1
|
Al-Kuraishy HM, Jabir MS, Al-Gareeb AI, Albuhadily AK, Klionsky DJ, Rafeeq MF. Epilepsy and autophagy modulators: a therapeutic split. Autophagy 2025. [PMID: 40375490 DOI: 10.1080/15548627.2025.2506292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2024] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025] Open
Abstract
Epilepsy is a neurological disease characterized by repeated unprovoked seizure. Epilepsy is controlled by anti-epileptic drugs (AEDs); however, one third of epileptic patients have symptoms that are not controlled by AEDs in a condition called refractory epilepsy. Dysregulation of macroautophagy/autophagy is involved in the pathogenesis of epilepsy. Autophagy prevents the development and progression of epilepsy through regulating the balance between inhibitory and excitatory neurotransmitters. Induction of autophagy and autophagy-related proteins could be a novel therapeutic strategy in the management of epilepsy. Despite the protective role of autophagy against epileptogenesis and epilepsy, its role in status epilepticus is perplexing and might reflect its nature as a double-edged sword. Autophagy inducers play a critical role in reducing seizure frequency and severity, and could be an adjuvant treatment in the management of epilepsy. However, autophagy inhibitors also have an anticonvulsant effect. Therefore, the aim of the present mini-review is to discuss the potential role of autophagy in the pathogenesis of epileptogenesis and epilepsy, and how autophagy modulators affect epileptogenesis and epilepsy.
Collapse
Affiliation(s)
- Hayder M Al-Kuraishy
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | - Majid S Jabir
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq
| | | | - Ali K Albuhadily
- Department of Clinical Pharmacology and Medicine, College of Medicine, Mustansiriyah University, Baghdad, Iraq
| | | | - Mayyadah F Rafeeq
- Department of Applied Science, University of Technology-Iraq, Baghdad, Iraq
| |
Collapse
|
2
|
Wang Y, Wang H, Xu Y, Ling J, Zong C, Zhang Y, Guo X, Zhao G, Zhou Y, Zhao J, Lou P, Liu X, Xu T, Ma Q. Mefloquine Suppresses Metastasis in Renal Cell Carcinoma Through Targeting SPC25. Cancer Sci 2025; 116:1239-1254. [PMID: 39948743 PMCID: PMC12044673 DOI: 10.1111/cas.70001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 01/16/2025] [Accepted: 01/18/2025] [Indexed: 05/02/2025] Open
Abstract
Renal cell carcinoma (RCC) is the third most common malignant tumor in the urinary system, often presenting with distant metastases at diagnosis. Approximately one-quarter of patients undergoing nephrectomy experience distant recurrence. Despite the recent advancements in combination-targeted and immune checkpoint inhibitor therapies, the development of new therapeutic strategies and the identification of biomarkers for metastatic risk remain crucial. The study found that high SPC25 expression is closely associated with poor clinical outcomes, and knocking down SPC25 significantly inhibits tumor cell proliferation and migration. Non-targeted metabolomics analysis also revealed that SPC25 knockdown reduces tumor cell activity, resulting in a low-invasive state. Additionally, this study utilized high-throughput molecular docking to screen small molecule drugs targeting SPC25, aiming to find drugs that inhibit RCC metastasis. The research discovered that mefloquine, at concentrations that do not significantly kill tumor cells, can markedly inhibit RCC metastasis. It was the first to report that mefloquine achieves its anti-metastatic effects by binding to SPC25 and inhibiting epithelial-mesenchymal transition. These results suggest that SPC25 has the potential to serve as an early biomarker for metastatic risk in RCC and highlight a novel strategy where mefloquine inhibits RCC metastasis through SPC25 binding, offering new avenues to improve the prognosis of RCC patients.
Collapse
Affiliation(s)
- Yongbo Wang
- Cixi Biomedical Research InstituteWenzhou Medical UniversityWenzhouChina
| | - He Wang
- The Second Clinical Medical CollegeZhejiang Chinese Medical UniversityHangzhouChina
| | - Yipeng Xu
- Department of UrologyZhejiang Cancer HospitalHangzhouChina
- The Key Laboratory of Zhejiang Province for Aptamers and Theranostics, Hangzhou Institute of MedicineChinese Academy of SciencesHangzhouChina
| | - Jiawei Ling
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Chuhong Zong
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Yan Zhang
- Postgraduate Training Base AllianceWenzhou Medical UniversityWenzhouChina
| | | | - Guanan Zhao
- Department of UrologyLishui People's HospitalLishuiChina
| | - Yuan Zhou
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Jiahui Zhao
- School of Basic Medical SciencesZhejiang Chinese Medical UniversityHangzhouChina
| | - Pengrong Lou
- Department of Radiotherapy and ChemotherapyThe First Affiliated Hospital of Ningbo UniversityNingboChina
| | - Xigao Liu
- Department of Urology, Qilu HospitalShandong UniversityJinanChina
| | - Tengfei Xu
- State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical SciencesZhejiang UniversityHangzhouChina
| | - Qi Ma
- Cixi Biomedical Research InstituteWenzhou Medical UniversityWenzhouChina
- Comprehensive Genitourinary Cancer CenterThe First Affiliated Hospital of Ningbo UniversityNingboChina
- Yi‐Huan Genitourinary Cancer GroupThe First Affiliated Hospital of Ningbo UniversityNingboChina
| |
Collapse
|
3
|
Ren Y, Ma Q, Li D, Chen Y, Cheng Q, Luo Z. Autophagy-mediated energy charge sustainability alleviated postharvest quality deterioration of strawberry (Fragaria × ananassa). Food Chem 2025; 469:142539. [PMID: 39718316 DOI: 10.1016/j.foodchem.2024.142539] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2024] [Revised: 11/26/2024] [Accepted: 12/15/2024] [Indexed: 12/25/2024]
Abstract
Fluctuations in energy status are critical physiological factors influencing postharvest fruit quality. However, the role of autophagy, a stress-resistant biological process, in regulating postharvest fruit energy status remains unclear. In this study, we treated strawberry fruit with the autophagy inhibitor hydroxychloroquine (HCQ) to investigate the role of autophagy in maintaining energy status. The results demonstrated that HCQ treatment inhibited autophagosome formation, reducing relative autophagic activity by 73 % on day 6. HCQ treatment also reduced the energy charge and the NADH/NAD+ ratio by 5 % and 61 %, respectively, on day 2. Corresponding to the decline in energy status, HCQ treatment led to a reduction in cytochrome C oxidase (CCO) and succinate dehydrogenase (SDH) activities by 47.48 % and 56.34 %, respectively, on day 3. Additionally, fluctuations in energy charge led to abnormalities in ripening and decreased stress resistance in autophagy-inhibited fruit. In conclusion, this study provides evidence that autophagy-mediated energy charge sustainability mitigates postharvest quality deterioration in fruit.
Collapse
Affiliation(s)
- Yicheng Ren
- Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Quan Ma
- Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Dong Li
- Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Yanpei Chen
- Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China
| | - Qinyang Cheng
- Academy of Agricultural Planning and Engineering, Ministry of Agriculture and Rural Affairs, No.41 Maizidian Street, Chaoyang District, Beijing 100125, China
| | - Zisheng Luo
- Zhejiang University, College of Biosystems Engineering and Food Science, The Rural Development Academy, Zhejiang University, Hangzhou 310058, China; Key Laboratory of Agro-Products Postharvest Handling of Ministry of Agriculture and Rural Affairs, Zhejiang Key Laboratory for Agri-Food Processing, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
4
|
Niu X, You Q, Hou K, Tian Y, Wei P, Zhu Y, Gao B, Ashrafizadeh M, Aref AR, Kalbasi A, Cañadas I, Sethi G, Tergaonkar V, Wang L, Lin Y, Kang D, Klionsky DJ. Autophagy in cancer development, immune evasion, and drug resistance. Drug Resist Updat 2025; 78:101170. [PMID: 39603146 DOI: 10.1016/j.drup.2024.101170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 10/22/2024] [Accepted: 11/04/2024] [Indexed: 11/29/2024]
Abstract
Macroautophagy/autophagy is a highly conserved evolutionary mechanism involving lysosomes for the degradation of cytoplasmic components including organelles. The constitutive, basal level of autophagy is fundamental for preserving cellular homeostasis; however, alterations in autophagy can cause disease pathogenesis, including cancer. The role of autophagy in cancer is particularly complicated, since this process acts both as a tumor suppressor in precancerous stages but facilitates tumor progression during carcinogenesis and later stages of cancer progression. This shift between anti-tumor and pro-tumor roles may be influenced by genetic and environmental factors modulating key pathways such as those involving autophagy-related proteins, the PI3K-AKT-MTOR axis, and AMPK, which often show dysregulation in tumors. Autophagy regulates various cellular functions, including metabolism of glucose, glutamine, and lipids, cell proliferation, metastasis, and several types of cell death (apoptosis, ferroptosis, necroptosis and immunogenic cell death). These multifaceted roles demonstrate the potential of autophagy to affect DNA damage repair, cell death pathways, proliferation and survival, which are critical in determining cancer cells' response to chemotherapy. Therefore, targeting autophagy pathways presents a promising strategy to combat chemoresistance, as one of the major reasons for the failure in cancer patient treatment. Furthermore, autophagy modulates immune evasion and the function of immune cells such as T cells and dendritic cells, influencing the tumor microenvironment and cancer's biological behavior. However, the therapeutic targeting of autophagy is complex due to its dual role in promoting survival and inducing cell death in cancer cells, highlighting the need for strategies that consider both the beneficial and detrimental effects of autophagy modulation in cancer therapy. Hence, both inducers and inhibitors of autophagy have been introduced for the treatment of cancer. This review emphasizes the intricate interplay between autophagy, tumor biology, and immune responses, offering insights into potential therapeutic approaches that deploy autophagy in the cancer suppression.
Collapse
Affiliation(s)
- Xuegang Niu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Qi You
- Department of Oncological Surgery, Harbin Medical University Cancer Hospital, Harbin, Heilongjiang Province 150000, China
| | - Kaijian Hou
- School of Public Health(Long Hu people hospital), Shantou University, Shantou, 515000, Guangdong, China
| | - Yu Tian
- School of Public Health, Benedictine University, Lisle, IL 60532, USA
| | - Penghui Wei
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Yang Zhu
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Bin Gao
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China
| | - Milad Ashrafizadeh
- Department of Radiation Oncology, Shandong Cancer Hospital and Institute, Shandong First Medical University, Shandong Academy of Medical Sciences, Jinan, Shandong 250000, China
| | - Amir Reza Aref
- VitroVision Department, DeepkinetiX, Inc, Boston, MA, USA
| | - Alireza Kalbasi
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
| | - Israel Cañadas
- Blood Cell Development and Function Program, Fox Chase Cancer Center, Philadelphia, PA, USA
| | - Gautam Sethi
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Vinay Tergaonkar
- Laboratory of NF-κB Signalling, Institute of Molecular and Cell Biology (IMCB), Agency for Science, Technology and Research (A⁎STAR), 61 Biopolis Drive, Proteos, Singapore 138673, Singapore
| | - Lingzhi Wang
- NUS Centre for Cancer Research (N2CR), Yong Loo Lin School of Medicine, National University of Singapore, Singapore 117599, Singapore; Department of Pharmacology, Yong Loo Lin School of Medicine, National University of Singapore, 16 Medical Drive, Singapore 117600, Singapore
| | - Yuanxiang Lin
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Dezhi Kang
- Department of Neurosurgery, Neurosurgery Research Institute, the First Affiliated Hospital of Fujian Medical University, Fuzhou 350005, China; Department of Neurosurgery, National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou 350212, China.
| | - Daniel J Klionsky
- Life Sciences Institute and Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, MI, USA.
| |
Collapse
|
5
|
Dragowska WH, Singh J, Wehbe M, Anantha M, Edwards K, Gorski SM, Bally MB, Leung AWY. Liposomal Formulation of Hydroxychloroquine Can Inhibit Autophagy In Vivo. Pharmaceutics 2024; 17:42. [PMID: 39861690 PMCID: PMC11768354 DOI: 10.3390/pharmaceutics17010042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Revised: 11/20/2024] [Accepted: 12/23/2024] [Indexed: 01/27/2025] Open
Abstract
Background/Objectives: Preclinical studies have shown that the anti-malarial drug hydroxychloroquine (HCQ) improves the anti-cancer effects of various therapeutic agents by impairing autophagy. These findings are difficult to translate in vivo as reaching an effective HCQ concentration at the tumor site for extended times is challenging. Previously, we found that free HCQ in combination with gefitinib (Iressa®, ZD1839) significantly reduced tumor volume in immunocompromised mice bearing gefitinib-resistant JIMT-1 breast cancer xenografts. Here, we sought to evaluate whether a liposomal formulation of HCQ could effectively modulate autophagy in vivo and augment treatment outcomes in the same tumor model. Methods: We developed two liposomal formulations of HCQ: a pH-loaded formulation and a formulation based on copper complexation. The pharmacokinetics of each formulation was evaluated in CD1 mice following intravenous administration. An efficacy study was performed in immunocompromised mice bearing established JIMT-1tumors. Autophagy markers in tumor tissue harvested after four weeks of treatment were assessed by Western blot. Results: The liposomal formulations engendered ~850-fold increases in total drug exposure over time relative to the free drug. Both liposomal and free HCQ in combination with gefitinib provided comparable therapeutic benefits (p > 0.05). An analysis of JIMT-1 tumor tissue indicated that the liposomal HCQ and gefitinib combination augmented the inhibition of autophagy in vivo compared to the free HCQ and gefitinib combination as demonstrated by increased LC3-II and p62/SQSTM1 (p62) protein levels. Conclusions: The results suggest that liposomal HCQ has a greater potential to modulate autophagy in vivo compared to free HCQ; however, this did not translate to better therapeutic effects when used in combination with gefitinib to treat a gefitinib-resistant tumor model.
Collapse
Affiliation(s)
- Wieslawa H. Dragowska
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
| | - Jagbir Singh
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
| | - Mohamed Wehbe
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Faculty of Pharmaceutical Sciences, University of British Columbia, Vancouver, BC V6T 1Z3, Canada
| | - Malathi Anantha
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
| | - Katarina Edwards
- Department of Chemistry, Ångström Laboratory, Uppsala University, 751 20 Uppsala, Sweden;
| | - Sharon M. Gorski
- Canada’s Michael Smith Genome Sciences Centre, BC Cancer, Vancouver, BC V5Z 4S6, Canada;
- Department of Molecular Biology and Biochemistry, Simon Fraser University, Vancouver, BC V5A 1S6, Canada
| | - Marcel B. Bally
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC V6T 1Z7, Canada
- NanoMedicines Innovation Network, Vancouver, BC V6T 1Z3, Canada
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z3, Canada
| | - Ada W. Y. Leung
- Department of Experimental Therapeutics, BC Cancer, Vancouver, BC V5Z 1L3, Canada; (W.H.D.); (M.A.); (M.B.B.)
