1
|
Gyorgypal A, Fratz-Berilla E, Kohnhorst C, Powers DN, Chundawat SPS. Temporal Galactose-Manganese Feeding in Fed-Batch and Perfusion Bioreactors Modulates UDP-Galactose Pools for Enhanced mAb Glycosylation Homogeneity. Biotechnol Bioeng 2025. [PMID: 40251805 DOI: 10.1002/bit.28999] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 03/25/2025] [Accepted: 04/07/2025] [Indexed: 04/21/2025]
Abstract
Monoclonal antibodies (mAbs) represent a majority of biotherapeutics in the market today. These glycoproteins undergo posttranslational modifications, such as N-linked glycosylation, that influence the structural & functional characteristics of the antibody. Glycosylation is a heterogenous posttranslational modification that may influence therapeutic glycoprotein stability and clinical efficacy, which is why it is often considered a critical quality attribute (CQA) of the mAb product. While much is known about the glycosylation pathways of Chinese Hamster Ovary (CHO) cells and how cell culture chemical modifiers may influence the N-glycosylation profile of the final product, this knowledge is often based on the final cumulative glycan profile at the end of the batch process. Building a temporal understanding of N-glycosylation and how mAb glycoform composition responds to real-time changes in the biomanufacturing process will help build integrated process models that may allow for glycosylation control to produce a more homogenous product. Here, we look at the effect of specific nutrient feed media additives (e.g., galactose, manganese) and feeding times on the N-glycosylation pathway to modulate N-glycosylation of a Herceptin biosimilar mAb (i.e., Trastuzumab). We deploy the N-GLYcanyzer process analytical technology (PAT) to monitor glycoforms in near real-time for bench-scale bioprocesses operated in both fed-batch and perfusion modes to build an understanding of how temporal changes in mAb N-glycosylation are dependent on specific media additives. We find that Trastuzumab terminal galactosylation is sensitive to media feeding times and intracellular nucleotide sugar pools. Temporal analysis reveals an increased desirable production of single and double galactose-occupied glycoforms over time under glucose-starved fed-batch cultures. Comparable galactosylation profiles were also observed between fed-batch (nutrient-limited) and perfusion (non-nutrient-limited) bioprocess conditions. In summary, our results demonstrate the utility of real-time monitoring of mAb glycoforms and feeding critical cell culture nutrients under fed-batch and perfusion bioprocessing conditions to produce higher-quality biologics.
Collapse
Affiliation(s)
- Aron Gyorgypal
- Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, Maryland, USA
- Center for Immunology and Inflammatory Diseases, Division of Rheumatology, Allergy and Immunology, Department of Medicine, Massachusetts General Hospital, Harvard Medical School, Boston, MA, USA
| | - Erica Fratz-Berilla
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, Maryland, USA
| | - Casey Kohnhorst
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, Maryland, USA
| | - David N Powers
- Office of Pharmaceutical Quality Research, CDER, U.S. FDA, Silver Spring, Maryland, USA
| | - Shishir P S Chundawat
- Department of Chemical and Biochemical Engineering, Rutgers The State University of New Jersey, Piscataway, New Jersey, USA
| |
Collapse
|
2
|
Nimmerjahn F. Role of Antibody Glycosylation in Health, Disease, and Therapy. Handb Exp Pharmacol 2025. [PMID: 40119204 DOI: 10.1007/164_2025_744] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/24/2025]
Abstract
Immunoglobulin G (IgG) antibodies are an essential component of humoral immunity protecting the host from recurrent infections. Among all antibody isotypes, IgG antibodies have a uniquely long half-life, can basically reach any tissue in the body, and have the ability to kill opsonized target cells, which has made them the molecule of choice for therapeutic interventions in cancer and autoimmunity. Moreover, IgG antibodies in the form of pooled serum IgG preparations from healthy donors are used to treat chronic inflammatory and autoimmune diseases, providing evidence that serum IgG antibodies can have an active immunomodulatory activity. Research over the last two decades has established that the single sugar moiety attached to each IgG heavy chain plays a very important role in modulating the pro- and anti-inflammatory activities of IgG. Moreover, specific sugar moieties such as sialic acid and galactose residues can serve as highly specific biomarkers for ongoing inflammatory processes. This chapter will summarize how different sugar residues in the IgG sugar moiety change upon inflammation and how such changes may translate to altered IgG function and hence maybe useful for optimizing or modulating the function of therapeutic antibodies.
Collapse
Affiliation(s)
- Falk Nimmerjahn
- Institute of Genetics, Department of Biology, University of Erlangen-Nuremberg, Erlangen, Germany.
| |
Collapse
|
3
|
Wang B, Zhang T, Tang S, Liu C, Wang C, Bai J. The physiological characteristics and applications of sialic acid. NPJ Sci Food 2025; 9:28. [PMID: 40011515 DOI: 10.1038/s41538-025-00390-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2024] [Accepted: 02/13/2025] [Indexed: 02/28/2025] Open
Abstract
Sialic acid (SA) is widely present at the end of the sugar chain of glycoproteins and glycolipids on the surface of animal and microbial cells and is involved in many physiological activities between microbial and host cells. Notably, these functions are attributed to the diversity of these SA types, their different transformation pathways, and their metabolic actions within the host, which are considered potential targets for affecting various diseases. However, developing disease mitigation strategies is often limited by an unclear understanding of the mechanisms of interaction of the causative agents with their hosts. This review mainly focuses on three types of SA: Neu5Ac, Neu5Gc, and KDN. The sources, main types, and distribution of these SAs are discussed in detail, emphasizing the metabolic processes of different SAs and their interaction mechanisms with the host. This review will help lay a foundation for developing functional foods and SA-targeted intervention strategies.
Collapse
Affiliation(s)
- Botao Wang
- Bloomage Biotechnology CO, LTD, Jinan, 250000, China
| | | | - Sheng Tang
- Citrus Research Institute, Southwest University, Chongqing, 400712, China
| | - Cuiping Liu
- Department of Radiology, Yuxi Children's Hospital, Yuxi, 653100, China
| | - Chen Wang
- College of Food Science, Southwest University, Chongqing, 400715, China.
| | - Junying Bai
- Citrus Research Institute, Southwest University, Chongqing, 400712, China.
| |
Collapse
|
4
|
Zeng Y, Chourpiliadis C, Hammar N, Seitz C, Valdimarsdóttir UA, Fang F, Song H, Wei D. Inflammatory Biomarkers and Risk of Psychiatric Disorders. JAMA Psychiatry 2024; 81:1118-1129. [PMID: 39167384 PMCID: PMC11339698 DOI: 10.1001/jamapsychiatry.2024.2185] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Accepted: 06/06/2024] [Indexed: 08/23/2024]
Abstract
Importance Individuals with psychiatric disorders have been reported to have elevated levels of inflammatory biomarkers, and prospective evidence is limited regarding the association between inflammatory biomarkers and subsequent psychiatric disorders risk. Objective To assess the associations between inflammation biomarkers and subsequent psychiatric disorders risk. Design, Setting, and Participants This was a prospective cohort study including individuals from the Swedish Apolipoprotein Mortality Risk (AMORIS) cohort, with no prior psychiatric diagnoses and having a measurement of at least 1 inflammatory biomarker. Data from the UK Biobank were used for validation. Longitudinal trajectories of studied biomarkers were visualized before diagnosis of psychiatric disorders in the AMORIS cohort via a nested case-control study. In addition, genetic correlation and mendelian randomization (MR) analyses were conducted to determine the genetic overlap and causality of the studied associations using publicly available GWAS summary statistics. Exposures Inflammatory biomarkers, eg, leukocytes, haptoglobin, immunoglobulin G (IgG), C-reactive protein (CRP), platelets, or albumin. Main Outcomes and Measures Any psychiatric disorder or specific psychiatric disorder (ie, depression, anxiety, and stress-related disorders) was identified through the International Statistical Classification of Diseases, Eighth, Ninth, and Tenth Revision codes. Results Among the 585 279 individuals (mean [SD] age, 45.5 [14.9] years; 306 784 male [52.4%]) in the AMORIS cohort, individuals with a higher than median level of leukocytes (hazard ratio [HR], 1.11; 95% CI, 1.09-1.14), haptoglobin (HR, 1.13; 95% CI, 1.12-1.14), or CRP (HR, 1.02; 95% CI, 1.00-1.04) had an elevated associated risk of any psychiatric disorders. In contrast, we found an inverse association for IgG level (HR, 0.92; 95% CI, 0.89-0.94). The estimates were comparable for depression, anxiety, and stress-related disorders, specifically, and these results were largely validated in the UK Biobank (n = 485 620). Analyses of trajectories revealed that individuals with psychiatric disorders had higher levels of leukocytes and haptoglobin and a lower level of IgG than their controls up to 30 years before the diagnosis. The MR analysis suggested a possible causal relationship between leukocytes and depression. Conclusions and Relevance In this cohort study, inflammatory biomarkers including leukocytes, haptoglobin, CRP, and IgG were associated with a subsequent risk of psychiatric disorders, and thus might be used for high-risk population identification. The possible causal link between leukocytes and depression supports the crucial role of inflammation in the development of psychiatric disorders.
Collapse
Affiliation(s)
- Yu Zeng
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
| | | | - Niklas Hammar
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Christina Seitz
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Unnur A. Valdimarsdóttir
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
- Department of Epidemiology, Harvard T.H. Chan School of Public Health, Boston, Massachusetts
| | - Fang Fang
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| | - Huan Song
- Mental Health Center and West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Med-X Center for Informatics, Sichuan University, Chengdu, China
- West China Biomedical Big Data Center, West China Hospital, Sichuan University, Chengdu, China
- Center of Public Health Sciences, Faculty of Medicine, University of Iceland, Reykjavík, Iceland
| | - Dang Wei
- Institute of Environmental Medicine, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
5
|
Kratz EM, Sołkiewicz K, Jędryka M. The Degree of Branching of Serum IgG N-glycans as a Marker of Advanced Endometriosis. Molecules 2024; 29:5136. [PMID: 39519775 PMCID: PMC11547903 DOI: 10.3390/molecules29215136] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Endometriosis is a gynecological disease for which the diagnostics are difficult and often invasive; therefore, non-invasive diagnostic methods using sensitive and specific parameters present in easily available body fluid such as blood serum are needed for the detection of this disease. Our study aimed to answer the question of whether there are any differences between women with advanced endometriosis (AE), patients with gynecological diseases other than endometriosis (NE), and healthy women (control) in terms of the number of antennas of N-glycans from serum IgG. The degree of branching of IgG N-glycans was determined by a modified lectin ELISA with biotinylated lectin Con A (Canavalia ensiformis agglutinin) recognizing α-linked mannose, specifically reacting with biantennary N-glycans. The PHA-L/Con A ratio was calculated from the obtained N-glycan reactivities with Con A and PHA-L (Phaseolus vulgaris leucoagglutinin, specific to tri- and/or tetra-antennary N-linked glycans). The expression of Con A-reactive biantennary N-glycans in serum IgG was significantly lower in the control group than in the NE group (p = 0.045). The values of the PHA-L/Con A ratio were significantly higher in the NE group than in the AE and control groups (p = 0.019 and p = 0.022, respectively). The PHA-L/Con A ratio could be taken into account as a parameter helpful in the non-invasive diagnosis of advanced endometriosis, thus differentiating this disease from other gynecological diseases with an inflammatory background.
Collapse
Affiliation(s)
- Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556 Wroclaw, Poland;
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Square 12, 53-413 Wroclaw, Poland;
| |
Collapse
|
6
|
Chang YW, Sun YL, Chu E, Hung YY, Liao WC, Tsai SM, Lu TH, Huang PC, Yu CH, Lee SY, Chang HH, Lin DPC. Streptococcus thermophilus iHA318 Improves Dry Eye Symptoms by Mitigating Ocular Surface Damage in a Mouse Model. Microorganisms 2024; 12:1306. [PMID: 39065074 PMCID: PMC11279365 DOI: 10.3390/microorganisms12071306] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2024] [Revised: 06/20/2024] [Accepted: 06/24/2024] [Indexed: 07/28/2024] Open
Abstract
Dry eye is a complicated ocular surface disease that causes discomfort, visual disturbance, and frequently observed ocular surface damage. Emerging hypotheses suggest probiotics may help relieve dry eye symptoms by modulating inflammation and oxidative stress. This study aimed to investigate the therapeutic effects of Streptococcus thermophilus iHA318 probiotics on dry eye using in vitro assays and an in vivo murine model of ultraviolet B (UVB) radiation-induced dry eye. In vitro analyses revealed that S. thermophilus iHA318® exhibited antioxidant activity and anti-inflammatory effects by inhibiting reactive oxygen species production and suppressing inflammatory cytokines. For the in vivo study, female ICR mice were assigned to normal control, UVB-induced dry eye, and UVB+iHA318 treatment groups. UVB exposure significantly decreased tear volume and tear film breakup time (TBUT) compared to normal controls. Supplementation with S. thermophilus iHA318® via oral gavage markedly improved tear production and TBUT on day 7 post-UVB exposure. Ocular surface photography demonstrated improved gradings of corneal opacity, smoothness, and lissamine green staining in the iHA318 group versus the UVB group. Topographical analysis further revealed improvement in the UVB-induced corneal irregularities by iHA318 treatment. Collectively, these results indicate that S. thermophilus iHA318 exerts a protective effect against dry eye symptoms by mitigating oxidative stress and inflammation, thereby preserving tear film stability and ocular surface integrity. This probiotic strain represents a promising therapeutic approach for managing dry eye syndrome.
