1
|
Raghavan P, Perez CA, Sorrentino TA, Kading JC, Finbloom JA, Desai TA. Physicochemical Design of Nanoparticles to Interface with and Degrade Neutrophil Extracellular Traps. ACS APPLIED MATERIALS & INTERFACES 2025; 17:8862-8874. [PMID: 39884672 PMCID: PMC11826501 DOI: 10.1021/acsami.4c17324] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/08/2024] [Revised: 01/22/2025] [Accepted: 01/23/2025] [Indexed: 02/01/2025]
Abstract
Neutrophil extracellular traps (NETs) are networks of decondensed chromatin, histones, and antimicrobial proteins released by neutrophils in response to an infection. NET overproduction can cause an exacerbated hyperinflammatory response in a variety of diseases and can lead to host tissue damage without clearance of infection. Nanoparticle drug delivery is a promising avenue for creating materials that can both target NETs and deliver sustained amounts of NET-degrading drugs to alleviate hyperinflammation. Here, we study how particle physicochemical properties can influence NET interaction and leverage our findings to create NET-interfacing and NET-degrading particles. We fabricated a panel of particles of varying sizes (200 to 1000 nm) and charges (positive, neutral, negative) and found that positive charge is the main driver of NET-particle interaction, with smaller 200 nm positive particles having a 10-fold increase in binding compared to larger 1000 nm positive particles. Negative and neutral particles were mostly noninteracting, except for small negatively charged particles that exhibited very low levels of NET localization. Interaction strength of particles with NETs was quantified via shear flow assays and atomic force microscopy. This information was leveraged to create DNase-loaded particles that could adhere to NETs at varying degrees and therefore degrade NETs at different rates in vitro. Positively charged, 200 nm DNase-loaded particles showed the highest degree of interaction with NETs and therefore led to faster degradation compared with larger sizes, underscoring the importance of physicochemical design for NET-targeting drug delivery. Overall, this work provides fundamental knowledge of the drivers of particle-NET interaction and a basis for designing NET-targeting particles for various disease states.
Collapse
Affiliation(s)
- Preethi Raghavan
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Cynthia A. Perez
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Thomas A. Sorrentino
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Jacqueline C. Kading
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
| | - Joel A. Finbloom
- Faculty
of Pharmaceutical Sciences, University of
British Columbia, Vancouver, British Columbia V6T 1Z3, Canada
| | - Tejal A. Desai
- University
of California, Berkeley—University of California, San Francisco
Graduate Program in Bioengineering, San Francisco, California 94158, United States
- Department
of Bioengineering and Therapeutic Sciences, University of California, San Francisco, San Francisco, California 94158, United States
- School
of Engineering, Institute for Biology, Engineering and Medicine, Brown University, Providence, Rhode Island 02912, United States
| |
Collapse
|
2
|
Jarzebska N, Rodionov RN, Voit-Bak K, Straube R, Mücke A, Tselmin S, Rettig R, Julius U, Siow R, Gräßler J, Passauer J, Kok Y, Mavberg P, Weiss N, Bornstein SR, Aswani A. Neutrophil Extracellular Traps (NETs) as a Potential Target for Anti-Aging: Role of Therapeutic Apheresis. Horm Metab Res 2025. [PMID: 39788160 DOI: 10.1055/a-2444-3422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/12/2025]
Abstract
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms. Targeting NETs in the elderly as an anti-aging therapy seems to be a very attractive therapeutic approach. Therapeutic apheresis with a specific filter to remove NETs could be a promising strategy worth considering.