- Cuprous Pharmaceuticals Inc., Vancouver, BC V6T 1Z3, Canada
| |
Collapse
|
6
|
Fang X, Zeng J, Li Y, Yu H, Wu Z, Qi X. Hydroxychloroquine loaded hollow apoferritin nanocages for cancer drug repurposing and autophagy inhibition. Eur J Pharm Biopharm 2024; 203:114473. [PMID: 39186959 DOI: 10.1016/j.ejpb.2024.114473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2024] [Revised: 07/31/2024] [Accepted: 08/23/2024] [Indexed: 08/28/2024]
Abstract
Hydroxychloroquine sulfate (HCQ) is currently being repurposed for cancer treatment. The antitumor mechanism of HCQ is inhibition of cellular autophagy, but its therapeutic potential is severely limited by poor solubility, lack of tumor targeting and lower cellular uptake. Therefore, utilization of human H-chain apoferritin (HFn) composed only of heavy subunits is an attractive approach for tumor targeting drug delivery. This study focused on pH-triggered encapsulation of HCQ within the inner cavity of HFn to form HFn@HCQ nanoparticles for tumor-targeted drug delivery. Characterization using a range of techniques has been used to confirm the successful establishment of HFn@HCQ. HFn@HCQ exhibited pH-responsive release behavior, with almost no drug release at pH 7.4, but 80% release at pH 5.0. Owing to its intrinsic binding to transferrin receptor 1 (TfR1), HFn@HCQ was significantly internalized through TfR1-mediated endocytosis, with a 4.4-fold difference of internalization amount across cell lines. Additionally, HFn@HCQ enhanced the antitumor effect against four different cancer cell lines when compared against HCQ alone, especially in TfR1 high-expressing cells, where the inhibitory effect was 3-fold higher than free HCQ. The autophagy inhibition of HFn@HCQ has been demonstrated, which is a major pathway to induce cancer cell death. According to current findings, HFn based drug delivery is a promising strategy to target and kill TfR1 overexpressing tumor cells.
Collapse
Affiliation(s)
- Xinning Fang
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Jia Zeng
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Yitong Li
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Han Yu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China
| | - Zhenghong Wu
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China.
| | - Xiaole Qi
- Key Laboratory of Modern Chinese Medicines, China Pharmaceutical University, Nanjing 210009, China; Hangzhou Innovative Institute of Pharmaceutics, China Pharmaceutical University, Hangzhou 310018, China.
| |
Collapse
|
7
|
Xian J, Gao L, Ren Z, Jiang Y, Pan J, Ying Z, Guo Z, Du Q, Zhao X, Jin H, Yi H, Guan J, Hu S. Inhibition of Autophagy by Berbamine Hydrochloride Mitigates Tumor Immune Escape by Elevating MHC-I in Melanoma Cells. Cells 2024; 13:1537. [PMID: 39329721 PMCID: PMC11430705 DOI: 10.3390/cells13181537] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 09/04/2024] [Accepted: 09/11/2024] [Indexed: 09/28/2024] Open
Abstract
Impaired tumor cell antigen presentation contributes significantly to immune evasion. This study identifies Berbamine hydrochloride (Ber), a compound derived from traditional Chinese medicine, as an effective inhibitor of autophagy that enhances antigen presentation in tumor cells. Ber increases MHC-I-mediated antigen presentation in melanoma cells, improving recognition and elimination by CD8+ T cells. Mutation of Atg4b, which blocks autophagy, also raises MHC-I levels on the cell surface, and further treatment with Ber under these conditions does not increase MHC-I, indicating Ber's role in blocking autophagy to enhance MHC-I expression. Additionally, Ber treatment leads to the accumulation of autophagosomes, with elevated levels of LC3-II and p62, suggesting a disrupted autophagic flux. Fluorescence staining and co-localization analyses reveal that Ber likely inhibits lysosomal acidification without hindering autophagosome-lysosome fusion. Importantly, Ber treatment suppresses melanoma growth in mice and enhances CD8+ T cell infiltration, supporting its therapeutic potential. Our findings demonstrate that Ber disturbs late-stage autophagic flux through abnormal lysosomal acidification, enhancing MHC-I-mediated antigen presentation and curtailing tumor immune escape.
Collapse
Affiliation(s)
- Jinhuan Xian
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Leilei Gao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Zhenyang Ren
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Biochemistry, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong 999077, China;
| | - Junjun Pan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zheng Ying
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Zhenyuan Guo
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Qingsong Du
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - Xu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
| | - He Jin
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Hua Yi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Jieying Guan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| | - Shan Hu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou 510006, China; (J.X.); (L.G.); (Z.R.); (J.P.); (Z.Y.); (Z.G.); (Q.D.); (X.Z.); (H.J.); (H.Y.)
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou 510006, China
| |
Collapse
|
8
|
Wu Y, Liu X, Yao C, Chen J, Wu X, Zhu M. Fluorescent hyaluronic acid nanoprodrug: A tumor-activated autophagy inhibitor for synergistic cancer therapy. Int J Biol Macromol 2024; 274:133360. [PMID: 38909736 DOI: 10.1016/j.ijbiomac.2024.133360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2024] [Revised: 05/21/2024] [Accepted: 06/20/2024] [Indexed: 06/25/2024]
Abstract
Autophagy is a process that eliminates damaged cells and malfunctioning organelles via lysosomes, which is closely linked to cancer. Primaquine (PQ) was reported to impede autophagy flow by preventing autophagosomes from fusing with lysosomes at the late stage of autophagy. It will lead to cellular metabolic collapse and programmed cell death. Excessive or extended autophagy enhances the efficacy of chemotherapeutic drugs in cancer prevention. The utilization of autophagy inhibition in conjunction with chemotherapy has become a prevalent and reliable approach for the safe and efficient treatment of cancer. In this work, an acid-sensitive nanoprodrug (O@PD) targeting CD44 receptors was produced using Schiff-base linkages or electrostatic interactions from oxidized hyaluronic acid (OHA), PQ, and doxorubicin (DOX). The CD44-targeting prodrug system in triple-negative breast cancer (TNBC) cells was designed to selectively release DOX and PQ into the acidic tumor microenvironment and cellular endosomes. DOX was employed to investigate the cellular uptake and ex-vivo drug distribution of O@PD nanoprodrugs. PQ-induced autophagy suppression combined with DOX has a synergistic fatal impact in TNBC. O@PD nanoprodrugs demonstrated robust anticancer efficacy as well as excellent biological safety, making them suitable for clinical use.
Collapse
Affiliation(s)
- Yundi Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Xudong Liu
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570228, China
| | - Can Yao
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China
| | - Jianqiang Chen
- Department of Radiology, The First Affiliated Hospital of Hainan Medical University, Haikou 570228, China
| | - Xilong Wu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Key Laboratory of Biomedical Engineering of Hainan Province, Collaborative Innovation Center of One Health, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Mingqiang Zhu
- School of Biomedical Engineering, State Key Laboratory of Marine Resources Utilization in South China Sea, Hainan University, Haikou 570228, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan 430074, China.
| |
Collapse
|
9
|
Guo W, Zhou H, Wang J, Lu J, Dong Y, Kang Z, Qiu X, Ouyang X, Chen Q, Li J, Cheng X, Du K, Li M, Lin Z, Jin M, Zhang L, Sarapultsev A, Shi K, Li F, Zhang G, Wu K, Rong Y, Heissmeyer V, Liu Y, Li Y, Huang K, Luo S, Hu D. Aloperine Suppresses Cancer Progression by Interacting with VPS4A to Inhibit Autophagosome-lysosome Fusion in NSCLC. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2308307. [PMID: 39166458 PMCID: PMC11336898 DOI: 10.1002/advs.202308307] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Revised: 05/12/2024] [Indexed: 08/23/2024]
Abstract
Aloperine (ALO), a quinolizidine-type alkaloid isolated from a natural Chinese herb, has shown promising antitumor effects. Nevertheless, its common mechanism of action and specific target remain elusive. Here, it is demonstrated that ALO inhibits the proliferation and migration of non-small cell lung cancer cell lines in vitro and the tumor development in several mouse tumor models in vivo. Mechanistically, ALO inhibits the fusion of autophagosomes with lysosomes and the autophagic flux, leading to the accumulation of sequestosome-1 (SQSTM1) and production of reactive oxygen species (ROS), thereby inducing tumor cell apoptosis and preventing tumor growth. Knockdown of SQSTM1 in cells inhibits ROS production and reverses ALO-induced cell apoptosis. Furthermore, VPS4A is identified as a direct target of ALO, and the amino acids F153 and D263 of VPS4A are confirmed as the binding sites for ALO. Knockout of VPS4A in H1299 cells demonstrates a similar biological effect as ALO treatment. Additionally, ALO enhances the efficacy of the anti-PD-L1/TGF-β bispecific antibody in inhibiting LLC-derived subcutaneous tumor models. Thus, ALO is first identified as a novel late-stage autophagy inhibitor that triggers tumor cell death by targeting VPS4A.
Collapse
Affiliation(s)
- Weina Guo
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Department of Laboratory MedicineWuhan Children's Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Haifeng Zhou
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Jingbo Wang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junjie Lu
- Xiangyang Central HospitalAffiliated Hospital of Hubei University of Arts and ScienceXiangyang441000China
| | - Yalan Dong
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Zhenyu Kang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaoyuan Qiu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiaohu Ouyang
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Qianyun Chen
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Junyi Li
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Xiang Cheng
- Hubei Key Laboratory of Biological Targeted TherapyUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430022China
| | - Keye Du
- Department of NeurosurgeryUnion Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Mingyue Li
- Department of GastroenterologyZhongda Hospital, Southeast UniversityNanjing210000China
| | - Zhihao Lin
- Institute of Neuroscience, School of MedicineXiamen UniversityXiamen361000China
| | - Min Jin
- Cancer CenterUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Lei Zhang
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
| | - Alexey Sarapultsev
- School of Medical BiologySouth Ural State UniversityChelyabinsk454087Russia
| | - Kuangyu Shi
- Department of Nuclear MedicineUniversity of BernBern3007Switzerland
| | - Fangfei Li
- Shum Yiu Foon Sum Bik Chuen Memorial Centre for Cancer and Inflammation Research School of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Ge Zhang
- Institute of Integrated Bioinfomedicine and Translational ScienceSchool of Chinese MedicineHong Kong Baptist UniversityHong KongSAR999077China
| | - Kongming Wu
- Department of OncologyTongji Hospital of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Yueguang Rong
- School of Basic Medicine of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Vigo Heissmeyer
- Institute for Immunology Biomedical CenterLudwig‐Maximilians‐Universität München82152Planegg‐MartinsriedGermany
| | - Yue Liu
- Cardiovascular Disease CenterXiyuan hospital of China academy of Chinese medical SciencesBeijing100102China
| | - Yunlun Li
- Affiliated Hospital of Shandong University of Traditional Chinese MedicineJinan250014China
- Innovation Research Institute of Traditional Chinese MedicineShandong University of Traditional Chinese MedicineJinan250355China
| | - Kun Huang
- School of Pharmacy of Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430030China
| | - Shanshan Luo
- Institute of Hematology, Union HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| | - Desheng Hu
- Department of Integrated Traditional Chinese and Western MedicineUnion Hospital, Tongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
- Hubei Key Laboratory of Biological Targeted TherapyChina‐Russia Medical Research Center for Stress ImmunologyUnion HospitalTongji Medical CollegeHuazhong University of Science and TechnologyWuhan430000China
| |
Collapse
|
10
|
Wen W, Ertas YN, Erdem A, Zhang Y. Dysregulation of autophagy in gastric carcinoma: Pathways to tumor progression and resistance to therapy. Cancer Lett 2024; 591:216857. [PMID: 38583648 DOI: 10.1016/j.canlet.2024.216857] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/22/2024] [Accepted: 04/02/2024] [Indexed: 04/09/2024]
Abstract
The considerable death rates and lack of symptoms in early stages of gastric cancer (GC) make it a major health problem worldwide. One of the most prominent risk factors is infection with Helicobacter pylori. Many biological processes, including those linked with cell death, are disrupted in GC. The cellular "self-digestion" mechanism necessary for regular balance maintenance, autophagy, is at the center of this disturbance. Misregulation of autophagy, however, plays a role in the development of GC. In this review, we will examine how autophagy interacts with other cell death processes, such as apoptosis and ferroptosis, and how it affects the progression of GC. In addition to wonderful its role in the epithelial-mesenchymal transition, it is engaged in GC metastasis. The role of autophagy in GC in promoting drug resistance stands out. There is growing interest in modulating autophagy for GC treatment, with research focusing on natural compounds, small-molecule inhibitors, and nanoparticles. These approaches could lead to breakthroughs in GC therapy, offering new hope in the fight against this challenging disease.
Collapse
Affiliation(s)
- Wen Wen
- Department of Laboratory Medicine, Shengjing Hospital of China Medical University, Liaoning Clinical Research Center for Laboratory Medicine, Shenyang, China
| | - Yavuz Nuri Ertas
- Department of Biomedical Engineering, Erciyes University, Kayseri, Turkey; ERNAM-Nanotechnology Research and Application Center, Erciyes University, Kayseri, Turkey.
| | - Ahmet Erdem
- Institute for Quantitative Health Science and Engineering (IQ), Department of Biomedical Engineering, College of Engineering and Human Medicine, Michigan State University, East Lansing, MI, 48824, USA; Department of Biomedical Engineering, Kocaeli University, Umuttepe Campus, Kocaeli, 41001 Turkey.
| | - Yao Zhang
- Department of Gynaecology, Shengjing Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
11
|
Schmid M, Fischer P, Engl M, Widder J, Kerschbaum-Gruber S, Slade D. The interplay between autophagy and cGAS-STING signaling and its implications for cancer. Front Immunol 2024; 15:1356369. [PMID: 38660307 PMCID: PMC11039819 DOI: 10.3389/fimmu.2024.1356369] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Accepted: 03/26/2024] [Indexed: 04/26/2024] Open
Abstract
Autophagy is an intracellular process that targets various cargos for degradation, including members of the cGAS-STING signaling cascade. cGAS-STING senses cytosolic double-stranded DNA and triggers an innate immune response through type I interferons. Emerging evidence suggests that autophagy plays a crucial role in regulating and fine-tuning cGAS-STING signaling. Reciprocally, cGAS-STING pathway members can actively induce canonical as well as various non-canonical forms of autophagy, establishing a regulatory network of feedback mechanisms that alter both the cGAS-STING and the autophagic pathway. The crosstalk between autophagy and the cGAS-STING pathway impacts a wide variety of cellular processes such as protection against pathogenic infections as well as signaling in neurodegenerative disease, autoinflammatory disease and cancer. Here we provide a comprehensive overview of the mechanisms involved in autophagy and cGAS-STING signaling, with a specific focus on the interactions between the two pathways and their importance for cancer.
