1
|
Trapani D, Jin Q, Miller KD, Rugo HS, Reeder-Hayes KE, Traina T, Abdou Y, Falkson C, Abramson V, Ligibel J, Chen W, Come S, Nohria A, Ryabin N, Tayob N, Tolaney SM, Burstein HJ, Mayer EL. Optimizing Postneoadjuvant Treatment of Residual Breast Cancer With Adjuvant Bevacizumab Alone, With Metronomic or Standard-Dose Chemotherapy: A Combined Analysis of DFCI 05-055 and DFCI 09-134/TBCRC 012/ABCDE Clinical Trials. Clin Breast Cancer 2025; 25:e419-e430.e5. [PMID: 39890560 DOI: 10.1016/j.clbc.2024.12.018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2024] [Revised: 12/06/2024] [Accepted: 12/30/2024] [Indexed: 02/03/2025]
Abstract
BACKGROUND Breast cancer patients with residual disease after neoadjuvant therapy have increased risk of recurrence. Novel therapies to decrease this risk are urgently needed. METHODS Two clinical trials (05-055 and 09-134) offered adjuvant bevacizumab-based therapy to stage I-III breast cancer patients with residual disease after neoadjuvant chemotherapy. Study 05-055 evaluated four treatment regimens: bevacizumab (cohort A); bevacizumab with metronomic cyclophosphamide and methotrexate (CM) (cohort B); and bevacizumab with body surface area-dosed capecitabine (cohorts C); or flat-dosed capecitabine (cohort D). The primary endpoint was feasibility and tolerability. In 09-134, patients were randomized to bevacizumab with or without CM; the primary endpoint was recurrence-free survival (RFS). Study 09-134 closed prematurely for lack of accrual. A pooled survival analysis with participants from 05-055 and 09-134 was conducted. RESULTS Among 213 total patients (05-055, n = 163; 09-134, n = 50), the most common adverse events (AEs) of any grade were headache (49.3%) and fatigue (57.3%). Grade 3-4 AEs were highest in cohorts C (71.4%) and D (72.5%). The 36-month RFS was 58.0% with bevacizumab monotherapy, 62.3% with bevacizumab plus CM, and 72.7%-75.0% with bevacizumab plus capecitabine (depending on schedule). Treatment with capecitabine was independently associated with improved RFS in triple-negative breast cancer (TNBC) (HR: 0.47; 95% CI, 0.23-0.96). CONCLUSION This pooled analysis demonstrates that postneoadjuvant bevacizumab plus capecitabine may be associated with improved RFS, especially in TNBC. Each regimen carries moderate toxicity, and despite these treatments, patients with residual disease after neoadjuvant therapy still experience high rates of recurrence, indicating that new strategies are warranted. CLINICAL TRIAL REGISTRATION clinicaltrials.gov, NCT00121134 (DFCI Protocol Number: 05-055); NCT00925652 (DFCI Protocol Number: 09-134).
Collapse
Affiliation(s)
- Dario Trapani
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Qingchun Jin
- Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Kathy D Miller
- Indiana University Melvin and Bren Simon Comprehensive Cancer Center, Indianapolis, IN
| | - Hope S Rugo
- University of California at San Francisco, San Francisco, CA
| | | | | | - Yara Abdou
- University of North Carolina, Lineberger Comprehensive Cancer Institute, Chapel Hill, NC
| | | | | | - Jennifer Ligibel
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Wendy Chen
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Steven Come
- Harvard Medical School, Boston, MA; Beth Israel Deaconess Medical Center, Boston, MA
| | - Anju Nohria
- Harvard Medical School, Boston, MA; Division of Cardiovascular Medicine, Brigham and Women's Hospital, Boston, MA
| | - Nicole Ryabin
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA
| | - Nabihah Tayob
- Harvard Medical School, Boston, MA; Data Science, Dana-Farber Cancer Institute, Boston, MA
| | - Sara M Tolaney
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Harold J Burstein
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA
| | - Erica L Mayer
- Medical Oncology, Dana-Farber Cancer Institute, Boston, MA; Breast Oncology Program, Dana-Farber Brigham Cancer Center, Boston, MA; Harvard Medical School, Boston, MA.
| |
Collapse
|
2
|
Beretta GL, Cassinelli G, Rossi G, Azzariti A, Corbeau I, Tosi D, Perego P. Novel insights into taxane pharmacology: An update on drug resistance mechanisms, immunomodulation and drug delivery strategies. Drug Resist Updat 2025; 81:101223. [PMID: 40086175 DOI: 10.1016/j.drup.2025.101223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2025] [Revised: 02/24/2025] [Accepted: 02/27/2025] [Indexed: 03/16/2025]
Abstract
Taxanes are effective in several solid tumors. Paclitaxel, the main clinically available taxane, was approved in the early nineties, for the treatment of ovarian cancer and later on, together with the analogs docetaxel and cabazitaxel, for other malignancies. By interfering with microtubule function and impairing the separation of sister cells at mitosis, taxanes act as antimitotic agents, thereby counteracting the high proliferation rate of cancer cells. The action of taxanes goes beyond their antimitotic function because their main cellular targets, the microtubules, participate in multiple processes such as intracellular transport and cell shape maintenance. The clinical efficacy of taxanes is limited by the development of multiple resistance mechanisms. Among these, extracellular vesicles have emerged as new players. In addition, taxane metronomic schedules shows an impact on the tumor microenvironment reflected by antiangiogenic and immunomodulatory effects, an aspect of growing interest considering their inclusion in treatment regimens with immunotherapeutics. Preclinical studies have paved the bases for synergistic combinations of taxanes both with conventional and targeted agents. A variety of drug delivery strategies have provided novel opportunities to increase the drug activity. The ability of taxanes to orchestrate different cellular effects amenable to modulation suggests novel options to improve cures in lethal malignancies.
Collapse
Affiliation(s)
- Giovanni Luca Beretta
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giuliana Cassinelli
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| | - Giacomina Rossi
- Unit of Neurology 8, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan 20133, Italy.
| | - Amalia Azzariti
- Laboratory of Experimental Pharmacology, IRCCS Istituto Tumori Giovanni Paolo II, V.le O. Flacco, 65, Bari 70124, Italy.
| | - Iléana Corbeau
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Diego Tosi
- Early Clinical Trial Unit, Medical Oncology Department, Institut régional du Cancer de Montpellier, Inserm U1194, Montpellier University, 208, rue de Apothicaires, 34298 Montpellier, France; Fondazione Gianni Bonadonna, via Bertani, 14, Milan 20154, Italy.
| | - Paola Perego
- Molecular Pharmacology Unit, Department of Experimental Oncology, Fondazione IRCCS Istituto Nazionale dei Tumori, via Amadeo 42, Milan 20133, Italy.
| |
Collapse
|
3
|
Guarini C, Santoro AN, Melaccio A, Lanotte L, Gadaleta-Caldarola G, Giuliani F, Pinto A, Fedele P. Metronomic chemotherapy and breast cancer: a critical evaluation of its role in the new landscape of therapeutics. Expert Opin Drug Saf 2025; 24:9-16. [PMID: 39422380 DOI: 10.1080/14740338.2024.2419547] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Revised: 08/20/2024] [Accepted: 10/15/2024] [Indexed: 10/19/2024]
Abstract
INTRODUCTION Breast cancer (BC) remains a prevalent and challenging malignancy among women, with significant advancements in treatment strategies over the past decades. Traditional chemotherapy has been progressively supplemented by newer modalities, including Antibody-Drug Conjugates (ADCs), Immunotherapy (IO), and Targeted Therapies (TT). Despite these advancements, there remains a critical need for strategies that maintain efficacy while minimizing toxicity. AREAS COVERED This review delves into metronomic chemotherapy (MC), a novel approach involving the frequent administration of low-dose chemotherapy without prolonged breaks. We explore MC's impact across various breast cancer subtypes, such as Estrogen Receptor-Positive (ER+), HER2-Positive, and Triple-Negative Breast Cancer (TNBC). The literature reviewed highlights MC's mechanisms, including its anti-angiogenic, immunomodulatory, and antiproliferative effects, and its potential to improve treatment tolerability and address drug resistance. EXPERT OPINION MC represents a promising adjunct to existing therapies, particularly in advanced or resistant cases. Its unique dosing schedule could offer sustained antitumor activity with reduced toxicity, making it a viable option for long-term management. However, further research is warranted to establish optimal dosing regimens, identify predictive biomarkers, and delineate its role within combination treatment strategies. Clarifying these aspects could refine MC's application, potentially reshaping treatment paradigms and enhancing patient outcomes in breast cancer management.
