes tumor angiogenesis. Here, we review the current literature supporting the notion of the existence of two different endothelial lineages: normal endothelial cells (NECs), representing the physiological form of vascular endothelium, and tumor endothelial cells (TECs), which are strongly promoted by the tumor microenvironment and are biologically different from NECs. The angiogenic switch would be also important for the explanation of the differences between NECs and TECs, as angiogenic factors, cytokines and growth factors secreted into the tumor microenvironment may cause genetic instability. In this review, we focus on the epigenetic differences between the two endothelial lineages, which provide a possible window for pharmacological targeting of TECs.
Collapse
Affiliation(s)
- Oskar Ciesielski
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- The Bio-Med-Chem Doctoral School of the University of Lodz and Lodz Institutes of the Polish Academy of Sciences, University of Lodz, Banacha 12/16, 90-237 Lodz, Poland
| | - Marta Biesiekierska
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Baptiste Panthu
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Varvara Vialichka
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
| | - Luciano Pirola
- INSERM Unit 1060, CarMeN Laboratory, Lyon 1 University, 165 Chemin du Grand Revoyet—BP12, F-69495 Pierre Bénite CEDEX, France; (B.P.); (L.P.)
| | - Aneta Balcerczyk
- Department of Molecular Biophysics, Faculty of Biology and Environmental Protection, University of Lodz, Pomorska 141/143, 90-236 Lodz, Poland; (O.C.); (M.B.); (V.V.)
- Correspondence: ; Tel.: +48-42-635-45-10
| |
Collapse
|
14
|
Vincent A, Ouelkdite-Oumouchal A, Souidi M, Leclerc J, Neve B, Van Seuningen I. Colon cancer stemness as a reversible epigenetic state: Implications for anticancer therapies. World J Stem Cells 2019; 11:920-936. [PMID: 31768220 PMCID: PMC6851010 DOI: 10.4252/wjsc.v11.i11.920] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/25/2019] [Revised: 08/29/2019] [Accepted: 09/11/2019] [Indexed: 02/06/2023] Open
Abstract
The recent discovery of cancer cell plasticity, i.e. their ability to reprogram into cancer stem cells (CSCs) either naturally or under chemotherapy and/or radiotherapy, has changed, once again, the way we consider cancer treatment. If cancer stemness is a reversible epigenetic state rather than a genetic identity, opportunities will arise for therapeutic strategies that remodel epigenetic landscapes of CSCs. However, the systematic use of DNA methyltransferase and histone deacetylase inhibitors, alone or in combination, in advanced solid tumors including colorectal cancers, regardless of their molecular subtypes, does not seem to be the best strategy. In this review, we first summarize the knowledge researchers have gathered on the epigenetic signatures of CSCs with the difficulty of isolating rare populations of cells. We raise questions about the relevant use of currently available epigenetic inhibitors (epidrugs) while the expression of numerous cancer stem cell markers are often repressed by epigenetic mechanisms. These markers include the three cluster of differentiation CD133, CD44 and CD166 that have been extensively used for the isolation of colon CSCs.and . Finally, we describe current treatment strategies using epidrugs, and we hypothesize that, using correlation tools comparing associations of relevant CSC markers with chromatin modifier expression, we could identify better candidates for epienzyme targeting.
Collapse
Affiliation(s)
- Audrey Vincent
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Aïcha Ouelkdite-Oumouchal
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Mouloud Souidi
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Julie Leclerc
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
- Department of Biochemistry and Molecular Biology, Lille University Hospital, Lille F-59000, France
| | - Bernadette Neve
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| | - Isabelle Van Seuningen
- Lille University, Institut National de la Santé et de la Recherche Médicale, CHU Lille, UMR-S 1172-Jean-Pierre Aubert Research Center, Lille F-59000, France
| |
Collapse
|
15
|
Arena C, Troiano G, Zhurakivska K, Nocini R, Lo Muzio L. Stomatitis And Everolimus: A Review Of Current Literature On 8,201 Patients. Onco Targets Ther 2019; 12:9669-9683. [PMID: 31814732 PMCID: PMC6862450 DOI: 10.2147/ott.s195121] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2018] [Accepted: 01/23/2019] [Indexed: 12/25/2022] Open
Abstract
Background Oral toxicities, such as mucositis and stomatitis, are some of the most significant and unavoidable side effects associated with anticancer therapies. In past decades, research has focused on newer targeted agents with the aim of decreasing the rates of side effects on healthy cells. Unfortunately, even targeted anticancer therapies show significant rates of toxicity on healthy tissue. mTOR inhibitors display some adverse events, such as hyperglycemia, hyperlipidemia, hypophosphatemia, hematologic toxicities, and mucocutaneous eruption, but the most important are still stomatitis and skin rash, which are often dose-limiting side effects. Aim This review was performed to answer the question “What is the incidence of stomatitis in patients treated with everolimus?” Methods We conducted a systematic search on the PubMed and Medline online databases using a combination of MESH terms and free text: “everolimus” (MESH) AND “side effects” OR “toxicities” OR “adverse events”. Only studies fulfilling the following inclusion criteria were considered eligible for inclusion in this study: performed on human subjects, reporting on the use of everolimus (even if in combination with other drugs or ionizing radiation), written in the English language, and reporting the incidence of side effects. Results The analysis of literature revealed that the overall incidence of stomatitis after treatment with everolimus was 42.6% (3,493) and that of stomatitis grade G1/2 84.02% (2,935), while G3/4 was 15.97% (558). Conclusion Results of the analysis showed that the incidence of stomatitis of grade 1 or 2 is higher than grade 3 or 4. However, it must be taken into account that it is not possible to say if side effects are entirely due to everolimus therapy or combinations with other drugs.