Collapse
Affiliation(s)
- Maximilian Schmid
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Patrick Fischer
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| | - Magdalena Engl
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
- Vienna Biocenter PhD Program, a Doctoral School of the University of Vienna and Medical University of Vienna, Vienna, Austria
| | - Joachim Widder
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
| | - Sylvia Kerschbaum-Gruber
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
| | - Dea Slade
- Department of Radiation Oncology, Medical University of Vienna, Vienna, Austria
- Comprehensive Cancer Center, Medical University of Vienna, Vienna, Austria
- MedAustron Ion Therapy Center, Wiener Neustadt, Austria
- Department of Medical Biochemistry, Medical University of Vienna, Max Perutz Labs, Vienna Biocenter, Vienna, Austria
| |
Collapse
|
12
|
Bahar ME, Kim HJ, Kim DR. Targeting the RAS/RAF/MAPK pathway for cancer therapy: from mechanism to clinical studies. Signal Transduct Target Ther 2023; 8:455. [PMID: 38105263 PMCID: PMC10725898 DOI: 10.1038/s41392-023-01705-z] [Citation(s) in RCA: 203] [Impact Index Per Article: 101.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/03/2023] [Accepted: 11/12/2023] [Indexed: 12/19/2023] Open
Abstract
Metastatic dissemination of solid tumors, a leading cause of cancer-related mortality, underscores the urgent need for enhanced insights into the molecular and cellular mechanisms underlying metastasis, chemoresistance, and the mechanistic backgrounds of individuals whose cancers are prone to migration. The most prevalent signaling cascade governed by multi-kinase inhibitors is the mitogen-activated protein kinase (MAPK) pathway, encompassing the RAS-RAF-MAPK kinase (MEK)-extracellular signal-related kinase (ERK) pathway. RAF kinase is a primary mediator of the MAPK pathway, responsible for the sequential activation of downstream targets, such as MEK and the transcription factor ERK, which control numerous cellular and physiological processes, including organism development, cell cycle control, cell proliferation and differentiation, cell survival, and death. Defects in this signaling cascade are associated with diseases such as cancer. RAF inhibitors (RAFi) combined with MEK blockers represent an FDA-approved therapeutic strategy for numerous RAF-mutant cancers, including melanoma, non-small cell lung carcinoma, and thyroid cancer. However, the development of therapy resistance by cancer cells remains an important barrier. Autophagy, an intracellular lysosome-dependent catabolic recycling process, plays a critical role in the development of RAFi resistance in cancer. Thus, targeting RAF and autophagy could be novel treatment strategies for RAF-mutant cancers. In this review, we delve deeper into the mechanistic insights surrounding RAF kinase signaling in tumorigenesis and RAFi-resistance. Furthermore, we explore and discuss the ongoing development of next-generation RAF inhibitors with enhanced therapeutic profiles. Additionally, this review sheds light on the functional interplay between RAF-targeted therapies and autophagy in cancer.
Collapse
Affiliation(s)
- Md Entaz Bahar
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Hyun Joon Kim
- Department of Anatomy and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea
| | - Deok Ryong Kim
- Department of Biochemistry and Convergence Medical Sciences and Institute of Medical Science, Gyeongsang National University, College of Medicine, Jinju, South Korea.
| |
Collapse
|
13
|
Low LE, Kong CK, Yap WH, Siva SP, Gan SH, Siew WS, Ming LC, Lai-Foenander AS, Chang SK, Lee WL, Wu Y, Khaw KY, Ong YS, Tey BT, Singh SK, Dua K, Chellappan DK, Goh BH. Hydroxychloroquine: Key therapeutic advances and emerging nanotechnological landscape for cancer mitigation. Chem Biol Interact 2023; 386:110750. [PMID: 37839513 DOI: 10.1016/j.cbi.2023.110750] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/25/2023] [Revised: 09/12/2023] [Accepted: 10/05/2023] [Indexed: 10/17/2023]
Abstract
Hydroxychloroquine (HCQ) is a unique class of medications that has been widely utilized for the treatment of cancer. HCQ plays a dichotomous role by inhibiting autophagy induced by the tumor microenvironment (TME). Preclinical studies support the use of HCQ for anti-cancer therapy, especially in combination with conventional anti-cancer treatments since they sensitize tumor cells to drugs, potentiating the therapeutic activity. However, clinical evidence has suggested poor outcomes for HCQ due to various obstacles, including non-specific distribution, low aqueous solubility and low bioavailability at target sites, transport across tissue barriers, and retinal toxicity. These issues are addressable via the integration of HCQ with nanotechnology to produce HCQ-conjugated nanomedicines. This review aims to discuss the pharmacodynamic, pharmacokinetic and antitumor properties of HCQ. Furthermore, the antitumor performance of the nanoformulated HCQ is also reviewed thoroughly, aiming to serve as a guide for the HCQ-based enhanced treatment of cancers. The nanoencapsulation or nanoconjugation of HCQ with nanoassemblies appears to be a promising method for reducing the toxicity and improving the antitumor efficacy of HCQ.
Collapse
Affiliation(s)
- Liang Ee Low
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Monash-Industry Plant Oils Research Laboratory (MIPO), Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Chee Kei Kong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Department of Primary Care Medicine, Faculty of Medicine, University of Malaya, 50603, Kuala Lumpur, Malaysia.
| | - Wei-Hsum Yap
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia; Centre for Drug Discovery and Molecular Pharmacology, Faculty of Medical and Health Sciences, Taylor's University, Subang Jaya 47500, Malaysia.
| | - Sangeetaprivya P Siva
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Siew Hua Gan
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Wei Sheng Siew
- School of Biosciences, Taylor's University, 47500, Subang Jaya, Selangor Darul Ehsan, Malaysia.
| | - Long Chiau Ming
- Department of Medical Sciences, School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| | - Ashley Sean Lai-Foenander
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sui Kiat Chang
- Department of Allied Health Sciences, Faculty of Science, Universiti Tunku Abdul Rahman, Kampar, 31900, Perak, Malaysia.
| | - Wai-Leng Lee
- School of Science, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yongjiang Wu
- College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China.
| | - Kooi-Yeong Khaw
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Yong Sze Ong
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Beng Ti Tey
- Department of Chemical Engineering, School of Engineering, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; Advanced Engineering Platform, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia.
| | - Sachin Kumar Singh
- School of Pharmaceutical Sciences, Lovely Professional University, Jalandhar-Delhi G.T Road, Phagwara, Punjab, India; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia.
| | - Kamal Dua
- Discipline of Pharmacy, Graduate School of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Australian Research Centre in Complementary and Integrative Medicine, Faculty of Health, University of Technology Sydney, Ultimo, NSW, 2007, Australia; Uttaranchal Institute of Pharmaceutical Sciences, Uttaranchal University, Dehradun 248007, Uttarakhand, India.
| | - Dinesh Kumar Chellappan
- Department of Life Sciences, School of Pharmacy, International Medical University (IMU), 57000 Bukit Jalil, Kuala Lumpur, Malaysia.
| | - Bey-Hing Goh
- Biofunctional Molecule Exploratory (BMEX) Research Group, School of Pharmacy, Monash University Malaysia, Jalan Lagoon Selatan, 47500, Bandar Sunway, Selangor Darul Ehsan, Malaysia; College of Pharmaceutical Sciences, Zhejiang University, 866 Yuhangtang Road, Hangzhou, Zhejiang, 310058, PR China; Sunway Biofunctional Molecules Discovery Centre (SBMDC), School of Medical and Life Sciences, Sunway University, Sunway City, Selangor, Malaysia.
| |
Collapse
|
14
|
Yu H, Hao Z, Liu X, Wei Z, Tan R, Liu X, Chen Q, Chen Y, Zhou H, Liu Y, Fu Z. Autophagy blockage and lysosomal dysfunction are involved in diallyl sulfide-induced inhibition of malignant growth in hepatocellular carcinoma cells. ENVIRONMENTAL TOXICOLOGY 2023; 38:2100-2110. [PMID: 37209385 DOI: 10.1002/tox.23834] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2023] [Revised: 04/23/2023] [Accepted: 05/01/2023] [Indexed: 05/22/2023]
Abstract
Diallyl sulfide (DAS), as a major component of garlic extracts, has been shown to inhibit growth of hepatocellular carcinoma cells (HCC), but the underlying mechanism is still elusive. In this study, we aimed to explore the involvement of autophagy in DAS-induced growth inhibition of HepG2 and Huh7 hepatocellular carcinoma cells. We studied growth of DAS-treated HepG2 and Huh7 cells using the MTS and clonogenic assays. Autophagic flux was examined by immunofluorescence and confocal microscopy. The expression levels of autophagy-related proteins AMPK, mTOR, p62, LC3-II, LAMP1, and cathepsin D in the HepG2 and Huh7 cells treated with DAS as well as the tumors formed by HepG2 cells in the nude mice in the presence or absence of DAS were examined using western blotting and immunohistochemistry analysis. We found that DAS treatment induced activation of AMPK/mTOR, and accumulation of LC3-II and p62 both in vivo and in vitro. DAS inhibited autophagic flux through blocking the fusion of autophagosomes with lysosomes. Furthermore, DAS induced an increase in lysosomal pH and inhibition of Cathepsin D maturation. Co-treatment with an autophagy inhibitor (Chloroquine, CQ) further enhanced the growth inhibitory activity of DAS in HCC cells. Thus, our findings indicate that autophagy is involved in DAS-mediated growth inhibition of HCC cells both in vitro and in vivo.
Collapse
Affiliation(s)
- Haiyan Yu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhiwei Hao
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xuemin Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhixuan Wei
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Renming Tan
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Xiaotian Liu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Qiongxia Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Ying Chen
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Hongyan Zhou
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Yuchen Liu
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| | - Zhengqi Fu
- Department of Pathology and Pathophysiology, School of Medicine, Jianghan University, Wuhan, People's Republic of China
- Cancer Institute, School of Medicine, Jianghan University, Wuhan, People's Republic of China
| |
Collapse
|
15
|
Mazumder A, Mehrmal S, Chaudhry S. Immunotherapy-induced exclusively cutaneous sarcoid-like reaction. BMJ Case Rep 2023; 16:e252766. [PMID: 37463781 PMCID: PMC10357716 DOI: 10.1136/bcr-2022-252766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/20/2023] Open
Abstract
Sarcoid-like reactions (SLRs) are rare, granulomatous inflammatory reactions to immune checkpoint inhibitors (ICIs) that can involve any organ but frequently affect the lungs, mediastinal lymph nodes and skin. We present a rare case of an exclusively cutaneous SLR due to pembrolizumab that clinically resembled dermatomyositis. A literature review yielded only 12 previously reported cases of ICI-induced cutaneous SLR without any systemic involvement. Our case highlights the diversity of presentations of cutaneous SLR and emphasises the importance of histological evaluation of new cutaneous eruptions.
Collapse
Affiliation(s)
- Anika Mazumder
- Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Sino Mehrmal
- Department of Dermatology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| | - Sofia Chaudhry
- Department of Dermatology, Saint Louis University School of Medicine, Saint Louis, Missouri, USA
| |
Collapse
|
16
|
Liang Z, You G. Chloroquine and Hydroxychloroquine, as Proteasome Inhibitors, Upregulate the Expression and Activity of Organic Anion Transporter 3. Pharmaceutics 2023; 15:1725. [PMID: 37376173 DOI: 10.3390/pharmaceutics15061725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Revised: 05/26/2023] [Accepted: 06/02/2023] [Indexed: 06/29/2023] Open
Abstract
Organic anion transporter 3 (OAT3), at the basolateral membrane of kidney proximal tubule cells, facilitates the elimination of numerous widely used drugs. Earlier investigation from our laboratory revealed that ubiquitin conjugation to OAT3 leads to OAT3 internalization from the cell surface, followed by degradation in the proteasome. In the current study, we examined the roles of chloroquine (CQ) and hydroxychloroquine (HCQ), two well-known anti-malarial drugs, in their action as proteasome inhibitors and their effects on OAT3 ubiquitination, expression, and function. We showed that in cells treated with CQ and HCQ, the ubiquitinated OAT3 was considerably enhanced, which correlated well with a decrease in 20S proteasome activity. Furthermore, in CQ- and HCQ-treated cells, OAT3 expression and OAT3-mediated transport of estrone sulfate, a prototypical substrate, were significantly increased. Such increases in OAT3 expression and transport activity were accompanied by an increase in the maximum transport velocity and a decrease in the degradation rate of the transporter. In conclusion, this study unveiled a novel role of CQ and HCQ in enhancing OAT3 expression and transport activity by preventing the degradation of ubiquitinated OAT3 in proteasomes.
Collapse
Affiliation(s)
- Zhengxuan Liang
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| | - Guofeng You
- Department of Pharmaceutics, Rutgers, The State University of New Jersey, 160 Frelinghuysen Road, Piscataway, NJ 08854, USA
| |
Collapse
|
17
|
Wang H, Shi Y, Ma D, Cao M, Sun Y, Jiang X, Xu Z, Wang Y, Yang Y, Shi Y, Wang K. Cinchonine exerts anti-tumor and immunotherapy sensitizing effects in lung cancer by impairing autophagic-lysosomal degradation. Biomed Pharmacother 2023; 164:114980. [PMID: 37301135 DOI: 10.1016/j.biopha.2023.114980] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2023] [Revised: 05/29/2023] [Accepted: 06/01/2023] [Indexed: 06/12/2023] Open
Abstract
Currently, there are several treatments approaches available for lung cancer; however, patients who develop drug resistance or have poor survival rates urgently require new therapeutic strategies for lung cancer. In autophagy, damaged proteins or organelles are enclosed within autophagic vesicles with a bilayer membrane structure and transported to the lysosomes for degradation and recirculation. Autophagy is a crucial pathway involved in the clearance of reactive oxygen species (ROS) and damaged mitochondria. Meanwhile, inhibiting autophagy is a promising strategy for cancer treatment. In this study, we found for the first time that Cinchonine (Cin) can act as an autophagy suppressor and exert anti-tumor effects. Cin significantly inhibited the proliferation, migration, and invasion of cancer cells in vitro and the tumor growth and metastasis in vivo, without obvious toxic effects. We found that Cin suppressed the autophagic process by blocking autophagosome degradation through the inhibition of the maturation of lysosomal hydrolases. Cin-mediated autophagy inhibition resulted in the elevated ROS level and the accumulation of damaged mitochondria, which in turn promoted apoptosis. N-acetylcysteine, a potential ROS scavenger, significantly suppressed Cin-induced apoptosis. Additionally, Cin upregulated programmed death-ligand 1 (PD-L1) expression in lung cancer cells by inhibiting autophagy. Compared with monotherapy and control group, the combined administration of anti-PD-L1 antibody and Cin significantly reduced tumor growth. These results suggest that Cin exerts anti-tumor effects by inhibiting autophagy, and that the combination of Cin and PD-L1 blockade has synergistic anti-tumor effects. The data demonstrates the significant clinical potential of Cin in lung cancer treatment.