Collapse
Affiliation(s)
- Chiara Guarini
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | - Anna Natalizia Santoro
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | | | - Laura Lanotte
- Medical Oncology Unit, 'Mons. Dimiccoli' Hospital, Barletta, Italy
| | | | | | - Antonello Pinto
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| | - Palma Fedele
- Medical Oncology Unit, 'Dario Camberlingo' Hospital, Francavilla Fontana, Brindisi, Italy
| |
Collapse
|
4
|
El-Ganainy SO, Shehata AM, El-Mallah A, Abdallah D, Mohy El-Din MM. Geraniol suppresses tumour growth and enhances chemosensitivity of 5-fluorouracil on breast carcinoma in mice: involvement of miR-21/PTEN signalling. J Pharm Pharmacol 2023:rgad060. [PMID: 37379815 DOI: 10.1093/jpp/rgad060] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2023] [Accepted: 06/14/2023] [Indexed: 06/30/2023]
Abstract
OBJECTIVES Breast cancer is the most diagnosed cancer in females worldwide. Phytochemicals are among the recent compelling approaches showing anticancer activity. Geraniol is a monoterpenoid showing anti-tumoral potential in cell lines. However, its exact mechanism in breast cancer has not been elucidated. In addition, the possible chemosenstizing effect of geraniol when combined with chemotherapeutic drugs in breast carcinoma has not been previously addressed. METHODS Therefore, the aim of the current work is to investigate the potential therapeutic as well as chemosensitizing effects of geraniol on breast carcinoma induced in mice through examination of tumour biomarkers and histopathology profile. KEY FINDINGS Results showed a prominent suppression of tumour growth following geraniol treatment. This was accompanied with miR-21 downregulation that subsequently upregulated PTEN and suppressed mTOR levels. Geraniol was also able to activate apoptosis and inhibit autophagy. Histopathological examination revealed high necrosis areas separating malignant cells in the geraniol-treated group. Combined geraniol and 5-fluorouracil treatment induced more than 82% inhibition of tumour rate, surpassing the effect of each drug alone. CONCLUSIONS It can be concluded that geraniol could represent a promising avenue for breast cancer treatment as well as a potential sensitizing agent when combined with chemotherapeutic drugs.
Collapse
Affiliation(s)
- Samar O El-Ganainy
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Asmaa M Shehata
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| | - Ahmed El-Mallah
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Alexandria University, Alexandria, Egypt
| | - Dina Abdallah
- Department of Pathology, Faculty of Medicine, Alexandria University, Alexandria, Egypt
| | - Mahmoud M Mohy El-Din
- Department of Pharmacology and Therapeutics, Faculty of Pharmacy, Pharos University in Alexandria, Alexandria, Egypt
| |
Collapse
|
5
|
Mundo AI, Muhammad A, Balza K, Nelson CE, Muldoon TJ. Longitudinal examination of perfusion and angiogenesis markers in primary colorectal tumors shows distinct signatures for metronomic and maximum-tolerated dose strategies. Neoplasia 2022; 32:100825. [PMID: 35901621 PMCID: PMC9326335 DOI: 10.1016/j.neo.2022.100825] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 07/11/2022] [Accepted: 07/11/2022] [Indexed: 11/24/2022]
Abstract
Metronomic chemotherapy (MET) has been developed to address the shortcomings of maximum-tolerated chemotherapy (MTD) in regard to toxicity and development of resistance mechanisms in the tumor. In colorectal cancer (CRC), MET is a promising novel strategy to treat locally advanced malignancies when used as neoadjuvant chemotherapy (NAC). However, so far there are no preclinical studies to assess the impact of MET NAC in CRC to assess the benefits and challenges of this approach. Here, we used a primary model of CRC (via azoxymethane) to analyze longitudinal changes in angiogenesis in primary tumors under MET and MTD NAC using a combination of diffuse reflectance spectroscopy and mRNA expression (via qPCR). Our results show that MET and MTD NAC lead to increased mean tissue oxygen saturation (8% and 5%, respectively) and oxyhemoglobin (15% and 10%) between weeks 2 and 5 of NAC, and that such increases are caused by distinct molecular signatures in the angiogenic program. Specifically, we find that in the MET group there is a sustained increase in Hif-1a, Aldoa, and Pgk1 expression, suggesting upregulated glycolysis, whereas MTD NAC causes a significant reduction in the expression of the aforementioned genes and of Vegf, leading to vascular remodeling in MTD-treated tumors. Taken together, this study demonstrates the ability of combined optical and molecular methodologies to provide a holistic picture of tumor response to therapy in CRC in a minimally invasive manner.
Collapse
Affiliation(s)
- Ariel I Mundo
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Abdussaboor Muhammad
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Kerlin Balza
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Christopher E Nelson
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA
| | - Timothy J Muldoon
- Department of Biomedical Engineering, University of Arkansas, Fayetteville, AR, USA.
| |
Collapse
|
6
|
Moradi Kashkooli F, Soltani M. Evaluation of solid tumor response to sequential treatment cycles via a new computational hybrid approach. Sci Rep 2021; 11:21475. [PMID: 34728726 PMCID: PMC8563754 DOI: 10.1038/s41598-021-00989-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/18/2021] [Accepted: 10/21/2021] [Indexed: 12/22/2022] Open
Abstract
The development of an in silico approach that evaluates and identifies appropriate treatment protocols for individuals could help grow personalized treatment and increase cancer patient lifespans. With this motivation, the present study introduces a novel approach for sequential treatment cycles based on simultaneously examining drug delivery, tumor growth, and chemotherapy efficacy. This model incorporates the physical conditions of tumor geometry, including tumor, capillary network, and normal tissue assuming real circumstances, as well as the intravascular and interstitial fluid flow, drug concentration, chemotherapy efficacy, and tumor recurrence. Three treatment approaches-maximum tolerated dose (MTD), metronomic chemotherapy (MC), and chemo-switching (CS)-as well as different chemotherapy schedules are investigated on a real tumor geometry extracted from image. Additionally, a sensitivity analysis of effective parameters of drug is carried out to evaluate the potential of using different other drugs in cancer treatment. The main findings are: (i) CS, MC, and MTD have the best performance in reducing tumor cells, respectively; (ii) multiple doses raise the efficacy of drugs that have slower clearance, higher diffusivity, and lower to medium binding affinities; (iii) the suggested approach to eradicating tumors is to reduce their cells to a predetermined rate through chemotherapy and then apply adjunct therapy.
Collapse
Affiliation(s)
| | - M Soltani
- Department of Mechanical Engineering, K. N. Toosi University of Technology, Tehran, Iran.
- Department of Electrical and Computer Engineering, University of Waterloo, Waterloo, ON, Canada.
- Cancer Biology Research Center, Cancer Institute of Iran, Tehran University of Medical Sciences, Tehran, Iran.
- Advanced Bioengineering Initiative Center, Computational Medicine Center, K. N. Toosi University of Technology, Tehran, Iran.
| |
Collapse
|
7
|
Hsu MY, Hsieh CH, Huang YT, Chu SY, Chen CM, Lee WJ, Liu SJ. Enhanced Paclitaxel Efficacy to Suppress Triple-Negative Breast Cancer Progression Using Metronomic Chemotherapy with a Controlled Release System of Electrospun Poly-d-l-Lactide-Co-Glycolide (PLGA) Nanofibers. Cancers (Basel) 2021; 13:cancers13133350. [PMID: 34283075 PMCID: PMC8268060 DOI: 10.3390/cancers13133350] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 12/24/2022] Open
Abstract
Simple Summary Treatment of metastatic triple-negative breast cancer (TNBC) relies on chemotherapy. To improve the efficacy of chemotherapy and avoid systemic toxicity, metronomic chemotherapy using continuous administration of low-dose chemotherapy could be a solution. The paclitaxel-loaded PLGA nanofibers allow for continuous and prolonged drug release, which is compatible with the concept of metronomic chemotherapy. The animal study revealed that the strategy successfully inhibited the growth of the primary tumor and distant metastasis without sarcopenia. These data offer new insights into the role of drug-loaded nanofibers in the treatment of metastatic TNBC. Abstract Triple-negative breast cancer (TNBC) is highly aggressive and responds poorly to conventional chemotherapy. The challenge of TNBC therapy is to maximize the efficacies of conventional chemotherapeutic agents and reduce their toxicities. Metronomic chemotherapy using continuous low-dose chemotherapy has been proposed as a new treatment option, but this approach is limited by the selection of drugs. To improve antitumor therapeutic effects, we developed electrospun paclitaxel-loaded poly-d-l-lactide-co-glycolide (PLGA) nanofibers as a topical implantable delivery device for controlled drug release and site-specific treatment. The subcutaneously implanted paclitaxel-loaded nanofibrous membrane in mice was compatible with the concept of metronomic chemotherapy; it significantly enhanced antitumor activity, inhibited local tumor growth, constrained distant metastasis, and prolonged survival compared with intraperitoneal paclitaxel injection. Furthermore, under paclitaxel-loaded nanofiber treatment, systemic toxicity was low with a persistent increase in lean body weight in mice; in contrast, body weight decreased in other groups. The paclitaxel-loaded nanofibrous membranes provided sustained drug release and site-specific treatment by directly targeting and changing the tumor microenvironment, resulting in low systemic toxicity and a significant improvement in the therapeutic effect and safety compared with conventional chemotherapy. Thus, metronomic chemotherapy with paclitaxel-loaded nanofibrous membranes offers a promising strategy for the treatment of TNBC.