Collapse
Affiliation(s)
- Claudia Arena
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Giuseppe Troiano
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Khrystyna Zhurakivska
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy
| | - Riccardo Nocini
- Section of Otolaryngology, Department of Surgical Sciences, Dentistry, Gynecology, and Pediatrics, University of Verona, Verona, Italy
| | - Lorenzo Lo Muzio
- Department of Clinical and Experimental Medicine, University of Foggia, Foggia, Italy.,C.I.N.B.O. (Consorzio Interuniversitario Nazionale per la Bio-Oncologia), Chieti, Italy
| |
Collapse
|
16
|
Beyens M, Vandamme T, Peeters M, Van Camp G, Op de Beeck K. Resistance to targeted treatment of gastroenteropancreatic neuroendocrine tumors. Endocr Relat Cancer 2019; 26:R109-R130. [PMID: 32022503 DOI: 10.1530/erc-18-0420] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The mammalian target of rapamycin (mTOR) is part of the phosphoinositide-3-kinase (PI3K)/protein kinase B (Akt)/mTOR signaling. The PI3K/Akt/mTOR pathway has a pivotal role in the oncogenesis of neuroendocrine tumors (NETs). In addition, vascular endothelial growth factor (VEGF) and platelet-derived growth factor (PDGF) drive angiogenesis in NETs and therefore contributes to neuroendocrine tumor development. Hence, mTOR and angiogenesis inhibitors have been developed. Everolimus, a first-generation mTOR inhibitor, has shown significant survival benefit in advanced gastroenteropancreatic NETs. Sunitinib, a pan-tyrosine kinase inhibitor that targets the VEGF receptor, has proven to increase progression-free survival in advanced pancreatic NETs. Nevertheless, primary and acquired resistance to rapalogs and sunitinib has limited the clinical benefit for NET patients. Despite the identification of multiple molecular mechanisms of resistance, no predictive biomarker has made it to the clinic. This review is focused on the mTOR signaling and angiogenesis in NET, the molecular mechanisms of primary and acquired resistance to everolimus and sunitinib and how to overcome this resistance by alternative drug compounds.
Collapse
Affiliation(s)
- Matthias Beyens
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Timon Vandamme
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
- Section of Endocrinology, Department of Internal Medicine, Erasmus Medical Center, Rotterdam, the Netherlands
| | - Marc Peeters
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
| | - Guy Van Camp
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| | - Ken Op de Beeck
- Center of Medical Genetics, University of Antwerp and Antwerp University Hospital, Antwerp, Belgium
- Center for Oncological Research, University of Antwerp, Antwerp, Belgium
| |
Collapse
|
17
|
Wu YS, Lee ZY, Chuah LH, Mai CW, Ngai SC. Epigenetics in Metastatic Breast Cancer: Its Regulation and Implications in Diagnosis, Prognosis and Therapeutics. Curr Cancer Drug Targets 2019; 19:82-100. [PMID: 29714144 DOI: 10.2174/1568009618666180430130248] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2017] [Revised: 02/21/2018] [Accepted: 04/03/2018] [Indexed: 02/06/2023]
Abstract
Despite advances in the treatment regimen, the high incidence rate of breast cancer (BC) deaths is mostly caused by metastasis. Recently, the aberrant epigenetic modifications, which involve DNA methylation, histone modifications and microRNA (miRNA) regulations become attractive targets to treat metastatic breast cancer (MBC). In this review, the epigenetic alterations of DNA methylation, histone modifications and miRNA regulations in regulating MBC are discussed. The preclinical and clinical trials of epigenetic drugs such as the inhibitor of DNA methyltransferase (DNMTi) and the inhibitor of histone deacetylase (HDACi), as a single or combined regimen with other epigenetic drug or standard chemotherapy drug to treat MBCs are discussed. The combined regimen of epigenetic drugs or with standard chemotherapy drugs enhance the therapeutic effect against MBC. Evidences that epigenetic changes could have implications in diagnosis, prognosis and therapeutics for MBC are also presented. Several genes have been identified as potential epigenetic biomarkers for diagnosis and prognosis, as well as therapeutic targets for MBC. Endeavors in clinical trials of epigenetic drugs against MBC should be continued although limited success has been achieved. Future discovery of epigenetic drugs from natural resources would be an attractive natural treatment regimen for MBC. Further research is warranted in translating research into clinical practice with the ultimate goal of treating MBC by epigenetic therapy in the near future.