Collapse
Affiliation(s)
- Natalia Jarzebska
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Roman N Rodionov
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- Department of Clinical Pharmacology, College of Medicine and Public Health, Flinders University and Flinders Medical Centre, Adelaide, Australia
| | - Karin Voit-Bak
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Richard Straube
- Zentrum für Apherese- und Hämofiltration, INUS Tagesklinikum, Cham, Germany
| | - Anna Mücke
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Sergey Tselmin
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ronny Rettig
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Ulrich Julius
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Richard Siow
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Ageing Research at King's (ARK), King's College London, London, United Kingdom of Great Britain and Northern Ireland
- Department of Physiology, Anatomy and Genetics, Medical Sciences Division, University of Oxford, Oxford, United Kingdom of Great Britain and Northern Ireland
| | - Jürgen Gräßler
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Jens Passauer
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | | | - Philip Mavberg
- INUSpheresis Center Basel, Ayus Medical Group, Basel, Switzerland
| | - Norbert Weiss
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
| | - Stefan R Bornstein
- Department of Internal Medicine III, University Hospital Carl Gustav Carus at the Technische Universität Dresden, Dresden, Germany
- School of Cardiovascular and Metabolic Medicine and Sciences, Faculty of Life Sciences & Medicine, King's College London, London, United Kingdom of Great Britain and Northern Ireland
| | - Andrew Aswani
- Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland
- Santersus AG, Zurich, Switzerland
| |
Collapse
|
3
|
Kern A, Stompór T, Bojko K, Sienkiewicz E, Pawlak S, Pawlak K, Pawlak D, Poskrobko G, Andrasz E, Gromadziński L, Jalali R, Onichimowski D, Piwko G, Zalewski A, Bil J. Soluble Urokinase Plasminogen Activator Receptor as a Predictor of All-Cause Death in Patients Undergoing Coronary Angiography at 10-Year Follow-Up. J Clin Med 2024; 13:6158. [PMID: 39458108 PMCID: PMC11508504 DOI: 10.3390/jcm13206158] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2024] [Revised: 10/02/2024] [Accepted: 10/14/2024] [Indexed: 10/28/2024] Open
Abstract
Background: We aimed to explore the predictive role of soluble urokinase plasminogen activator receptor (suPAR) in patients undergoing coronary angiography by systematically evaluating its association with adverse cardiovascular events at 10 years follow-up. Methods: The KORONEF study was a single-center, observational, prospective study with 492 subjects included. In the multivariable Cox regression model, we checked the impact of suPAR, neutrophil elastase, myeloperoxidase, and DNase 1 on long-term outcomes. Results: The mean study population age was 64.4 ± 9.9 years, and there were 37.2% women. We divided the population into tertiles of suPAR levels (T1 0.793-2.135 ng/mL; T2 2.136-2.868 ng/mL; and T3 2.872-8.677 ng/mL). Patients with higher suPAR concentrations were more often females (tertile 1 vs. tertile 3: 27.4% vs. 50.6%, p < 0.001) and older age (60.8 ± 8.7 years vs. 68.8 ± 9.5 years, p < 0.001). They also characterized higher incidence of diabetes (17.7% vs. 38.0%, p < 0.001), previous myocardial infarction (22% vs. 44.8%, p < 0.001), and chronic kidney disease (3% vs. 18.4%, p < 0.001), but lower incidence of dyslipidemia (54.3% vs. 35.6%). The 10-year all-cause death rates were 14.6% vs. 34.1%, HR 2.68, 95% CI 1.66-4.33, p < 0.001 for tertile 2, and 14.6% vs. 39.9%, HR 3.24, 95% CI 2.03-5.17, p < 0.001 for tertile 3. The optimal cut-off suPAR value of 2.39 ng/mL provided a sensitivity of 66.9% and a specificity of 54.6% in predicting all-cause death. Conclusions: The association of elevated suPAR with increased mortality risk suggests its potential relevance in predicting long-term outcomes and may help inform more individualized management strategies for high-risk patients.
Collapse
Affiliation(s)
- Adam Kern
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (K.B.); (S.P.); (L.G.)
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Tomasz Stompór
- Department of Nephrology, Hypertension and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland;
| | - Krystian Bojko
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (K.B.); (S.P.); (L.G.)
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Ewa Sienkiewicz
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Sebastian Pawlak
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (K.B.); (S.P.); (L.G.)
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Krystyna Pawlak
- Department of Monitored Pharmacotherapy, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Dariusz Pawlak
- Department of Pharmacodynamics, Medical University of Bialystok, 15-089 Bialystok, Poland;
| | - Grzegorz Poskrobko
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Ewa Andrasz
- Department of Cardiology, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland; (E.S.); (G.P.); (E.A.)
| | - Leszek Gromadziński
- Department of Cardiology and Internal Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (K.B.); (S.P.); (L.G.)
| | - Rakesh Jalali
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (R.J.); (D.O.)
- Clinical Emergency Department, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Dariusz Onichimowski
- Department of Emergency Medicine, School of Medicine, Collegium Medicum, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland; (R.J.); (D.O.)