Collapse
Affiliation(s)
- Ming-Yi Hsu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Cheng-Hsien Hsieh
- Department of Emergency Medicine, En-Chu-Kong Hospital, New Taipei City 23741, Taiwan;
- Graduate Institute of Clinical Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
| | - Yu-Ting Huang
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
- Department of Diagnostic Radiology, Chang Gung Memorial Hospital, Keelung 20401, Taiwan
| | - Sung-Yu Chu
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
| | - Chien-Ming Chen
- Department of Medical Imaging and Intervention, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan; (M.-Y.H.); (Y.-T.H.); (S.-Y.C.); (C.-M.C.)
| | - Wei-Jiunn Lee
- Department of Medical Education and Research, Wan Fang Hospital, Taipei Medical University, Taipei 11695, Taiwan
- Department of Urology, School of Medicine, College of Medicine, Taipei Medical University, Taipei 11031, Taiwan
- Correspondence: (W.-J.L.); (S.-J.L.); Tel.: +886-2-2930-7930 (ext. 2551/2547) (W.-J.L.); +886-3-2118166 (S.-J.L.)
| | - Shih-Jung Liu
- Department of Mechanical Engineering, Chang Gung University, Taoyuan 33302, Taiwan
- Department of Orthopedic Surgery, Bone and Joint Research Center, Chang Gung Memorial Hospital, Linkou, Taoyuan 33305, Taiwan
- Correspondence: (W.-J.L.); (S.-J.L.); Tel.: +886-2-2930-7930 (ext. 2551/2547) (W.-J.L.); +886-3-2118166 (S.-J.L.)
| |
Collapse
|
8
|
Eribulin-based neoadjuvant chemotherapy for triple-negative breast cancer patients stratified by homologous recombination deficiency status: a multicenter randomized phase II clinical trial. Breast Cancer Res Treat 2021; 188:117-131. [PMID: 33763789 PMCID: PMC8233289 DOI: 10.1007/s10549-021-06184-w] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Accepted: 03/05/2021] [Indexed: 12/16/2022]
Abstract
Purpose To investigate clinical usefulness of eribulin-based neoadjuvant chemotherapy in triple-negative breast cancer (TNBC) patients. Methods Patients in group A (aged < 65 years with homologous recombination deficiency, HRD, score ≥ 42, or those at any age with germline BRCA mutation, gBRCAm) were randomized to 4 cycles of paclitaxel plus carboplatin (group A1) or eribulin plus carboplatin (group A2), followed by 4 cycles of anthracycline. Patients in group B (aged < 65 years with HRD score < 42, or aged ≥ 65 years without gBRCAm) were randomized to 6 cycles of eribulin plus cyclophosphamide (group B1) or eribulin plus capecitabine (group B2); non-responders to the first 4 cycles of the eribulin-based therapy received anthracycline. Primary endpoint was pCR rate (ypT0-is, ypN0; centrally confirmed). Main secondary endpoint was safety. Results The full analysis set comprised 99 patients. The pCR rate was 65% (90% CI, 46%–81%) and 45% (27%–65%) in groups A1 and A2, respectively, and 19% (8%–35%) in both groups B1 and B2. No major difference was seen in secondary endpoints, but peripheral neuropathy incidence was 74% in group A1, whereas it was 32%, 22%, and 26% in groups A2, B1, and B2, respectively. Conclusions In patients aged < 65 years with high HRD score or gBRCAm, weekly paclitaxel plus carboplatin and eribulin plus carboplatin followed by anthracycline resulted in a pCR rate of > 60% and > 40%, respectively, suggesting potential usefulness of patient stratification using HRD; pCR tended to be low in patients with HRD-negative tumors. Neurotoxicity was less frequent with the eribulin-based regimen. Trial registration:The study has been registered with the University Hospital Medical Information Network Clinical Trials Registry (http://www.umin.ac.jp/ctr/index-j.htm) with unique trial number UMIN000023162. The Japan Breast Cancer Research Group trial number is JBCRG-22. Supplementary Information The online version contains supplementary material available at 10.1007/s10549-021-06184-w.
Collapse
|
9
|
Wichmann V, Eigeliene N, Saarenheimo J, Jekunen A. Recent clinical evidence on metronomic dosing in controlled clinical trials: a systematic literature review. Acta Oncol 2020; 59:775-785. [PMID: 32275176 DOI: 10.1080/0284186x.2020.1744719] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Introduction: Metronomic dosing is used to give continuous chemotherapy at low doses. The low doses have minimal side effects and may enable cancer treatment to be remodeled toward the management of chronic disease.Methods: We searched PubMed database to obtain relevant clinical trials studying metronomic chemotherapy (MCT). Our main focus was to find controlled phase II and phase III trials.Results: This systematic review summarizes the results of 91 clinical reports focusing on randomized phase II and phase III clinical studies between 2012 and 2018. During that time, nine randomized phase II and 10 randomized phase III studies were published. In the majority of the studies, MCT was well tolerated, and major side effects were rarely seen. Altogether, 4 phase III studies and 4 randomized phase II studies presented positive results and some clinical benefit.Discussion: Most of the studies did not show significantly improved overall survival or progression-free survival. Typically, the metronomic dosing was explored in a maintenance setup and was added to other agents given within normal high doses, whereas no trial was performed challenging metronomic dosing and best supportive care in later treatment lines. Therefore, there is no definite evidence on the efficacy of single metronomic dosing and firm evidence of metronomic dosing is still missing. There is a need for further confirmation of the usefulness of this approach in clinical practice.
Collapse
Affiliation(s)
- Viktor Wichmann
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
| | | | - Jatta Saarenheimo
- Department of Pathology, Vasa Central Hospital, Vaasa, Finland
- Department of Biological and Environmental Science, Nano Science Center, University of Jyväskylä, Jyväskylä, Finland
| | - Antti Jekunen
- Department of Oncology, Vasa Central Hospital, Vaasa, Finland
- Department of Oncology and Radiotherapy, University of Turku, Turku, Finland
| |
Collapse
|
10
|
Lu Q, Lee K, Xu F, Xia W, Zheng Q, Hong R, Jiang K, Zhai Q, Li Y, Shi Y, Yuan Z, Wang S. Metronomic chemotherapy of cyclophosphamide plus methotrexate for advanced breast cancer: Real-world data analyses and experience of one center. Cancer Commun (Lond) 2020; 40:222-233. [PMID: 32390331 PMCID: PMC7238669 DOI: 10.1002/cac2.12029] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2019] [Revised: 01/02/2020] [Accepted: 04/19/2020] [Indexed: 12/16/2022] Open
Abstract
Background Real‐world data of the CM regimen [cyclophosphamide (CTX) plus methotrexate (MTX)] in metronomic pattern for advanced breast cancer is limited to small‐sample or retrospective studies. This study was aimed to determine the effectiveness and safety of CM regimen in treating advanced breast cancer and to identify which patients are most likely to benefit from metronomic CM regimen. Methods Patients with advanced breast cancer who received the metronomic CM regimen at least once between January 2009 and February 2019 in Sun Yat‐sen University Cancer Center were included. Clinicopathological characteristics were collected. Overall survival (OS) and progression‐free survival (PFS) were assessed using Kaplan‐Meier estimates. Characteristics between patients with PFS < 6 months and ≥6 months were compared using the Chi‐square test. Univariate and multivariate Cox regression model was used to estimate the prognostic factors for PFS and OS. Results A total of 186 patients were included. The median age and follow‐up were 49 years and 13.3 months, respectively. Over 50% of the patients were estrogen receptor/progesterone receptor‐positive, and 60.8% had been heavily treated (≥3 lines). The objective response rate was 3.8%, the disease control rate at 12 weeks was 41.4%, and the clinical benefit rate at 24 weeks was 31.2% (58/186). The median PFS was 4.0 months [95% confidence interval (CI): 3.6‐4.7 months], the median duration of clinical benefit was 9.5 months (95% CI: 8.2‐10.8 months), and the median OS was 26.8 months (95% CI: 20.9‐37.7 months). Multivariate analysis for PFS revealed the CM regimen as maintenance therapy and no liver metastasis as favorable prognostic factors. Furthermore, patients without liver metastasis were more likely to have a PFS over 6 months than those with liver involvement (P = 0.022). Liver, lymph node, and brain metastases were unfavorable prognostic factors for OS. The CM regimen was well‐tolerated without newly reported adverse events. Conclusions The CM regimen was effective in selected patients. In clinical practice, it would be better used as maintenance therapy and in patients without liver metastasis. Further follow‐up investigation should be performed to examine its effect when used in combination with other treatments and determine predictive biomarkers.