Collapse
Affiliation(s)
- Yuan Seng Wu
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Zhong Yang Lee
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| | - Lay-Hong Chuah
- School of Pharmacy, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
- Advanced Engineering Platform, Monash University Malaysia, Bandar Sunway, Selangor, Malaysia
| | - Chun Wai Mai
- Department of Pharmaceutical Chemistry, International Medical University, Bukit Jalil, Kuala Lumpur, Malaysia
| | - Siew Ching Ngai
- School of Biosciences, Faculty of Science, University of Nottingham Malaysia Campus, Selangor, Malaysia
| |
Collapse
|
18
|
Abstract
Since the identification and cloning of human histone deacetylases (HDACs) and the rapid approval of vorinostat (Zolinza®) for the treatment of cutaneous T-cell lymphoma, the field of HDAC biology has met many initial successes. However, many challenges remain due to the complexity involved in the lysine posttranslational modifications, epigenetic transcription regulation, and nonepigenetic cellular signaling cascades. In this chapter, we will: review the discovery of the first HDAC inhibitor and present discussion regarding the future of next-generation HDAC inhibitors, give an overview of different classes of HDACs and their differences in lysine deacylation activity, discuss different classes of HDAC inhibitors and their HDAC isozyme preferences, and review HDAC inhibitors' preclinical studies, their clinical trials, their pharmacokinetic challenges, and future direction. We will also discuss the likely reason for the failure of multiple HDAC inhibitor clinical trials in malignancies other than lymphoma and multiple myeloma. In addition, the potential molecular mechanism(s) that may play a key role in the efficacy and therapeutic response rate in the clinic and the likely patient population for HDAC therapy will be discussed.
Collapse
Affiliation(s)
- Jesse J McClure
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - Xiaoyang Li
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States
| | - C James Chou
- Medical University of South Carolina, College of Pharmacy, Charleston, SC, United States.
| |
Collapse
|
19
|
Panobinostat Potentiates Temozolomide Effects and Reverses Epithelial–Mesenchymal Transition in Glioblastoma Cells. EPIGENOMES 2018. [DOI: 10.3390/epigenomes2010005] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/04/2023] Open
|
20
|
Mitamura T, Pradeep S, McGuire M, Wu S, Ma S, Hatakeyama H, Lyons YA, Hisamatsu T, Noh K, Villar-Prados A, Chen X, Ivan C, Rodriguez-Aguayo C, Hu W, Lopez-Berestein G, Coleman RL, Sood AK. Induction of anti-VEGF therapy resistance by upregulated expression of microseminoprotein (MSMP). Oncogene 2018; 37:722-731. [PMID: 29059175 PMCID: PMC6040890 DOI: 10.1038/onc.2017.348] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2016] [Revised: 03/31/2017] [Accepted: 06/14/2017] [Indexed: 12/28/2022]
Abstract
Anti-vascular endothelial growth factor (VEGF) therapy has demonstrated efficacy in treating human metastatic cancers, but therapeutic resistance is a practical limitation and most tumors eventually become unresponsive. To identify microenvironmental factors underlying the resistance of cancer to antiangiogenesis therapy, we conducted genomic analyses of intraperitoneal ovarian tumors in which adaptive resistance to anti-VEGF therapy (B20 antibody) developed. We found that expression of the microseminoprotein, prostate-associated (MSMP) gene was substantially upregulated in resistant compared with control tumors. MSMP secretion from cancer cells was induced by hypoxia, triggering MAPK signaling in endothelial cells to promote tube formation in vitro. Recruitment of the transcriptional repressor CCCTC-binding factor (CTCF) to the MSMP enhancer region was decreased by histone acetylation under hypoxic conditions in cancer cells. MSMP siRNA, delivered in vivo using the DOPC nanoliposomes, restored tumor sensitivity to anti-VEGF therapy. In ovarian cancer patients treated with bevacizumab, serum MSMP concentration increased significantly only in non-responders. These findings imply that MSMP inhibition combined with the use of antiangiogenesis drugs may be a new strategy to overcome resistance to antiangiogenesis therapy.