- Clinical Department of Anaesthesiology and Intensive Care, Regional Specialist Hospital in Olsztyn, 10-045 Olsztyn, Poland
| | - Grażyna Piwko
- Branch in Ełk, University of Warmia and Mazury in Olsztyn, 10-727 Olsztyn, Poland;
- Scanmed Cardiology Center in Ełk, 19-300 Ełk, Poland;
| | | | - Jacek Bil
- National Medical Institute of the Ministry of Interior and Administration, 02-507 Warsaw, Poland;
| |
Collapse
|
4
|
Kim HJ, Lee YS, Lee BS, Han CH, Kim SG, Kim CH. NLRP3 inflammasome activation and NETosis positively regulate each other and exacerbate proinflammatory responses: implications of NETosis inhibition for acne skin inflammation treatment. Cell Mol Immunol 2024; 21:466-478. [PMID: 38409251 PMCID: PMC11061142 DOI: 10.1038/s41423-024-01137-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/07/2022] [Accepted: 01/18/2024] [Indexed: 02/28/2024] Open
Abstract
Inflammasomes are multiprotein complexes involved in the host immune response to pathogen infections. Thus, inflammasomes participate in many conditions, such as acne. Recently, it was shown that NETosis, a type of neutrophil cell death, is induced by bacterial infection and is involved in inflammatory diseases such as delayed wound healing in patients with diabetes. However, the relationship between inflammasomes and NETosis in the pathogenesis of inflammatory diseases has not been well studied. In this study, we determined whether NETosis is induced in P. acnes-induced skin inflammation and whether activation of the nucleotide-binding domain, leucine-rich family, and pyrin domain-containing-3 (NLRP3) inflammasome is one of the key factors involved in NETosis induction in a mouse model of acne skin inflammation. We found that NETosis was induced in P. acnes-induced skin inflammation in mice and that inhibition of NETosis ameliorated P. acnes-induced skin inflammation. In addition, our results demonstrated that inhibiting inflammasome activation could suppress NETosis induction in mouse skin. These results indicate that inflammasomes and NETosis can interact with each other to induce P. acnes-induced skin inflammation and suggest that targeting NETosis could be a potential treatment for inflammasome-mediated diseases as well as NETosis-related diseases.
Collapse
Affiliation(s)
- Hyo Jeong Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Yun Sang Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Bok-Soon Lee
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
| | - Chang-Hak Han
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Sang Gyu Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea
| | - Chul-Ho Kim
- Department of Otolaryngology, School of Medicine, Ajou University, Suwon, Republic of Korea.
- Department of Molecular Science and Technology, Ajou University, Suwon, Republic of Korea.
| |
Collapse
|
5
|
Fernández-Lázaro D, Sanz B, Seco-Calvo J. The Mechanisms of Regulated Cell Death: Structural and Functional Proteomic Pathways Induced or Inhibited by a Specific Protein-A Narrative Review. Proteomes 2024; 12:3. [PMID: 38250814 PMCID: PMC10801515 DOI: 10.3390/proteomes12010003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Revised: 12/30/2023] [Accepted: 01/03/2024] [Indexed: 01/23/2024] Open
Abstract
Billions of cells die in us every hour, and our tissues do not shrink because there is a natural regulation where Cell Death (CD) is balanced with cell division. The process in which cells eliminate themselves in a controlled manner is called Programmed Cell Death (PCD). The PCD plays an important role during embryonic development, in maintaining homeostasis of the body's tissues, and in the elimination of damaged cells, under a wide range of physiological and developmental stimuli. A multitude of protein mediators of PCD have been identified and signals have been found to utilize common pathways elucidating the proteins involved. This narrative review focuses on caspase-dependent and caspase-independent PCD pathways. Included are studies of caspase-dependent PCD such as Anoikis, Catastrophe Mitotic, Pyroptosis, Emperitosis, Parthanatos and Cornification, and Caspase-Independent PCD as Wallerian Degeneration, Ferroptosis, Paraptosis, Entosis, Methuosis, and Extracellular Trap Abnormal Condition (ETosis), as well as neutrophil extracellular trap abnormal condition (NETosis) and Eosinophil Extracellular Trap Abnormal Condition (EETosis). Understanding PCD from those reported in this review could shed substantial light on the processes of biological homeostasis. In addition, identifying specific proteins involved in these processes is mandatory to identify molecular biomarkers, as well as therapeutic targets. This knowledge could provide the ability to modulate the PCD response and could lead to new therapeutic interventions in a wide range of diseases.
Collapse
Affiliation(s)
- Diego Fernández-Lázaro
- Department of Cellular Biology, Genetics, Histology and Pharmacology, Faculty of Health Sciences, University of Valladolid, Campus of Soria, 42004 Soria, Spain
- Neurobiology Research Group, Faculty of Medicine, University of Valladolid, 47005 Valladolid, Spain
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
| | - Begoña Sanz
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Biocruces Bizkaia Health Research Institute, 48903 Barakaldo, Spain
| | - Jesús Seco-Calvo
- SARCELLOMICS Research Group, 27071 León, Spain; (B.S.); (J.S.-C.)