Collapse
Affiliation(s)
- Qianyi Lu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Kaping Lee
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Fei Xu
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Wen Xia
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qiufan Zheng
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Ruoxi Hong
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Kuikui Jiang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Qinglian Zhai
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yuan Li
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Yanxia Shi
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Zhongyu Yuan
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| | - Shusen Wang
- Department of Medical Oncology, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Sun Yat-sen University Cancer Center, Guangzhou, Guangdong, 510060, P. R. China
| |
Collapse
|
11
|
Tank A, Peterson HM, Pera V, Tabassum S, Leproux A, O'Sullivan T, Jones E, Cabral H, Ko N, Mehta RS, Tromberg BJ, Roblyer D. Diffuse optical spectroscopic imaging reveals distinct early breast tumor hemodynamic responses to metronomic and maximum tolerated dose regimens. Breast Cancer Res 2020; 22:29. [PMID: 32169100 PMCID: PMC7071774 DOI: 10.1186/s13058-020-01262-1] [Citation(s) in RCA: 30] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2019] [Accepted: 02/11/2020] [Indexed: 12/13/2022] Open
Abstract
Background Breast cancer patients with early-stage disease are increasingly administered neoadjuvant chemotherapy (NAC) to downstage their tumors prior to surgery. In this setting, approximately 31% of patients fail to respond to therapy. This demonstrates the need for techniques capable of providing personalized feedback about treatment response at the earliest stages of therapy to identify patients likely to benefit from changing treatment. Diffuse optical spectroscopic imaging (DOSI) has emerged as a promising functional imaging technique for NAC monitoring. DOSI uses non-ionizing near-infrared light to provide non-invasive measures of absolute concentrations of tissue chromophores such as oxyhemoglobin. In 2011, we reported a new DOSI prognostic marker, oxyhemoglobin flare: a transient increase in oxyhemoglobin capable of discriminating NAC responders within the first day of treatment. In this follow-up study, DOSI was used to confirm the presence of the flare as well as to investigate whether DOSI markers of NAC response are regimen dependent. Methods This dual-center study examined 54 breast tumors receiving NAC measured with DOSI before therapy and the first week following chemotherapy administration. Patients were treated with either a standard of care maximum tolerated dose (MTD) regimen or an investigational metronomic (MET) regimen. Changes in tumor chromophores were tracked throughout the first week and compared to pathologic response and treatment regimen at specific days utilizing generalized estimating equations (GEE). Results Within patients receiving MTD therapy, the oxyhemoglobin flare was confirmed as a prognostic DOSI marker for response appearing as soon as day 1 with post hoc GEE analysis demonstrating a difference of 48.77% between responders and non-responders (p < 0.0001). Flare was not observed in patients receiving MET therapy. Within all responding patients, the specific treatment was a significant predictor of day 1 changes in oxyhemoglobin, showing a difference of 39.45% (p = 0.0010) between patients receiving MTD and MET regimens. Conclusions DOSI optical biomarkers are differentially sensitive to MTD and MET regimens at early timepoints suggesting the specific treatment regimen should be considered in future DOSI studies. Additionally, DOSI may help to identify regimen-specific responses in a more personalized manner, potentially providing critical feedback necessary to implement adaptive changes to the treatment strategy.
Collapse
Affiliation(s)
- Anup Tank
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Hannah M Peterson
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Vivian Pera
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA
| | - Syeda Tabassum
- Department of Electrical Engineering, Boston University, Boston, MA, USA
| | - Anais Leproux
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Thomas O'Sullivan
- Department of Electrical Engineering, University of Notre Dame, Notre Dame, IN, USA
| | - Eric Jones
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Howard Cabral
- Department of Biostatistics, Boston University, Boston, MA, USA
| | - Naomi Ko
- Department of Hematology and Medical Oncology, Boston Medical Center, Boston, MA, USA
| | - Rita S Mehta
- Department of Medicine, University of California Irvine, Irvine, California, USA
| | - Bruce J Tromberg
- Beckman Laser Institute and Medical Clinic, University of California, Irvine, Irvine, California, USA
| | - Darren Roblyer
- Department of Biomedical Engineering, Boston University, 44 Cummington Mall, Boston, MA, 02215, USA.
| |
Collapse
|
12
|
Mundo AI, Greening GJ, Fahr MJ, Hale LN, Bullard EA, Rajaram N, Muldoon TJ. Diffuse reflectance spectroscopy to monitor murine colorectal tumor progression and therapeutic response. JOURNAL OF BIOMEDICAL OPTICS 2020; 25:1-16. [PMID: 32141266 PMCID: PMC7058691 DOI: 10.1117/1.jbo.25.3.035002] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Accepted: 02/17/2020] [Indexed: 05/08/2023]
Abstract
SIGNIFICANCE Many studies in colorectal cancer (CRC) use murine ectopic tumor models to determine response to treatment. However, these models do not replicate the tumor microenvironment of CRC. Physiological information of treatment response derived via diffuse reflectance spectroscopy (DRS) from murine primary CRC tumors provide a better understanding for the development of new drugs and dosing strategies in CRC. AIM Tumor response to chemotherapy in a primary CRC model was quantified via DRS to extract total hemoglobin content (tHb), oxygen saturation (StO2), oxyhemoglobin, and deoxyhemoglobin in tissue. APPROACH A multimodal DRS and imaging probe (0.78 mm outside diameter) was designed and validated to acquire diffuse spectra longitudinally-via endoscopic guidance-in developing colon tumors under 5-fluoruracil (5-FU) maximum-tolerated (MTD) and metronomic regimens. A filtering algorithm was developed to compensate for positional uncertainty in DRS measurements Results: A maximum increase in StO2 was observed in both MTD and metronomic chemotherapy-treated murine primary CRC tumors at week 4 of neoadjuvant chemotherapy, with 21 ± 6 % and 17 ± 6 % fold changes, respectively. No significant changes were observed in tHb. CONCLUSION Our study demonstrates the feasibility of DRS to quantify response to treatment in primary CRC models.
Collapse
Affiliation(s)
- Ariel I. Mundo
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Gage. J. Greening
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Michael J. Fahr
- University of Arkansas, Department of Computer Science, Fayetteville, Arkansas, United States
| | - Lawrence N. Hale
- University of Arkansas, Department of Chemistry and Biochemistry, Fayetteville, Arkansas, United States
| | - Elizabeth A. Bullard
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Narasimhan Rajaram
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
| | - Timothy J. Muldoon
- University of Arkansas, Department of Biomedical Engineering, Fayetteville, Arkansas, United States
- Address all correspondence to Timothy J. Muldoon, E-mail:
| |
Collapse
|
13
|
Langkjer ST, Kenholm J, Jensen JD, Wedervang K, Brixen AT, Grunnet M, Stenbygaard L, Gilje B, Danø H, Glavicic V, Jacobsen EH, Brems-Eskildsen AS, Kruse HL, Dongsgaard T, Neimann J, Geisler J. The NAME trial: a direct comparison of classical oral Navelbine versus Metronomic Navelbine in metastatic breast cancer. Future Oncol 2019; 15:2561-2569. [DOI: 10.2217/fon-2019-0124] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
Abstract
Chemotherapy for metastatic breast cancer (MBC) is in general given in cycles of maximum tolerated doses to potentially maximize the therapeutic outcome. However, when compared with targeted therapies for MBC, conventional and dose intensified chemotherapy has caused only modest survival benefits during the recent decades, often compromising the quality of life considerably. Navelbine is an antineoplastic agent that has shown efficacy in the treatment of a variety of cancer types, including breast cancer. Early clinical trials involving both breast cancer and lung cancer patients suggest that metronomic dosing of Navelbine might be at least as effective as classical administration (once weekly, etc.). The NAME trial compares these two strategies of Navelbine administration in MBC patients.