Collapse
Affiliation(s)
- Takashi Mitamura
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Department of Obstetrics and Gynecology, Hokkaido University Graduate School of Medicine, Sapporo, Japan
| | - Sunila Pradeep
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Michael McGuire
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sherry Wu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Shaolin Ma
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Hiroto Hatakeyama
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yasmin A. Lyons
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Takeshi Hisamatsu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Kyunghee Noh
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Gene Therapy Research Unit, Korea Research Institute of Bioscience and Biotechnology, Dajeon, Republic of Korea
| | - Alejandro Villar-Prados
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Xiuhui Chen
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristina Ivan
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Cristian Rodriguez-Aguayo
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Wei Hu
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Gabriel Lopez-Berestein
- Department of Experimental Therapeutics, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L. Coleman
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K. Sood
- Department of Gynecologic Oncology and Reproductive Medicine, The University of Texas MD Anderson Cancer Center, Houston, Texas
- Center for RNA Interference and Non-Coding RNAs, The University of Texas MD Anderson Cancer Center, Houston, Texas
| |
Collapse
|
21
|
Elevation of YAP promotes the epithelial-mesenchymal transition and tumor aggressiveness in colorectal cancer. Exp Cell Res 2017; 350:218-225. [PMID: 27914787 DOI: 10.1016/j.yexcr.2016.11.024] [Citation(s) in RCA: 68] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2016] [Revised: 11/23/2016] [Accepted: 11/29/2016] [Indexed: 02/08/2023]
|
22
|
Nervi C, De Marinis E, Codacci-Pisanelli G. Epigenetic treatment of solid tumours: a review of clinical trials. Clin Epigenetics 2015; 7:127. [PMID: 26692909 PMCID: PMC4676165 DOI: 10.1186/s13148-015-0157-2] [Citation(s) in RCA: 154] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2015] [Accepted: 11/10/2015] [Indexed: 12/12/2022] Open
Abstract
Epigenetic treatment has been approved by regulatory agencies for haematological malignancies. The success observed in cutaneous lymphomas represents a proof of principle that similar results may be obtained in solid tumours. Several agents that interfere with DNA methylation-demethylation and histones acetylation/deacetylation have been studied, and some (such as azacytidine, decitabine, valproic acid and vorinostat) are already in clinical use. The aim of this review is to provide a brief overview of the molecular events underlying the antitumour effects of epigenetic treatments and to summarise data available on clinical trials that tested the use of epigenetic agents against solid tumours. We not only list results but also try to indicate how the proper evaluation of this treatment might result in a better selection of effective agents and in a more rapid development. We divided compounds in demethylating agents and HDAC inhibitors. For each class, we report the antitumour activity and the toxic side effects. When available, we describe plasma pharmacokinetics and pharmacodynamic evaluation in tumours and in surrogate tissues (generally white blood cells). Epigenetic treatment is a reality in haematological malignancies and deserves adequate attention in solid tumours. A careful consideration of available clinical data however is required for faster drug development and possibly to re-evaluate some molecules that were perhaps discarded too early.
Collapse
Affiliation(s)
- Clara Nervi
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Elisabetta De Marinis
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| | - Giovanni Codacci-Pisanelli
- Department of Medical and Surgical Sciences and Biotechnology, University of Rome "la Sapienza", Corso della Repubblica, 97, 04100 Latina, Italy
| |
Collapse
|
23
|
Zhou N, Xu W, Zhang Y. Histone deacetylase inhibitors merged with protein tyrosine kinase inhibitors. Drug Discov Ther 2015; 9:147-155. [PMID: 26193935 DOI: 10.5582/ddt.2015.01001] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Histone deacetylases (HDACs) are a family of metal enzymes which mainly regulates the acetylation level of histone, together with histone acetyl transferases (HATs). Recently, because many HDAC inhibitors (HDACis) have entered clinical trials for both solid and liquid tumors, HDACs are recognized as one of the promising targets for cancer treatment. The current trend is that more and more HDAC inhibitors are used in combination with other antitumor agents in order to optimize their effect and toxicity. Protein tyrosine kinases (PTKs) which play important roles in cellular signal transduction pathways and regulate series of physiological and biochemical processes, are another family of hot antitumor targets. This brief review will mainly talk about several reported chimeric HDACs-PTKs inhibitors.