Collapse
Affiliation(s)
- Huan Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yuting Shi
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Dannv Ma
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Mengqing Cao
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yuchao Sun
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Xinyuan Jiang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Zhiyong Xu
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yongfang Wang
- Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Ying Yang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China
| | - Yueli Shi
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China.
| | - Kai Wang
- Department of Respiratory Medicine, The Fourth Affiliated Hospital, International Institutes of Medicine, Zhejiang University School of Medicine, Yiwu City, China.
| |
Collapse
|
18
|
Chen Q, Liao Y, Liu Y, Song Y, Jiang J, Zhang Z, Li A, Zheng M, Chen X, Zhao T, Gu J, Tan Y, Liu X, Jiang Y, Wang K, Yi H, Xiao J, Hu S. Identification of Fangjihuangqi Decoction as a late-stage autophagy inhibitor with an adjuvant anti-tumor effect against non-small cell lung cancer. Chin Med 2023; 18:68. [PMID: 37287052 DOI: 10.1186/s13020-023-00770-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 05/16/2023] [Indexed: 06/09/2023] Open
Abstract
BACKGROUND Clinically, although chemotherapy is one of the most commonly used methods of treating tumors, chemotherapeutic drugs can induce autophagic flux and increase tumor cell resistance, leading to drug tolerance. Therefore, theoretically, inhibiting autophagy may improve the efficacy of chemotherapy. The discovery of autophagy regulators and their potential application as adjuvant anti-cancer drugs is of substantial importance. In this study, we clarified that Fangjihuangqi Decoction (FJHQ, traditional Chinese medicine) is an autophagy inhibitor, which can synergistically enhance the effect of cisplatin and paclitaxel on non-small cell lung cancer (NSCLC) cells. METHODS We observed the changes of autophagy level in NSCLC cells under the effect of FJHQ, and verified the level of the autophagy marker protein and cathepsin. Apoptosis was detected after the combination of FJHQ with cisplatin or paclitaxel, and NAC (ROS scavenger) was further used to verify the activation of ROS-MAPK pathway by FJHQ. RESULTS We observed that FJHQ induced autophagosomes in NSCLC cells and increased the levels of P62 and LC3-II protein expression in a concentration- and time-gradient-dependent manner, indicating that autophagic flux was inhibited. Co-localization experiments further showed that while FJHQ did not inhibit autophagosome and lysosome fusion, it affected the maturation of cathepsin and thus inhibited the autophagic pathway. Finally, we found that the combination of FJHQ with cisplatin or paclitaxel increased the apoptosis rate of NSCLC cells, due to increased ROS accumulation and further activation of the ROS-MAPK pathway. This synergistic effect could be reversed by NAC. CONCLUSION Collectively, these results demonstrate that FJHQ is a novel late-stage autophagy inhibitor that can amplify the anti-tumor effect of cisplatin and paclitaxel against NSCLC cells.
Collapse
Affiliation(s)
- Qiugu Chen
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuan Liao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yujiao Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yue Song
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Junbo Jiang
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Zhen Zhang
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Anqi Li
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Mengyi Zheng
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyi Chen
- The Second Clinical College, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Tingxiu Zhao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Jiangyong Gu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yuhui Tan
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Xiaoyi Liu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Yanjun Jiang
- Department of Anaesthesia and Intensive Care, The Chinese University of Hong Kong, Hong Kong, 999077, SAR, China
| | - Kun Wang
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China
| | - Hua Yi
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Jianyong Xiao
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Medical Biotechnology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| | - Shan Hu
- Research Center of Integrative Medicine, School of Basic Medical Sciences, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
- Department of Pathology and Pathophysiology, Guangzhou University of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
19
|
Wu Q, Sharma D. Autophagy and Breast Cancer: Connected in Growth, Progression, and Therapy. Cells 2023; 12:1156. [PMID: 37190065 PMCID: PMC10136604 DOI: 10.3390/cells12081156] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2023] [Revised: 03/29/2023] [Accepted: 04/05/2023] [Indexed: 05/17/2023] Open
Abstract
Despite an increase in the incidence of breast cancer worldwide, overall prognosis has been consistently improving owing to the development of multiple targeted therapies and novel combination regimens including endocrine therapies, aromatase inhibitors, Her2-targeted therapies, and cdk4/6 inhibitors. Immunotherapy is also being actively examined for some breast cancer subtypes. This overall positive outlook is marred by the development of resistance or reduced efficacy of the drug combinations, but the underlying mechanisms are somewhat unclear. It is interesting to note that cancer cells quickly adapt and evade most therapies by activating autophagy, a catabolic process designed to recycle damaged cellular components and provide energy. In this review, we discuss the role of autophagy and autophagy-associated proteins in breast cancer growth, drug sensitivity, tumor dormancy, stemness, and recurrence. We further explore how autophagy intersects and reduces the efficacy of endocrine therapies, targeted therapies, radiotherapy, chemotherapies as well as immunotherapy via modulating various intermediate proteins, miRs, and lncRNAs. Lastly, the potential application of autophagy inhibitors and bioactive molecules to improve the anticancer effects of drugs by circumventing the cytoprotective autophagy is discussed.
Collapse
Affiliation(s)
| | - Dipali Sharma
- Department of Oncology, Johns Hopkins University School of Medicine and the Sidney Kimmel Comprehensive Cancer Center at Johns Hopkins, Baltimore, MD 21287-0013, USA
| |
Collapse
|
20
|
Pellegrini FR, De Martino S, Fianco G, Ventura I, Valente D, Fiore M, Trisciuoglio D, Degrassi F. Blockage of autophagosome-lysosome fusion through SNAP29 O-GlcNAcylation promotes apoptosis via ROS production. Autophagy 2023:1-16. [PMID: 36704963 DOI: 10.1080/15548627.2023.2170962] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023] Open
Abstract
Macroautophagy/autophagy has been shown to exert a dual role in cancer i.e., promoting cell survival or cell death depending on the cellular context and the cancer stage. Therefore, development of potent autophagy modulators, with a clear mechanistic understanding of their target action, has paramount importance in both mechanistic and clinical studies. In the process of exploring the mechanism of action of a previously identified cytotoxic small molecule (SM15) designed to target microtubules and the interaction domain of microtubules and the kinetochore component NDC80/HEC1, we discovered that the molecule acts as a potent autophagy inhibitor. By using several biochemical and cell biology assays we demonstrated that SM15 blocks basal autophagic flux by inhibiting the fusion of correctly formed autophagosomes with lysosomes. SM15-induced autophagic flux blockage promoted apoptosis-mediated cell death associated with ROS production. Interestingly, autophagic flux blockage, apoptosis induction and ROS production were rescued by genetic or pharmacological inhibition of OGT (O-linked N-acetylglucosamine (GlcNAc) transferase) or by expressing an O-GlcNAcylation-defective mutant of the SNARE fusion complex component SNAP29, pointing to SNAP29 as the molecular target of SM15 in autophagy. Accordingly, SM15 was found to enhance SNAP29 O-GlcNAcylation and, thereby, inhibit the formation of the SNARE fusion complex. In conclusion, these findings identify a new pathway in autophagy connecting O-GlcNAcylated SNAP29 to autophagic flux blockage and autophagosome accumulation, that, in turn, drives ROS production and apoptotic cell death. Consequently, modulation of SNAP29 activity may represent a new opportunity for therapeutic intervention in cancer and other autophagy-associated diseases.
Collapse
Affiliation(s)
- Francesca Romana Pellegrini
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Sara De Martino
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Giulia Fianco
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Irene Ventura
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Davide Valente
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Mario Fiore
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Daniela Trisciuoglio
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| | - Francesca Degrassi
- IBPM Institute of Molecular Biology and Pathology, CNR National Research Council, c/o Department of Biology and Biotechnology "Charles Darwin", Sapienza University of Rome, Rome, Italy
| |
Collapse
|
21
|
How ginseng regulates autophagy: Insights from multistep process. Biomed Pharmacother 2023; 158:114139. [PMID: 36580724 DOI: 10.1016/j.biopha.2022.114139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 12/03/2022] [Accepted: 12/13/2022] [Indexed: 12/28/2022] Open
Abstract
BACKGROUND Although autophagy is a recognized contributor to the pathogenesis of human diseases, chloroquine and hydroxychloroquine are the only two FDA-approved autophagy inhibitors to date. Emerging evidence has revealed the potential therapeutic benefits of various extracts and active compounds isolated from ginseng, especially ginsenosides and their derivatives, by mediating autophagy. Mechanistically, active components from ginseng mediate key regulators in the multistep processes of autophagy, namely, initiation, autophagosome biogenesis and cargo degradation. AIM OF REVIEW To date, a review that systematically described the relationship between ginseng and autophagy is still lacking. Breakthroughs in finding the key players in ginseng-autophagy regulation will be a promising research area, and will provide positive insights into the development of new drugs based on ginseng and autophagy. KEY SCIENTIFIC CONCEPTS OF REVIEW Here, we comprehensively summarized the critical roles of ginseng-regulated autophagy in treating diseases, including cancers, neurological disorders, cardiovascular diseases, inflammation, and neurotoxicity. The dual effects of the autophagy response in certain diseases are worthy of note; thus, we highlight the complex impacts of both ginseng-induced and ginseng-inhibited autophagy. Moreover, autophagy and apoptosis are controlled by multiple common upstream signals, cross-regulate each other and affect certain diseases, especially cancers. Therefore, this review also discusses the cross-signal transduction pathways underlying the molecular mechanisms and interaction between ginseng-regulated autophagy and apoptosis.
Collapse
|
22
|
Ko KM, Moon SJ. Prevalence, incidence, and risk factors of malignancy in patients with rheumatoid arthritis: a nationwide cohort study from Korea. Korean J Intern Med 2023; 38:113-124. [PMID: 34407599 PMCID: PMC9816677 DOI: 10.3904/kjim.2021.146] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Accepted: 05/06/2021] [Indexed: 01/21/2023] Open
Abstract
BACKGROUND/AIMS This study aims to evaluate the incidence of malignancy in patients with rheumatoid arthritis (RA) and to investigate risk factors for such in a nationwide, population-based cohort. METHODS In a large, prospective, observational cohort study, 5,077 patients with RA were enrolled from July 2009 to December 2011 and followed until February 2017. Standardized incidence ratios (SIRs) for malignancy were calculated using age- and sex-specific cancer rates in the Korean general population. Poisson regression was used to identify the risk of incident malignancy. RESULTS The cohort included 5,023 participants with RA contributing 16,689 person-years of follow-up. A total of 148 malignancies were recorded. The risks of stomach cancer (SIR, 0.41; 95% confidence interval [CI], 0.21 to 0.74), colon cancer (SIR, 0.13; 95% CI, 0.03 to 0.37), and lung cancer (SIR, 0.35; 95% CI, 0.14 to 0.72) were lower in RA patients than in the general population. Poisson regression modeling demonstrated that the malignancy risk was more than two-fold greater in patients with thyroid disease than in those without thyroid disease. Hydroxychloroquine therapy was associated with a reduced risk (relative risk, 0.39; 95% CI, 0.189 to 0.801) of malignancy development. CONCLUSION The overall risk of malignancy in patients with RA is decreased relative to in the general population. In particular, stomach, colon, and lung cancers in Korean RA patients are less common, while brain and central nervous system cancers in male RA patients are more frequent. The patients with thyroid disease and longer RA disease duration were at increased risk for developing malignancy, while hydroxychloroquine users were at lower risk.
Collapse
Affiliation(s)
- Kyung Min Ko
- Division of Rheumatology, Department of Internal Medicine, International St. Mary’s Hospital, Catholic Kwandong University College of Medicine, Incheon,
Korea
| | - Su-Jin Moon
- Division of Rheumatology, Department of Internal Medicine, Uijeongbu St. Mary’s Hospital, College of Medicine, The Catholic University of Korea, Uijeongbu,
Korea
| |
Collapse
|
23
|
Effect of PhenylEthanol Glycosides from Cistanche Tubulosa on Autophagy and Apoptosis in H22 Tumor-Bearing Mice. EVIDENCE-BASED COMPLEMENTARY AND ALTERNATIVE MEDICINE 2022; 2022:3993445. [DOI: 10.1155/2022/3993445] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 11/01/2022] [Accepted: 11/05/2022] [Indexed: 12/13/2022]
Abstract
An effectual remedy for hepatocellular carcinoma (HCC) and knowledge of the mechanism are urgently needed. Researchers have found that CPhGs, an extract from Cistanche tubulosa (Schenk) Wight, had better antitumor effects, but its mechanism is still unknown. In the present study, using an H22 tumor-bearing mouse as a model, we investigated the antitumor effects of CPhGs and the effect of CPhGs on autophagy and apoptosis. Besides, we also discussed the role of autophagy with the help of HCQ and rapamycin. Our results show that CPhGs inhibit tumor growth and induce apoptosis and autophagy of tumor tissue. TUNEL staining displayed that tumor apoptosis rate increased after the intervention of CPhGs, and immunohistochemistry and western blot showed that cleaved-PARP and cleaved-caspase 3 were upregulated after the intervention of CPhGs, and these results were most pronounced in the high-dose group. Autophagy results revealed that CPhGs increased the number of autophagosomes, increased the level of LC3B-II, and decreased the level of p62. Finally, our results showed that excessive autophagy suppresses tumor growth, whereas inhibition of autophagy does the opposite, which indicated that CPhGs induced autophagic death in H22 hepatoma-bearing mice. These data altogether confirmed the involvement of apoptosis and autophagy in CPhGs treatment for HCC.
Collapse
|
24
|
Mir KB, Faheem MM, Ahmad SM, Rasool JU, Amin T, Chakraborty S, Bhagat M, Ahmed Z, Ali A, Goswami A. β-(4-fluorobenzyl) Arteannuin B induced interaction of ATF-4 and C/EBPβ mediates the transition of breast cancer cells from autophagy to senescence. Front Oncol 2022; 12:1013500. [PMID: 36465376 PMCID: PMC9713483 DOI: 10.3389/fonc.2022.1013500] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2022] [Accepted: 10/17/2022] [Indexed: 08/06/2023] Open
Abstract
ATF-4 is a master regulator of transcription of genes essential for cellular-adaptive function. In response to the quantum and duration of stress, ATF-4 diligently responds to both pro-apoptotic and pro-survival signals converging into either autophagy or apoptosis/senescence. Despite emerging cues implying a relationship between autophagy and senescence, how these two processes are controlled remains unknown. Herein, we demonstrate β-(4-fluorobenzyl) Arteannuin B (here after Arteannuin 09), a novel semisynthetic derivative of Arteannuin B, as a potent ER stress inducer leading to the consistent activation of ATF-4. Persistent ATF-4 expression at early time-points facilitates the autophagy program and consequently by upregulating p21 at later time-points, the signaling is shifted towards G2/M cell cycle arrest. As bZIP transcription factors including ATF-4 are obligate dimers, and because ATF-4 homodimers are not highly stable, we hypothesized that ATF-4 may induce p21 expression by physically interacting with another bZIP family member i.e., C/EBPβ. Our co-immunoprecipitation and co-localization studies demonstrated that ATF-4 is principally responsible for the autophagic potential of Arteannuin 09, while as, induction of both ATF-4 and C/EBPβ is indispensable for the p21 regulated-cell cycle arrest. Interestingly, inhibition of autophagy signaling switches the fate of Arteannuin 09 treated cells from senescence to apoptosis. Lastly, our data accomplished that Arteannuin 09 is a potent inhibitor of tumor growth and inducer of premature senescence in vivo.