Collapse
Affiliation(s)
- Yu-Wei Chang
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yen-Ling Sun
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Evelyn Chu
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Yi-Yun Hung
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Wei-Chieh Liao
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Su-Min Tsai
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
| | - Tsung-Han Lu
- Institute of Medicine, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - Pin-Chao Huang
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Chin-Hsiu Yu
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Shao-Yu Lee
- Percheron Bioceutical Co., Ltd., Taichung 40201, Taiwan; (P.-C.H.); (C.-H.Y.); (S.-Y.L.)
| | - Han-Hsin Chang
- Department of Nutrition, Chung Shan Medical University, Taichung 40201, Taiwan;
| | - David Pei-Cheng Lin
- Department of Medical Laboratory and Biotechnology, Chung Shan Medical University, Taichung 40201, Taiwan; (Y.-W.C.); (Y.-L.S.); (E.C.); (Y.-Y.H.); (W.-C.L.); (S.-M.T.)
- Department of Ophthalmology, Chung Shan Medical University Hospital, Taichung 40201, Taiwan
| |
Collapse
|
7
|
Deng G, Chen X, Shao L, Wu Q, Wang S. Glycosylation in autoimmune diseases: A bibliometric and visualization study. Heliyon 2024; 10:e30026. [PMID: 38707406 PMCID: PMC11066412 DOI: 10.1016/j.heliyon.2024.e30026] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 04/17/2024] [Accepted: 04/18/2024] [Indexed: 05/07/2024] Open
Abstract
An increasing amount of research has shown that glycosylation plays a crucial role in autoimmune diseases (ADs), prompting our interest in conducting research on the knowledge framework and hot topics in this field based on bibliometric analysis. Studies on glycosylation in the field of ADs from 2003 to 2023 were collected by searching the Web of Science Core Collection database. Bibliometric analysis was conducted using VOSviewer, CiteSpace, and Bibliometrix software. This study included a total of 530 studies. According to the H, G, and M indices, the United States has made the most contributions worldwide, with China making significant contributions in recent years. Leiden University from the Netherlands ranks among the top institutions in terms of publication and citation rankings, with the institution's author Manfred Wuhrer contributing the most to this field. Frontiers in Immunology is the journal with the highest H-index. Research in this field has focused on antibody glycosylation, particularly the specific glycosylation of IgG and IgA, and its role in various ADs. The application of glycoengineering glycosylated proteins in the synthesis of targeted monoclonal antibodies, drug delivery, and regenerative medical materials may be a new trend in the treatment of ADs. Artificial intelligence is an emerging tool in glycobiology. This study summarizes the objective data on glycosylation in the field of AD publications in recent years, providing a reference for researchers in this field.
Collapse
Affiliation(s)
- Guoqian Deng
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Xinyi Chen
- Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Le Shao
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| | - Qibiao Wu
- State Key Laboratory of Quality Research in Chinese Medicines and Faculty of Chinese Medicine, Macau University of Science and Technology, Taipa, Macau, China
- Zhuhai MUST Science and Technology Research Institute, Zhuhai, Guangdong, China
| | - Shenzhi Wang
- The First Hospital of Hunan University of Chinese Medicine, Changsha, Hunan, China
| |
Collapse
|
8
|
Yang L, Yang Q, Lin L, Zhang C, Dong L, Gao X, Zhang Z, Zeng C, Wang PG. LectoScape: A Highly Multiplexed Imaging Platform for Glycome Analysis and Biomedical Diagnosis. Anal Chem 2024; 96:6558-6565. [PMID: 38632928 DOI: 10.1021/acs.analchem.3c04925] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/19/2024]
Abstract
Glycosylation, a fundamental biological process, involves the attachment of glycans to proteins, lipids, and RNA, and it plays a crucial role in various biological pathways. It is of great significance to obtain the precise spatial distribution of glycosylation modifications at the cellular and tissue levels. Here, we introduce LectoScape, an innovative method enabling detailed imaging of tissue glycomes with up to 1 μm resolution through image mass cytometry (IMC). This method utilizes 12 distinct, nonoverlapping lectins selected via microarray technology, enabling the multiplexed detection of a wide array of glycans. Furthermore, we developed an efficient labeling strategy for these lectins. Crucially, our approach facilitates the concurrent imaging of diverse glycan motifs, including N-glycan and O-glycan, surpassing the capabilities of existing technologies. Using LectoScape, we have successfully delineated unique glycan structures in various cell types, enhancing our understanding of the glycan distribution across human tissues. Our method has identified specific glycan markers, such as α2,3-sialylated Galβ1, 3GalNAc in O-glycan, and terminal GalNAc, as diagnostic indicators for cervical intraepithelial neoplasia. This highlights the potential of LectoScape in cancer diagnostics through the detection of abnormal glycosylation patterns.
Collapse
Affiliation(s)
- Lujie Yang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Qianting Yang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Ling Lin
- Shanghai Institute of Cardiovascular Diseases, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Chi Zhang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Lingkai Dong
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Xiang Gao
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Zheng Zhang
- Institute for Hepatology, National Clinical Research Center for Infectious Disease, Shenzhen Third People's Hospital; The Second Affiliated Hospital, School of Medicine, Southern University of Science and Technology, Shenzhen, 518020, Guangdong, China
- Shenzhen Clinical Research Center for Tuberculosis, Shenzhen, 518020, Guangdong, China
| | - Chen Zeng
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
- Institute of Advanced Biotechnology and School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| | - Peng George Wang
- Department of Pharmacology, School of Medicine, Southern University of Science and Technology, Shenzhen, 518055, Guangdong, China
| |
Collapse
|
9
|
Pascoal C, Francisco R, Mexia P, Pereira BL, Granjo P, Coelho H, Barbosa M, dos Reis Ferreira V, Videira PA. Revisiting the immunopathology of congenital disorders of glycosylation: an updated review. Front Immunol 2024; 15:1350101. [PMID: 38550576 PMCID: PMC10972870 DOI: 10.3389/fimmu.2024.1350101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Accepted: 02/26/2024] [Indexed: 04/02/2024] Open
Abstract
Glycosylation is a critical post-translational modification that plays a pivotal role in several biological processes, such as the immune response. Alterations in glycosylation can modulate the course of various pathologies, such as the case of congenital disorders of glycosylation (CDG), a group of more than 160 rare and complex genetic diseases. Although the link between glycosylation and immune dysfunction has already been recognized, the immune involvement in most CDG remains largely unexplored and poorly understood. In this study, we provide an update on the immune dysfunction and clinical manifestations of the 12 CDG with major immune involvement, organized into 6 categories of inborn errors of immunity according to the International Union of Immunological Societies (IUIS). The immune involvement in phosphomannomutase 2 (PMM2)-CDG - the most frequent CDG - was comprehensively reviewed, highlighting a higher prevalence of immune issues during infancy and childhood and in R141H-bearing genotypes. Finally, using PMM2-CDG as a model, we point to links between abnormal glycosylation patterns in host cells and possibly favored interactions with microorganisms that may explain the higher susceptibility to infection. Further characterizing immunopathology and unusual host-pathogen adhesion in CDG can not only improve immunological standards of care but also pave the way for innovative preventive measures and targeted glycan-based therapies that may improve quality of life for people living with CDG.
Collapse
Affiliation(s)
- Carlota Pascoal
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Rita Francisco
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Patrícia Mexia
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Beatriz Luís Pereira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Pedro Granjo
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Helena Coelho
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO – Applied Molecular Biosciences Unit, Department of Chemistry, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
| | - Mariana Barbosa
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Vanessa dos Reis Ferreira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| | - Paula Alexandra Videira
- Associate Laboratory i4HB - Institute for Health and Bioeconomy, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- UCIBIO– Applied Molecular Biosciences Unit, Department of Life Sciences, NOVA School of Science and Technology, Universidade NOVA de Lisboa, Caparica, Portugal
- CDG & Allies-Professionals and Patient Associations International Network, Caparica, Portugal
| |
Collapse
|
10
|
Sołkiewicz K, Kokot I, Dymicka-Piekarska V, Dorf J, Kratz EM. Are Changes in Serum IgG Glycosylation Related to the Severe Course of SARS-CoV-2 Infection and Recovery Process? In Search of New Diagnostic and Prognostic Biomarkers. J Inflamm Res 2024; 17:1413-1427. [PMID: 38450051 PMCID: PMC10916521 DOI: 10.2147/jir.s439005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Introduction Immunoglobulin G (IgG) glycosylation affects its effector functions and is essential in many steps of the inflammatory cascade. Therefore, it may be an important parameter for assessing the body's immune response during the course of COVID-19 (Coronavirus disease 2019). Methods The N- and O-glycosylation of serum IgG in severe COVID-19 patients (n=87), convalescents (n=50), and healthy subjects (n=65) were examined using a modified lectin-ELISA method with specific biotinylated lectins. The obtained data were analyzed using STATISTICA 13.3PL software. Results We showed significantly higher expression of Lewisx oligosaccharide structures in severe COVID-19 patients than in the other two groups. Moreover, significantly lower expression of Lewisy sugar structures in IgG glycans was observed in the convalescents when compared with COVID-19 patients and healthy subjects. The lowest expression of highly branched N-glycans in cases of severe COVID-19 indicates that the development of the disease is associated with the presence of typical IgG biantennary N-glycans. The lack of significant differences in the expression of Tn antigen in IgG between studied groups and the significantly lower expression of T antigen in convalescents compared to the patients with severe COVID-19 and healthy subjects indicates a decrease in the content of the T antigen in IgG O-glycans in subjects recovered from COVID-19. Substantially higher reactivities of IgG O-glycans with Jacalin observed in COVID-19 patients and convalescents in comparison to the control group were most probably caused by increased expression of core 3 O-glycans in IgG. Conclusion Severe COVID-19 is accompanied by the expression in serum IgG of sialylated biantennary and highly branched N-glycans, decorated by fucose of Lewisx and Lewisy structures. The higher reactivity of IgG O-glycans with Jacalin in severe COVID-19 patients and convalescents indicates that the disease development and the recovery process are most probably accompanied by increased expression of the core 3 O-glycans.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | - Izabela Kokot
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| | | | - Justyna Dorf
- Department of Clinical Laboratory Diagnostics, Medical University of Bialystok, Bialystok, Poland
| | - Ewa Maria Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Wroclaw, Poland
| |
Collapse
|
11
|
Gupta P, Sághy T, Nordqvist J, Nilsson J, Carlsten H, Horkeby K, Henning P, Engdahl C. Impact of estrogen on IgG glycosylation and serum protein glycosylation in a murine model of healthy postmenopause. Front Endocrinol (Lausanne) 2023; 14:1243942. [PMID: 37766692 PMCID: PMC10519799 DOI: 10.3389/fendo.2023.1243942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/07/2023] [Indexed: 09/29/2023] Open
Abstract
Introduction The glycosylation of immunoglobulin (Ig) G regulates IgG interaction capability with Fc gamma receptors found in all immune cells. In pathogenic conditions, estrogen can impact IgG levels and glycosylation. Following menopause, when estrogen levels decline affecting the immune system and potentially leading to a heightened susceptibility of immune activation. Purpose In this study, we aim to determine if estrogen levels can regulate IgG glycosylation in postmenopausal healthy situations. Methods Mice were ovariectomized to simulate an estrogen-deficient postmenopausal status and then treated with 17-beta-estradiol (E2) at different doses and different administration strategies. Results Using a highly sensitive liquid chromatography-tandem mass spectrometry (MS/MS) glycoproteomic method, we demonstrated that E2 treatment increased the degree of glycosylation on IgG-Fc with both galactosylation and sialylation in the position required for interaction with Fc gamma receptors. We also observed that only long-term estrogen deficiency reduces IgG levels and that estrogen status had no impact on total IgG sialylation on both Fab and Fc domains or general glycoprotein sialylation evaluated by ELISA. Furthermore, E2 status did not affect the total sialic acid content of total cells in lymphoid organs and neither B cells nor plasma cells. Conclusion The study concluded that E2 treatment does not affect total serum glycoprotein sialylation but alters IgG glycosylation, including IgG sialylation, implying that estrogen functions as an intrinsic modulator of IgG sialylation and could thereby be one pathway by which estrogen modulates immunity.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Tibor Sághy
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| | - Jauquline Nordqvist
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Jonas Nilsson
- Proteomics Core Facility, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Sahlgrenska Osteoporosis Centre and Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- SciLifeLab, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
12
|
Flores A, Alonso-Vega C, Hermann E, Torrico MC, Montaño Villarroel NA, Torrico F, Carlier Y, Truyens C. Monocytes from Uninfected Neonates Born to Trypanosoma cruzi-Infected Mothers Display Upregulated Capacity to Produce TNF-α and to Control Infection in Association with Maternally Transferred Antibodies. Pathogens 2023; 12:1103. [PMID: 37764911 PMCID: PMC10536721 DOI: 10.3390/pathogens12091103] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 08/18/2023] [Accepted: 08/24/2023] [Indexed: 09/29/2023] Open
Abstract
Activated monocytes/macrophages that produce inflammatory cytokines and nitric oxide are crucial for controlling Trypanosoma cruzi infection. We previously showed that uninfected newborns from T. cruzi infected mothers (M+B- newborns) were sensitized to produce higher levels of inflammatory cytokines than newborns from uninfected mothers (M-B- newborns), suggesting that their monocytes were more activated. Thus, we wondered whether these cells might help limit congenital infection. We investigated this possibility by studying the activation status of M+B- cord blood monocytes and their ability to control T. cruzi in vitro infection. We showed that M+B- monocytes have an upregulated capacity to produce the inflammatory cytokine TNF-α and a better ability to control T. cruzi infection than M-B- monocytes. Our study also showed that T. cruzi-specific Abs transferred from the mother play a dual role by favoring trypomastigote entry into M+B- monocytes and inhibiting intracellular amastigote multiplication. These results support the possibility that some M+B- fetuses may eliminate the parasite transmitted in utero from their mothers, thus being uninfected at birth.