Collapse
Affiliation(s)
- Sven Tyge Langkjer
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus C, Denmark
| | - Julia Kenholm
- Department of Oncology, Regionshospitalet Herning, 7400 Herning, Denmark
| | | | - Kim Wedervang
- Department of Oncology, Sønderborg Sygehus, 6400 Sønderborg, Denmark
| | | | - Mie Grunnet
- Department of Oncology, Rigshospitalet, 2100 Copenhagen, Denmark
| | - Lars Stenbygaard
- Department of Oncology, Aalborg Sygehus Syd, 9100 Aalborg, Denmark
| | - Bjørnar Gilje
- Department of Hematology & Oncology, Stavanger University Hospital, 4011 Stavanger, Norway
| | - Hella Danø
- Department of Oncology, Hilleroed Hospital, 3400 Hilleroed, Denmark
| | - Vesna Glavicic
- Department of Oncology, Naestved, 4700 Naestved, Denmark
| | | | | | - Helle Lemvig Kruse
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus C, Denmark
| | - Trine Dongsgaard
- Department of Oncology, Regionshospitalet Herning, 7400 Herning, Denmark
| | - Jeppe Neimann
- Department of Oncology, Aarhus University Hospital, 8200 Aarhus C, Denmark
| | - Jürgen Geisler
- Department of Oncology, Akershus University Hospital, 1478 Lørenskog, Norway
- Institute of Clinical Medicine, University of Oslo, 0372 Oslo, Norway
| |
Collapse
|
14
|
Metronomic capecitabine combined with aromatase inhibitors for new chemoendocrine treatment of advanced breast cancer: a phase II clinical trial. Breast Cancer Res Treat 2018; 173:407-415. [DOI: 10.1007/s10549-018-5024-3] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2018] [Accepted: 10/20/2018] [Indexed: 12/16/2022]
|
15
|
Park JH, Ahn JH, Kim SB. How shall we treat early triple-negative breast cancer (TNBC): from the current standard to upcoming immuno-molecular strategies. ESMO Open 2018; 3:e000357. [PMID: 29765774 PMCID: PMC5950702 DOI: 10.1136/esmoopen-2018-000357] [Citation(s) in RCA: 108] [Impact Index Per Article: 15.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
Triple-negative breast cancer (TNBC) is a long-lasting orphan disease in terms of little therapeutic progress during the past several decades and still the standard of care remains chemotherapy. Experimental discovery of molecular signatures including the ‘BRCAness’ highlighted the innate heterogeneity of TNBC, generating the diversity of TNBC phenotypes. As it contributes to enhancing genomic instability, it has widened the therapeutic spectrum of TNBC. In particular, unusual sensitivity to DNA damaging agents was denoted in patients with BRCA deficiency, suggesting therapeutic benefit from platinum and poly(ADP-ribose) polymerase inhibitors. However, regardless of enriched chemosensitivity and immunogenicity, majority of patients with TNBC still suffer from dismal clinical outcomes including early relapse and metastatic spread. Therefore, efforts into more precise and personalised treatment are critical at this point. Accordingly, the advance of multiomics has revealed novel actionable targets including PI3K-Akt-mTOR and epidermal growth factor receptor signalling pathways, which might actively participate in modulating the chemosensitivity and immune system. Also, TNBC has long been considered a potential protagonist of immunotherapy in breast cancer, supported by abundant tumour-infiltrating lymphocytes and heterogeneous tumour microenvironment. Despite that, earlier studies showed somewhat unsatisfactory results of monotherapy with immune-checkpoint inhibitors, consistently durable responses in responders were noteworthy. Based on these results, further combinatorial trials either with other chemotherapy or targeted agents are underway. Incorporating immune-molecular targets into combination as well as refining the standard chemotherapy might be the key to unlock the future of TNBC. In this review, we share the current and upcoming treatment options of TNBC in the framework of scientific and clinical data, especially focusing on early stage of TNBC.
Collapse
Affiliation(s)
- Ji Hyun Park
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea; Department of Hemato-Oncology, Konkuk Medical Center, University of Konkuk College of Medicine, Gwangjin-gu, Seoul, Korea
| | - Jin-Hee Ahn
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea
| | - Sung-Bae Kim
- Department of Oncology, Asan Medical Center, University of Ulsan College of Medicine, Songpa-gu, Seoul, Korea.
| |
Collapse
|
16
|
Rabanal C, Ruiz R, Neciosup S, Gomez H. Metronomic chemotherapy for non-metastatic triple negative breast cancer: Selection is the key. World J Clin Oncol 2017; 8:437-446. [PMID: 29291168 PMCID: PMC5740099 DOI: 10.5306/wjco.v8.i6.437] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2017] [Revised: 08/11/2017] [Accepted: 09/16/2017] [Indexed: 02/06/2023] Open
Abstract
Triple negative breast cancer (TNBC) accounts for 15%-20% of all breast cancer, and is still defined as what it is not. Currently, TNBC is the only type of breast cancer for which there are no approved targeted therapies and maximum tolerated dose chemotherapy with taxanes and anthracycline-containing regimens is still the standard of care in both the neoadjuvant and adjuvant settings. In the last years, metronomic chemotherapy (MC) is being explored as an alternative to improve outcomes in TNBC. In the neoadjuvant setting, purely metronomic and hybrid approaches have been developed with the objective of increasing complete pathologic response (pCR) and prolonging disease free survival. These regimens proved to be very effective achieving pCR rates between 47%-60%, but at the cost of great toxicity. In the adjuvant setting, MC is used to intensify adjuvant chemotherapy and, more promisingly, as maintenance therapy for high-risk patients, especially those with no pCR after neoadjuvant chemotherapy. Considering the dismal prognosis of TNBC, any strategy that potentially improves outcomes, specially being the oral agents broadly available and inexpensive, should be considered and certainly warrants further exploration. Finally, the benefit of MC needs to be validated in properly designed clinical trials were the selection of the population is the key.
Collapse
Affiliation(s)
- Connie Rabanal
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Rossana Ruiz
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Silvia Neciosup
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| | - Henry Gomez
- Department of Medical Oncology, Instituto Nacional de Enfermedades Neoplasicas, Lima 15038, Peru
| |
Collapse
|
17
|
Metronomic Chemotherapy in Triple-Negative Metastatic Breast Cancer: The Future Is Now? Int J Breast Cancer 2017; 2017:1683060. [PMID: 29333297 PMCID: PMC5733132 DOI: 10.1155/2017/1683060] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2017] [Accepted: 11/08/2017] [Indexed: 12/18/2022] Open
Abstract
Triple-negative breast cancer (TNBC) shows a very bad prognosis, even in early stages of disease. Metronomic chemotherapy refers to the minimum biologically effective dose of a chemotherapy agent given as a continuous dosing regimen with no prolonged drug-free breaks that leads to antitumor activity. In the present article, we review preclinical and clinical data of metronomic administration of chemotherapy agents with or without biological agents in TNBC cell lines and patients, contextually reporting data from the VICTOR-2 study in the subgroup of patients with TNBC, in order to stimulate new ideas for the design of clinical trials in this subset of patients.