- Department of Physiology, University of the Basque Country (UPV/EHU), 48940 Leioa, Spain
- Institute of Biomedicine (IBIOMED), Universidad de León, 27071 León, Spain
| |
Collapse
|
6
|
Zhang S, Wang Z. An Emerging Role of Extracellular Traps in Chronic Rhinosinusitis. Curr Allergy Asthma Rep 2023; 23:675-688. [PMID: 37934391 PMCID: PMC10739460 DOI: 10.1007/s11882-023-01082-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/21/2023] [Indexed: 11/08/2023]
Abstract
PURPOSE OF REVIEW Chronic rhinosinusitis (CRS) is a complicated, heterogeneous disease likely caused by inflammatory and infectious factors. There is clear evidence that innate immune cells, including neutrophils and eosinophils, play a significant role in CRS. Multiple immune cells, including neutrophils and eosinophils, have been shown to release chromatin and granular proteins into the extracellular space in response to triggering extracellular traps (ETs). The formation of ETs remains controversial due to their critical function during pathogen clearance while being associated with harmful inflammatory illnesses. This article summarizes recent research on neutrophil extracellular traps (NETs) and eosinophil extracellular traps (EETs) and their possible significance in the pathophysiology of CRS. RECENT FINDINGS A novel type of programmed cell death called ETosis, which releases ETs, has been proposed by recent study. Significantly more NETs are presented in nasal polyps, and its granule proteins LL-37 induce NETs production in CRS with nasal polyps (CRSwNP) patients. Similar to NETs, developed in the tissue of nasal polyps, primarily in subepithelial regions with epithelial barrier defects, and are associated with linked to elevated tissue levels of IL-5 and S. aureus colonization. This article provides a comprehensive overview of NETs and EETs, as well as an in-depth understanding of the functions of these ETs in CRS.
Collapse
Affiliation(s)
- Siyuan Zhang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China
| | - Zhenlin Wang
- Department of Otorhinolaryngology Head and Neck Surgery, Xuanwu Hospital, Capital Medical University, Beijing, China.
| |
Collapse
|
7
|
Espinosa G, Conejeros I, Rojas-Barón L, Hermosilla CR, Taubert A. Besnoitia besnoiti-induced neutrophil clustering and neutrophil extracellular trap formation depend on P2X1 purinergic receptor signaling. Front Immunol 2023; 14:1244068. [PMID: 37854595 PMCID: PMC10579820 DOI: 10.3389/fimmu.2023.1244068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2023] [Accepted: 08/28/2023] [Indexed: 10/20/2023] Open
Abstract
Bovine besnoitiosis is a re-emerging cattle disease caused by the cyst-forming apicomplexan parasite Besnoitia besnoiti. Neutrophil extracellular trap (NET) formation represents an efficient innate immune mechanism of polymorphonuclear neutrophils (PMN) against apicomplexan parasites, including B. besnoiti. PMN purinergic signaling was proposed as a critical factor for NET formation. One important purinergic ligand is ATP, which is recognized as a danger signal and released into the extracellular space acting as an autocrine/paracrine signaling molecule. ATP-driven effects on PMN via the nucleotide P2 receptor family include chemotaxis, reactive oxygen species (ROS) production, and NET formation. So far, data on both PMN ATP concentrations and the role of ATP as a key modulator of purinergic signaling in B. besnoiti tachyzoite-triggered bovine NETosis is scarce. Current data showed that B. besnoiti tachyzoite exposure to bovine PMN neither changed total PMN ATP nor extracellular ATP quantities even though it significantly triggered NET formation. Moreover, B. besnoiti tachyzoite-exposed PMN revealed enhanced oxygen consumption rates (OCR) as quantified by the Seahorse metabolic analyzer. Exogenous supplementation of ATP or non-hydrolizable ATP (ATPγS) led to increased extracellular acidification rates (ECAR) but failed to alter tachyzoite-induced oxidative responses (OCR) in exposed PMN. In addition, exogenous supplementation of ATPγS, but not of ATP, boosted B. besnoiti tachyzoite-induced anchored NET formation. Referring to purinergic signaling, B. besnoiti tachyzoite-triggered anchored NET formation revealed P2X1 purinergic as receptor-dependent since it was blocked by the P2X1 inhibitor NF449 at an IC50 of 1.27 µM. In contrast, antagonists of P2Y2, P2Y6, P2X4, and P2X7 purinergic receptors all failed to affect parasite-driven NETosis. As an interesting finding, we additionally observed that B. besnoiti tachyzoite exposure induced PMN clustering in a P2X1-dependent manner. Thus, we identified P2X1 purinergic receptor as a pivotal molecule for both B. besnoiti tachyzoite-induced PMN clustering and anchored NET formation.