Collapse
Affiliation(s)
- Amilcar Flores
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Cristina Alonso-Vega
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Emmanuel Hermann
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| | - Mary-Cruz Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | | | - Faustino Torrico
- Facultad de Medicina, Universidad Mayor de San Simon (U.M.S.S.), Cochabamba 2500, Bolivia
| | - Yves Carlier
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
- Department of Tropical Medicine, School of Public Health and Tropical Medicine, Tulane University, New Orleans, LA 70118, USA
| | - Carine Truyens
- Laboratory of Parasitology, Faculty of Medicine, ULB Center for Research in Immunology (UCRI), Université Libre de Bruxelles (U.L.B.), 1070 Brussels, Belgium
| |
Collapse
|
13
|
Enzyme-Digested Edible Bird’s Nest (EBND) Prevents UV and arid Environment-Induced Cellular Oxidative Stress, Cell Death and DNA Damage in Human Skin Keratinocytes and Three-Dimensional Epithelium Equivalents. Antioxidants (Basel) 2023; 12:antiox12030609. [PMID: 36978856 PMCID: PMC10045731 DOI: 10.3390/antiox12030609] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2023] [Revised: 02/23/2023] [Accepted: 02/27/2023] [Indexed: 03/05/2023] Open
Abstract
The aim of this study is to investigate the repressive effects of enzyme-digested edible bird’s nest (EBND) on the combination of arid environment and UV-induced intracellular oxidative stress, cell death, DNA double-strand breaks (DSBs) and inflammatory responses in human HaCaT keratinocytes and three-dimensional (3D) epithelium equivalents. An oxygen radical antioxidant capacity assay showed that EBND exhibited excellent peroxyl radical scavenging activity and significantly increased cellular antioxidant capacity in HaCaT cells. When EBND was administered to HaCaT cells and 3D epitheliums, it exhibited significant preventive effects on air-drying and UVA (Dry-UVA)-induced cell death and apoptosis. Dry-UVA markedly induced intracellular reactive oxygen species (ROS) generation in HaCaT cells and 3D epitheliums as quantified by CellROX® Green/Orange reagents. Once HaCaT cells and 3D epitheliums were pretreated with EBND, Dry-UVA-induced intracellular ROS were significantly reduced. The results from anti-γ-H2A.X antibody-based immunostaining showed that EBND significantly inhibited Dry-UVA-induced DSBs in HaCaT keratinocytes. Compared with sialic acid, EBND showed significantly better protection for both keratinocytes and 3D epitheliums against Dry-UVA-induced injuries. ELISA showed that EBND significantly suppressed UVB-induced IL-6 and TNF-α secretion. In conclusion, EBND could decrease arid environments and UV-induced harmful effects and inflammatory responses in human keratinocytes and 3D epithelium equivalents partially through its antioxidant capacity.
Collapse
|
14
|
Park DB, Kim L, Hwang JH, Kim KT, Park JE, Choi JS, An HJ. Temporal quantitative profiling of sialyllactoses and sialic acids after oral administration of sialyllactose to mini-pigs with osteoarthritis. RSC Adv 2023; 13:1115-1124. [PMID: 36686942 PMCID: PMC9811936 DOI: 10.1039/d2ra05912f] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 12/21/2022] [Indexed: 01/06/2023] Open
Abstract
Sialyllactose (SL) is the most abundant acidic oligosaccharide in human breast milk and plays a primary role in various biological processes. Recently, SL has attracted attention as an excellent dietary supplement for arthritis because it is effective in cartilage protection and treatment. Despite the superior function of SL, there are few pharmacological studies of SL according to blood concentrations in arthritis models. In this study, we investigated quantitative changes in SL and sialic acids in the plasma obtained from mini-pigs with osteoarthritis throughout exogenous administration of SL using liquid chromatography-multiple reaction monitoring mass spectrometry. Plasma concentrations of SL and sialic acids in the SL-fed group showed a significant difference compared to the control group. Mini pigs were fed only Neu5Ac bound to SL, but the concentration patterns of the two types of sialic acid, Neu5Ac and Neu5Gc, were similar. In addition, the relative mRNA expression level of matrix metalloproteinases (MMPs), which is known as a critical factor in cartilage matrix degradation, was remarkably decreased in the synovial membrane of the SL-fed group. Consequently, the temporal quantitative profiling suggests that dietary SL can be metabolized and utilized in the body and may protect against cartilage degradation by suppressing MMP expression during osteoarthritis progression.
Collapse
Affiliation(s)
- Dan Bi Park
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
| | - Lila Kim
- GeneChem Inc. Yuseong-gu Daejeon 34025 Republic of Korea
| | - Jeong Ho Hwang
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Kyung-Tai Kim
- Animal Model Research Group, Jeonbuk Branch Institute, Korea Institute of Toxicology Jeollabukdo 56212 Republic of Korea
| | - Ji Eun Park
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| | - Jong-Soon Choi
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Research Center for Materials Analysis, Korea Basic Science Institute Daejeon 34133 Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Chungnam National University Daejeon 34134 Republic of Korea
- Asia Glycomics Reference Site Daejeon 34134 Republic of Korea
| |
Collapse
|
15
|
Regulatory effects of autoantibody IgG on osteoclastogenesis. Clin Immunol 2023; 246:109200. [PMID: 36435446 DOI: 10.1016/j.clim.2022.109200] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 11/19/2022] [Accepted: 11/21/2022] [Indexed: 11/25/2022]
Abstract
Inflammatory arthritis is common in both systemic lupus erythematosus (SLE) and rheumatoid arthritis (RA), and eventually leads to bone homeostasis disorders. However, RA patients generally have severe bone destruction, which is rare in SLE patients. Recent studies have demonstrated that anti-citrullinated protein antibodies are important factors leading to bone destruction in RA. On the other hand, SLE patients present deposition of autoantibodies in the joints, which plays an important role in bone protection. These different phenomena occur because of the effects of the autoantibodies on the monocytes/macrophages during osteoclastogenesis, and the mechanisms underlying these effects differ between SLE and RA patients.
Collapse
|
16
|
Gupta P, Horkeby K, Carlsten H, Henning P, Engdahl C. Bazedoxifene does not share estrogens effects on IgG sialylation. PLoS One 2023; 18:e0285755. [PMID: 37200319 DOI: 10.1371/journal.pone.0285755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Accepted: 05/01/2023] [Indexed: 05/20/2023] Open
Abstract
The incidence of rheumatoid arthritis (RA) increases at the same time as menopause when estrogen level decreases. Estrogen treatment is known to reduce the IgG pathogenicity by increasing the sialylation grade on the terminal glycan chain of the Fc domain, inhibiting the binding ability to the Fc gamma receptor. Therefore, treatment with estrogen may be beneficial in pre-RA patients who have autoantibodies and are prone to get an autoimmune disease. However, estrogen treatment is associated with negative side effects, therefore selective estrogen receptor modulators (SERMs) have been developed that have estrogenic protective effects with minimal side effects. In the present study, we investigated the impact of the SERM bazedoxifene on IgG sialylation as well as on total serum protein sialylation. C57BL6 mice were ovariectomized to simulate postmenopausal status, followed by ovalbumin immunization, and then treated with estrogen (estradiol), bazedoxifene, or vehicle. We found that estrogen treatment enhanced IgG levels and had a limited effect on IgG sialylation. Treatment with bazedoxifene increased the sialic acids in plasma cells in a similar manner to E2 but did not reach statistical significance. However, we did not detect any alteration in IgG-sialylation with bazedoxifene treatment. Neither estrogen nor bazedoxifene showed any significant alteration in serum protein sialylation but had a minor effect on mRNA expression of glycosyltransferase in the bone marrow, gonadal fat, and liver.
Collapse
Affiliation(s)
- Priti Gupta
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Karin Horkeby
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Institute of Medicine, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
- Department of Internal Medicine and Clinical Nutrition, Institute of Medicine, Sahlgrenska Osteoporosis Centre, Sahlgrenska Academy at University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
17
|
Chen C, Li T, Chen G, Chen D, Peng Y, Hu B, Sun Y, Zeng X. Prebiotic effect of sialylated immunoglobulin G on gut microbiota of patients with inflammatory bowel disease by in vitro fermentation. FOOD BIOSCI 2023. [DOI: 10.1016/j.fbio.2023.102393] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
18
|
McCraw AJ, Gardner RA, Davies AM, Spencer DIR, Grandits M, Wagner GK, McDonnell JM, Karagiannis SN, Chenoweth A, Crescioli S. Generation and Characterization of Native and Sialic Acid-Deficient IgE. Int J Mol Sci 2022; 23:13455. [PMID: 36362241 PMCID: PMC9657026 DOI: 10.3390/ijms232113455] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2022] [Revised: 10/22/2022] [Accepted: 10/28/2022] [Indexed: 07/30/2023] Open
Abstract
Efficient characterization of IgE antibodies and their glycan structures is required for understanding their function in allergy and in the emerging AllergoOncology field for antibody immunotherapy. We report the generation, glyco-profiling and functional analysis of native and sialic acid-deficient glyco-engineered human IgE. The antibodies produced from human embryonic kidney cells were purified via a human IgE class-specific affinity matrix and structural integrity was confirmed by SDS-PAGE and size-exclusion chromatography (SEC). Purified IgEs specific for the tumor-associated antigens Chondroitin Sulfate Proteoglycan 4 (CSPG4-IgE) and Human Epidermal Growth Factor Receptor 2 (HER2-IgE) were devoid of by-products such as free light chains. Using neuraminidase-A, we generated sialic acid-deficient CSPG4-IgE as example glyco-engineered antibody. Comparative glycan analyses of native and glyco-engineered IgEs by Hydrophilic interaction liquid chromatography (HILIC)-high performance liquid chromatography (HPLC) indicated loss of sialic acid terminal residues and differential glycan profiles. Native and glyco-engineered CSPG4-IgEs recognized Fc receptors on the surface of human FcεRI-expressing rat basophilic leukemia RBL-SX38 cells, and of CD23/FcεRII-expressing human RPMI-8866 B-lymphocytes and bound to CSPG4-expressing A2058 human melanoma cells, confirming Fab-mediated recognition. When cross-linked on the cell surface, both IgEs triggered RBL-SX38 degranulation. We demonstrate efficient generation and functional competence of recombinant native and sialic acid-deficient IgEs.
Collapse
Affiliation(s)
- Alex J. McCraw
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | | | - Anna M. Davies
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | | | - Melanie Grandits
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | - Gerd K. Wagner
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
- Medical Biology Centre, School of Pharmacy, Queen’s University Belfast, 97 Lisburn Road, Belfast BT9 7BL, UK
| | - James M. McDonnell
- Randall Centre for Cell and Molecular Biophysics, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| | - Sophia N. Karagiannis
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy’s Cancer Centre, King’s College London, London SE1 9RT, UK
| | - Alicia Chenoweth
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
- Breast Cancer Now Research Unit, School of Cancer & Pharmaceutical Sciences, Guy’s Cancer Centre, King’s College London, London SE1 9RT, UK
| | - Silvia Crescioli
- St. John’s Institute of Dermatology, School of Basic & Medical Biosciences, King’s College London, London SE1 9RT, UK
| |
Collapse
|
19
|
Yang S, Cui M, Liu Q, Liao Q. Glycosylation of immunoglobin G in tumors: Function, regulation and clinical implications. Cancer Lett 2022; 549:215902. [PMID: 36096412 DOI: 10.1016/j.canlet.2022.215902] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 08/30/2022] [Accepted: 08/30/2022] [Indexed: 11/24/2022]
Abstract
Immunoglobulin G (IgG) is the predominant component in humoral immunity and the major effector of neutralizing heterogeneous antigens. Glycosylation, as excessive posttranscriptional modification, can modulate IgG immune function. Glycosylated IgG has been reported to correlate with tumor progression, presenting several characteristic modifications, including the core fucose, galactose, sialic acid, and the bisect N-acetylglucosamine (GlcNAc). Meanwhile, IgG glycosylation regulates tumor immunity involved in tumor progression and is thus a potential target. Herein, we summarized the research progression to provide novel insight into the application of IgG glycosylation in tumor diagnosis and treatment.