Collapse
Affiliation(s)
- Khalid Bashir Mir
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Mir Mohd Faheem
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
- School of Biotechnology, University of Jammu, Jammu, India
| | - Syed Mudabir Ahmad
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Javeed Ur Rasool
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
| | - Tanzeeba Amin
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | | | | | - Zabeer Ahmed
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| | - Asif Ali
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Natural Product and Medicinal Chemistry Division, Council of Scientific & Industrial Research (CSIR)-Indian Institute of Integrative Medicine, Jammu, India
- Division of Medicinal and Process Chemistry, Council of Scientific & Industrial Research (CSIR)-Central Drug Research Institute, Lucknow, Uttar Pradesh, India
| | - Anindya Goswami
- Academy of Scientific & Innovative Research (AcSIR), Ghaziabad, India
- Pharmacology Division, Council of Scientific & Industrial Research (CSIR)-Indian Indian Institute of Integrative Medicine, Jammu, India
| |
Collapse
|
25
|
CUR5g, a novel autophagy inhibitor, exhibits potent synergistic anticancer effects with cisplatin against non-small-cell lung cancer. Cell Death Dis 2022; 8:435. [PMCID: PMC9622744 DOI: 10.1038/s41420-022-01217-9] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2022] [Revised: 10/10/2022] [Accepted: 10/12/2022] [Indexed: 11/08/2022]
Abstract
Autophagy, a highly conserved degradation process of eukaryotic cells, has been proven to be closely related to chemoresistance and metastasis of non-small-cell lung cancer (NSCLC). Autophagy inhibitors, such as chloroquine (CQ) and its derivative hydroxychloroquine (HCQ), has been shown to mediate anticancer effects in preclinical models, especially when combined with chemotherapy. However, the vast majority of autophagy inhibitors, including CQ and HCQ, actually disrupt lysosomal or/and possibly non-lysosomal processes other than autophagy. It is therefore of great significance to discover more specific autophagy inhibitors. In this study, after screening a series of curcumin derivatives synthesized in our laboratory, we found that (3E,5E)-1-methyl-3-(4-hydroxybenzylidene)-5-(3-indolymethylene)-piperidine-4-one (CUR5g) selectively inhibited autophagosome degradation in cancer cells by blocking autophagosome-lysosome fusion. CUR5g did not affect the lysosomal pH and proteolytic function, nor did it disturb cytoskeleton. CUR5g blocked the recruitment of STX17, a soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) protein, to autophagosomes via a UVRAG-dependent mechanism, resulting in the inability of autophagosomes to fuse with lysosomes. CUR5g alone did not induce apoptosis and necrosis of A549 cells, but significantly inhibited the mobility and colony formation of A549 cells. More excitingly, CUR5g showed no obvious toxicity to normal HUVECs in vitro or mice in vivo. CUR5g enhances the cisplatin sensitivity of A549 cells and effectively inhibited autophagy in tumor tissues in vivo. Collectively, our study identified a new late-stage autophagy inhibitor and provided a novel option for NSCLC treatment, particular when combined with cisplatin.
Collapse
|
26
|
Roy A, Bera S, Saso L, Dwarakanath BS. Role of autophagy in tumor response to radiation: Implications for improving radiotherapy. Front Oncol 2022; 12:957373. [PMID: 36172166 PMCID: PMC9510974 DOI: 10.3389/fonc.2022.957373] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Accepted: 08/15/2022] [Indexed: 11/13/2022] Open
Abstract
Autophagy is an evolutionary conserved, lysosome-involved cellular process that facilitates the recycling of damaged macromolecules, cellular structures, and organelles, thereby generating precursors for macromolecular biosynthesis through the salvage pathway. It plays an important role in mediating biological responses toward various stress, including those caused by ionizing radiation at the cellular, tissue, and systemic levels thereby implying an instrumental role in shaping the tumor responses to radiotherapy. While a successful execution of autophagy appears to facilitate cell survival, abortive or interruptions in the completion of autophagy drive cell death in a context-dependent manner. Pre-clinical studies establishing its ubiquitous role in cells and tissues, and the systemic response to focal irradiation of tumors have prompted the initiation of clinical trials using pharmacologic modifiers of autophagy for enhancing the efficacy of radiotherapy. However, the outcome from the Phase I/II trials in many human malignancies has so far been equivocal. Such observations have not only precluded the advancement of these autophagy modifiers in the Phase III trial but have also raised concerns regarding their introduction as an adjuvant to radiotherapy. This warrants a thorough understanding of the biology of the cancer cells, including its spatio-temporal context, as well as its microenvironment all of which might be the crucial factors that determine the success of an autophagy modifier as an anticancer agent. This review captures the current understanding of the interplay between radiation induced autophagy and the biological responses to radiation damage as well as provides insight into the potentials and limitations of targeting autophagy for improving the radiotherapy of tumors.
Collapse
Affiliation(s)
- Amrita Roy
- Department of Biotechnology, Indian Academy Degree College (Autonomous), Bengaluru, Karnataka, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Soumen Bera
- B. S. Abdur Rahman Crescent Institute of Science and Technology, Chennai, India
- Department of Pathology, University of Illinois at Chicago, Chicago, IL, United States
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| | - Luciano Saso
- Department of Physiology and Pharmacology "Vittorio Erspamer", Sapienza University, Rome, Italy
| | - Bilikere S. Dwarakanath
- Central Research Facility, Sri Ramachandra Institute of Higher Education and Research Institute, Chennai, India
- *Correspondence: Amrita Roy, ; ; Soumen Bera, ; ; Bilikere S. Dwarakanath, ;
| |
Collapse
|
27
|
Zhang Y, Zhao Y, Zhang Y, Liu Q, Zhang M, Tu K. The crosstalk between sonodynamic therapy and autophagy in cancer. Front Pharmacol 2022; 13:961725. [PMID: 36046833 PMCID: PMC9421066 DOI: 10.3389/fphar.2022.961725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 07/08/2022] [Indexed: 12/07/2022] Open
Abstract
As a noninvasive treatment approach for cancer and other diseases, sonodynamic therapy (SDT) has attracted extensive attention due to the deep penetration of ultrasound, good focusing, and selective irradiation sites. However, intrinsic limitations of traditional sonosensitizers hinder the widespread application of SDT. With the development of nanotechnology, nanoparticles as sonosensitizers or as a vehicle to deliver sonosensitizers have been designed and used to target tissues or tumor cells with high specificity and accuracy. Autophagy is a common metabolic alteration in both normal cells and tumor cells. When autophagy happens, a double-membrane autophagosome with sequestrated intracellular components is delivered and fused with lysosomes for degradation. Recycling these cell materials can promote survival under a variety of stress conditions. Numerous studies have revealed that both apoptosis and autophagy occur after SDT. This review summarizes recent progress in autophagy activation by SDT through multiple mechanisms in tumor therapies, drug resistance, and lipid catabolism. A promising tumor therapy, which combines SDT with autophagy inhibition using a nanoparticle delivering system, is presented and investigated.
Collapse
Affiliation(s)
- Yujie Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanru Zhao
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Yuanyuan Zhang
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Qingguang Liu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
| | - Mingzhen Zhang
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| | - Kangsheng Tu
- Department of Hepatobiliary Surgery, The First Affiliated Hospital of Xi’an Jiaotong University, Xi’an, Shaanxi, China
- School of Basic Medical Sciences, Xi’an Jiaotong University Health Science Center, Xi’an, Shaanxi, China
| |
Collapse
|
28
|
Wiesinger AM, Bigger B, Giugliani R, Scarpa M, Moser T, Lampe C, Kampmann C, Lagler FB. The Inflammation in the Cytopathology of Patients With Mucopolysaccharidoses- Immunomodulatory Drugs as an Approach to Therapy. Front Pharmacol 2022; 13:863667. [PMID: 35645812 PMCID: PMC9136158 DOI: 10.3389/fphar.2022.863667] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2022] [Accepted: 04/27/2022] [Indexed: 01/31/2023] Open
Abstract
Mucopolysaccharidoses (MPS) are a group of lysosomal storage diseases (LSDs), characterized by the accumulation of glycosaminoglycans (GAGs). GAG storage-induced inflammatory processes are a driver of cytopathology in MPS and pharmacological immunomodulation can bring improvements in brain, cartilage and bone pathology in rodent models. This manuscript reviews current knowledge with regard to inflammation in MPS patients and provides hypotheses for the therapeutic use of immunomodulators in MPS. Thus, we aim to set the foundation for a rational repurposing of the discussed molecules to minimize the clinical unmet needs still remaining despite enzyme replacement therapy (ERT) and hematopoietic stem cell transplantation (HSCT).
Collapse
Affiliation(s)
- Anna-Maria Wiesinger
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- *Correspondence: Anna-Maria Wiesinger,
| | - Brian Bigger
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Stem Cell and Neurotherapies, Division of Cell Matrix Biology and Regenerative Medicine, Faculty of Biology, Medicine and Health, University of Manchester, Manchester, United Kingdom
| | - Roberto Giugliani
- Department of Genetics, Medical Genetics Service and Biodiscovery Laboratory, HCPA, UFRGS, Porto Alegre, Brazil
| | - Maurizio Scarpa
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Regional Coordinating Center for Rare Diseases, University Hospital Udine, Udine, Italy
| | - Tobias Moser
- Department of Neurology, Christian Doppler University Hospital, Paracelsus Medical University, Salzburg, Austria
| | - Christina Lampe
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
- Department of Child and Adolescent Medicine, Center of Rare Diseases, University Hospitals Giessen/Marburg, Giessen, Germany
| | - Christoph Kampmann
- Department of Pediatric Cardiology, University Hospital Mainz, Mainz, Germany
| | - Florian B. Lagler
- Institute of Congenital Metabolic Diseases, Paracelsus Medical University, Salzburg, Austria
- European Reference Network for Hereditary Metabolic Diseases, MetabERN, Udine, Italy
| |
Collapse
|
29
|
Mohamed FEZ, Jalan R, Minogue S, Andreola F, Habtesion A, Hall A, Winstanley A, Damink SO, Malagó M, Davies N, Luong TV, Dhillon A, Mookerjee R, Dhar D, Al-Jehani RM. Inhibition of TLR7 and TLR9 Reduces Human Cholangiocarcinoma Cell Proliferation and Tumor Development. Dig Dis Sci 2022; 67:1806-1821. [PMID: 33939146 DOI: 10.1007/s10620-021-06973-9] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/13/2019] [Accepted: 03/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND Toll-like receptors (TLRs) are key players in innate immunity and modulation of TLR signaling has been demonstrated to profoundly affect proliferation and growth in different types of cancer. However, the role of TLRs in human intrahepatic cholangiocarcinoma (ICC) pathogenesis remains largely unexplored. AIMS We set out to determine if TLRs play any role in ICCs which could potentially make them useful treatment targets. METHODS Tissue microarrays containing samples from 9 human ICCs and normal livers were examined immunohistochemically for TLR4, TLR7, and TLR9 expression. Proliferation of human ICC cell line HuCCT1 was measured by MTS assay following treatment with CpG-ODN (TLR9 agonist), imiquimod (TLR7 agonist), chloroquine (TLR7 and TLR9 inhibitor) and IRS-954 (TLR7 and TLR9 antagonist). The in vivo effects of CQ and IRS-954 on tumor development were also examined in a NOD-SCID mouse xenograft model of human ICC. RESULTS TLR4 was expressed in all normal human bile duct epithelium but absent in the majority (60%) of ICCs. TLR7 and TLR9 were expressed in 80% of human ICCs. However, TLR7 was absent in all cases of normal human bile duct epithelium and only one was TLR9 positive. HuCCT1 cell proliferation in vitro significantly increased following IMQ or CpG-ODN treatment (P < 0.03 and P < 0.002, respectively) but decreased with CQ (P < 0.02). In the mouse xenograft model there was significant reduction in size of tumors from CQ and IRS-954 treated mice compared to untreated controls. CONCLUSION TLR7 and TLR9 should be further explored for their potential as actionable targets in the treatment of ICC.
Collapse
Affiliation(s)
- Fatma El Zahraa Mohamed
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK.,Pathology Department, Minia University, El-Minia, Egypt
| | - Rajiv Jalan
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Shane Minogue
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Fausto Andreola
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Abeba Habtesion
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Andrew Hall
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK
| | - Alison Winstanley
- Department of Cellular Pathology, University College London Hospitals NHS Foundation Trust, London, UK
| | - Steven Olde Damink
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Massimo Malagó
- Academic Department of Surgery and Interventional Sciences, Royal Free Hospital, London, UK
| | - Nathan Davies
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Tu Vinh Luong
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Amar Dhillon
- Department of Cellular Pathology, Royal Free London NHS Foundation Trust, London, UK
| | - Rajeshwar Mookerjee
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Dipok Dhar
- UCL Institute for Liver and Digestive Health, Royal Free Hospital, London, UK
| | - Rajai Munir Al-Jehani
- UCL Institute for Liver and Digestive Health, Royal Free London NHS Foundation Trust, London, UK.
| |
Collapse
|
30
|
Herweijer E, Schwamborn K, Bollaerts K, Spillmann A, Cattaert T, Verstraeten T, Hoogstraate J. Evaluation of Heterologous Effects of Travel Vaccines in Colorectal Cancer: A Database Study and a Cautionary Tale. GASTRO HEP ADVANCES 2022; 1:531-537. [PMID: 39132057 PMCID: PMC11308043 DOI: 10.1016/j.gastha.2022.02.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/11/2022] [Accepted: 02/15/2022] [Indexed: 08/13/2024]
Abstract
Background and Aims Recently, cholera vaccine use was shown to be associated with a reduced risk of death in patients with colorectal cancer (CRC). However, evidence on heterologous effects of travel vaccines is limited. The aim of this study was to study heterologous effects of travel vaccines in patients with CRC. Methods We performed a retrospective database study on a cohort of CRC patients in Sweden and their postdiagnostic use of travel medications between July 2005 and December 2017. We obtained data from national registries on number of CRC diagnosis, death from CRC or other causes, age at diagnosis, and postdiagnostic use of travel vaccines and malaria prophylaxis. The Cox regression model was used to calculate incidence rate and incidence rate ratios of CRC-related and all-cause mortality by postdiagnostic travel medication status. Results Two hundred ninety-five patients exposed to travel vaccines and malaria prophylaxis and 73,466 patients not exposed to travel medications were identified. CRC-related mortality was lowered in the exposed patients compared to the unexposed patients, irrespective of the travel medications used. The incidence rate ratios for CRC-related mortality and overall mortality were comparable. Conclusion We postulated that patients in better health were likely to travel more frequently than patients with poor health, leading to a healthy user bias. The results suggested the same, as similar reduced mortality risks were found for all the investigated travel medications, lowering the biological plausibility of truly protective effect from post-therapeutic use of any of the travel medication studied. We advocate the use of multiple negative exposure controls and to exercise caution while drawing conclusions from travel vaccine research.