Collapse
|
18
|
Zhang RX, Zhang T, Chen K, Cheng J, Lai P, Rauth AM, Pang KS, Wu XY. Sample Extraction and Simultaneous Chromatographic Quantitation of Doxorubicin and Mitomycin C Following Drug Combination Delivery in Nanoparticles to Tumor-bearing Mice. J Vis Exp 2017. [PMID: 29053672 DOI: 10.3791/56159] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Combination chemotherapy is frequently used in the clinic for cancer treatment; however, associated adverse effects to normal tissue may limit its therapeutic benefit. Nanoparticle-based drug combination has been shown to mitigate the problems encountered by free drug combination therapy. Our previous studies have shown that the combination of two anticancer drugs, doxorubicin (DOX) and mitomycin C (MMC), produced a synergistic effect against both murine and human breast cancer cells in vitro. DOX and MMC co-loaded polymer-lipid hybrid nanoparticles (DMPLN) bypassed various efflux transporter pumps that confer multidrug resistance and demonstrated enhanced efficacy in breast tumor models. Compared to conventional solution forms, such superior efficacy of DMPLN was attributed to the synchronized pharmacokinetics of DOX and MMC and increased intracellular drug bioavailability within tumor cells enabled by the nanocarrier PLN. To evaluate the pharmacokinetics and bio-distribution of co-administered DOX and MMC in both free solution and nanoparticle forms, a simple and efficient multi-drug analysis method using reverse-phase high performance liquid chromatography (HPLC) was developed. In contrast to previously reported methods that analyzed DOX or MMC individually in the plasma, this new HPLC method is able to simultaneously quantitate DOX, MMC and a major cardio-toxic DOX metabolite, doxorubicinol (DOXol), in various biological matrices (e.g., whole blood, breast tumor, and heart). A dual fluorescent and ultraviolet absorbent probe 4-methylumbelliferone (4-MU) was used as an internal standard (I.S.) for one-step detection of multiple drug analysis with different detection wavelengths. This method was successfully applied to determine the concentrations of DOX and MMC delivered by both nanoparticle and solution approaches in whole blood and various tissues in an orthotopic breast tumor murine model. The analytical method presented is a useful tool for pre-clinical analysis of nanoparticle-based delivery of drug combinations.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Tian Zhang
- Department of Pharmaceutical Sciences, University of Toronto
| | - King Chen
- Department of Pharmaceutical Sciences, University of Toronto
| | - Ji Cheng
- Department of Pharmaceutical Sciences, University of Toronto
| | - Paris Lai
- Department of Pharmaceutical Sciences, University of Toronto
| | - Andrew M Rauth
- Departments of Medical Biophysics and Radiation Oncology, University of Toronto, Ontario Cancer Institute, University Health Network
| | - K Sandy Pang
- Department of Pharmaceutical Sciences, University of Toronto
| | - Xiao Yu Wu
- Department of Pharmaceutical Sciences, University of Toronto;
| |
Collapse
|
19
|
Chen G, Guo Z, Liu M, Yao G, Dong J, Guo J, Ye C. Clinical Value of Capecitabine-Based Combination Adjuvant Chemotherapy in Early Breast Cancer: A Meta-Analysis of Randomized Controlled Trials. Oncol Res 2017; 25:1567-1578. [PMID: 28337954 PMCID: PMC7841120 DOI: 10.3727/096504017x14897173032733] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Capecitabine has consistently demonstrated high efficacy and acceptable tolerability in salvage chemotherapy for advanced breast cancer. However, there remains no consensus on its role in adjuvant chemotherapy for early breast cancer (EBC). To estimate the value of capecitabine-based combination adjuvant treatment in EBC, eight randomized controlled trials with 14,072 participants were analyzed. The efficacy and safety outcomes included disease-free survival (DFS), overall survival (OS), relapse, breast cancer-specific survival (BCSS), and grades 3-5 adverse events. Capecitabine-based combination adjuvant chemotherapy demonstrated a 16% increase in BCSS (HR = 0.84, 95% CI = 0.71-0.98, p = 0.03) in the overall analysis and a 22% improvement in DFS (HR = 0.78, 95% CI = 0.64-0.96, p = 0.02) in the hormone receptor-negative (HR-) subgroup. However, there were no significant differences in DFS (HR = 0.96, 95% CI = 0.89-1.05, p = 0.38), OS (HR = 0.91, 95% CI = 0.82-1.00, p = 0.06), or relapse between capecitabine-based and capecitabine-free combination adjuvant chemotherapy. Analogous results were observed in the subgroup analyses of HR+, HER2-, HER2+, and triple-negative EBC. Regarding safety, reduced myelosuppression and hand-foot syndrome development were observed in capecitabine-treated patients. Capecitabine-based combination adjuvant chemotherapy might provide some BCSS benefit compared with capecitabine-free regimens in EBC, but the absolute survival gain is small, and the survival benefit appears to be restricted to patients with HR- EBC, which may indicate a target population for capecitabine-based combination adjuvant chemotherapy.
Collapse
|
20
|
Hida K, Kikuchi H, Maishi N, Hida Y. ATP-binding cassette transporters in tumor endothelial cells and resistance to metronomic chemotherapy. Cancer Lett 2017; 400:305-310. [PMID: 28216371 DOI: 10.1016/j.canlet.2017.02.006] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 02/05/2017] [Accepted: 02/07/2017] [Indexed: 01/05/2023]
Abstract
Drug resistance is a major problem in anticancer therapy. ATP-binding cassette (ABC) transporters have a role in the multidrug resistance. A new regimen of chemotherapy has been proposed, called "metronomic chemotherapy". Metronomic chemotherapy is the frequent, regular administration of drug doses designed to maintain low, but active, concentrations of chemotherapeutic drugs over prolonged periods of time, without causing serious toxicities. Metronomic chemotherapy regimens were developed to optimize the antitumor efficacy of agents that target the tumor vasculature instead of tumor cells, and to reduce toxicity of antineoplastic drugs [1]. Nevertheless, recent studies revealed that ABC transporters are expressed at a higher level in the endothelium in the tumor. To avoid resistance to metronomic anti-angiogenic chemotherapy, ABC transporter inhibition of tumor endothelial cells may be a promising strategy. In this mini-review, we discuss the possible mechanism of resistance to metronomic chemotherapy from the viewpoint of tumor endothelial cell biology, focusing on ABC transporters.
Collapse
Affiliation(s)
- Kyoko Hida
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan.
| | - Hiroshi Kikuchi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan; Department of Renal and Genitourinary Surgery, Hokkaido University Graduate School of Medicine, Sapporo 060-8638, Japan
| | - Nako Maishi
- Vascular Biology, Frontier Research Unit, Institute for Genetic Medicine, Hokkaido University, Sapporo 060-0815, Japan
| | - Yasuhiro Hida
- Department of Cardiovascular and Thoracic Surgery, Graduate School of Medicine, Hokkaido University, Sapporo, Hokkaido, Japan
| |
Collapse
|
21
|
Munzone E, Colleoni M. Metronomics in the neoadjuvant and adjuvant treatment of breast cancer. Cancer Lett 2017; 400:259-266. [PMID: 28093280 DOI: 10.1016/j.canlet.2016.12.041] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2016] [Revised: 12/22/2016] [Accepted: 12/24/2016] [Indexed: 12/23/2022]
Abstract
The concept of metronomic chemotherapy (MC) has evolved from a descriptive preclinical phenomenon encompassing inhibition of angiogenesis to a clinically validated treatment concept involving multiple potential mechanisms of action. Clinicians are progressively more incline to consider MC as a component of mainstream medical oncology practice in advanced breast cancer. However, more recently MC has been tested even in the adjuvant/neoadjuvant setting, taking the opportunity to obtain tumor specimens and blood samples, in order to identify tumor-specific or patient-specific biomarkers for personalizing treatments. In addition, the antiangiogenic and pro-immune nature of metronomic chemotherapy made triple negative breast cancer (TNBC) a good candidate for exploring low-dose maintenance treatment in the adjuvant setting or in combination with immunomodulatory drugs. The potential development of MC in breast cancer pass through the research to identify biomarkers and individual tumor characteristics that can better address the use of this treatment strategy in the future. Finally, the subjective attitude of patients represents one of the major factors that influence the choice and acceptance of a therapeutic program. Personal preference and considerations about quality of life should guide the treatment choice eventually prioritizing the use of MC. Nevertheless, more robust data from randomized phase III trials are needed in the future, in order to make clinicians more confident in using metronomic strategies.
Collapse
Affiliation(s)
- Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, Milan, Italy
| | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, Milan, Italy.
| |
Collapse
|
22
|
Mo T, Yue S, Tian H, Lin H, Zhang G, Zhang Z. Effect of Fu-Zheng-Xiao-Liu Granules on Expression of Human Epidermal Growth Factor Receptor 2 (HER-2) and Proliferation and Apoptosis of Breast Cancer Cell Line SKBR-3. Med Sci Monit 2016; 22:5068-5073. [PMID: 28008166 PMCID: PMC5207018 DOI: 10.12659/msm.898685] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
Background Previous research showed that granulized Fu-Zheng-Xiao-Liu has a significant effect on breast cancer. However, it remains unclear whether HER-2 plays a role in this anti-cancer effect. Material/Methods Serum of male SD rats administered Fu-Zheng-Xiao-Liu granules (SF) was prepared and used to treat HER-2 positive breast cancer cell line SKBR-3. PBS and herceptin were used as negative and positive controls, respectively. MTT was used to detect the proliferation of SKBR-3 cells. Flow cytometry was used to measure the apoptosis of SKBR-3 cells. Western blot and immunofluorescence were used to measure the expression change of HER-2. Results Serum of male SD rats administered Fu-Zheng-Xiao-Liu granules had significantly reduced HER-2 expression at both mRNA level and protein level, significantly inhibited proliferation of SKBR-3 cells, and significantly increased apoptosis of SKBR-3 cells, compared to that of the blank control group or serum control group. Conclusions Fu-Zheng-Xiao-Liu granules affect proliferation and apoptosis through inhibition of HER-2 transcription and translation, providing an experimental basis for further study of the mechanism by which Fu-Zheng-Xiao-Liu granules affect breast cancer.