Collapse
Affiliation(s)
- Sen Yang
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Ming Cui
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Qiaofei Liu
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| | - Quan Liao
- Department of General Surgery, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China.
| |
Collapse
|
20
|
Ganapathy S. R, Levová K, Kotačková L, Trnka J, Zogala D, Rusz J, Zima T, Devos D, Šonka K, Růžička E, Kalousová M, Dušek P. Increased Transferrin Sialylation Predicts Phenoconversion in Isolated REM Sleep Behavior Disorder. Mov Disord 2022; 37:983-992. [PMID: 35128728 PMCID: PMC9305135 DOI: 10.1002/mds.28942] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2021] [Revised: 01/05/2022] [Accepted: 01/09/2022] [Indexed: 12/20/2022] Open
Abstract
BACKGROUND Sialic acid-protein interactions are involved in regulating central nervous system immunity; therefore, derangements in sialylation could be involved in neurodegeneration. OBJECTIVES We evaluate the differences in serum transferrin sialylation in prodromal and early-stage Parkinson's disease (PD), its relation to substantia nigra degeneration, and the risk of phenoconversion to manifest disease. METHODS Sixty treatment-naive PD patients; 72 polysomnography-confirmed isolated rapid eye movement sleep behavior disorder (iRBD) patients, that is, patients with prodromal synucleinopathy; and 46 healthy volunteers aged ≥45 years and drinking ≤60 standard drinks per month were included. The proportion of serum low-sialylated, carbohydrate-deficient transferrin (CDT) isoforms was assessed using high-performance liquid chromatography, and the values were adjusted for alcohol intake (CDTadj ). Dopamine transporter single-photon emission computed tomography (DaT-SPECT) imaging was performed. In iRBD, phenoconversion risk of DaT-SPECT and CDTadj was evaluated using Cox regression adjusted for age and sex. RESULTS Median CDTadj was lower in PD (1.1 [interquartile range: 1.0-1.3]%) compared to controls (1.2 [1.1-1.6]%) (P = 0.001). In iRBD, median CDTadj was lower in subjects with abnormal (1.1 [0.9-1.3]%) than normal (1.3 [1.2-1.6]%) DaT-SPECT (P = 0.005). After a median 44-month follow-up, 20% of iRBD patients progressed to a manifest disease. Although iRBD converters and nonconverters did not significantly differ in CDTadj levels (P = 0.189), low CDTadj increased the risk of phenoconversion with hazard ratio 3.2 (P = 0.045) but did not refine the phenoconversion risk associated with abnormal DaT-SPECT yielding hazard ratio 15.8 (P < 0.001). CONCLUSIONS Decreased serum CDTadj is associated with substantia nigra degeneration in synucleinopathies. iRBD patients with low CDTadj are more likely to phenoconvert to manifest disease. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson Movement Disorder Society.
Collapse
Affiliation(s)
- Ranjani Ganapathy S.
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Kateřina Levová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Lenka Kotačková
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jiří Trnka
- Institute of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - David Zogala
- Institute of Nuclear Medicine, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Jan Rusz
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
- Department of Circuit Theory, Faculty of Electrical EngineeringCzech Technical University in PraguePragueCzech Republic
| | - Tomáš Zima
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - David Devos
- Department of Medical Pharmacology, Expert Center for Parkinson, CHU‐Lille, Lille Neuroscience and Cognition, Inserm, UMR‐S1172, LICEND, NS‐Park NetworkUniversity of LilleLilleFrance
| | - Karel Šonka
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Evžen Růžička
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Marta Kalousová
- Institute of Medical Biochemistry and Laboratory Diagnostics, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| | - Petr Dušek
- Department of Neurology and Centre of Clinical Neuroscience, First Faculty of MedicineCharles University and General University Hospital in PraguePragueCzech Republic
| |
Collapse
|
21
|
Alves I, Fernandes Â, Santos-Pereira B, Azevedo CM, Pinho SS. Glycans as a key factor in self and non-self discrimination: Impact on the breach of immune tolerance. FEBS Lett 2022; 596:1485-1502. [PMID: 35383918 DOI: 10.1002/1873-3468.14347] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 03/17/2022] [Accepted: 03/29/2022] [Indexed: 11/09/2022]
Abstract
Glycans are carbohydrates that are made by all organisms and covalently conjugated to other biomolecules. Glycans cover the surface of both human cells and pathogens and are fundamental to defining the identity of a cell or an organism, thereby contributing to discriminating self from non-self. As such, glycans are a class of "Self-Associated Molecular Patterns" that can fine-tune host inflammatory processes. In fact, glycans can be sensed and recognized by a variety of glycan-binding proteins (GBP) expressed by immune cells, such as galectins, siglecs and C-type lectins, which recognize changes in the cellular glycosylation, instructing both pro-inflammatory or anti-inflammatory responses. In this review, we introduce glycans as cell-identification structures, discussing how glycans modulate host-pathogen interactions and how they can fine-tune inflammatory processes associated with infection, inflammation and autoimmunity. Finally, from the clinical standpoint, we discuss how glycoscience research can benefit life sciences and clinical medicine by providing a source of valuable biomarkers and therapeutic targets for immunity.
Collapse
Affiliation(s)
- Inês Alves
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Ângela Fernandes
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal
| | - Beatriz Santos-Pereira
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal
| | - Catarina M Azevedo
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| | - Salomé S Pinho
- Institute for Research and Innovation in Health, University of Porto, Porto, Portugal.,Faculty of Medicine, University of Porto, Porto, Portugal.,Institute of Biomedical Sciences Abel Salazar, University of Porto, Portugal
| |
Collapse
|
22
|
Cvetko A, Tijardović M, Bilandžija-Kuš I, Gornik O. Comparison of self-sampling blood collection for N-glycosylation analysis. BMC Res Notes 2022; 15:61. [PMID: 35172879 PMCID: PMC8849020 DOI: 10.1186/s13104-022-05958-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2021] [Accepted: 02/07/2022] [Indexed: 11/27/2022] Open
Abstract
Objective Self-sampling of capillary blood provides easier sample collection, handling, and shipping compared to more invasive blood sampling via venepuncture. Recently, other means of capillary blood collection were introduced to the market, such as Neoteryx sticks and Noviplex cards. We tested the comparability of these two self-sampling methods, alongside dried blood spots (DBS), with plasma acquired from venepunctured blood in N-glycoprofiling of total proteins. We have also tested the intra-day repeatability of the three mentioned self-sampling methods. Capillary blood collection with Neoteryx, Noviplex and DBS was done following the manufacturers’ instructions and N-glycoprofiling of released, fluorescently labelled N-glycans was performed with ultra-performance liquid chromatography. Results Comparability with plasma was assessed by calculating the relative deviance, which was 0.674 for DBS, 0.092 for Neoteryx sticks, and 0.069 for Noviplex cards. In repeatability testing, similar results were obtained, with Noviplex cards and Neoteryx sticks performing substantially better than DBS (CVs = 4.831% and 7.098%, compared to 14.305%, respectively). Our preliminary study on the use of Neoteryx and Noviplex self-sampling devices in glycoanalysis demonstrates their satisfactory performance in both the comparability and repeatability testing, however, they should be further tested in larger collaborations and cohorts. Supplementary Information The online version contains supplementary material available at 10.1186/s13104-022-05958-9.
Collapse
Affiliation(s)
- Ana Cvetko
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | - Marko Tijardović
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia
| | | | - Olga Gornik
- Faculty of Pharmacy and Biochemistry, University of Zagreb, Ante Kovačića 1, 10000, Zagreb, Croatia.
| |
Collapse
|
23
|
Wang M, Chen X, Tang Z, Zhang W, Hou H, Sun X, Shi Y, Lu X, Li P, Ji L, Ding G, Li D. Association Between Immunoglobulin G N-glycosylation and Vascular Cognitive Impairment in a Sample With Atherosclerosis: A Case-Control Study. Front Aging Neurosci 2022; 14:823468. [PMID: 35221999 PMCID: PMC8868374 DOI: 10.3389/fnagi.2022.823468] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Accepted: 01/07/2022] [Indexed: 11/19/2022] Open
Abstract
Background Atherosclerosis is considered a crucial component in the pathogenesis of decreased cognitive function, as occurs in vascular cognitive impairment (VCI). Inflammation and the immune response play a significant role in the development of many chronic diseases. Immunoglobulin G (IgG) N-glycosylation has been implicated in the development of a variety of diseases by affecting the anti-inflammatory and proinflammatory responses of IgG. This study aimed to investigate the association between IgG N-glycosylation and VCI in a sample of patients with atherosclerosis through a case-control study. Method We recruited a total of 330 patients with atherosclerosis to participate in this case-control study, including 165 VCI patients and 165 sex- and age-matched participants with normal cognitive function. The plasma IgG N-glycans of participants were separated by ultrahigh-performance liquid chromatography. An enzyme-linked immunosorbent assay (ELISA) kit was used to determine the corresponding serum inflammatory factors. Atherosclerosis was diagnosed by carotid ultrasound, and the diagnosis of VCI was based on the “Guidelines for the Diagnosis and Treatment of Vascular Cognitive Impairment in China (2019)”. A multivariate logistic regression model was used to explore the association between IgG N-glycans and VCI. We also analyzed the relationship between IgG N-glycans and the inflammatory state of VCI through canonical correlation analysis (CCA). Results Through the multivariate logistic regression analysis, 8 glycans and 13 derived traits reflecting decreased sialylation and galactosylation and increased bisecting GlcNAc significantly differed between the case and control groups after adjusting for confounding factors (P < 0.05, q < 0.05). Similarly, the differences in TNF-α, IL-6, and IL-10 were statistically significant between the case and control groups after adjusting for the effects of confounding factors (P < 0.05, q < 0.05). The CCA results showed that VCI-related initial N-glycans were significantly correlated with VCI-related inflammatory factors (r = 0.272, P = 0.004). The combined AUC value (AUCcombined = 0.885) of 7 initial glycans and inflammatory factors was higher than their respective values (AUCinitial glycans = 0.818, AUCinflammatory factors = 0.773). Conclusion The findings indicate that decreased sialylation and galactosylation and increased bisecting GlcNAc reflected by IgG N-glycans might affect the occurrence of VCI in patients with atherosclerosis though promoting the proinflammatory function of IgG. IgG N-glycans may serve as potential biomarkers to distinguish VCI in individuals with atherosclerosis.
Collapse
Affiliation(s)
- Meng Wang
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xueyu Chen
- Department of Biostatistics, School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan, China
| | - Zhaoyang Tang
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Wenran Zhang
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Haifeng Hou
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | | | - Yuqing Shi
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Xinxia Lu
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Peirui Li
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
| | - Long Ji
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- *Correspondence: Long Ji,
| | - Guoyong Ding
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- Guoyong Ding,
| | - Dong Li
- Department of Epidemiology, School of Public Health, Shandong First Medical University & Shandong Academy of Medical Sciences, Tai’an, China
- The Second Affiliated Hospital of Shandong First Medical University, Tai’an, China
- Dong Li,
| |
Collapse
|
24
|
Sokolova MV, Schett G, Steffen U. Autoantibodies in Rheumatoid Arthritis: Historical Background and Novel Findings. Clin Rev Allergy Immunol 2022; 63:138-151. [PMID: 34495490 PMCID: PMC9464122 DOI: 10.1007/s12016-021-08890-1] [Citation(s) in RCA: 39] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/24/2021] [Indexed: 01/13/2023]
Abstract
Autoantibodies represent a hallmark of rheumatoid arthritis (RA), with the rheumatoid factor (RF) and antibodies against citrullinated proteins (ACPA) being the most acknowledged ones. RA patients who are positive for RF and/or ACPA ("seropositive") in general display a different etiology and disease course compared to so-called "seronegative" patients. Still, the seronegative patient population is very heterogeneous and not well characterized. Due to the identification of new autoantibodies and advancements in the diagnosis of rheumatic diseases in the last years, the group of seronegative patients is constantly shrinking. Aside from antibodies towards various post-translational modifications, recent studies describe autoantibodies targeting some native proteins, further broadening the spectrum of recognized antigens. Next to the detection of new autoantibody groups, much research has been done to answer the question if and how autoantibodies contribute to the pathogenesis of RA. Since autoantibodies can be detected years prior to RA onset, it is a matter of debate whether their presence alone is sufficient to trigger the disease. Nevertheless, there is gathering evidence of direct autoantibody effector functions, such as stimulation of osteoclastogenesis and synovial fibroblast migration in in vitro experiments. In addition, autoantibody positive patients display a worse clinical course and stronger radiographic progression. In this review, we discuss current findings regarding different autoantibody types, the underlying disease-driving mechanisms, the role of Fab and Fc glycosylation and clinical implications.
Collapse
Affiliation(s)
- Maria V. Sokolova
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Georg Schett
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| | - Ulrike Steffen
- Department of Internal Medicine 3 - Rheumatology and Immunology, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Universitätstrasse 25a, 91054 Erlangen, Germany ,Deutsches Zentrum Für Immuntherapie, Friedrich-Alexander-Universität Erlangen-Nürnberg and Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
25
|
Loaeza-Reyes KJ, Zenteno E, Moreno-Rodríguez A, Torres-Rosas R, Argueta-Figueroa L, Salinas-Marín R, Castillo-Real LM, Pina-Canseco S, Cervera YP. An Overview of Glycosylation and its Impact on Cardiovascular Health and Disease. Front Mol Biosci 2021; 8:751637. [PMID: 34869586 PMCID: PMC8635159 DOI: 10.3389/fmolb.2021.751637] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2021] [Accepted: 10/25/2021] [Indexed: 12/25/2022] Open
Abstract
The cardiovascular system is a complex and well-organized system in which glycosylation plays a vital role. The heart and vascular wall cells are constituted by an array of specific receptors; most of them are N- glycosylated and mucin-type O-glycosylated. There are also intracellular signaling pathways regulated by different post-translational modifications, including O-GlcNAcylation, which promote adequate responses to extracellular stimuli and signaling transduction. Herein, we provide an overview of N-glycosylation and O-glycosylation, including O-GlcNAcylation, and their role at different levels such as reception of signal, signal transduction, and exogenous molecules or agonists, which stimulate the heart and vascular wall cells with effects in different conditions, like the physiological status, ischemia/reperfusion, exercise, or during low-grade inflammation in diabetes and aging. Furthermore, mutations of glycosyltransferases and receptors are associated with development of cardiovascular diseases. The knowledge on glycosylation and its effects could be considered biochemical markers and might be useful as a therapeutic tool to control cardiovascular diseases.