Collapse
|
8
|
Zhu Y, Xia X, He Q, Xiao QA, Wang D, Huang M, Zhang X. Diabetes-associated neutrophil NETosis: pathogenesis and interventional target of diabetic complications. Front Endocrinol (Lausanne) 2023; 14:1202463. [PMID: 37600700 PMCID: PMC10435749 DOI: 10.3389/fendo.2023.1202463] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 07/17/2023] [Indexed: 08/22/2023] Open
Abstract
Neutrophil extracellular traps (NETs) are known as extracellular fibers networks consisting of antimicrobial proteins and decondensated chromatin DNA released by activated neutrophils. NETosis is a NETs-induced neutrophilic cell death which is unique from necrosis or apoptosis. Besides its neutralizing pathogen, NETosis plays a crucial role in diabetes and diabetes-related complications. In patients with diabetes, NETs-releasing products are significantly elevated in blood, and these findings confirm the association of NETosis and diabetic complications, including diabetic wound healing, diabetic retinopathy, and atherosclerosis. This article briefly summarizes the mechanisms of NETosis and discusses its contribution to the pathogenesis of diabetes-related complications and suggests new therapeutic targets by some small molecule compounds.
Collapse
Affiliation(s)
- Yuyan Zhu
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Xuan Xia
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Qian He
- National Clinical Research Center for Metabolic Diseases, Hunan Provincial Key Laboratory of Metabolic Bone Diseases, Department of Metabolism and Endocrinology, The Second Xiangya Hospital of Central South University, Changsha, Hunan, China
| | - Qing-Ao Xiao
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| | - Decheng Wang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
| | - Meirong Huang
- College of Basic Medical Science, China Three Gorges University, Yichang, China
- Institute of Infection and Inflammation, China Three Gorges University, Yichang, China
- Hubei Key Laboratory of Tumor Microenvironment and Immunotherapy, China Three Gorges University, Yichang, China
- Department of Physiology and Pathophysiology, College of Basic Medical Science, China Three Gorges University, Yichang, China
| | - Xiaolin Zhang
- Department of Interventional Radiology, The First College of Clinical Medical Science, China Three Gorges University, Yichang, Hubei, China
- Department of Interventional Radiology, Yichang Central People’s Hospital, Yichang, Hubei, China
| |
Collapse
|
9
|
Cavalcante-Silva LHA, Almeida FS, Andrade AGD, Comberlang FC, Cardoso LL, Vanderley SER, Keesen TSL. Mycobacterium tuberculosis in a Trap: The Role of Neutrophil Extracellular Traps in Tuberculosis. Int J Mol Sci 2023; 24:11385. [PMID: 37511144 PMCID: PMC10379580 DOI: 10.3390/ijms241411385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2023] [Revised: 07/07/2023] [Accepted: 07/09/2023] [Indexed: 07/30/2023] Open
Abstract
Mycobacterium tuberculosis complex causes tuberculosis (TB), a disease that causes pulmonary inflammation but can also affect other tissues. Despite macrophages having a defined role in TB immunopathogenesis, other innate immune cells, such as neutrophils, are involved in this process. These cells have high phagocytic ability and a microbial-killing machine comprised of enzymes, antimicrobial peptides, and reactive oxygen species. In the last two decades, a new neutrophil immune response, the neutrophil extracellular traps (NETs), has been intensely researched. NETs comprise DNA associated with histones, enzymes, and antimicrobial peptides. These structures are related to antimicrobial immune response and some immuno-pathogenesis mechanisms. This mini review highlights the role of NETs in tuberculosis and how they can be helpful as a diagnostic tool and/or therapeutic target.