Collapse
Affiliation(s)
- Ting Mo
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| | - Shuangbing Yue
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| | - Huan Tian
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| | - Hong Lin
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| | - Guanglu Zhang
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| | - Zili Zhang
- Department of Integrated Chinese and Western Medicine, Shenzhen Second People's Hospital (Shenzhen University First Affiliated Hospital), Shenzhen, Guangdong, China (mainland)
| |
Collapse
|
23
|
Current achievements and future perspectives of metronomic chemotherapy. Invest New Drugs 2016; 35:359-374. [DOI: 10.1007/s10637-016-0408-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 11/10/2016] [Indexed: 12/30/2022]
|
24
|
Zhang RX, Wong HL, Xue HY, Eoh JY, Wu XY. Nanomedicine of synergistic drug combinations for cancer therapy - Strategies and perspectives. J Control Release 2016; 240:489-503. [PMID: 27287891 PMCID: PMC5064882 DOI: 10.1016/j.jconrel.2016.06.012] [Citation(s) in RCA: 255] [Impact Index Per Article: 28.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2016] [Revised: 05/27/2016] [Accepted: 06/06/2016] [Indexed: 12/26/2022]
Abstract
Nanomedicine of synergistic drug combinations has shown increasing significance in cancer therapy due to its promise in providing superior therapeutic benefits to the current drug combination therapy used in clinical practice. In this article, we will examine the rationale, principles, and advantages of applying nanocarriers to improve anticancer drug combination therapy, review the use of nanocarriers for delivery of a variety of combinations of different classes of anticancer agents including small molecule drugs and biologics, and discuss the challenges and future perspectives of the nanocarrier-based combination therapy. The goal of this review is to provide better understanding of this increasingly important new paradigm of cancer treatment and key considerations for rational design of nanomedicine of synergistic drug combinations for cancer therapy.
Collapse
Affiliation(s)
- Rui Xue Zhang
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| | - Ho Lun Wong
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Hui Yi Xue
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - June Young Eoh
- Temple University School of Pharmacy, 3304 North Broad Street, Philadelphia, PA 19140, USA
| | - Xiao Yu Wu
- Leslie Dan Faculty of Pharmacy, University of Toronto, 144 College Street, Toronto, Ontario, Canada M5S 2S2
| |
Collapse
|
25
|
Triple-negative breast cancer: advancements in characterization and treatment approach. Curr Opin Obstet Gynecol 2016; 28:59-69. [PMID: 26694831 DOI: 10.1097/gco.0000000000000239] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
PURPOSE OF REVIEW Triple-negative breast cancer (TNBC) comprises 15-20% of all breast cancer and is defined by the lack of estrogen and progesterone receptor expression and absence of human epidermal growth factor receptor 2 amplification. Compared with patients with hormone receptor positive or Her-2 positive breast cancer, patients with TNBC are more commonly young (age <50 years), African-American and have a higher incidence of BRCA1/2 mutations. The clinical course is frequently characterized by early relapse and poor overall survival. The TNBC phenotype is impervious to therapies commonly used in other breast cancer subtypes, including hormonal therapy and Her-2 receptor antagonism. Cytotoxic chemotherapy remains the only approved treatment. With its aggressive clinical course and paucity of effective treatment options, TNBC represents an unmet clinical need. This review will focus on updates of the biologic underpinnings of TNBC and the associated treatment advances. RECENT FINDINGS Numerous advancements have been made toward understanding the biologic framework of TNBC. Gene expression profiling has revealed six clinically relevant subsets of TNBC. Further study has demonstrated a portion of TNBC exhibits a strong immune gene signature. Lastly, it is now appreciated that a subgroup of sporadic TNBC shares biologic characteristics with BRCA1/2-mutated breast cancer, notably homologous repair deficiency. Recent studies focus on incorporation of platinum salts and new combinations of conventional chemotherapeutic agents. Targeted agents, including poly-ADP ribose polymerase inhibitors, antiangiogenic agents, phosphoinositide 3-kinase (PI3K) pathway inhibitors, and androgen antagonist are also being evaluated. Most recently, checkpoint inhibitors have demonstrated a modest degree of activity in a subset of TNBC. SUMMARY These discoveries are informing novel treatment paradigms and identification of correlative biomarkers in TNBC. Improved understanding of the biologic heterogeneity of TNBC is allowing for a more effective and individualized approach to treatment.
Collapse
|
26
|
The metronomic therapy with prednisone, etoposide, and cyclophosphamide reduces the serum levels of VEGF and circulating endothelial cells and improves response rates and progression-free survival in patients with relapsed or refractory non-Hodgkin’s lymphoma. Cancer Chemother Pharmacol 2016; 78:801-8. [DOI: 10.1007/s00280-016-3136-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2016] [Accepted: 08/12/2016] [Indexed: 11/25/2022]
|
27
|
Polymer-lipid hybrid nanoparticles synchronize pharmacokinetics of co-encapsulated doxorubicin-mitomycin C and enable their spatiotemporal co-delivery and local bioavailability in breast tumor. NANOMEDICINE-NANOTECHNOLOGY BIOLOGY AND MEDICINE 2016; 12:1279-90. [PMID: 26772427 DOI: 10.1016/j.nano.2015.12.383] [Citation(s) in RCA: 59] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2015] [Revised: 10/13/2015] [Accepted: 12/22/2015] [Indexed: 12/21/2022]
Abstract
UNLABELLED Effective combination chemotherapy requires the delivery of drugs of synergism to tumor sites while sparing normal tissues. Herein we investigated whether coencapsulation of doxorubicin and mitomycin C within polymer-lipid hybrid nanoparticles (DMPLN) achieved this goal via ratiometric drugs in an orthotopic murine breast tumor model with nanocarrier-modified biodistribution, pharmacokinetics, local bioavailability and toxicity. Fluorescence imaging revealed quickened and extended tumor uptake but reduced cardiac accumulation of DMPLN. Quantitative drug analysis demonstrated prolonged systemic circulation, increased tumor accumulation and sustained synergistic ratios of doxorubicin and mitomycin C delivered by DMPLN over 24h. Higher levels of tumor cell apoptosis and reduced organ toxicity were obtained with DMPLN compared to free drug cocktails. DMPLN released DOX in tumors more efficiently than that from liposomal doxorubicin, as evidenced by a higher extent of the metabolite, doxorubicinol. These findings substantiate the importance of rational design of nanoparticles for synergistic drug combination therapy. FROM THE CLINICAL EDITOR The treatment of cancer usually involves using combination chemotherapeutic agents. In adopting a nanomedicine approach, one can in theory design combination therapy consisting of drugs of synergistic activities, with the aim to target tumor specifically while minimizing systemic toxicity. The authors in this study provided evidence for this rational design by co-encapsulation of doxorubicin and mitomycin C within polymer-lipid hybrid nanoparticles (DMPLN) in a breast cancer model.
Collapse
|
28
|
Previs RA, Armaiz-Pena GN, Lin YG, Davis AN, Pradeep S, Dalton HJ, Hansen JM, Merritt WM, Nick AM, Langley RR, Coleman RL, Sood AK. Dual Metronomic Chemotherapy with Nab-Paclitaxel and Topotecan Has Potent Antiangiogenic Activity in Ovarian Cancer. Mol Cancer Ther 2015; 14:2677-86. [PMID: 26516159 DOI: 10.1158/1535-7163.mct-14-0630] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/13/2014] [Accepted: 09/15/2015] [Indexed: 01/14/2023]
Abstract
There is growing recognition of the important role of metronomic chemotherapy in cancer treatment. On the basis of their unique antiangiogenic effects, we tested the efficacy of nab-paclitaxel, which stimulates thrombospondin-1, and topotecan, which inhibits hypoxia-inducible factor 1-α, at metronomic dosing for the treatment of ovarian carcinoma. In vitro and in vivo SKOV3ip1, HeyA8, and HeyA8-MDR (taxane-resistant) orthotopic models were used to examine the effects of metronomic nab-paclitaxel and metronomic topotecan. We examined cell proliferation (Ki-67), apoptosis (cleaved caspase-3), and angiogenesis (microvessel density, MVD) in tumors obtained at necropsy. In vivo therapy experiments demonstrated treatment with metronomic nab-paclitaxel alone and in combination with metronomic topotecan resulted in significant reductions in tumor weight (62% in the SKOV3ip1 model, P < 0.01 and 96% in the HeyA8 model, P < 0.03) compared with vehicle (P < 0.01). In the HeyA8-MDR model, metronomic monotherapy with either cytotoxic agent had modest effects on tumor growth, but combination therapy decreased tumor burden by 61% compared with vehicle (P < 0.03). The greatest reduction in MVD (P < 0.05) and proliferation was seen in combination metronomic therapy groups. Combination metronomic therapy resulted in prolonged overall survival in vivo compared with other groups (P < 0.001). Tube formation was significantly inhibited in RF-24 endothelial cells exposed to media conditioned with metronomic nab-paclitaxel alone and media conditioned with combination metronomic nab-paclitaxel and metronomic topotecan. The combination of metronomic nab-paclitaxel and metronomic topotecan offers a novel, highly effective therapeutic approach for ovarian carcinoma that merits further clinical development.