Collapse
Affiliation(s)
- Karen Julissa Loaeza-Reyes
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Edgar Zenteno
- Facultad de Medicina, Universidad Nacional Autónoma de México, Mexico City, Mexico
| | | | - Rafael Torres-Rosas
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Liliana Argueta-Figueroa
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Conacyt - Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Roberta Salinas-Marín
- Laboratorio de Glicobiología Humana y Diagnóstico Molecular, Centro de Investigación en Dinámica Celular, Instituto de Investigación en Ciencias Básicas y Aplicadas, Universidad Autónoma del Estado de Morelos, Cuernavaca, Mexico
| | - Lizet Monserrat Castillo-Real
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Socorro Pina-Canseco
- Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| | - Yobana Pérez Cervera
- Centro de Estudios en Ciencias de la Salud y la Enfermedad, Facultad de Odontología, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico.,Centro de Investigación Facultad de Medicina-UNAM-UABJO, Universidad Autónoma Benito Juárez de Oaxaca, Oaxaca, Mexico
| |
Collapse
|
26
|
Salminen A, Kaarniranta K, Kauppinen A. Hypoxia/ischemia impairs CD33 (Siglec-3)/TREM2 signaling: Potential role in Alzheimer's pathogenesis. Neurochem Int 2021; 150:105186. [PMID: 34530055 DOI: 10.1016/j.neuint.2021.105186] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/10/2021] [Accepted: 09/12/2021] [Indexed: 12/22/2022]
Abstract
Recent genetic and molecular studies have indicated that the innate immune system, especially microglia, have a crucial role in the accumulation of β-amyloid plaques in Alzheimer's disease (AD). In particular, the CD33 receptor, also called Siglec-3, inhibits the TREM2 receptor-induced phagocytic activity of microglia. CD33 receptors recognize the α2,3 and α2,6-linked sialic groups in tissue glycocalyx, especially sialylated gangliosides in human brain. The CD33 receptor triggers cell-type specific responses, e.g., in microglia, CD33 inhibits phagocytosis, whereas in natural killer cells, it inhibits the cytotoxic activity of the NKG2D receptor. Nonetheless, the regulation of the activity of CD33 receptor needs to be clarified. For example, it seems that hypoxia/ischemia, a potential cause of AD pathology, increases the expression of CD33 and its downstream target SHP-1, a tyrosine phosphatase which suppresses the phagocytosis driven by TREM2. Moreover, hypoxia/ischemia increases the deposition of sialylated gangliosides, e.g., GM1, GM2, GM3, and GD1, which are ligands for inhibitory CD33/Siglec-3 receptors. In addition, β-amyloid peptides bind to the sialylated gangliosides in raft-like clusters and subsequently these gangliosides act as seeds for the formation of β-amyloid plaques in AD pathology. It is known that senile plaques contain sialylated GM1, GM2, and GM3 gangliosides, i.e., the same species induced by hypoxia/ischemia treatment. Sialylated gangliosides in plaques might stimulate the CD33/Siglec-3 receptors of microglia and thus impede TREM2-driven phagocytosis. We propose that hypoxia/ischemia, e.g., via the accumulation of sialylated gangliosides, prevents the phagocytosis of β-amyloid deposits by inhibiting CD33/TREM2 signaling.
Collapse
Affiliation(s)
- Antero Salminen
- Department of Neurology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland.
| | - Kai Kaarniranta
- Department of Ophthalmology, Institute of Clinical Medicine, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland; Department of Ophthalmology, Kuopio University Hospital, P.O. Box 100, FI-70029, KYS, Finland
| | - Anu Kauppinen
- School of Pharmacy, Faculty of Health Sciences, University of Eastern Finland, P.O. Box 1627, FI-70211, Kuopio, Finland
| |
Collapse
|
27
|
Jahan M, Francis N, Wynn P, Wang B. The Potential for Sialic Acid and Sialylated Glycoconjugates as Feed Additives to Enhance Pig Health and Production. Animals (Basel) 2021; 11:ani11082318. [PMID: 34438776 PMCID: PMC8388453 DOI: 10.3390/ani11082318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/30/2021] [Accepted: 08/03/2021] [Indexed: 11/30/2022] Open
Abstract
Simple Summary This review discusses the current challenges in the pig industry and the potential nutritional significance of sialic acid (Sia) and glycoconjugates (Sia-GC’s) for pig health and nutrition. Sia is a nine-carbon acidic sugar which is present in various organs and body fluids of humans and animals. Sias contribute to many beneficial biological functions including pathogen resistance, immunomodulation, gut microbiota development, gut maturation, anti-inflammation and neurodevelopment. The role of Sias in regulating the metabolism of pigs has seldom been reported. However, we have documented significant beneficial effects of specific Sia-GC’s on health and production performance of sows and piglets. These findings are reviewed in relation to other studies while noting the beneficial effects of the inclusion of Sia, Sia containing oligosaccharide or the sialo-protein lactoferrin in the diets of gilts and sows. The importance of the passive transfer of of Sia and Sia-GC’s through milk to the young and the implications for their growth and development is also reviewed. This information will assist in optimizing the composition of sow/gilt milk replacers designed to increases the survival of IUGR piglets or piglets with dams suffering from agalactia, a common problem in pig production systems worldwide. Abstract Swine are one of the most important agricultural species for human food production. Given the significant disease challenges confronting commercial pig farming systems, introduction of a new feed additive that can enhance animal performance by improving growth and immune status represents a major opportunity. One such candidate is sialic acid (Sia), a diverse family of nine-carbon acidic sugar, present in various organs and body fluid, as well as an essential structural and functional constituent of brain ganglioside of humans and animals. Sias are key monosaccharide and biomarker of sialylated milk oligosaccharide (Sia-MOS’s), sialylated glycoproteins and glycolipids in milk and all vertebrate cells. Sias accomplish many critical endogenous functions by virtue of their physiochemical properties and via recognition by intrinsic receptors. Human milk sialylated glycoconjugates (Sia-GC’s) are bioactive compounds known to act as prebiotics that promote gut microbiota development, gut maturation, pathogen resistance, immunomodulation, anti-inflammation and neurodevelopment. However, the importance of Sia in pig health, especially in the growth, development, immunity of developing piglet and in pig production remains unknown. This review aims to critically discuss the current status of knowledge of the biology and nutritional role of Sia and Sia-GC’s on health of both female sow and newborn piglets.
Collapse
Affiliation(s)
| | | | | | - Bing Wang
- Correspondence: ; Tel.: +61-2-6933-4549
| |
Collapse
|
28
|
High-throughput rat immunoglobulin G N-glycosylation profiling revealed subclass-specific changes associated with chronic stress. J Proteomics 2021; 245:104293. [PMID: 34118474 DOI: 10.1016/j.jprot.2021.104293] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 05/03/2021] [Accepted: 05/26/2021] [Indexed: 12/31/2022]
Abstract
Immunoglobulin G (IgG) glycosylation corresponds well with immune system changes, so it can potentially be used as a biomarker for the consequences of chronic stress such as low-grade inflammation and enhanced immunosenescence in older animals. Here we present a high-throughput glycoproteomic workflow, including IgG enrichment, HILIC glycopeptide purification, and nano-LC-MS analysis of tryptic glycopeptides applied for the analysis of rat IgG. A cohort of 80 animals was exposed to seven stressors in a customized chronic stress protocol with blood and tissue sampling in three timepoints. Young female rats experienced an increase in agalactosylated glycoforms on IgG2a and IgG2c accompanied by a decrease in monogalactosylation. Among old females, increased galactosylation was observed in the IgG2b subclass, pointing to an anti-inflammatory activity of IgG. Additionally, IgG Fc N-glycosylation patterns in Sprague Dawley rats were analyzed, quantified, and reported for the first time. Our findings emphasize age-, sex- and subclass-dependent differences in IgG glycosylation related to chronic stress exposure, confirming the relevance of newly developed methods for further research in glycobiology of rodent immune response. SIGNIFICANCE: In this study, we showed that a high-throughput streamlined methodology based on protein L 96-well monolithic plates for efficient rat IgG immunoaffinity enrichment from blood plasma, paired with appropriate tryptic glycopeptide preparation, HILIC-SPE enrichment, and nano-LC-MS methods was suitable for quick processing of large sample sets. We report a subclass-specific profiling and changes in rat IgG Fc galactosylation and adrenal gland immunohistochemistry of male and female animals exposed to a customized chronic stress protocol.
Collapse
|
29
|
Paton B, Suarez M, Herrero P, Canela N. Glycosylation Biomarkers Associated with Age-Related Diseases and Current Methods for Glycan Analysis. Int J Mol Sci 2021; 22:5788. [PMID: 34071388 PMCID: PMC8198018 DOI: 10.3390/ijms22115788] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Revised: 05/22/2021] [Accepted: 05/25/2021] [Indexed: 12/23/2022] Open
Abstract
Ageing is a complex process which implies the accumulation of molecular, cellular and organ damage, leading to an increased vulnerability to disease. In Western societies, the increase in the elderly population, which is accompanied by ageing-associated pathologies such as cardiovascular and mental diseases, is becoming an increasing economic and social burden for governments. In order to prevent, treat and determine which subjects are more likely to develop these age-related diseases, predictive biomarkers are required. In this sense, some studies suggest that glycans have a potential role as disease biomarkers, as they modify the functions of proteins and take part in intra- and intercellular biological processes. As the glycome reflects the real-time status of these interactions, its characterisation can provide potential diagnostic and prognostic biomarkers for multifactorial diseases. This review gathers the alterations in protein glycosylation profiles that are associated with ageing and age-related diseases, such as cancer, type 2 diabetes mellitus, metabolic syndrome and several chronic inflammatory diseases. Furthermore, the review includes the available techniques for the determination and characterisation of glycans, such as liquid chromatography, electrophoresis, nuclear magnetic resonance and mass spectrometry.
Collapse
Affiliation(s)
- Beatrix Paton
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Manuel Suarez
- Nutrigenomics Research Group, Departament de Bioquímica i Biotecnologia, Universitat Rovira i Virgili, 43007 Tarragona, Spain
| | - Pol Herrero
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| | - Núria Canela
- Eurecat, Centre Tecnològic de Catalunya, Centre for Omic Sciences, Joint Unit Eurecat-Universitat Rovira i Virgili, Unique Scientific and Technical Infrastructure (ICTS), 43204 Reus, Spain; (B.P.); (N.C.)
| |
Collapse
|
30
|
Chio JCT, Xu KJ, Popovich P, David S, Fehlings MG. Neuroimmunological therapies for treating spinal cord injury: Evidence and future perspectives. Exp Neurol 2021; 341:113704. [PMID: 33745920 DOI: 10.1016/j.expneurol.2021.113704] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 03/01/2021] [Accepted: 03/16/2021] [Indexed: 12/13/2022]
Abstract
Spinal cord injury (SCI) has a complex pathophysiology. Following the initial physical trauma to the spinal cord, which may cause vascular disruption, hemorrhage, mechanical injury to neural structures and necrosis, a series of biomolecular cascades is triggered to evoke secondary injury. Neuroinflammation plays a major role in the secondary injury after traumatic SCI. To date, the administration of systemic immunosuppressive medications, in particular methylprednisolone sodium succinate, has been the primary pharmacological treatment. This medication is given as a complement to surgical decompression of the spinal cord and maintenance of spinal cord perfusion through hemodynamic augmentation. However, the impact of neuroinflammation is complex with harmful and beneficial effects. The use of systemic immunosuppressants is further complicated by the natural onset of post-injury immunosuppression, which many patients with SCI develop. It has been hypothesized that immunomodulation to attenuate detrimental aspects of neuroinflammation after SCI, while avoiding systemic immunosuppression, may be a superior approach. To accomplish this, a detailed understanding of neuroinflammation and the systemic immune responses after SCI is required. Our review will strive to achieve this goal by first giving an overview of SCI from a clinical and basic science context. The role that neuroinflammation plays in the pathophysiology of SCI will be discussed. Next, the positive and negative attributes of the innate and adaptive immune systems in neuroinflammation after SCI will be described. With this background established, the currently existing immunosuppressive and immunomodulatory therapies for treating SCI will be explored. We will conclude with a summary of topics that can be explored by neuroimmunology research. These concepts will be complemented by points to be considered by neuroscientists developing therapies for SCI and other injuries to the central nervous system.