Collapse
Affiliation(s)
- Eva Herweijer
- P95 Epidemiology and Pharmacovigilance, Heverlee, Belgium
| | - Klaus Schwamborn
- Global Scientific Alliance & innovation, Valneva SE, Saint-Herblain, France
| | | | | | - Tom Cattaert
- P95 Epidemiology and Pharmacovigilance, Heverlee, Belgium
| | | | | |
Collapse
|
31
|
Bhattacharya S, Saindane D, Prajapati BG. Liposomal Drug Delivery And Its Potential Impact On Cancer Research. Anticancer Agents Med Chem 2022; 22:2671-2683. [PMID: 35440318 DOI: 10.2174/1871520622666220418141640] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 02/08/2022] [Accepted: 02/24/2022] [Indexed: 11/22/2022]
Abstract
Liposomes are one of the most versatile drug carriers due to their functional properties, such as higher biocompatibility, the ability to encapsulate hydrophilic and hydrophobic products, and higher biodegradability. Liposomes are a better and more significant nanocarrier for cancer therapy. The key to developing a better cancer-targeted nanocarrier is the development of targeted liposomes using various approaches. Several traditional and novel liposome preparation methods are briefly discussed in this mini-review. The current state of liposome targeting, active and passive liposome targeting in cancer therapy, ligand directed targeting (antibody, aptamer, and protein/peptide-mediated targeting), and other miscellaneous approaches such as stimuli-responsive liposome-based targeting, autophagy inhibition mediated targeting, and curcumin loaded liposomal targeting are all discussed within. All of this gathered and compiled information will shed new light on liposome targeting strategies in cancer treatment and will pique the interest of aspiring researchers and academicians.
Collapse
Affiliation(s)
- Sankha Bhattacharya
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | - Dnyanesh Saindane
- School of Pharmacy & Technology Management, SVKM'S NMIMS Deemed-to-be University, Shirpur, Maharashtra 425405
| | | |
Collapse
|
32
|
Goenka L, Dubashi B, Selvarajan S, Ganesan P. Use of "Repurposed" Drugs in the Treatment of Epithelial Ovarian Cancer: A Systematic Review. Am J Clin Oncol 2022; 45:168-174. [PMID: 35320817 DOI: 10.1097/coc.0000000000000900] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Epithelial ovarian cancer has poor outcomes with standard therapy and limited options for treatment of recurrent disease. This systematic review summarizes the data on the clinical use of repurposed drugs. We searched for clinical studies using "repurposed" agents for the treatment of ovarian cancer in the following databases: PubMed, clinicaltrials.gov, Clinical Trial Registry of India, European Clinical Trials Registry, and Chinese Clinical Trial Registry. We excluded reviews, preclinical studies, and non-English language studies. We assessed the quality of included studies. The following agents/class of agents were included: statins, hydroxychloroquine, metformin, itraconazole, nonsteroidal anti-inflammatory drugs, vitamin D, proton pump inhibitors, beta-blockers, and sodium valproate. Only one randomized controlled trial investigated metformin, which found no benefit of metformin. However, this had a high risk of bias (no details of randomization). Among the observational studies, 70% were of high quality (Newcastle-Ottawa scale ≥7). Clinical benefit was seen for itraconazole, beta-blockers, metformin, statins, and proton pump inhibitors. Though multiple studies aim to repurpose agents in epithelial ovarian cancer, the most published literature is observational, and none are practice-changing. Given the solid preclinical data regarding the anticancer efficacy of these agents, well-designed clinical trials are urgently required.
Collapse
|
33
|
A Novel Autophagy-Related Prognostic Risk Model and a Nomogram for Survival Prediction of Oral Cancer Patients. BIOMED RESEARCH INTERNATIONAL 2022; 2022:2067540. [PMID: 35036428 PMCID: PMC8758260 DOI: 10.1155/2022/2067540] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/09/2021] [Accepted: 12/11/2021] [Indexed: 12/26/2022]
Abstract
Background. This study is aimed at constructing a risk signature to predict survival outcomes of ORCA patients. Methods. We identified differentially expressed autophagy-related genes (DEARGs) based on the RNA sequencing data in the TCGA database; then, four independent survival-related ARGs were identified to construct an autophagy-associated signature for survival prediction of ORCA patients. The validity and robustness of the prognostic model were validated by clinicopathological data and survival data. Subsequently, four independent prognostic DEARGs that composed the model were evaluated individually. Results. The expressions of 232 autophagy-related genes (ARGs) in 127 ORCA and 13 control tissues were compared, and 36 DEARGs were filtered out. We performed functional enrichment analysis and constructed protein–protein interaction network for 36 DEARGs. Univariate and multivariate Cox regression analyses were adopted for searching prognostic ARGs, and an autophagy-associated signature for ORCA patients was constructed. Eventually, 4 desirable independent survival-related ARGs (WDR45, MAPK9, VEGFA, and ATIC) were confirmed and comprised the prognostic model. We made use of multiple ways to verify the accuracy of the novel autophagy-related signature for survival evaluation, such as receiver-operator characteristic curve, Kaplan–Meier plotter, and clinicopathological correlational analyses. Four independent prognostic DEARGs that formed the model were also associated with the prognosis of ORCA patients. Conclusions. The autophagy-related risk model can evaluate OS for ORCA patients independently since it is accurate and stable. Four prognostic ARGs that composed the model can be studied deeply for target treatment.
Collapse
|
34
|
Ziegler DV, Huber K, Fajas L. The Intricate Interplay between Cell Cycle Regulators and Autophagy in Cancer. Cancers (Basel) 2021; 14:cancers14010153. [PMID: 35008317 PMCID: PMC8750274 DOI: 10.3390/cancers14010153] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Revised: 12/22/2021] [Accepted: 12/23/2021] [Indexed: 01/07/2023] Open
Abstract
Simple Summary Autophagy is an intracellular catabolic program regulated by multiple external and internal cues. A large amount of evidence unraveled that cell-cycle regulators are crucial in its control. This review highlights the interplay between cell-cycle regulators, including cyclin-dependent kinase inhibitors, cyclin-dependent kinases, and E2F factors, in the control of autophagy all along the cell cycle. Beyond the intimate link between cell cycle and autophagy, this review opens therapeutic perspectives in modulating together these two aspects to block cancer progression. Abstract In the past decade, cell cycle regulators have extended their canonical role in cell cycle progression to the regulation of various cellular processes, including cellular metabolism. The regulation of metabolism is intimately connected with the function of autophagy, a catabolic process that promotes the efficient recycling of endogenous components from both extrinsic stress, e.g., nutrient deprivation, and intrinsic sub-lethal damage. Mediating cellular homeostasis and cytoprotection, autophagy is found to be dysregulated in numerous pathophysiological contexts, such as cancer. As an adaptative advantage, the upregulation of autophagy allows tumor cells to integrate stress signals, escaping multiple cell death mechanisms. Nevertheless, the precise role of autophagy during tumor development and progression remains highly context-dependent. Recently, multiple articles has suggested the importance of various cell cycle regulators in the modulation of autophagic processes. Here, we review the current clues indicating that cell-cycle regulators, including cyclin-dependent kinase inhibitors (CKIs), cyclin-dependent kinases (CDKs), and E2F transcription factors, are intrinsically linked to the regulation of autophagy. As an increasing number of studies highlight the importance of autophagy in cancer progression, we finally evoke new perspectives in therapeutic avenues that may include both cell cycle inhibitors and autophagy modulators to synergize antitumor efficacy.
Collapse
|
35
|
Ren R, Yuan Z, Xu Z. miRNA-144 targeting DNAJC3-AS1 reverses the resistance of the breast cancer cell line Michigan Cancer Foundation-7 to doxorubicin. Bioengineered 2021; 12:9885-9892. [PMID: 34895046 PMCID: PMC8810046 DOI: 10.1080/21655979.2021.1999373] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Abstract
This study investigated the role of miRNA-144 (miR-144) targeting of the long noncoding DNAJC3-AS1 in regulating breast cancer chemosensitivity. Real-time quantitative polymerase chain reaction was employed to detect the levels of miR-144 in different drug-resistant cells. MTT assays were used to measure the proliferation of cells in different treatment groups. The apoptosis rate of transfected cells was detected by flow cytometry. Western blotting was used to detect levels of DNAJC3-AS1 protein and of autophagy-related proteins. A double luciferase report experiment was performed to evaluate the targeting effect of miR-144 on DNAJC3-AS1. The level of miR-144 was significantly downregulated in MCF-7 doxorubicin-resistant cells. Upregulated expression of miR-144 increased the doxorubicin sensitivity of drug-resistant cells and the rate of apoptosis. DNAJC3-AS1 was the direct target of miR-144; overexpression of DNAJC3-AS1 significantly rescued the apoptosis induced by miR-144 and reversed the inhibition of autophagy by miR-144. Overexpression of miR-144 can reduce drug resistance in breast cancer cells by inhibiting autophagy or targeting DNAJC3-AS1 for downregulation. miR-144/DNAJC3-AS1 provide a new target for reducing drug resistance in breast cancer.
Collapse
Affiliation(s)
- Ruiping Ren
- Chemoradiotherapy Center of Oncology, The Affiliated People's Hospital of Ningbo University, Zhejiang, Ningbo, 315000, RPChina
| | - Zuguo Yuan
- Chemoradiotherapy Center of Oncology, The Affiliated People's Hospital of Ningbo University, Zhejiang, Ningbo, 315000, RPChina
| | - Zhengyang Xu
- Chemoradiotherapy Center of Oncology, The Affiliated People's Hospital of Ningbo University, Zhejiang, Ningbo, 315000, RPChina
| |
Collapse
|
36
|
Li XB, Cao NW, Chu XJ, Zhou HY, Wang H, Yu SJ, Ye DQ, Li BZ. Antimalarials may reduce cancer risk in patients with systemic lupus erythematosus: a systematic review and meta-analysis of prospective studies. Ann Med 2021; 53:1687-1695. [PMID: 34553648 PMCID: PMC8462850 DOI: 10.1080/07853890.2021.1981547] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Accepted: 09/12/2021] [Indexed: 01/01/2023] Open
Abstract
OBJECTIVE To investigate the effect of antimalarials on cancer risk in patients with systemic lupus erythematosus (SLE). METHODS PubMed, EMBASE, Web of Science, and the Cochrane Library were searched from their inception to October 3, 2020. Relative risk (RR) with 95% confidence intervals (CI) was used to evaluate the results. Subgroup analyses were used to assess heterogeneity. A funnel plot was used to explore publication bias. STATA was applied for all analyses. RESULTS A total of nine studies consisted of four nested case-control, two case-cohort and three cohort studies were included. The results showed that antimalarials might reduce the risk of cancer in SLE (RR = 0.68, 95%CI: 0.55-0.85). In the subgroup analysis of four nested case-control and two case-cohort studies, the pooled RR was estimated as 0.69 (95% CI: 0.60-0.80). In four studies about hydroxychloroquine, the pooled RR was estimated as 0.70 (95% CI: 0.53-0.93). Antimalarials might reduce the risk of cancer in SLE among the Asian population (RR = 0.66; 95% CI: 0.49-0.88) (I2 = 43.1%, p = .173). And the consistent result was also found in SLE from multiple centres (RR = 0.72; 95%CI: 0.60-0.87) (I2 = 0%, p = .671). On disease course- and comorbidities-matched studies, the pooled RRs were 0.69 (95% CI: 0.52-0.93) and 0.59 (95% CI: 0.46-0.75), respectively. CONCLUSION Results of this meta-analysis showed that antimalarial drugs might be protective factors for cancer in SLE. Hydroxychloroquine might be a protective factor for cancer in SLE patients.KEY MESSAGESAntimalarials might be protective factors for cancer in SLE.Hydroxychloroquine might be a protective factor for cancer in SLE patients.The first article to perform the meta-analysis of antimalarial drugs on the risk of cancer in SLE patients.