Collapse
Affiliation(s)
- Nan Zhou
- College of Pharmacy, Shandong University
| | | | | |
Collapse
|
24
|
|
25
|
Vaiopoulos AG, Athanasoula KC, Papavassiliou AG. Epigenetic modifications in colorectal cancer: Molecular insights and therapeutic challenges. Biochim Biophys Acta Mol Basis Dis 2014; 1842:971-980. [PMID: 24561654 DOI: 10.1016/j.bbadis.2014.02.006] [Citation(s) in RCA: 81] [Impact Index Per Article: 7.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2014] [Revised: 02/12/2014] [Accepted: 02/15/2014] [Indexed: 12/11/2022]
|
26
|
Rangwala F, Bendell JC, Kozloff MF, Arrowood CC, Dellinger A, Meadows J, Tourt-Uhlig S, Murphy J, Meadows KL, Starr A, Broderick S, Brady JC, Cushman SM, Morse MA, Uronis HE, Hsu SD, Zafar SY, Wallace J, Starodub AN, Strickler JH, Pang H, Nixon AB, Hurwitz HI. Phase I study of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumors. Invest New Drugs 2014; 32:700-9. [PMID: 24711126 DOI: 10.1007/s10637-014-0089-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2014] [Accepted: 03/13/2014] [Indexed: 01/25/2023]
Abstract
PURPOSE To define maximum tolerated dose (MTD), toxicities, and pharmacodynamics of capecitabine, oxaliplatin, bevacizumab, and everolimus in advanced solid tumor patients. DESIGN This was a standard "3 + 3" dose-escalation trial. All subjects received bevacizumab 7.5 mg/kg on day 1 of each cycle. Doses for capecitabine, oxaliplatin and everolimus were modified per dose limiting toxicity (DLT). Baseline and on-treatment plasma biomarkers were analyzed. Archived tumor mRNA levels were evaluated for NRP1, NRP2 and VEGF-A isoforms. RESULTS Twenty-nine patients were evaluable for toxicity and 30 for efficacy. Two DLTs were observed in cohort 1 and one DLT each was observed in cohort -1 and -1b. Grade ≥3 toxicities included neutropenia, hypertension, perforation/fistula/hemorrhage, hypertriglyceridemia, diarrhea, and thromboembolism. Twelve subjects experienced partial response (PR); 12 had stable disease as best response. Three of seven chemorefractory metastatic colorectal cancer (mCRC) subjects experienced PR; 8 of 15 chemonaive mCRC subjects experienced PR. Plasma TβRIII and IL-6 increased on treatment but without correlation to outcome. Increased VEGF165 levels significantly correlated with longer progression free survival. CONCLUSIONS Everolimus with full dose capecitabine, oxaliplatin, and bevacizumab had unacceptable toxicity. MTD was: everolimus 5 mg daily; capecitabine 680 mg/m(2) BID days 1-14; oxaliplatin 100 mg/m(2) and bevacizumab 7.5 mg/kg, day 1. Activity was noted in mCRC.
Collapse
MESH Headings
- Angiogenesis Inhibitors/administration & dosage
- Angiogenesis Inhibitors/adverse effects
- Antibodies, Monoclonal, Humanized/administration & dosage
- Antibodies, Monoclonal, Humanized/adverse effects
- Antimetabolites, Antineoplastic/administration & dosage
- Antimetabolites, Antineoplastic/adverse effects
- Antineoplastic Agents/administration & dosage
- Antineoplastic Agents/adverse effects
- Antineoplastic Combined Chemotherapy Protocols/administration & dosage
- Antineoplastic Combined Chemotherapy Protocols/adverse effects
- Bevacizumab
- Biomarkers, Tumor/genetics
- Biomarkers, Tumor/metabolism
- Capecitabine
- Deoxycytidine/administration & dosage
- Deoxycytidine/adverse effects
- Deoxycytidine/analogs & derivatives
- Everolimus
- Female
- Fluorouracil/administration & dosage
- Fluorouracil/adverse effects
- Fluorouracil/analogs & derivatives
- Humans
- Immunosuppressive Agents/administration & dosage
- Immunosuppressive Agents/adverse effects
- Male
- Maximum Tolerated Dose
- Middle Aged
- Neoplasms/drug therapy
- Neuropilin-1/genetics
- Neuropilin-1/metabolism
- Neuropilin-2/genetics
- Neuropilin-2/metabolism
- Organoplatinum Compounds/administration & dosage
- Organoplatinum Compounds/adverse effects
- Oxaliplatin
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sirolimus/administration & dosage
- Sirolimus/adverse effects
- Sirolimus/analogs & derivatives
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
Collapse
Affiliation(s)
- Fatima Rangwala
- Duke University Medical Center, Seeley G. Mudd Bldg 10 Bryan Searle Drive, Box 3052, Durham, NC, 27710, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
27
|
Clarke JM, Hurwitz HI. Understanding and targeting resistance to anti-angiogenic therapies. J Gastrointest Oncol 2013; 4:253-63. [PMID: 23997938 DOI: 10.3978/j.issn.2078-6891.2013.036] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/02/2013] [Accepted: 05/21/2013] [Indexed: 12/14/2022] Open
Abstract
Therapies targeting tumor angiogenesis are used in a variety of malignancies, however not all patients benefit from treatment and impact on tumor control may be transient and modest. Mechanisms of resistance to anti-angiogenic therapies can be broadly categorized into VEGF-axis dependent alterations, non-VEGF pathways, and stromal cell interactions. Complimentary combinations of agents that inhibit alternative mechanisms of blood vessel formation may optimize inhibition of angiogenesis and improve clinical benefit for patients. The purpose of this review is to detail the preclinical evidence for mechanisms of angiogenic resistance and provide an overview of novel therapeutic approaches exploiting these pathways.