Collapse
Affiliation(s)
- Jonathon Chon Teng Chio
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada.
| | - Katherine Jiaxi Xu
- Human Biology Program, University of Toronto, Wetmore Hall, 300 Huron St., Room 105, Toronto, Ontario M5S 3J6, Canada.
| | - Phillip Popovich
- Department of Neuroscience, Belford Center for Spinal Cord Injury, Center for Brain and Spinal Cord Repair, The Neurological Institute, The Ohio State University, Wexner Medical Center, 410 W. 10(th) Ave., Columbus 43210, USA.
| | - Samuel David
- Centre for Research in Neuroscience and BRaIN Program, The Research Institute of the McGill University Health Centre, 1650 Cedar Ave., Montreal, Quebec H3G 1A4, Canada.
| | - Michael G Fehlings
- Division of Translational and Experimental Neuroscience, Krembil Research Institute, University Health Network, Toronto, Ontario, Canada; Institute of Medical Science, University of Toronto, Toronto, Ontario, Canada; Division of Neurosurgery, Department of Surgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
31
|
Sołkiewicz K, Krotkiewski H, Jędryka M, Kratz EM. Variability of serum IgG sialylation and galactosylation degree in women with advanced endometriosis. Sci Rep 2021; 11:5586. [PMID: 33692455 PMCID: PMC7970930 DOI: 10.1038/s41598-021-85200-x] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Accepted: 02/25/2021] [Indexed: 12/17/2022] Open
Abstract
Endometriosis is an inflammatory disease which diagnostics is difficult and often invasive, therefore non-invasive diagnostics methods and parameters are needed for endometriosis detection. The aim of our study was to analyse the glycosylation of native serum IgG and IgG isolated from sera of women classified as: with endometriosis, without endometriosis but with some benign ginecological disease, and control group of healthy women, in context of its utility for differentiation of advanced endometriosis from the group of healthy women. IgG sialylation and galactosylation/agalactosylation degree was determined using specific lectins: MAA and SNA detecting sialic acid α2,3- and α2,6-linked, respectively, RCA-I and GSL-II specific to terminal Gal and terminal GlcNAc, respectively. The results of ROC and cluster analysis showed that the serum IgG MAA-reactivity, sialylation and agalactosylation factor may be used as supplementary parameters for endometriosis diagnostics and could be taken into account as a useful clinical tool to elucidate women with high risk of endometriosis development. Additionally, we have shown that the analysis of native serum IgG glycosylation, without the prior time-consuming and expensive isolation of the protein, is sufficient to differentiation endometriosis from a group of healthy women.
Collapse
Affiliation(s)
- Katarzyna Sołkiewicz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556, Wrocław, Poland
| | - Hubert Krotkiewski
- Hirszfeld Institute of Immunology and Experimental Therapy, Polish Academy of Sciences, Weigla Street 12, 53-114, Wrocław, Poland
| | - Marcin Jędryka
- Department of Oncology, Gynecological Oncology Clinic, Faculty of Medicine, Wroclaw Medical University, Hirszfeld Square 12, 53-413, Wrocław, Poland
- Department of Oncological Gynecology, Wroclaw Comprehensive Cancer Center, Hirszfeld Square 12, 53-413, Wrocław, Poland
| | - Ewa M Kratz
- Department of Laboratory Diagnostics, Division of Laboratory Diagnostics, Faculty of Pharmacy, Wroclaw Medical University, Borowska Street 211A, 50-556, Wrocław, Poland.
| |
Collapse
|
32
|
Hirschberg D, Ekman B, Wahlberg J, Landberg E. Altered immunoglobulin G glycosylation in patients with isolated hyperprolactinaemia. PLoS One 2021; 16:e0247805. [PMID: 33635916 PMCID: PMC7909626 DOI: 10.1371/journal.pone.0247805] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2020] [Accepted: 02/14/2021] [Indexed: 12/13/2022] Open
Abstract
Prolactin is a peptide hormone produced in the anterior pituitary, which increase in several physiological and pathological situations. It is unclear if hyperprolactinaemia may affect glycosylation of immunoglobulin G (IgG). Twenty-five patients with hyperprolactinemia and 22 healthy control subjects were included in the study. The groups had similar age and gender distribution. A panel of hormonal and haematological analyses, creatinine, glucose, liver enzymes and immunoglobulins were measured by routine clinical methods. IgG was purified from serum by Protein G Sepharose. Sialic acid was released from IgG by use of neuraminidase followed by quantification on high performance anion-exchange chromatography with pulsed amperometric detection. Tryptic glycopeptides of IgG was analysed by matrix-assisted laser desorption/ionization-time of flight mass spectrometry. Hormone and immunoglobulin levels were similar in the two groups, except for IgA and prolactin. Significantly higher IgG1 and IgG2/3 galactosylation was found in the patient group with hyperprolactinaemia compared to controls. (A significant correlation between prolactin and IgG2/3 galactosylation (Rs 0.61, p<0.001) was found for samples with prolactin values below 2000 mIU/L. The relative amount of sialylated and bisecting glycans on IgG did not differ between patients and controls. The four macroprolactinaemic patients showed decreased relative amount of bisecting IgG2/3 glycans. Hyperprolactinaemia was found to be associated with increased galactosylation of IgG1and IgG2/3. This may have impact on IgG interactions with Fc-receptors, complement and lectins, and consequently lead to an altered immune response.
Collapse
Affiliation(s)
| | - Bertil Ekman
- Department of Endocrinology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Jeanette Wahlberg
- Department of Endocrinology in Linköping, and Department of Health, Medicine and Caring Sciences, Linköping University, Linköping, Sweden
| | - Eva Landberg
- Department of Clinical Chemistry, and Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
- * E-mail:
| |
Collapse
|
33
|
Neuraminidase Inhibitor Zanamivir Ameliorates Collagen-Induced Arthritis. Int J Mol Sci 2021; 22:ijms22031428. [PMID: 33572654 PMCID: PMC7867009 DOI: 10.3390/ijms22031428] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Revised: 01/27/2021] [Accepted: 01/27/2021] [Indexed: 01/20/2023] Open
Abstract
Altered sialylation patterns play a role in chronic autoimmune diseases such as rheumatoid arthritis (RA). Recent studies have shown the pro-inflammatory activities of immunoglobulins (Igs) with desialylated sugar moieties. The role of neuraminidases (NEUs), enzymes which are responsible for the cleavage of terminal sialic acids (SA) from sialoglycoconjugates, is not fully understood in RA. We investigated the impact of zanamivir, an inhibitor of the influenza virus neuraminidase, and mammalian NEU2/3 on clinical outcomes in experimental arthritides studies. The severity of arthritis was monitored and IgG titers were measured by ELISA. (2,6)-linked SA was determined on IgG by ELISA and on cell surfaces by flow cytometry. Zanamivir at a dose of 100 mg/kg (zana-100) significantly ameliorated collagen-induced arthritis (CIA), whereas zana-100 was ineffective in serum transfer-induced arthritis. Systemic zana-100 treatment reduced the number of splenic CD138+/TACI+ plasma cells and CD19+ B cells, which was associated with lower IgG levels and an increased sialylation status of IgG compared to controls. Our data reveal the contribution of NEU2/3 in CIA. Zanamivir down-modulated the T and B cell-dependent humoral immune response and induced an anti-inflammatory milieu by inhibiting sialic acid degradation. We suggest that neuraminidases might represent a promising therapeutic target for RA and possibly also for other antibody-mediated autoimmune diseases.
Collapse
|
34
|
Petrović T, Trbojević-Akmačić I. Lectin and Liquid Chromatography-Based Methods for Immunoglobulin (G) Glycosylation Analysis. EXPERIENTIA SUPPLEMENTUM (2012) 2021; 112:29-72. [PMID: 34687007 DOI: 10.1007/978-3-030-76912-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Immunoglobulin (Ig) glycosylation has been shown to dramatically affect its structure and effector functions. Ig glycosylation changes have been associated with different diseases and show a promising biomarker potential for diagnosis and prognosis of disease advancement. On the other hand, therapeutic biomolecules based on structural and functional features of Igs demand stringent quality control during the production process to ensure their safety and efficacy. Liquid chromatography (LC) and lectin-based methods are routinely used in Ig glycosylation analysis complementary to other analytical methods, e.g., mass spectrometry and capillary electrophoresis. This chapter covers analytical approaches based on LC and lectins used in low- and high-throughput N- and O-glycosylation analysis of Igs, with the focus on immunoglobulin G (IgG) applications. General principles and practical examples of the most often used LC methods for Ig purification are described, together with typical workflows for N- and O-glycan analysis on the level of free glycans, glycopeptides, subunits, or intact Igs. Lectin chromatography is a historical approach for the analysis of lectin-carbohydrate interactions and glycoprotein purification but is still being used as a valuable tool in Igs purification and glycan analysis. On the other hand, lectin microarrays have found their application in the rapid screening of glycan profiles on intact proteins.
Collapse
Affiliation(s)
- Tea Petrović
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | | |
Collapse
|
35
|
Sehic E, Westerlund A, Lagerquist MK, Lerner UH, Carlsten H, Henning P, Engdahl C. Immunoglobulin G complexes without sialic acids enhance osteoclastogenesis but do not affect arthritis-mediated bone loss. Scand J Immunol 2020; 93:e13009. [PMID: 33320370 PMCID: PMC8243958 DOI: 10.1111/sji.13009] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2020] [Revised: 11/16/2020] [Accepted: 12/06/2020] [Indexed: 12/12/2022]
Abstract
Immunoglobulin G (IgG) is important in clearance and recognition of previously presented antigens and after activation, IgGs can interact with the Fc gamma receptors (FcγRs) on haematopoietic cells, including bone‐resorbing osteoclasts. The pathogenicity of IgG, that is the ability to elicit stimulatory effects via FcγRs, can be modulated by attachment of sugar moieties, including sialic acids. Human IgGs and autoantibodies are associated with bone loss in autoimmune disease. However, the impact of polyclonal murine IgG via FcγRs on bone loss is poorly understood. Here, we investigate if heat‐aggregated activated murine polyclonal IgG complexes have any direct effects on murine osteoclasts and if they modulate arthritis‐mediated bone loss. Using cell cultures of murine osteoclasts, we show that IgG complexes without sialic acids (de‐IgG complexes) enhance receptor activator of nuclear factor kappa‐Β ligand (RANKL)‐stimulated osteoclastogenesis, an effect associated with increased FcγRIII expression. Using an in vivo model of arthritis‐mediated bone loss, where IgG complexes were injected into arthritic knees, no effect on the severity of arthritis or the degree of arthritis‐mediated bone loss was detected. Interestingly, injection of de‐IgG complexes into non‐arthritic knees increased osteoclast formation and enhanced bone erosions. Our findings show that activated de‐IgG complexes have no additive effect on arthritis‐mediated bone loss. However, de‐IgG complexes potentiate murine osteoclastogenesis and enhance local bone erosion in non‐arthritic bones, further confirming the link between the adaptive immune system and bone.
Collapse
Affiliation(s)
- Edina Sehic
- Department of Rheumatology and Inflammation Research, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Anna Westerlund
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Marie K Lagerquist
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Ulf H Lerner
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Hans Carlsten
- Department of Rheumatology and Inflammation Research, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Petra Henning
- Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| | - Cecilia Engdahl
- Department of Rheumatology and Inflammation Research, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden.,Department of Internal Medicine and Clinical Nutrition, Centre for Bone and Arthritis Research, Institute of Medicine, Sahlgrenska Academy, University of Gothenburg, Gothenburg, Sweden
| |
Collapse
|
36
|
Dissecting Total Plasma and Protein-Specific Glycosylation Profiles in Congenital Disorders of Glycosylation. Int J Mol Sci 2020; 21:ijms21207635. [PMID: 33076454 PMCID: PMC7589176 DOI: 10.3390/ijms21207635] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/10/2020] [Revised: 10/09/2020] [Accepted: 10/14/2020] [Indexed: 12/16/2022] Open
Abstract
Protein N-glycosylation is a multifactorial process involved in many biological processes. A broad range of congenital disorders of glycosylation (CDGs) have been described that feature defects in protein N-glycan biosynthesis. Here, we present insights into the disrupted N-glycosylation of various CDG patients exhibiting defects in the transport of nucleotide sugars, Golgi glycosylation or Golgi trafficking. We studied enzymatically released N-glycans of total plasma proteins and affinity purified immunoglobulin G (IgG) from patients and healthy controls using mass spectrometry (MS). The applied method allowed the differentiation of sialic acid linkage isomers via their derivatization. Furthermore, protein-specific glycan profiles were quantified for transferrin and IgG Fc using electrospray ionization MS of intact proteins and glycopeptides, respectively. Next to the previously described glycomic effects, we report unprecedented sialic linkage-specific effects. Defects in proteins involved in Golgi trafficking (COG5-CDG) and CMP-sialic acid transport (SLC35A1-CDG) resulted in lower levels of sialylated structures on plasma proteins as compared to healthy controls. Findings for these specific CDGs include a more pronounced effect for α2,3-sialylation than for α2,6-sialylation. The diverse abnormalities in glycomic features described in this study reflect the broad range of biological mechanisms that influence protein glycosylation.
Collapse
|
37
|
Glycosylation Alterations in Multiple Sclerosis Show Increased Proinflammatory Potential. Biomedicines 2020; 8:biomedicines8100410. [PMID: 33065977 PMCID: PMC7599553 DOI: 10.3390/biomedicines8100410] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/27/2020] [Revised: 10/02/2020] [Accepted: 10/10/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is an inflammatory autoimmune disorder affecting the central nervous system (CNS), with unresolved aetiology. Previous studies have implicated N-glycosylation, a highly regulated enzymatic attachment of complex sugars to targeted proteins, in MS pathogenesis. We investigated individual variation in N-glycosylation of the total plasma proteome and of IgG in MS. Both plasma protein and IgG N-glycans were chromatographically profiled and quantified in 83 MS cases and 88 age- and sex-matched controls. Comparing levels of glycosylation features between MS cases and controls revealed that core fucosylation (p = 6.96 × 10-3) and abundance of high-mannose structures (p = 1.48 × 10-2) were the most prominently altered IgG glycosylation traits. Significant changes in plasma protein N-glycome composition were observed for antennary fucosylated, tri- and tetrasialylated, tri- and tetragalactosylated, high-branched N-glycans (p-value range 1.66 × 10-2-4.28 × 10-2). Classification performance of N-glycans was examined by ROC curve analysis, resulting in an AUC of 0.852 for the total plasma N-glycome and 0.798 for IgG N-glycome prediction models. Our results indicate that multiple aspects of protein glycosylation are altered in MS, showing increased proinflammatory potential. N-glycan alterations showed substantial value in classification of the disease status, nonetheless, additional studies are warranted to explore their exact role in MS development and utility as biomarkers.