Collapse
Affiliation(s)
- Luiz Henrique Agra Cavalcante-Silva
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernanda Silva Almeida
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Arthur Gomes de Andrade
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Fernando Cézar Comberlang
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Leonardo Lima Cardoso
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Shayenne Eduarda Ramos Vanderley
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| | - Tatjana S L Keesen
- Immunology of Infectious Diseases Laboratory, Department of Cellular and Molecular Biology, Federal University of Paraiba, João Pessoa 58051-900, PB, Brazil
| |
Collapse
|
10
|
Shahidi M, Amirzargar MR. The impact of neutrophil extracellular traps in coronavirus disease - 2019 pathophysiology. Blood Coagul Fibrinolysis 2023; 34:87-92. [PMID: 36719805 DOI: 10.1097/mbc.0000000000001181] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
Coronavirus disease 2019 (COVID-19), which is caused by novel coronavirus-2019 (nCoV-2019), is a highly contagious disease with high mortality and morbidity risk. Infected people may suffer from respiratory infections, which may be more progressive in patients with a defective immune system and underlying medical problems. In this regard, the cells involved in the innate immune system, play a decisive role in disease progression and complication development. Pathogen entrapment is the critical role of neutrophil extracellular traps (NETosis). This process involves the widespread release of fibrous structures by the stimulant-activated neutrophils. These fibrous structures are composed of cytosolic proteins and granular contents brought together by a network of released chromatins. This network can inhibit the spread of pathogens by their entrapment. Moreover, NETosis damage the host by producing toxic agents and triggering thrombosis. Therefore, this phenomenon may act as a double-edged sword. Regarding the rapid expansion of COVID-19, it is crucial to examine the involvement of NETosis in infected patients. This study aims to discuss NETosis participation to show its probable association with increased risk of thrombogenicity and help develop new therapeutic approaches in the battle against this viral disease.
Collapse
Affiliation(s)
- Minoo Shahidi
- Department of Hematology and Blood Banking, Faculty of Allied Medicine, Iran University of Medical Sciences, Tehran, Iran
| | | |
Collapse
|
11
|
Filipczak N, Li X, Saawant GR, Yalamarty SSK, Luther E, Torchilin VP. Antibody-modified DNase I micelles specifically recognize the neutrophil extracellular traps (NETs) and promote their degradation. J Control Release 2023; 354:109-119. [PMID: 36596341 DOI: 10.1016/j.jconrel.2022.12.062] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 11/30/2022] [Accepted: 12/30/2022] [Indexed: 01/05/2023]
Abstract
Neutrophil extracellular traps (NETs) are structures consisting of decondensed chromatin with associated proteins, including histones and antimicrobial peptides, released from activated neutrophils. They are believed to be one of the body's first lines of defense against infectious agents. Despite their beneficial effect on the immune response process, some studies indicate that their excessive formation and the associated accumulation of extracellular DNA (eDNA) together with other polyelectrolytes (F-actin) plays an important role in the pathogenesis of many diseases. Thus NETs formation and removal are clinically significant. The monoclonal antibody 2C5 has strong specificity for intact nucleohistones (NS) and targets NS in NETs as we previously confirmed. Creation of a nano preparation that can specifically recognize and destroy NETs represents the aim for treatment many diseases. 2C5 antibody functionalized micelles coated with DNase I were created to achieve this aim.
Collapse
Affiliation(s)
- Nina Filipczak
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | - Xiang Li
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; State Key Laboratory of Innovative Drug and Efficient Energy-Saving Pharmaceutical Equipment, Jiangxi University of Chinese Medicine, Nanchang, China
| | - Gaurav Rajan Saawant
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA
| | | | - Ed Luther
- Supervisor of Shared Research Facilities, School of Pharmacy and Department of Pharmaceutical Sciences, Northeastern University, USA
| | - Vladimir P Torchilin
- Center for Pharmaceutical Biotechnology and Nanomedicine, Northeastern University, Boston, MA 02115, USA; Department of Chemical Engineering, Northeastern University, Boston, MA 02115, USA.
| |
Collapse
|
12
|
Adapen C, Réot L, Menu E. Role of the human vaginal microbiota in the regulation of inflammation and sexually transmitted infection acquisition: Contribution of the non-human primate model to a better understanding? FRONTIERS IN REPRODUCTIVE HEALTH 2022; 4:992176. [PMID: 36560972 PMCID: PMC9763629 DOI: 10.3389/frph.2022.992176] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Accepted: 11/14/2022] [Indexed: 12/12/2022] Open
Abstract
The human vaginal microbiota has a central role in the regulation of the female reproductive tract (FRT) inflammation. Indeed, on one hand an optimal environment leading to a protection against sexually transmitted infections (STI) is associated with a high proportion of Lactobacillus spp. (eubiosis). On the other hand, a more diverse microbiota with a high amount of non-Lactobacillus spp. (dysbiosis) is linked to a higher local inflammation and an increased STI susceptibility. The composition of the vaginal microbiota is influenced by numerous factors that may lead to a dysbiotic environment. In this review, we first discuss how the vaginal microbiota composition affects the local inflammation with a focus on the cytokine profiles, the immune cell recruitment/phenotype and a large part devoted on the interactions between the vaginal microbiota and the neutrophils. Secondly, we analyze the interplay between STI and the vaginal microbiota and describe several mechanisms of action of the vaginal microbiota. Finally, the input of the NHP model in research focusing on the FRT health including vaginal microbiota or STI acquisition/control and treatment is discussed.