Collapse
Affiliation(s)
- Jeffrey M Clarke
- Duke Cancer Institute, Duke University Medical Center, Durham, NC, USA
| | | |
Collapse
|
28
|
Syed Khaja AS, Dizeyi N, Kopparapu PK, Anagnostaki L, Härkönen P, Persson JL. Cyclin A1 modulates the expression of vascular endothelial growth factor and promotes hormone-dependent growth and angiogenesis of breast cancer. PLoS One 2013; 8:e72210. [PMID: 23991063 PMCID: PMC3744130 DOI: 10.1371/journal.pone.0072210] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2013] [Accepted: 07/08/2013] [Indexed: 12/13/2022] Open
Abstract
Alterations in cellular pathways related to both endocrine and vascular endothelial growth factors (VEGF) may contribute to breast cancer progression. Inhibition of the elevated levels of these pathways is associated with clinical benefits. However, molecular mechanisms by which endocrine-related pathways and VEGF signalling cooperatively promote breast cancer progression remain poorly understood. In the present study, we show that the A-type cyclin, cyclin A1, known for its important role in the initiation of leukemia and prostate cancer metastasis, is highly expressed in primary breast cancer specimens and metastatic lesions, in contrasting to its barely detectable expression in normal human breast tissues. There is a statistically significant correlation between cyclin A1 and VEGF expression in breast cancer specimens from two patient cohorts (p<0.01). Induction of cyclin A1 overexpression in breast cancer cell line MCF-7 results in an enhanced invasiveness and a concomitant increase in VEGF expression. In addition, there is a formation of protein–protein complexes between cyclin A1 and estrogen receptor ER-α cyclin A1 overexpression increases ER-α expression in MCF-7 and T47D cells. In mouse tumor xenograft models in which mice were implanted with MCF-7 cells that overexpressed cyclin A1 or control vector, cyclin A1 overexpression results in an increase in tumor growth and angiogenesis, which is coincident with an enhanced expression of VEGF, VEGFR1 and ER-α Our findings unravel a novel role for cyclin A1 in growth and progression of breast cancer, and suggest that multiple cellular pathways, including cell cycle regulators, angiogenesis and estrogen receptor signalling, may cooperatively contribute to breast cancer progression.