Collapse
Affiliation(s)
- Xian-Bao Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Nv-Wei Cao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Xiu-Jie Chu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Hao-Yue Zhou
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Hua Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Si-Jie Yu
- Department of Clinical Medicine “5 + 3” Integration, Second Clinical Medical College, Anhui Medical University, Hefei, Anhui, China
| | - Dong-Qing Ye
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| | - Bao-Zhu Li
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui, China
- Anhui Provincial Laboratory of Inflammatory and Immune Diseases, Hefei, Anhui, China
| |
Collapse
|
37
|
Brun S, Bestion E, Raymond E, Bassissi F, Jilkova ZM, Mezouar S, Rachid M, Novello M, Tracz J, Hamaï A, Lalmanach G, Vanderlynden L, Legouffe R, Stauber J, Schubert T, Plach MG, Courcambeck J, Drouot C, Jacquemot G, Serdjebi C, Roth G, Baudoin JP, Ansaldi C, Decaens T, Halfon P. GNS561, a clinical-stage PPT1 inhibitor, is efficient against hepatocellular carcinoma via modulation of lysosomal functions. Autophagy 2021; 18:678-694. [PMID: 34740311 PMCID: PMC9037544 DOI: 10.1080/15548627.2021.1988357] [Citation(s) in RCA: 47] [Impact Index Per Article: 11.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Abstract
Hepatocellular carcinoma is the most frequent primary liver cancer. Macroautophagy/autophagy inhibitors have been extensively studied in cancer but, to date, none has reached efficacy in clinical trials. In this study, we demonstrated that GNS561, a new autophagy inhibitor, whose anticancer activity was previously linked to lysosomal cell death, displayed high liver tropism and potent antitumor activity against a panel of human cancer cell lines and in two hepatocellular carcinoma in vivo models. We showed that due to its lysosomotropic properties, GNS561 could reach and specifically inhibited its enzyme target, PPT1 (palmitoyl-protein thioesterase 1), resulting in lysosomal unbound Zn2+ accumulation, impairment of cathepsin activity, blockage of autophagic flux, altered location of MTOR (mechanistic target of rapamycin kinase), lysosomal membrane permeabilization, caspase activation and cell death. Accordingly, GNS561, for which a global phase 1b clinical trial in liver cancers was just successfully achieved, represents a promising new drug candidate and a hopeful therapeutic strategy in cancer treatment. Abbreviations: ANXA5:annexin A5; ATCC: American type culture collection; BafA1: bafilomycin A1; BSA: bovine serum albumin; CASP3: caspase 3; CASP7: caspase 7; CASP8: caspase 8; CCND1: cyclin D1; CTSB: cathepsin B; CTSD: cathepsin D; CTSL: cathepsin L; CQ: chloroquine; iCCA: intrahepatic cholangiocarcinoma; DEN: diethylnitrosamine; DMEM: Dulbelcco’s modified Eagle medium; FBS: fetal bovine serum; FITC: fluorescein isothiocyanate; GAPDH: glyceraldehyde-3-phosphate dehydrogenase; HCC: hepatocellular carcinoma; HCQ: hydroxychloroquine; HDSF: hexadecylsulfonylfluoride; IC50: mean half-maximal inhibitory concentration; LAMP: lysosomal associated membrane protein; LC3-II: phosphatidylethanolamine-conjugated form of MAP1LC3; LMP: lysosomal membrane permeabilization; MALDI: matrix assisted laser desorption ionization; MAP1LC3/LC3: microtubule associated protein 1 light chain 3; MKI67: marker of proliferation Ki-67; MTOR: mechanistic target of rapamycin kinase; MRI: magnetic resonance imaging; NH4Cl: ammonium chloride; NtBuHA: N-tert-butylhydroxylamine; PARP: poly(ADP-ribose) polymerase; PBS: phosphate-buffered saline; PPT1: palmitoyl-protein thioesterase 1; SD: standard deviation; SEM: standard error mean; vs, versus; Zn2+: zinc ion; Z-Phe: Z-Phe-Tyt(tBu)-diazomethylketone; Z-VAD-FMK: carbobenzoxy-valyl-alanyl-aspartyl-[O-methyl]- fluoromethylketone.
Collapse
Affiliation(s)
| | - Eloïne Bestion
- Genoscience Pharma, Marseille, France.,Aix-Marseille Univ, MEPHI, APHM, IRD, IHU Méditerranée Infection, Marseille, France
| | - Eric Raymond
- Genoscience Pharma, Marseille, France.,Medical Oncology, Paris Saint-Joseph Hospital, Paris, France
| | | | - Zuzana Macek Jilkova
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.,University of Grenoble Alpes, Faculté De Médecine, France.,Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, Chu Grenoble, France
| | | | | | | | | | - Ahmed Hamaï
- Institut Necker-Enfants Malades, Inserm U1151-CNRS UMR, Paris, France.,University of Paris Descartes-Sorbonne Paris Cité, Paris, France
| | - Gilles Lalmanach
- Inserm, UMR1100, Centre d'Etude Des Pathologies Respiratoires, Equipe "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.,University of Tours, Tours, France
| | - Lise Vanderlynden
- Inserm, UMR1100, Centre d'Etude Des Pathologies Respiratoires, Equipe "Mécanismes Protéolytiques Dans l'Inflammation", Tours, France.,University of Tours, Tours, France
| | | | | | | | | | | | | | | | | | - Gael Roth
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.,University of Grenoble Alpes, Faculté De Médecine, France.,Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, Chu Grenoble, France
| | - Jean-Pierre Baudoin
- Aix-Marseille Univ, MEPHI, APHM, IRD, IHU Méditerranée Infection, Marseille, France
| | | | - Thomas Decaens
- Institute for Advanced Biosciences, Research Center UGA/Inserm U 1209/CNRS 5309, La Tronche, France.,University of Grenoble Alpes, Faculté De Médecine, France.,Clinique Universitaire d'Hépato-gastroentérologie, Pôle Digidune, Chu Grenoble, France
| | | |
Collapse
|
38
|
Chen X, Sheng D, Kong X. The Efficacy of Hydroxychloroquine Combined with Huangqi Tablets in the Treatment of Diabetic Nephropathy. JOURNAL OF HEALTHCARE ENGINEERING 2021; 2021:7988924. [PMID: 34707799 PMCID: PMC8545567 DOI: 10.1155/2021/7988924] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 08/28/2021] [Accepted: 09/16/2021] [Indexed: 01/28/2023]
Abstract
Objective This study aimed to analyze the effect of hydroxychloroquine combined with Huangqi tablets in the treatment of diabetic nephropathy (DN). Methods Eighty patients with DN were enrolled and divided into two groups by a random number table. 27 patients received routine treatment + hydroxychloroquine (group A), while 27 patients received routine treatment + hydroxychloroquine + Huangqi tablets (group B) and 26 patients received routine treatment (group C). Results FPG, 2h PG, and HbA1c levels as well as TC and TG levels were lower in group B than in groups A and C at the end of 3 months of treatment and were lower in group A than in group C (P < 0.05). SCR, BUN, and 24-hour urine protein were reduced in group B after therapy, whereas eGFR was increased and the difference between groups A and C was significant (P=0.05). After treatment, VEGF, IGF-1, and TGF-1 levels were lower in group B than in groups A and C and in group A than in group C (P=0.05). Total symptom scores at 2, 4, and 6 months after treatment was lower in group B than in groups A and C, and they were lower in group A than in group C at all time points (P < 0.05). The total effective rates of treatment in groups A, B, and C were 66.67%, 88.89%, and 38.46% (P < 0.05). The incidence of adverse reactions in groups A, B, and C was 37.04%, 25.93%, and 11.54% (P > 0.05). Conclusion Hydroxychloroquine combined with Huangqi tablets in the treatment of DN showed the best efficacy, with better control of blood glucose and lipids, which can more effectively delay the progression of renal lesions and effectively inhibit the expression of VEGF, IGF, and TGF-β1 in tethered cells with high safety.
Collapse
Affiliation(s)
- Xiaorong Chen
- Department of Nephrology, the First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang 311400, China
| | - Danhong Sheng
- Department of Nephrology, the First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang 311400, China
| | - Xiangdong Kong
- Department of Nephrology, the First People's Hospital of Fuyang Hangzhou, Hangzhou, Zhejiang 311400, China
| |
Collapse
|
39
|
Chen J, Pan Q, Bai Y, Chen X, Zhou Y. Hydroxychloroquine Induces Apoptosis in Cholangiocarcinoma via Reactive Oxygen Species Accumulation Induced by Autophagy Inhibition. Front Mol Biosci 2021; 8:720370. [PMID: 34568426 PMCID: PMC8462510 DOI: 10.3389/fmolb.2021.720370] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2021] [Accepted: 08/16/2021] [Indexed: 12/18/2022] Open
Abstract
Purpose: Despite considerable efforts to improve treatment modalities for cholangiocarcinoma, a common form of malignant tumor, its long-term survival rate remains poor. Hydroxychloroquine (HCQ) is a 4-aminoquinoline derivative antimalarial drug that has antimalarial and autophagy inhibition effects and exhibits comprehensive therapeutic effects on various cancers. In this study, we aimed to explore the anticancer potential and the underlying molecular mechanism of HCQ in cholangiocarcinoma treatment in vitro and in vivo. Methods: Autophagy-related genes (ARGs) were obtained from the Human Autophagy Database and Molecular Signatures Database, and the expression profiles of ARGs were downloaded from the database of The Cancer Genome Atlas. Different expression gene sets were performed using R software. The Gene Ontology and KEGG enrichment analyses were performed to reveal significantly enriched signaling pathways and to identify differentially expressed genes in cholangiocarcinoma tissues. HuCCT-1 and CCLP-1 cells were exposed to different concentrations of HCQ. Cell proliferation was detected by Cell Counting Kit-8 (CCK-8), colony formation, and 5-ethynyl-2'-deoxyuridine (EdU) assays. Cell apoptosis and cycle arrest were detected by the Live/Dead cell assay and flow cytometry (FCM). The inhibition of autophagy was observed using fluorescence microscopy. The reactive oxygen species levels were assessed by fluorescence microscopy and flow cytometry. The protein levels were determined by western blot. A cholangiocarcinoma cell line xenograft model was used to evaluate the antitumor activity of HCQ in vivo. Results: Compared with normal tissues, there were 141 ARGs with an aberrant expression in cholangiocarcinoma tissues which were mainly enriched in autophagy-related processes. Inhibition of autophagy by HCQ effectively suppressed cholangiocarcinoma in vitro and in vivo. HCQ inhibited cell proliferation and induced apoptosis and cycle arrest in vitro by increasing ROS accumulation, which was involved in autophagy inhibition. The ROS scavenger reduced l-glutathione distinctly weakened HCQ-induced cell apoptosis and viability inhibition in cholangiocarcinoma cells. In addition, HCQ inhibited growth of cholangiocarcinoma cell line xenograft tumors. Conclusion: HCQ could inhibit cell proliferation and induce apoptosis in cholangiocarcinoma by triggering ROS accumulation via autophagy inhibition, which makes HCQ a potential antitumor drug candidate for cholangiocarcinoma treatment.
Collapse
Affiliation(s)
- Jiaqi Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Qiaoya Pan
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yang Bai
- Department of Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xuepeng Chen
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| | - Yi Zhou
- Stomatology Hospital, School of Stomatology, Zhejiang University School of Medicine, Clinical Research Center for Oral Diseases of Zhejiang Province, Key Laboratory of Oral Biomedical Research of Zhejiang Province, Cancer Center of Zhejiang University, Hangzhou, China
| |
Collapse
|
40
|
DeLiberty JM, Robb R, Gates CE, Bryant KL. Unraveling and targeting RAS-driven metabolic signaling for therapeutic gain. Adv Cancer Res 2021; 153:267-304. [PMID: 35101233 DOI: 10.1016/bs.acr.2021.07.010] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
RAS mutations are among the most frequent oncogenic drivers observed in human cancers. With a lack of available treatment options, RAS-mutant cancers account for many of the deadliest cancers in the United States. Recent studies established that altered metabolic requirements are a hallmark of cancer, and many of these alterations are driven by aberrant RAS signaling. Specifically, RAS-driven cancers are characterized by upregulated glycolysis, the differential channeling of glycolytic intermediates, upregulated nutrient scavenging pathways such as autophagy and macropinocytosis, and altered glutamine utilization and mitochondrial function. This unique metabolic landscape promotes tumorigenesis, proliferation, survival in nutrient deficient environments and confers resistance to conventional cytotoxic and targeted therapies. Emerging work demonstrates how these dependencies can be therapeutically exploited in vitro and in vivo with many metabolic inhibitors currently in clinical trials. This review aims to outline the unique metabolic requirements induced by aberrant RAS signaling and how these altered dependencies present opportunities for therapeutic intervention.
Collapse
Affiliation(s)
- Jonathan M DeLiberty
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Ryan Robb
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Claire E Gates
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States
| | - Kirsten L Bryant
- Department of Pharmacology, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States; Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC, United States.
| |
Collapse
|
41
|
Identification of Compound CB-2 as a Novel Late-Stage Autophagy Inhibitor Exhibits Inhibitory Potency against A549 Cells. Life (Basel) 2021; 11:life11080865. [PMID: 34440609 PMCID: PMC8401303 DOI: 10.3390/life11080865] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 08/12/2021] [Accepted: 08/20/2021] [Indexed: 01/07/2023] Open
Abstract
Autophagy has been recognized as a stress tolerance mechanism that maintains cell viability, which contributes to tumor progression, dormancy, and treatment resistance. The inhibition of autophagy in cancer has the potential to improve the therapeutic efficacy. It is therefore of great significance to search for new autophagy inhibitors. In the present study, after screening a series of curcumin derivatives synthesized in our laboratory, (E)-3-((E)-4-chlorobenzylidene)-5-((5-methoxy-1H-indol-3-yl)methylene)-1-methylpiperidin-4-one (CB-2) was selected as a candidate for further study. We found that CB-2 increased the LC3B-II and SQSTM1 levels associated with the accumulation of autophagosomes in non-small cell lung cancer (NSCLC) A549 cells. The increased level of LC3B-II induced by CB-2 was neither eliminated when autophagy initiation was suppressed by wortmannin nor further increased when autophagosome degradation was inhibited by chloroquine (CQ). CB-2 enhanced the accumulation of LC3B-II under starvation conditions. Further studies revealed that CB-2 did not affect the levels of the key proteins involved in autophagy induction but significantly blocked the fusion of autophagosomes with lysosomes. High-dose CB-2 induced the apoptosis and necrosis of A549 cells, while a lower dose of CB-2 mainly impaired the migrative capacity of A549 cells, which only slightly induced cell apoptosis. CB-2 increased the levels of mitochondrial-derived reactive oxygen species (ROS) while decreasing the mitochondrial membrane potential (MMP). Scavenging ROS via N-acetylcysteine (NAC) reversed CB-2-induced autophagy inhibition and its inhibitory effect against A549 cells. In conclusion, CB-2 serves as a new late-stage autophagy inhibitor, which has a strong inhibitory potency against A549 cells.
Collapse
|
42
|
Donia T, Gerges MN, Mohamed TM. Anticancer Effects of Combination of Indole-3-Carbinol and Hydroxychloroquine on Ehrlich Ascites Carcinoma via Targeting Autophagy and Apoptosis. Nutr Cancer 2021; 74:1802-1818. [PMID: 34379013 DOI: 10.1080/01635581.2021.1960388] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
Indole-3-carbinol (I3C) is an active component of cruciferous vegetables which is considered a promising antineoplastic agent. This study aimed to assess I3C antineoplastic activity alone and with hydroxychloroquine (HCQ) on Ehrlich ascites carcinoma (EAC) model. Eighty female mice were divided into six groups wherein all groups except groups I and II received EAC cells (106 cells/mouse i.p.). Group I, served as control; group II served as I3C; group III served as EAC; groups IV and V received I3C (250 mg/kg body weight oral), and HCQ (60 mg/kg body weight i.p.) respectively; GVI received both I3C and HCQ. Antitumor response markers, serum, hepatic and renal biochemical parameters, histopathological changes, as well as autophagy and apoptosis markers in EAC cells were analyzed. The combination of I3C and HCQ showed the best antitumor responses with increased survival time and ameliorated biochemical parameters. Moreover, I3C upregulated LC3B and downregulated p62 gene expression in EAC cells. Furthermore, I3C combined with HCQ induced apoptosis by highly upregulating cleaved caspase-3 and Bax while downregulating Bcl-2 proteins expression in EAC cells in comparison with each drug alone. In conclusion, I3C combined with HCQ exhibited better antitumor activities than each drug alone via targeting autophagy and apoptosis.