Collapse
Affiliation(s)
- Cindy Adapen
- Micalis Institute, AgroParisTech, INRAE, Université Paris-Saclay, Jouy-en-Josas, France
| | - Louis Réot
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
| | - Elisabeth Menu
- Université Paris-Saclay, Inserm, Commissariat à l'énergie Atomique et aux énergies Alternatives (CEA), Center for Immunology of Viral, Auto-Immune, Hematological and Bacterial Diseases (IMVA-HB)/Department of Infectious Disease Models and Innovative Therapies (IDMIT), Fontenay-aux-Roses, France
- Mucosal Immunity and Sexually Transmitted Infection Control (MISTIC) Group, Department of Virology, Institut Pasteur, Paris, France
| |
Collapse
|
13
|
Li C, Yu R, Ding Y. Association between Porphyromonas Gingivalis and systemic diseases: Focus on T cells-mediated adaptive immunity. Front Cell Infect Microbiol 2022; 12:1026457. [PMID: 36467726 PMCID: PMC9712990 DOI: 10.3389/fcimb.2022.1026457] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Accepted: 10/25/2022] [Indexed: 12/01/2023] Open
Abstract
The association between periodontal disease and systemic disease has become a research hotspot. Porphyromonas gingivalis (P. gingivalis), a crucial periodontal pathogen, affects the development of systemic diseases. The pathogenicity of P. gingivalis is largely linked to interference with the host's immunity. This review aims to discover the role of P. gingivalis in the modulation of the host's adaptive immune system through a large number of virulence factors and the manipulation of cellular immunological responses (mainly mediated by T cells). These factors may affect the cause of large numbers of systemic diseases, such as atherosclerosis, hypertension, adverse pregnancy outcomes, inflammatory bowel disease, diabetes mellitus, non-alcoholic fatty liver disease, rheumatoid arthritis, and Alzheimer's disease. The point of view of adaptive immunity may provide a new idea for treating periodontitis and related systemic diseases.
Collapse
Affiliation(s)
- Cheng Li
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Ran Yu
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| | - Yumei Ding
- Department of Stomatology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- School of Stomatology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
- Hubei Province Key Laboratory of Oral and Maxillofacial Development and Regeneration, Wuhan, China
| |
Collapse
|
14
|
Interaction of sperm cells with the female reproductive tract in cattle: Focus on neutrophil extracellular trap formation. Anim Reprod Sci 2022; 246:107056. [PMID: 36031509 DOI: 10.1016/j.anireprosci.2022.107056] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 08/15/2022] [Accepted: 08/16/2022] [Indexed: 12/14/2022]
Abstract
After insemination of cows, either naturally or artificially, the deposition of semen into the vagina or uterus results in an immune reaction which is based on polymorphonuclear neutrophil activity. Sperm must be resistant to immune system actions of the female for an adequate time to allow fertilization to occur. Neutrophils, however, either directly phagocytize sperm through cell-cell attachment or entrap sperm cells in neutrophil extracellular traps (NETs), structures consisting of neutrophil nuclear DNA and associated proteins. In this review article, the interaction of neutrophils and sperm cells in t cattle will be described, with a special focus on the formation of neutrophil extracellular traps (NETs).