Collapse
|
38
|
Ling JWA, Chang LS, Babji AS, Lim SJ. Recovery of value-added glycopeptides from edible bird's nest (EBN) co-products: enzymatic hydrolysis, physicochemical characteristics and bioactivity. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2020; 100:4714-4722. [PMID: 32468613 DOI: 10.1002/jsfa.10530] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2020] [Revised: 05/04/2020] [Accepted: 05/28/2020] [Indexed: 06/11/2023]
Abstract
BACKGROUND Processing of edible bird's nest (EBN) requires extensive washing to remove impurities and produces huge amounts of EBN co-products, which contain mainly feathers with glycoproteins attached, which are usually discarded. This study was conducted to recover the valuable EBN glycoproteins from the waste material. Enzymatic hydrolysis was applied to recover EBN glycopeptides from EBN co-products (EBNcoP ) and processed cleaned EBN (EBNclean ) was used as control, which were then freeze-dried into EBN hydrolysates (EBNhcoP and EBNhclean , respectively). RESULTS The recovery yield for EBNhclean and EBNhcoP were 89.09 ± 0.01% and 47.64 ± 0.26%, respectively, indicating nearly 50% of glycopeptide can be recovered from the waste material. Meanwhile, N-acetylneuraminic acid, a major acid sugar in EBN glycoproteins, of EBNhcoP increased by 229% from 58.6 ± 3.9 to 192.9 ± 3.1 g kg-1 , indicating the enzymatic hydrolysis removed impurities and thus enhanced the N-acetylneuraminic acid content. Total soluble protein was more than 330 g kg-1 for all the samples. Colour parameter showed that hydrolysate samples have greater L* (lightness) values. Chroma result indicates the intensity of all the samples were low (< 11). Fourier-transform infrared (FTIR) spectrum displayed that the EBNhcoP exhibited similar functional groups with EBNhclean , indicating that the EBNcoP has similar functionality as EBNclean . Significantly higher (P ≤ 0.05) 1,1-diphenyl-2-picrylhydrazyl (DPPH) and ferric reducing antioxidant power (FRAP) activities were reported in EBNhcoP after the enzymatic reaction. CONCLUSION EBNhcoP were successfully recovered from low value EBNcoP with enhanced antioxidant activities. The findings of this work are beneficial for the EBN industry to reduce wastage and enhance economic values of EBN co-products, both economically and nutritionally. © 2020 Society of Chemical Industry.
Collapse
Affiliation(s)
- Jin Wei Alvin Ling
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Lee Sin Chang
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Abdul Salam Babji
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| | - Seng Joe Lim
- Department of Food Sciences, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
- Innovation Centre for Confectionery Technology (MANIS), Faculty of Science and Technology, Universiti Kebangsaan Malaysia, UKM Bangi, Selangor, 43600, Malaysia
| |
Collapse
|
39
|
The sialylation profile of IgG determines the efficiency of antibody directed osteogenic differentiation of iMSCs by modulating local immune responses and osteoclastogenesis. Acta Biomater 2020; 114:221-232. [PMID: 32771590 DOI: 10.1016/j.actbio.2020.07.055] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2020] [Revised: 07/03/2020] [Accepted: 07/31/2020] [Indexed: 12/25/2022]
Abstract
Antibody-mediated osseous regeneration (AMOR) has been proved as a promising strategy for osteogenic differentiation of induced pluripotent stem cells derived MSCs (iMSCs). The key characteristic of antibody that determines the AMOR potential is largely unknown. The glycosylation profile of immunoglobulin G (IgG) represents a key checkpoint that determines its effector functions. Herein, we modified the sialylation profile of BMP2 antibodies to investigate the effects of glycosylation on antibody-mediated osteogenic differentiation of iMSCs. We found that over-sialylated BMP2 antibodies stimulated the highest amount of new bone while those non- or low-sialylated led to bone porosity and collapse. The immune response aroused by BMP2 immune complexes (BMP2-ICs) was intensified by desialylation, which contributed to an environment that favored osteoclastogenesis while inhibited osteoblastogenesis. In vitro study further demonstrated that the osteogenic potential of BMP2-ICs was not significantly affected by the degree of sialylation. On the other hand, BMP2-ICs could stimulate osteoclastogenesis by binding FcγRs on preosteoclasts directly, which was significantly intensified by desialylation and attenuated by over-sialylation. Bone defects implanted with alginate microbeads loaded with iMSCs and over-sialylated antibodies showed more bone formation than those sites with non- or low sialylated antibodies. Taken together, our study demonstrated that sialylation profile is one of the traits that decide the AMOR potential of BMP2 antibodies. Enhancement of sialylation may be a promising strategy to optimize antibody for iMSCs application in bone tissue engineering. STATEMENT OF SIGNIFICANCE: Antibody-mediated osseous regeneration (AMOR) is a promising strategy for bone tissue engineering that takes advantage of the specific reactivity of antibodies to sequester endogenous BMP2 and present it to osteoprogenitor cells. We previously demonstrated that BMP2 immune complex can drive iPSCs derived MSCs to osteogenic lineage. In this study, we analyze the effects of glycosylation profile on antibody directed osteogenic differentiation of iMSCs because glycosylation profile represents a key checkpoint that determines the effector functions of antibodies, and it is susceptible to variations in different clones. The results showed that sialylation profile is one of the traits that decides the AMOR potential of BMP2 antibody, and the enhancement of sialylation maybe a promising strategy to optimize antibodies for AMOR.
Collapse
|
40
|
Association of the Sialylation of Antibodies Specific to the HCV E2 Envelope Glycoprotein with Hepatic Fibrosis Progression and Antiviral Therapy Efficacy. DISEASE MARKERS 2020; 2020:8881279. [PMID: 32685058 PMCID: PMC7333057 DOI: 10.1155/2020/8881279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/25/2020] [Revised: 05/27/2020] [Accepted: 06/05/2020] [Indexed: 12/30/2022]
Abstract
The E2 envelope glycoprotein of the hepatitis C virus (HCV) is a major target of broadly neutralizing antibodies that are closely related to a spontaneous cure of HCV infection. There is still no data about the diversity of E2-specific antibodies (Abs) glycosylation. The aim of this study was to analyze the level and sialylation of E2 IgG Abs, the relation of the respective changes to hepatic fibrosis (F) progression and their possible association with the efficacy of interferon-α-2a plus ribavirin (IFN-RBV) antiviral therapy. One hundred three HCV infected treatment-naive patients were examined using ELISA with E2 recombinant protein as antigen and sialic acid-specific Sambucus nigra agglutinin. The efficacy of the IFN-RBV treatment of patients with HCV dominant 1b and 3a genotypes (GT) was evaluated. A significant decrease of E2 Abs sialylation in the late stages of fibrosis was found irrespective of HCV genotype. On this basis, the F4 stage of fibrosis can be discriminated from its F0 or F1-3 stage by an about 75-79% accuracy. HCV infection of 1b genotype is associated with the production of lower sialylated E2 Abs, a higher frequency of F4 stage fibrosis, and a worse response to antiviral therapy. The increased SNA reactivity of E2 Abs was observed in patients with a sustained virological response (SVR). The proportion of SVR responders was significantly higher among patients with 3a genotype. However, for both dominant HCV genotypes (3a and 1b), an increased sialylation of E2 IgG was associated with a higher rate of patients with sustained virological response to antiviral therapy. Thus, the association of alterations of anti-E2 IgG Abs sialylation with hepatic fibrosis stage, HCV genotype, and the efficacy of antiviral therapy enables using these changes as novel noninvasive predictive biomarkers. The clinical potential of these findings is discussed.
Collapse
|
41
|
Fu D, Zhong Z, Shi D, Peng Y, Li B, Wang D, Guo L, Li Z, Mao H, Yu X, Li M. ST6GAL1 polymorphisms influence susceptibility and progression of IgA nephropathy in a Chinese Han population. Immunobiology 2020; 225:151973. [PMID: 32747022 DOI: 10.1016/j.imbio.2020.151973] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2020] [Revised: 05/19/2020] [Accepted: 06/03/2020] [Indexed: 01/11/2023]
Abstract
BACKGROUND ST6GAL1 has been identified as a novel susceptibility gene for IgA nephropathy (IgAN) in a previous genome-wide association study. The present study is aimed at exploring whether the genetic polymorphisms of ST6GAL1 gene correlate with IgAN susceptibility, clinical phenotypes and progression in a Chinese Han population. METHODS Twenty-six single nucleotide polymorphisms (SNPs) of ST6GAL1 were genotyped in 1000 biopsy-proven IgAN patients and 1000 control subjects of Chinese Han population using Sequenom MassARRAY iPLEX. A logistic regression analysis with age and sex as covariates was performed to evaluate the effects of ST6GAL1 gene polymorphisms on IgAN susceptibility. Kaplan-Meier method and Cox proportional hazard models were applied to analyze the associations between genetic variants and renal survival. RESULTS We found that rs7634389 (OR = 1.24, 95 % CI = 1.02-1.50, pdominant = 0.034) and rs6784233 (OR = 1.23, 95 % CI = 1.05-1.45, padditive = 0.013; OR = 1.28, 95 % CI = 1.05-1.55, pdominant = 0.014) were associated with susceptibility of IgAN. In addition, rs7634389 was correlated with hyperuricemia (OR = 1.27, p = 0.012) and segmental glomerulosclerosis (OR = 1.21, p = 0.047) in IgAN patients. Furthermore, rs7634389 was independently associated with renal survival after adjustments for multiple confounders (hazard ratio [HR] = 0.51, 95 % CI = 0.33-0.78, p = 0.002). Haplotype analysis for ST6GAL1 polymorphisms confirmed their associations with the susceptibility to IgAN. CONCLUSIONS Our research suggested that ST6GAL1 gene polymorphisms were implicated in IgAN susceptibility and clinical outcome in a Chinese Han population.
Collapse
Affiliation(s)
- Dongying Fu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Zhong Zhong
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Dianchun Shi
- Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Yuan Peng
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Bin Li
- Clinical Trials Unit, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China
| | - Dan Wang
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Lin Guo
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Zhijian Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Haiping Mao
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China
| | - Xueqing Yu
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China; Department of Nephrology, Guangdong General Hospital, Guangdong Academy of Medical Sciences, Guangzhou, Guangdong, 510080, China
| | - Ming Li
- Department of Nephrology, The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, Guangdong, 510080, China; Key Laboratory of Nephrology, National Health Commission and Guangdong Province, Guangzhou, Guangdong, 510080, China.
| |
Collapse
|
42
|
Profiling of Naturally Occurring Antibodies to the Thomsen-Friedenreich Antigen in Health and Cancer: The Diversity and Clinical Potential. BIOMED RESEARCH INTERNATIONAL 2020; 2020:9747040. [PMID: 32280709 PMCID: PMC7128052 DOI: 10.1155/2020/9747040] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 10/07/2019] [Accepted: 03/17/2020] [Indexed: 02/07/2023]
Abstract
The Thomsen-Friedenreich (TF) antigen is expressed in a majority of human tumors due to aberrant glycosylation in cancer cells. There is strong evidence that humoral immune response to TF represents an effective mechanism for the elimination of cancer cells that express TF-positive glycoconjugates. The presence of naturally occurring antibodies to tumor-associated TF and cancer-specific changes in their levels, isotype distribution and interrelation, avidity, and glycosylation profile make these Abs a convenient and ubiquitous marker for cancer diagnostics and prognostics. In this review, we attempt to summarize the latest data on the potential of TF-specific Abs for cancer diagnostics and prognostics.
Collapse
|
43
|
Zaytseva OO, Seeling M, Krištić J, Lauc G, Pezer M, Nimmerjahn F. Fc-Linked IgG N-Glycosylation in FcγR Knock-Out Mice. Front Cell Dev Biol 2020; 8:67. [PMID: 32195245 PMCID: PMC7063467 DOI: 10.3389/fcell.2020.00067] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2019] [Accepted: 01/24/2020] [Indexed: 11/13/2022] Open
Abstract
Immunoglobulin G (IgG) is the most abundant immunoglobulin isotype in the blood and is involved in the pathogenesis and progression of various diseases. Glycosylation of the IgG fragment crystallizable (Fc) region is shown to vary in different physiological and pathological states. Fc N-glycan composition can alter the effector functions of IgG by modulating its affinity for ligands, such as Fcγ receptors (FcγRs). However, it is not known whether IgG glycosylation is affected by the available repertoire of FcγRs, and if the Fc-linked N-glycome can compensate for modulation of the IgG-FcγR interaction. To explore this, we examined the subclass-specific Fc IgG glycoprofiles of healthy male and female FcγR knock-out mice on C57BL/6 and BALB/c backgrounds. We observed slight changes in IgG Fc N-glycan profiles in different knock-outs; however, it seems that the strain background and sex have a stronger effect on N-glycosylation of IgG Fc regions than the FcγR repertoire.