Collapse
Affiliation(s)
- Thoria Donia
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Marian N Gerges
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| | - Tarek M Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, Egypt
| |
Collapse
|
43
|
Sannino S, Yates ME, Schurdak ME, Oesterreich S, Lee AV, Wipf P, Brodsky JL. Unique integrated stress response sensors regulate cancer cell susceptibility when Hsp70 activity is compromised. eLife 2021; 10:64977. [PMID: 34180400 PMCID: PMC8275131 DOI: 10.7554/elife.64977] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2020] [Accepted: 06/27/2021] [Indexed: 12/11/2022] Open
Abstract
Molecular chaperones, such as Hsp70, prevent proteotoxicity and maintain homeostasis. This is perhaps most evident in cancer cells, which overexpress Hsp70 and thrive even when harboring high levels of misfolded proteins. To define the response to proteotoxic challenges, we examined adaptive responses in breast cancer cells in the presence of an Hsp70 inhibitor. We discovered that the cells bin into distinct classes based on inhibitor sensitivity. Strikingly, the most resistant cells have higher autophagy levels, and autophagy was maximally activated only in resistant cells upon Hsp70 inhibition. In turn, resistance to compromised Hsp70 function required the integrated stress response transducer, GCN2, which is commonly associated with amino acid starvation. In contrast, sensitive cells succumbed to Hsp70 inhibition by activating PERK. These data reveal an unexpected route through which breast cancer cells adapt to proteotoxic insults and position GCN2 and autophagy as complementary mechanisms to ensure survival when proteostasis is compromised.
Collapse
Affiliation(s)
- Sara Sannino
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| | - Megan E Yates
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Medical Scientist Training Program, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Mark E Schurdak
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, United States.,University of Pittsburgh Drug Discovery Institute, Pittsburgh, United States
| | - Steffi Oesterreich
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Adrian V Lee
- Women's Cancer Research Center, UPMC Hillman Cancer Center, Magee-Women Research Institute, Pittsburgh, United States.,Integrative Systems Biology Program, University of Pittsburgh, Pittsburgh, United States.,Department of Pharmacology and Chemical Biology, University of Pittsburgh School of Medicine, Pittsburgh, United States
| | - Peter Wipf
- Department of Chemistry, University of Pittsburgh, Pittsburgh, United States
| | - Jeffrey L Brodsky
- Department of Biological Sciences, University of Pittsburgh, Pittsburgh, United States
| |
Collapse
|
44
|
Autophagy Modulators in Cancer Therapy. Int J Mol Sci 2021; 22:ijms22115804. [PMID: 34071600 PMCID: PMC8199315 DOI: 10.3390/ijms22115804] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2021] [Accepted: 05/24/2021] [Indexed: 02/06/2023] Open
Abstract
Autophagy is a process of self-degradation that plays an important role in removing damaged proteins, organelles or cellular fragments from the cell. Under stressful conditions such as hypoxia, nutrient deficiency or chemotherapy, this process can also become the strategy for cell survival. Autophagy can be nonselective or selective in removing specific organelles, ribosomes, and protein aggregates, although the complete mechanisms that regulate aspects of selective autophagy are not fully understood. This review summarizes the most recent research into understanding the different types and mechanisms of autophagy. The relationship between apoptosis and autophagy on the level of molecular regulation of the expression of selected proteins such as p53, Bcl-2/Beclin 1, p62, Atg proteins, and caspases was discussed. Intensive studies have revealed a whole range of novel compounds with an anticancer activity that inhibit or activate regulatory pathways involved in autophagy. We focused on the presentation of compounds strongly affecting the autophagy process, with particular emphasis on those that are undergoing clinical and preclinical cancer research. Moreover, the target points, adverse effects and therapeutic schemes of autophagy inhibitors and activators are presented.
Collapse
|
45
|
Autophagy Induction by Trichodermic Acid Attenuates Endoplasmic Reticulum Stress-Mediated Apoptosis in Colon Cancer Cells. Int J Mol Sci 2021; 22:ijms22115566. [PMID: 34070303 PMCID: PMC8197497 DOI: 10.3390/ijms22115566] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2021] [Revised: 05/14/2021] [Accepted: 05/19/2021] [Indexed: 12/26/2022] Open
Abstract
Colorectal cancer (CRC) is the third leading malignant tumor in the world, which has high morbidity and mortality. In this study we found that trichodermic acid (TDA), a secondary metabolite isolated from the plant endophytic fungus Penicillium ochrochloronthe with a variety of biological and pharmacological activities, exhibited the antitumor effects on colorectal cancer cells in vitro and in vivo. Our results showed that TDA inhibited the proliferation of colon cancer cells in a dose-dependent manner. TDA induces sustained endoplasmic reticulum stress, which triggers apoptosis through IRE1α/XBP1 and PERK/ATF4/CHOP pathways. In addition, we found that TDA mediated endoplasmic reticulum stress also induces autophagy as a protective mechanism. Moreover, combined treatment of TDA with autophagy inhibitors significantly enhanced its anticancer effect. In conclusion, our results indicated that TDA can induce ER stress and autophagy mediated apoptosis, suggesting that targeting ER stress and autophagy may be an effective strategy for the treatment of CRC.
Collapse
|
46
|
Van der Merwe M, Van Niekerk G, Botha A, Engelbrecht AM. The onco-immunological implications of Fusobacterium nucleatum in breast cancer. Immunol Lett 2021; 232:60-66. [PMID: 33647328 DOI: 10.1016/j.imlet.2021.02.007] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2021] [Revised: 02/18/2021] [Accepted: 02/24/2021] [Indexed: 02/04/2023]
Abstract
Breast cancer is a leading cause of death worldwide and a better understanding of this disease is needed to improve treatment outcomes. Recent evidence indicates that bacterial dysbiosis is associated with breast cancer, but the bacteria involved remain poorly characterised. Furthermore, an association between periodontal disease, characterised by oral dysbiosis, and breast cancer have also been discovered, but the mechanisms responsible for this association remains to be elucidated. The oral bacterium involved in periodontal disease, Fusobacterium nucleatum, have recently been detected in human breast tumour tissue and it promoted tumour growth and metastatic progression in a mouse model. The mechanisms of how F. nucleatum might colonise breast tissue and how it might promote tumour progression has not been fully elucidated yet. Here we discuss the breast tumour microbiota, its colonisation by F. nucleatum, possible mechanisms by which F. nucleatum might promote breast cancer progression and how this might impact breast cancer treatment. Literature indicates that F. nucleatum might promote breast cancer progression through activating the Toll-like receptor 4 pathway and by supressing the immune system. This results in cell growth and treatment resistance through autophagy as well as immune evasion. Targeted treatment directed at F. nucleatum combined with immunotherapy and autophagy inhibitors might therefore be a feasible treatment strategy for breast cancer patients.
Collapse
Affiliation(s)
- Michelle Van der Merwe
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa.
| | - Gustav Van Niekerk
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| | - Alf Botha
- Department of Microbiology, Stellenbosch University, Stellenbosch, South Africa
| | - Anna-Mart Engelbrecht
- Department of Physiological Sciences, Stellenbosch University, Stellenbosch, South Africa
| |
Collapse
|
47
|
Dong T, Lu Z, Li J, Liu Y, Wen J. [Flubendazole Inhibits the Proliferation of A549 and H460 Cells and Promotes Autophagy]. ZHONGGUO FEI AI ZA ZHI = CHINESE JOURNAL OF LUNG CANCER 2021; 23:306-313. [PMID: 32429634 PMCID: PMC7260388 DOI: 10.3779/j.issn.1009-3419.2020.104.17] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
背景与目的 氟苯达唑是一种苯并咪唑类驱虫药, 既往研究发现其对结肠癌、乳腺癌细胞增殖具有抑制作用。本研究旨在探讨氟苯达唑对非小细胞肺癌A549、H460细胞增殖的影响及机制。 方法 通过CCK-8(Cell Counting Kit-8)法检测不同浓度的氟苯达唑对A549、H460细胞活力的影响; Western blot法检测氟苯达唑处理后细胞自噬相关蛋白p62、LC3的表达水平; 自噬双标腺病毒(mRFP-GFP-LC3)转染细胞, 分析细胞内自噬流变化。 结果 氟苯达唑抑制A549、H460细胞增殖, 并呈剂量依赖关系(P < 0.001)。2 μmol/L氟苯达唑处理A549、H460细胞24 h、48 h后p62减少, LC3 II/I比值升高(P < 0.005)。mRFP-GFP-LC3转染细胞显示氟苯达唑处理组红色荧光增加, 提示自噬流增强。 结论 氟苯达唑可以抑制A549、H460细胞增殖并促进自噬。
Collapse
Affiliation(s)
- Tingjun Dong
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China.,Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Zejun Lu
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Jingjiao Li
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Yongzhen Liu
- Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| | - Juyi Wen
- The Second School of Clinical Medicine, Southern Medical University, Guangzhou 510280, China.,Tumor Diagnosis and Treatment Center, The Sixth Medical Center of PLA General Hospital, Beijing 100048, China
| |
Collapse
|
48
|
Liu X, Jusko WJ. Physiologically Based Pharmacokinetics of Lysosomotropic Chloroquine in Rat and Human. J Pharmacol Exp Ther 2021; 376:261-272. [PMID: 33277347 PMCID: PMC7841423 DOI: 10.1124/jpet.120.000385] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 12/01/2020] [Indexed: 11/22/2022] Open
Abstract
A semimechanistic physiologically based pharmacokinetic (PBPK) model for chloroquine (CQ), a highly lysosomotropic weak base, was applied to digitized rat and human concentration versus time data. The PBPK model in rat featured plasma and red blood cell (RBC) concentrations, extensive and apparent nonlinear tissue distribution, fitted hepatic and renal intrinsic clearances, and a plasma half-life of about 1 day. Tissue-to-plasma CQ ratios at 50 hours after dosing were highest in lung, kidney, liver, and spleen (182-318) and lower in heart, muscle, brain, eye, and skin (11-66). The RBC-to-plasma ratio of 11.6 was assumed to reflect cell lipid partitioning. A lysosome-based extended model was used to calculate subcellular CQ concentrations based on tissue mass balances, fitted plasma, interstitial and free cytosol concentrations, and literature-based pH and pKa values. The CQ tissue component concentrations ranked as follows: lysosome > > acidic phospholipid > plasma = interstitial = cytosol ≥ neutral lipids. The extensive lysosome sequestration appeared to change over time and was attributed to lowering pH values caused by proton pump influx of hydrogen ions. The human-to-rat volume of distribution (Vss) ratio of 7 used to scale rat tissue partitioning to human along with estimation of hepatic clearance allowed excellent fitting of oral-dose PK (150-600 mg) of CQ with a 50-day half-life in humans. The prolonged PK of chloroquine was well characterized for rat and human with this PBPK model. The calculated intratissue concentrations and lysosomal effects have therapeutic relevance for CQ and other cationic drugs. SIGNIFICANCE STATEMENT: Sequestration in lysosomes is a major factor controlling the pharmacokinetics and pharmacology of chloroquine and other cationic drugs. This report provides comprehensive physiologic modeling of chloroquine distribution in tissues and overall disposition in rat and human that reveals expected complexities and inferences related to its subcellular association with various tissue components.
Collapse
Affiliation(s)
- Xin Liu
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| | - William J Jusko
- Department of Pharmaceutical Sciences, School of Pharmacy and Pharmaceutical Sciences, State University of New York at Buffalo, Buffalo, New York
| |
Collapse
|
49
|
Dima A, Jurcut C, Arnaud L. Hydroxychloroquine in systemic and autoimmune diseases: Where are we now? Joint Bone Spine 2021; 88:105143. [PMID: 33515791 DOI: 10.1016/j.jbspin.2021.105143] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Accepted: 12/23/2020] [Indexed: 12/28/2022]
Abstract
Hydroxychloroquine (HCQ), one of the oldest drugs used in rheumatology, came recently into attention as one of the potential therapies tested for the severe acute respiratory syndrome coronavirus-2 disease treatment. Used initially as an antimalarial, then translated to rheumatic diseases, HCQ has been used in a wide range of pathologies, including infectious diseases, immune disorders, diabetes, dyslipidemia, or neoplasia. Regarding systemic diseases, HCQ is the mainstay treatment for systemic lupus erythematosus (SLE), where, according to last European guidelines, it is proposed to all SLE patients unless contraindicated or with side effects. HCQ proved positive impact in SLE on robust outcomes, such as accrual damage, disease activity and survival, but also pleiomorphic effects, including decrease in the need for glucocorticoids, reduction in the risk of neonatal lupus, lower fasting glucose and protection against diabetes, thrombotic risk, dyslipidemia, infections, etc. Moreover, HCQ can be used during pregnancy and breast-feeding. Besides SLE, the role for HCQ in the anti-phospholipid syndrome and Sjögren's disease is still under debate. On the contrary, recent advances showed only limited interest for rheumatoid arthritis, especially due the lack of structural damage prevention. There are still no strong data to sustain the HCQ use in other systemic diseases. In this review, we summarised the utility and efficacy of HCQ in different clinical conditions relevant for rheumatology practice.
Collapse
Affiliation(s)
- Alina Dima
- Department of rheumatology, Colentina clinical hospital, 020125 Bucharest, Romania
| | - Ciprian Jurcut
- Department of internal medicine, Dr. Carol Davila Central Military Emergency University Hospital, 010825 Bucharest, Romania
| | - Laurent Arnaud
- National reference centre for rare auto-immune and systemic diseases Est Sud-Est (RESO), 67000 Strasbourg, France; Department of rheumatology, hôpitaux universitaires de Strasbourg, 67098 Strasbourg, France; Université de Strasbourg, Inserm UMR-S 1109, 67000 Strasbourg, France.
| |
Collapse
|
50
|
Abstract
Autophagy is deregulated in many cancers and represents an attractive target for therapeutic intervention. However, the precise contributions of autophagy to metastatic progression, the principle cause of cancer-related mortality, is only now being uncovered. While autophagy promotes primary tumor growth, metabolic adaptation and resistance to therapy, recent studies have unexpectedly revealed that autophagy suppresses the proliferative outgrowth of disseminated tumor cells into overt and lethal macrometastases. These studies suggest autophagy plays unexpected and complex roles in the initiation and progression of metastases, which will undoubtedly impact therapeutic approaches for cancer treatment. Here, we discuss the intricacies of autophagy in metastatic progression, highlighting and integrating the pleiotropic roles of autophagy on diverse cell biological processes involved in metastasis.
Collapse
Affiliation(s)
- Timothy Marsh
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| | - Bhairavi Tolani
- Thoracic Oncology Program, Department of Surgery, Helen Diller Family Comprehensive Cancer Center, University of California, San Francisco, CA 94115 USA
| | - Jayanta Debnath
- Department of Pathology and Helen Diller Family Comprehensive Cancer Center, University of California San Francisco, San Francisco, CA 94143 USA
| |
Collapse
|