Collapse
Affiliation(s)
- Rebecca A Previs
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Guillermo N Armaiz-Pena
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Yvonne G Lin
- Department of Obstetrics and Gynecology, Keck School of Medicine, University of Southern California, Los Angeles, California
| | - Ashley N Davis
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Sunila Pradeep
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Heather J Dalton
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Jean M Hansen
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - William M Merritt
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Alpa M Nick
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert R Langley
- Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Robert L Coleman
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas
| | - Anil K Sood
- Department of Gynecologic Oncology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Department of Cancer Biology, The University of Texas MD Anderson Cancer Center, Houston, Texas. Center for RNA Interference and Non-Coding RNA, The University of Texas MD Anderson Cancer Center, Houston, Texas.
| |
Collapse
|
29
|
|
30
|
Phase II Study With Epirubicin, Cisplatin, and Infusional Fluorouracil Followed by Weekly Paclitaxel With Metronomic Cyclophosphamide as a Preoperative Treatment of Triple-Negative Breast Cancer. Clin Breast Cancer 2015; 15:259-65. [PMID: 25933934 DOI: 10.1016/j.clbc.2015.03.002] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2014] [Revised: 02/26/2015] [Accepted: 03/12/2015] [Indexed: 01/06/2023]
Abstract
BACKGROUND The aggressive biological behavior and the lack of target therapy prompts the search for new therapeutic approaches for triple-negative breast cancers. PATIENTS AND METHODS We evaluated the efficacy in terms of Ki-67 variation and clinical response but also the toxicity of a neoadjuvant regimen based on metronomic principles including ECF (epidoxorubicin with cisplatin on day 1 with low-dose 5-fluorouracil in continuous infusion every 21 days for 4 courses) followed by paclitaxel (90 mg/m(2)) on day 1, 8, and 15 every 28 days for 3 courses in combination with metronomic oral cyclophosphamide 50 mg/d for 12 weeks in patients with HER2-negative breast cancer (T2-T4a-d, N0-3, M0) with estrogen receptor and progesterone receptor < 10%. RESULTS We enrolled 34 patients from June 2009 to May 2013. All were considered evaluable on an intention-to treat basis. The mean difference between the percentage of Ki-67 positive cells evaluated in surgical resection specimens and in pretreatment tumor core biopsy was 41% (95% confidence interval [CI], 30-51; P < .0001) for the entire population, and 22% (95% CI, 7-38; P = .0097) in patients who did not achieve pathological complete response (pCR). Responses to the treatment were obtained in 31 patients [91%] of the patients, and 19 patients (56%; 95% CI, 35-70) had a pCR. Stable disease was observed in 3 patients and none had progressive disease. Grade ≥ 3 hematologic adverse events included leukopenia in 9% (3 of 34), neutropenia in 38% (13 of 34), and anemia in 3% (1 of 34) of patients. Nonhematologic Grade ≥ 3 toxicities included only stomatitis in 1 patient. CONCLUSION A neoadjuvant program with an ECF regimen followed by weekly paclitaxel with metronomic cyclophosphamide proved to be very effective, with high pCR rates, reduction of Ki-67, and it was associated with a low toxicity profile.
Collapse
|
31
|
Bouche G, André N, Banavali S, Berthold F, Berruti A, Bocci G, Brandi G, Cavallaro U, Cinieri S, Colleoni M, Curigliano G, Di Desidero T, Eniu A, Fazio N, Kerbel R, Hutchinson L, Ledzewicz U, Munzone E, Pasquier E, Graciela Scharovsky O, Shaked Y, Stěrba J, Villalba M, Bertolini F. Lessons from the Fourth Metronomic and Anti-angiogenic Therapy Meeting, 24-25 June 2014, Milan. Ecancermedicalscience 2014; 8:463. [PMID: 25228919 PMCID: PMC4162678 DOI: 10.3332/ecancer.2014.463] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2014] [Indexed: 01/10/2023] Open
Abstract
The Fourth Metronomic and Anti-angiogenic Therapy Meeting was held in Milan 24–25 June 2014. The meeting was a true translational meeting where researchers and clinicians shared their results, experiences, and insights in order to continue gathering useful evidence on metronomic approaches. Several speakers emphasised that exact mechanisms of action, best timing, and optimal dosage are still not well understood and that the field would learn a lot from ancillary studies performed during the clinical trials of metronomic chemotherapies. From the pre-clinical side, new research findings indicate additional possible mechanisms of actions of metronomic schedule on the immune and blood vessel compartments of the tumour micro-environment. New clinical results of metronomic chemotherapy were presented in particular in paediatric cancers [especially neuroblastoma and central nervous system (CNS) tumours], in angiosarcoma (together with beta-blockers), in hepatocellular carcinoma, in prostate cancer, and in breast cancer. The use of repurposed drugs such as metformin, celecoxib, or valproic acid in the metronomic regimen was reported and highlighted the potential of other candidate drugs to be repurposed. The clinical experiences from low- and middle-income countries with affordable regimens gave very encouraging results which will allow more patients to be effectively treated in economies where new drugs are not accessible. Looking at the impact of metronomic approaches that have been shown to be effective, it was admitted that those approaches were rarely used in clinical practice, in part because of the absence of commercial interest for companies. However, performing well-designed clinical trials of metronomic and repurposing approaches demonstrating substantial improvement, especially in populations with the greatest unmet needs, may be an easier solution than addressing the financial issue. Metronomics should always be seen as a chance to come up with new innovative affordable approaches and not as a cheap rescue strategy.
Collapse
Affiliation(s)
| | - Nicolas André
- Metronomics Global Health Initiative; Aix Marseille Université, Inserm, CRO2 UMR_S 911; & Paediatric Haematology and Oncology Department, Children's Hospital of La Timone, Marseille 13005, France
| | | | - Frank Berthold
- Department of Paediatric Oncology, University of Cologne D50924, Germany
| | - Alfredo Berruti
- Department of Medical and Surgical Specialties, Radiological Sciences and Public Health, University of Brescia, Azienda Ospedaliera Spedali Civili, Brescia 25123, Italy
| | - Guido Bocci
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Giovanni Brandi
- Department of Experimental, Diagnostic and Specialty Medicine University Hospital S. Orsola-Malpighi Bologna, 40138, Italy
| | - Ugo Cavallaro
- Molecular Medicine Programme, European Institute of Oncology, Milan 20141, Italy
| | | | - Marco Colleoni
- Division of Medical Senology, European Institute of Oncology, European Institute of Oncology, Milan 20141, Italy
| | - Giuseppe Curigliano
- Division of Experimental Therapeutics, European Institute of Oncology, Milan 20141, Italy
| | - Teresa Di Desidero
- Division of Pharmacology, Department of Clinical and Experimental Medicine, University of Pisa, via Roma 55, Pisa 56126, Italy
| | - Alexandru Eniu
- Cancer Institute 'I. Chiricuta', Cluj-Napoca 400015, Romania
| | - Nicola Fazio
- Unit of Gastrointestinal Medical Oncology and Neuroendocrine Unit, European Institute of Oncology, Milan 20141, Italy
| | - Robert Kerbel
- Sunnybrook Research Institute, Sunnybrook Health Sciences Centre, University of Toronto M4N 3M5, Canada
| | | | - Urszula Ledzewicz
- Department of Mathematics and Statistics, Southern Illinois University, Edwardsville, IL 62026, USA
| | - Elisabetta Munzone
- Division of Medical Senology, European Institute of Oncology, Milan 20141, Italy
| | - Eddy Pasquier
- Tumour Biology and Targeting Programme, Children's Cancer Institute Australia, Lowy Cancer Research Centre, University of New South Wales, Randwick 2031, Australia; Metronomics Global Health Initiative, Marseille 13005, France; & Centre for Research in Oncobiology and Oncopharmacology, INSERM UMR911, Marseille 13005, France
| | - O Graciela Scharovsky
- Jefa Sección Oncología Experimental, Instituto de Genética Experimental, Facultad de Ciencias Médicas, Universidad Nacional de Rosario, 2000, Argentina
| | - Yuval Shaked
- Rappaport Faculty of Medicine, Technion, Haifa 31096, Israel
| | - Jaroslav Stěrba
- Department of Pediatric Oncology, Masaryk University School of Medicine and University Hospital, Brno, Cernopolni 9 Brno 613 00, Czech Republic
| | - Martin Villalba
- INSERM U1040, Université de Montpellier 1, UFR Médecine, Montpellier 34295, France & Institute for Regenerative Medicine and Biotherapy (IRMB), CHU Montpellier, Montpellier 34295, France
| | - Francesco Bertolini
- Laboratory of Haematology-Oncology, European Institute of Oncology, Milan 20141, Italy
| |
Collapse
|