Collapse
Affiliation(s)
- Olga O Zaytseva
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Michaela Seeling
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| | | | - Gordan Lauc
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia.,Faculty of Pharmacy and Biochemistry, Department of Biochemistry and Molecular Biology, University of Zagreb, Zagreb, Croatia
| | - Marija Pezer
- Glycoscience Research Laboratory, Genos Ltd., Zagreb, Croatia
| | - Falk Nimmerjahn
- Division of Genetics, Department of Biology, University of Erlangen-Nürnberg, Erlangen, Germany
| |
Collapse
|
44
|
Qin R, Yang Y, Chen H, Qin W, Han J, Gu Y, Pan Y, Cheng X, Zhao J, Wang X, Ren S, Sun Y, Gu J. Prediction of neoadjuvant chemotherapeutic efficacy in patients with locally advanced gastric cancer by serum IgG glycomics profiling. Clin Proteomics 2020; 17:4. [PMID: 32042279 PMCID: PMC7003487 DOI: 10.1186/s12014-020-9267-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2018] [Accepted: 01/25/2020] [Indexed: 12/12/2022] Open
Abstract
Background Neoadjuvant chemotherapy (NACT) could improve prognosis and survival quality of patients with local advanced gastric cancer (LAGC) by providing an opportunity of radical operation for them. However, no effective method could predict the efficacy of NACT before surgery to avoid the potential toxicity, time-consuming and economic burden of ineffective chemotherapy. Some research has been investigated about the correlation between serum IgG glycosylation and gastric cancer, but the question of whether IgG glycome can reflect the tumor response to NACT is still unanswered. Method Serum IgG glycome profiles were analyzed by Ultra Performance Liquid Chromatography in a cohort comprised of 49 LAGC patients of which 25 were categorized as belonging to the NACT response group and 24 patients were assigned to the non-response group. A logistic regression model was constructed to predict the response rate incorporating clinical features and differential N-glycans, while the precision of model was assessed by receiver operating characteristic (ROC) analysis. Results IgG N-glycome analysis in pretreatment serum of LAGC patients comprises 24 directly detected glycans and 17 summarized traits. Compared with IgG glycans of non-response group, agalactosylated N-glycans increased while monosialylated N-glycans and digalactosylated N-glycans decreased in the response group. We constructed a model combining patients' age, histology, chemotherapy regimen, GP4(H3N4F1), GP6(H3N5F1), and GP18(H5N4F1S1), and ROC analysis showed this model has an accurate prediction of NACT response (AUC = 0.840) with the sensitivity of 64.00% and the specificity of 100%. Conclusion We here firstly present the profiling of IgG N-glycans in pretreatment serum of LAGC. The alterations in IgG N-glycome may be personalized biomarkers to predict the response to NACT in LAGC and help to illustrate the relationship between immunity and effect of NACT.
Collapse
Affiliation(s)
- Ruihuan Qin
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China.,Chinese Institute for Brain Research, Beijing, 102206 China
| | - Yupeng Yang
- 3Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Hao Chen
- 3Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Wenjun Qin
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Jing Han
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yong Gu
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yiqing Pan
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Xi Cheng
- 4Department of Medical Oncology, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Junjie Zhao
- 3Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Xuefei Wang
- 3Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Shifang Ren
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| | - Yihong Sun
- 3Department of General Surgery, Zhongshan Hospital, Fudan University, Shanghai, 200032 China
| | - Jianxin Gu
- 1NHC Key Laboratory of Glycoconjugates Research, Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Fudan University, Shanghai, 200032 China
| |
Collapse
|
45
|
Zou Y, Hu J, Jie J, Lai J, Li M, Liu Z, Zou X. Comprehensive analysis of human IgG Fc N-glycopeptides and construction of a screening model for colorectal cancer. J Proteomics 2020; 213:103616. [DOI: 10.1016/j.jprot.2019.103616] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 12/07/2019] [Accepted: 12/13/2019] [Indexed: 01/19/2023]
|
46
|
Hou R, Huo X, Zhang S, Xu C, Huang Y, Xu X. Elevated levels of lead exposure and impact on the anti-inflammatory ability of oral sialic acids among preschool children in e-waste areas. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 699:134380. [PMID: 31678878 DOI: 10.1016/j.scitotenv.2019.134380] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Revised: 07/24/2019] [Accepted: 09/08/2019] [Indexed: 02/05/2023]
Abstract
The oral health of preschool children in an electronic waste (e-waste) area is susceptible to lead (Pb) exposure increasing the risk of dental caries and causing periodontitis and other oral diseases. The aim of the present study is to investigate the relationship between chronic exposure to Pb and oral anti-inflammatory potential of preschool children. For this analysis, 574 preschool children from 2.5 to 6 years of age were recruited between November and December 2017, in which 357 preschool children were from Guiyu (n = 357), an e-waste-contaminated town, and 217 from Haojiang Shantou. We measured the levels of child blood Pb, salivary sialic acid, serum interleukin-6 (IL-6) and serum tumor necrosis factor-α (TNF-α), and investigated the prevalence of dental caries in deciduous teeth. The medians of blood Pb levels, serum IL-6 and TNF-α were significantly higher in the Guiyu children than in Haojiang children. Concomitantly, salivary sialic acids were lower in the Guiyu children [9.58 (3.97, 18.42) mg/dL] than in Haojiang [17.57 (5.95, 24.23) mg/dL]. Additionally, the prevalence of dental caries in deciduous teeth was significantly higher in the Guiyu children than in Haojiang (62.5% vs. 53.9%). Blood Pb levels were negatively correlated with salivary sialic acids, in which IL-6 played as a mediator of the association between blood Pb levels and saliva sialic acid concentrations according to the mediation model. To our knowledge, this is the first report on the potential association between chronic Pb exposure and the anti-inflammatory ability of oral sialic acids among preschool children. These results suggest that the chronic Pb exposure can reduce salivary sialic acid levels, attenuate oral anti-inflammatory potential and increase the potential risk of dental caries in deciduous teeth among preschool children in an e-waste site.
Collapse
Affiliation(s)
- Ruikun Hou
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xia Huo
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Key Laboratory of Environmental Pollution and Health, School of Environment, Jinan University, Guangzhou 510632, Guangdong, China
| | - Shaocheng Zhang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Cheng Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Yu Huang
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China
| | - Xijing Xu
- Laboratory of Environmental Medicine and Developmental Toxicology, Guangdong Provincial Key Laboratory of Infectious Diseases and Molecular Immunopathology, Shantou University Medical College, Shantou 515041, Guangdong, China; Department of Cell Biology and Genetics, Shantou University Medical College, Shantou 515041, Guangdong, China.
| |
Collapse
|
47
|
IgA subclasses have different effector functions associated with distinct glycosylation profiles. Nat Commun 2020; 11:120. [PMID: 31913287 PMCID: PMC6949214 DOI: 10.1038/s41467-019-13992-8] [Citation(s) in RCA: 163] [Impact Index Per Article: 32.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Accepted: 12/09/2019] [Indexed: 12/17/2022] Open
Abstract
Monomeric serum immunoglobulin A (IgA) can contribute to the development of various autoimmune diseases, but the regulation of serum IgA effector functions is not well defined. Here, we show that the two IgA subclasses (IgA1 and IgA2) differ in their effect on immune cells due to distinct binding and signaling properties. Whereas IgA2 acts pro-inflammatory on neutrophils and macrophages, IgA1 does not have pronounced effects. Moreover, IgA1 and IgA2 have different glycosylation profiles, with IgA1 possessing more sialic acid than IgA2. Removal of sialic acid increases the pro-inflammatory capacity of IgA1, making it comparable to IgA2. Of note, disease-specific autoantibodies in patients with rheumatoid arthritis display a shift toward the pro-inflammatory IgA2 subclass, which is associated with higher disease activity. Taken together, these data demonstrate that IgA effector functions depend on subclass and glycosylation, and that disturbances in subclass balance are associated with autoimmune disease. Immunoglobulin A (IgA) has two subclasses, IgA1 and IgA2, but differential effects on inflammation are unclear. Here the authors show that IgA2, when compared with IgA1, has stronger pro-inflammatory functions associated with changed glycosylation and higher disease scores in patients with rheumatoid arthritis.
Collapse
|
48
|
Wu Z, Li H, Liu D, Tao L, Zhang J, Liang B, Liu X, Wang X, Li X, Wang Y, Wang W, Guo X. IgG Glycosylation Profile and the Glycan Score Are Associated with Type 2 Diabetes in Independent Chinese Populations: A Case-Control Study. J Diabetes Res 2020; 2020:5041346. [PMID: 32587867 PMCID: PMC7301241 DOI: 10.1155/2020/5041346] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/17/2020] [Revised: 03/18/2020] [Accepted: 05/19/2020] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND The relationship between the IgG glycan panel and type 2 diabetes remains unclear in Chinese population. We aimed to investigate the association of the IgG glycan profile and glycan score with type 2 diabetes. METHODS In the discovery population, 162 individuals diagnosed with type 2 diabetes and 162 matched controls from Beijing health management cohort were included. We analyzed the IgG glycan profile and composed a glycan score for type 2 diabetes. Findings were validated in the replication population from Beijing Xuanwu community cohort (280 cases and 508 controls). Area under curve (AUC) using 10-fold and bootstrap validation, net reclassification index (NRI), and integrated discrimination index (IDI) were calculated for the glycan score. RESULTS In the discovery population, 5 initial IgG glycans and 7 derived traits were significantly associated with type 2 diabetes after Bonferroni correction and Lasso selection, which were validated in the replication population subsequently. The glycan score composed of these IgG glycans and traits showed a strong association with type 2 diabetes (combined odds ratio (OR): 3.78) and its risk factors. In the replication population, AUC of the model involving clinical traits improved from 0.74 to above 0.90, and the values of NRI and IDI were 0.35 and 0.42, respectively, with the glycan score added. CONCLUSIONS IgG glycosylation profiles were associated with type 2 diabetes and the glycan score may be a novel indicator for diabetes which reflected a proinflammatory status.
Collapse
Affiliation(s)
- Zhiyuan Wu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Haibin Li
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Di Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Lixin Tao
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Jie Zhang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Baolu Liang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiangtong Liu
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xiaonan Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Xia Li
- Department of Mathematics and Statistics, La Trobe University, Australia
| | - Youxin Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| | - Wei Wang
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
- Department of Public Health, School of Medical and Health Sciences, Edith Cowan University, Perth, Australia
| | - Xiuhua Guo
- Beijing Municipal Key Laboratory of Clinical Epidemiology, Department of Epidemiology and Health Statistics, School of Public Health, Capital Medical University, Beijing, China
| |
Collapse
|
49
|
Kurata I, Matsumoto I, Ohyama A, Osada A, Ebe H, Kawaguchi H, Kaneko S, Kondo Y, Tsuboi H, Tomioka A, Kaji H, Sumida T. Potential involvement of OX40 in the regulation of autoantibody sialylation in arthritis. Ann Rheum Dis 2019; 78:1488-1496. [PMID: 31300460 DOI: 10.1136/annrheumdis-2019-215195] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2019] [Revised: 06/18/2019] [Accepted: 07/03/2019] [Indexed: 01/29/2023]
Abstract
OBJECTIVE An increased proportion of circulating follicular helper T (Tfh) cells was reported in rheumatoid arthritis (RA), but it remains uncertain how Tfh cells affect antibody hyposialylation. We investigated the regulation of autoantibody hyposialylation by Tfh cells in RA using murine model. METHODS Behaviours of Tfh cells and their function on B cell promotion were analysed. Change of arthritogenicity and sialylation of autoantibodies during the course of arthritis was examined by mass spectrometry. Tfh-mediated regulation of hyposialylation was investigated, and the responsible cell surface molecule was specified both in vitro and in vivo. The relation between circulating Tfh cells and hyposialylation was analysed in patients with RA. RESULTS An increase in Tfh, particularly interleukin-17 producing Tfh (Tfh17) cells, at the onset of arthritis and their enhancement of autoantibody production were found. Autoantibodies at the onset phase demonstrated stronger inflammatory properties than those at the resolution phase, and mass spectrometric analysis revealed their difference in sialylation. In vitro coculture showed enhanced hyposialylation by the Tfh cells via OX40, which was highly expressed in the Tfh and Tfh17 cells. Blockade of OX40 prevented the development of arthritis with reduction in Tfh17 cells and recovery of autoantibody sialylation. Analysis of patients with RA showed abundance of OX40-overexpressing Tfh17 cells, and their proportion correlated negatively with the expression of α2,6-sialyltransferase 1, an enzyme responsible for sialylation. CONCLUSIONS OX40 expressed on Tfh cells can regulate autoantibody sialylation and play a crucial role in the development of autoimmune arthritis.
Collapse
Affiliation(s)
- Izumi Kurata
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Isao Matsumoto
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Ayako Ohyama
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Atsumu Osada
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroshi Ebe
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hoshimi Kawaguchi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Shunta Kaneko
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Yuya Kondo
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Hiroto Tsuboi
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| | - Azusa Tomioka
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Hiroyuki Kaji
- Glycoscience and Glycotechnology Research Group, Biotechnology Research Institute for Drug Discovery, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Japan
| | - Takayuki Sumida
- Division of Rheumatology, Department of Internal Medicine, Faculty of Medicine, University of Tsukuba, Tsukuba, Japan
| |
Collapse
|
50
|
Zhao L, Tian R, Shen Q, Liu Y, Liu L, Li J, Du G. Pathway Engineering of
Bacillus subtilis
for Enhanced
N
‐Acetylneuraminic Acid Production via Whole‐Cell Biocatalysis. Biotechnol J 2019; 14:e1800682. [DOI: 10.1002/biot.201800682] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 02/15/2019] [Indexed: 12/25/2022]
Affiliation(s)
- Lin Zhao
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Rongzhen Tian
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Qingyang Shen
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Yanfeng Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Long Liu
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Jianghua Li
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| | - Guocheng Du
- Key Laboratory of Carbohydrate Chemistry and BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
- Key Laboratory of Industrial BiotechnologyMinistry of EducationJiangnan University214122 Wuxi China
| |
Collapse
|