Collapse
MESH Headings
- Animals
- Breast Neoplasms/genetics
- Breast Neoplasms/metabolism
- Breast Neoplasms/pathology
- Cyclin A1/genetics
- Cyclin A1/metabolism
- Estrogen Receptor alpha/genetics
- Estrogen Receptor alpha/metabolism
- Female
- Gene Expression Profiling
- Gene Expression Regulation, Neoplastic
- Green Fluorescent Proteins/genetics
- Green Fluorescent Proteins/metabolism
- Humans
- Immunoblotting
- Immunohistochemistry
- Lymphatic Metastasis
- MCF-7 Cells
- Mammary Neoplasms, Experimental/genetics
- Mammary Neoplasms, Experimental/metabolism
- Mammary Neoplasms, Experimental/pathology
- Mice
- Mice, Inbred Strains
- Mice, Nude
- Neoplasms, Hormone-Dependent/genetics
- Neoplasms, Hormone-Dependent/metabolism
- Neoplasms, Hormone-Dependent/pathology
- Neovascularization, Pathologic/genetics
- Oligonucleotide Array Sequence Analysis
- Protein Binding
- Reverse Transcriptase Polymerase Chain Reaction
- Transplantation, Heterologous
- Vascular Endothelial Growth Factor A/genetics
- Vascular Endothelial Growth Factor A/metabolism
- Vascular Endothelial Growth Factor Receptor-1/genetics
- Vascular Endothelial Growth Factor Receptor-1/metabolism
Collapse
Affiliation(s)
| | - Nishtman Dizeyi
- Department of Clinical Sciences, Lund University, Malmö, Sweden
| | | | - Lola Anagnostaki
- Department of Clinical Pathology, Skåne University Hospital, Malmö, Sweden
| | - Pirkko Härkönen
- Institute of Biomedicine, University of Turku, Turku, Finland
| | - Jenny Liao Persson
- Department of Laboratory Medicine, Lund University, Malmö, Sweden
- * E-mail:
| |
Collapse
|
29
|
Grassadonia A, Cioffi P, Simiele F, Iezzi L, Zilli M, Natoli C. Role of Hydroxamate-Based Histone Deacetylase Inhibitors (Hb-HDACIs) in the Treatment of Solid Malignancies. Cancers (Basel) 2013; 5:919-42. [PMID: 24202327 PMCID: PMC3795372 DOI: 10.3390/cancers5030919] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 07/03/2013] [Accepted: 07/12/2013] [Indexed: 02/06/2023] Open
Abstract
Hydroxamate-based histone deacetylase inhibitors (Hb-HDACIs), such as vorinostat, belinostat and panobinostat, have been previously shown to have a wide range of activity in hematologic malignancies such as cutaneous T-cell lymphoma and multiple myeloma. Recent data show that they synergize with a variety of cytotoxic and molecular targeted agents in many different solid tumors, including breast, prostate, pancreatic, lung and ovarian cancer. Hb-HDACIs have a quite good toxicity profile and are now being tested in phase I and II clinical trials in solid tumors with promising results in selected neoplasms, such as hepatocarcinoma. This review will focus on their clinical activity and safety in patients with advanced solid neoplasms.
Collapse
Affiliation(s)
- Antonino Grassadonia
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
| | - Pasquale Cioffi
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Felice Simiele
- Hospital Pharmacy, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (P.C.); (F.S.)
| | - Laura Iezzi
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Marinella Zilli
- Oncology Department, “SS. Annunziata” Hospital, I-66013 Chieti, Italy; E-Mails: (L.I.); (M.Z.)
| | - Clara Natoli
- Department of Experimental and Clinical Sciences, University ’G. d’Annunzio’, I-66013 Chieti, Italy; E-Mail:
- Author to whom correspondence should be addressed; E-Mail: ; Tel.: +39-0871-355-6708; Fax: +39-0871-355-6732
| |
Collapse
|
30
|
Wang YQ, Miao ZH. Marine-derived angiogenesis inhibitors for cancer therapy. Mar Drugs 2013; 11:903-33. [PMID: 23502698 PMCID: PMC3705379 DOI: 10.3390/md11030903] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Revised: 02/25/2013] [Accepted: 03/01/2013] [Indexed: 12/18/2022] Open
Abstract
Angiogenesis inhibitors have been successfully used for cancer therapy in the clinic. Many marine-derived natural products and their analogues have been reported to show antiangiogenic activities. Compared with the drugs in the clinic, these agents display interesting characteristics, including diverse sources, unique chemical structures, special modes of action, and distinct activity and toxicity profiles. This review will first provide an overview of the current marine-derived angiogenesis inhibitors based on their primary targets and/or mechanisms of action. Then, the marine-derived antiangiogenic protein kinase inhibitors will be focused on. And finally, the clinical trials of the marine-derived antiangiogenic agents will be discussed, with special emphasis on their application potentials, problems and possible coping strategies in their future development as anticancer drugs.
Collapse
Affiliation(s)
- Ying-Qing Wang
- Division of Antitumor Pharmacology, State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences, 555 Zu Chong Zhi Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China.
| | | |
Collapse
|
31
|
Improved efficacy of therapeutic vaccination with viable human umbilical vein endothelial cells against murine melanoma by introduction of OK432 as adjuvant. Tumour Biol 2013; 34:1399-408. [DOI: 10.1007/s13277-012-0616-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2012] [Accepted: 11/30/2012] [Indexed: 01/28/2023] Open
|
32
|
Cancer epigenetics: new therapies and new challenges. JOURNAL OF DRUG DELIVERY 2013; 2013:529312. [PMID: 23533770 PMCID: PMC3600296 DOI: 10.1155/2013/529312] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/03/2012] [Accepted: 01/20/2013] [Indexed: 12/31/2022]
Abstract
Cancer is nowadays considered to be both a genetic and an epigenetic disease. The most well studied epigenetic modification in humans is DNA methylation; however it becomes increasingly acknowledged that DNA methylation does not work alone, but rather is linked to other modifications, such as histone modifications. Epigenetic abnormalities are reversible and as a result novel therapies that work by reversing epigenetic effects are being increasingly explored. The biggest clinical impact of epigenetic modifying agents in neoplastic disorders thus far has been in haematological malignancies, and the efficacy of DNMT inhibitors and HDAC inhibitors in blood cancers clearly attests to the principle that therapeutic modification of the cancer cell epigenome can produce clinical benefit. This paper will discuss the most well studied epigenetic modifications and how these are linked to cancer, will give a brief overview of the clinical use of epigenetics as biomarkers, and will focus in more detail on epigenetic drugs and their use in solid and blood cancers.
Collapse
|
33
|
Abstract
INTRODUCTION There has been a strong preclinical rationale for studying mammalian target of rapamycin (mTOR) inhibitors as single agents or in combination, in multiple malignancies and colorectal cancer in particular. AREAS COVERED The authors summarize the complete clinical experience to date of all trials, both published and in abstract form, of everolimus in colorectal cancer. While initial Phase I trials showed promise, further studies have confirmed that single agent everolimus is not active in advanced metastatic colorectal carcinoma with trials showing single agent tolerability, but without significant hints of efficacy in terms of either objective tumor responses or prolonged stable disease. Combination regimens, including combinations with cytotoxic chemotherapy, and inhibitors of VEGF, EGFR and HDAC have been tested specifically in the colorectal setting in Phase I and Phase II clinical trials. The authors discuss the potential reasons for mixed results and suggest future directions for the development of everolimus in colorectal malignancies. EXPERT OPINION Studies demonstrate limited clinical activity of everolimus for the treatment of advanced colorectal cancer and have been complicated by increases in toxicity. However, the central role of the PI3K/mTOR pathway in cancer biology suggests that other drug combinations with mTOR inhibition may still merit evaluation.
Collapse
Affiliation(s)
- Ivy Altomare
- Duke University Medical Center, Division of Medical Oncology, 3100 Tower Blvd Ste 600, Durham, NC 27707, USA.
| | | |
Collapse
|
34
|
Juengel E, Makarević J, Tsaur I, Bartsch G, Nelson K, Haferkamp A, Blaheta RA. Resistance after chronic application of the HDAC-inhibitor valproic acid is associated with elevated Akt activation in renal cell carcinoma in vivo. PLoS One 2013; 8:e53100. [PMID: 23372654 PMCID: PMC3553088 DOI: 10.1371/journal.pone.0053100] [Citation(s) in RCA: 33] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2012] [Accepted: 11/23/2012] [Indexed: 11/26/2022] Open
Abstract
Targeted drugs have significantly improved the therapeutic options for advanced renal cell carcinoma (RCC). However, resistance often develops, negating the benefit of these agents. In the present study, the molecular mechanisms of acquired resistance towards the histone deacetylase (HDAC) inhibitor valproic acid (VPA) in a RCC in vivo model were investigated. NMRI:nu/nu mice were transplanted with Caki-1 RCC cells and then treated with VPA (200 mg/kg/day). Controls remained untreated. Based on tumor growth dynamics, the mice were divided into “responders” and “non-responders” to VPA. Histone H3 and H4 acetylation and expression of cell signaling and cell cycle regulating proteins in the RCC mouse tumors were evaluated by Western blotting. Tumor growth of VPA responders was significantly diminished, whereas that of VPA non-responders even exceeded control values. Cdk1, 2 and 4 proteins were strongly enhanced in the non-responders. Importantly, Akt expression and activity were massively up-regulated in the tumors of the VPA non-responders. Chronic application (12 weeks) of VPA to Caki-1 cells in vitro evoked a distinct elevation of Akt activity and cancer cells no longer responded with cell growth reduction, compared to the short 2 week treatment. We assume that chronic use of an HDAC-inhibitor is associated with (re)-activation of Akt, which may be involved in resistance development. Consequently, combined blockade of both HDAC and Akt may delay or prevent drug resistance in RCC.
Collapse
Affiliation(s)
- Eva Juengel
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Jasmina Makarević
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Igor Tsaur
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Georg Bartsch
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Karen Nelson
- Department of Vascular and Endovascular Surgery, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Axel Haferkamp
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
| | - Roman A. Blaheta
- Department of Urology, Johann Wolfgang Goethe-University, Frankfurt am Main, Germany
- * E-mail:
| |
Collapse
|