Collapse
|
15
|
Burnet M, Metcalf DG, Milo S, Gamerith C, Heinzle A, Sigl E, Eitel K, Haalboom M, Bowler PG. A Host-Directed Approach to the Detection of Infection in Hard-to-Heal Wounds. Diagnostics (Basel) 2022; 12:2408. [PMID: 36292097 PMCID: PMC9601189 DOI: 10.3390/diagnostics12102408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 01/08/2023] Open
Abstract
Wound infection is traditionally defined primarily by visual clinical signs, and secondarily by microbiological analysis of wound samples. However, these approaches have serious limitations in determining wound infection status, particularly in early phases or complex, chronic, hard-to-heal wounds. Early or predictive patient-derived biomarkers of wound infection would enable more timely and appropriate intervention. The observation that immune activation is one of the earliest responses to pathogen activity suggests that immune markers may indicate wound infection earlier and more reliably than by investigating potential pathogens themselves. One of the earliest immune responses is that of the innate immune cells (neutrophils) that are recruited to sites of infection by signals associated with cell damage. During acute infection, the neutrophils produce oxygen radicals and enzymes that either directly or indirectly destroy invading pathogens. These granular enzymes vary with cell type but include elastase, myeloperoxidase, lysozyme, and cathepsin G. Various clinical studies have demonstrated that collectively, these enzymes, are sensitive and reliable markers of both early-onset phases and established infections. The detection of innate immune cell enzymes in hard-to-heal wounds at point of care offers a new, simple, and effective approach to determining wound infection status and may offer significant advantages over uncertainties associated with clinical judgement, and the questionable value of wound microbiology. Additionally, by facilitating the detection of early wound infection, prompt, local wound hygiene interventions will likely enhance infection resolution and wound healing, reduce the requirement for systemic antibiotic therapy, and support antimicrobial stewardship initiatives in wound care.
Collapse
Affiliation(s)
- Michael Burnet
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Daniel G. Metcalf
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Scarlet Milo
- ConvaTec Ltd., First Avenue, Deeside Industrial Park, Deeside CH5 2NU, UK
| | - Clemens Gamerith
- Austrian Centre of Industrial Biotechnology, Krennagsse 37, A-8010 Graz, Austria
| | - Andrea Heinzle
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Eva Sigl
- Qualizyme Diagnostics GmbH & Co. KG, Neue Stiftingtalstrasse 2, A-8010 Graz, Austria
| | - Kornelia Eitel
- Synovo GmbH, Paul Ehrlich Straße 15, 72076 Tuebingen, Germany
| | - Marieke Haalboom
- Medical School Twente, Medisch Spectrum Twente, 7512 KZ Enschede, The Netherlands
| | | |
Collapse
|
16
|
Hastak PS, Andersen CR, Kelleher AD, Sasson SC. Frontline workers: Mediators of mucosal immunity in community acquired pneumonia and COVID-19. Front Immunol 2022; 13:983550. [PMID: 36211412 PMCID: PMC9539803 DOI: 10.3389/fimmu.2022.983550] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/01/2022] [Accepted: 09/08/2022] [Indexed: 11/13/2022] Open
Abstract
The current COVID-19 pandemic has highlighted a need to further understand lung mucosal immunity to reduce the burden of community acquired pneumonia, including that caused by the SARS-CoV-2 virus. Local mucosal immunity provides the first line of defence against respiratory pathogens, however very little is known about the mechanisms involved, with a majority of literature on respiratory infections based on the examination of peripheral blood. The mortality for severe community acquired pneumonia has been rising annually, even prior to the current pandemic, highlighting a significant need to increase knowledge, understanding and research in this field. In this review we profile key mediators of lung mucosal immunity, the dysfunction that occurs in the diseased lung microenvironment including the imbalance of inflammatory mediators and dysbiosis of the local microbiome. A greater understanding of lung tissue-based immunity may lead to improved diagnostic and prognostic procedures and novel treatment strategies aimed at reducing the disease burden of community acquired pneumonia, avoiding the systemic manifestations of infection and excess morbidity and mortality.
Collapse
Affiliation(s)
- Priyanka S. Hastak
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Christopher R. Andersen
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
- Intensive Care Unit, Royal North Shore Hospital, Sydney, NSW, Australia
- Critical Care and Trauma Division, The George Institute for Global Health, Sydney, NSW, Australia
| | - Anthony D. Kelleher
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| | - Sarah C. Sasson
- The Kirby Institute, Immunovirology and Pathogenesis Program, University of New South Wales, Sydney, NSW, Australia
| |
Collapse
|
17
|
Huang J, Hong W, Wan M, Zheng L. Molecular mechanisms and therapeutic target of NETosis in diseases. MedComm (Beijing) 2022; 3:e162. [PMID: 36000086 PMCID: PMC9390875 DOI: 10.1002/mco2.162] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2022] [Revised: 07/03/2022] [Accepted: 07/07/2022] [Indexed: 12/13/2022] Open
Abstract
Evidence shows that neutrophils can protect the host against pathogens in multiple ways, including the formation and release of neutrophil extracellular traps (NETs). NETs are web-like structures composed of fibers, DNA, histones, and various neutrophil granule proteins. NETs can capture and kill pathogens, including bacteria, viruses, fungi, and protozoa. The process of NET formation is called NETosis. According to whether they depend on nicotinamide adenine dinucleotide phosphate (NADPH), NETosis can be divided into two categories: "suicidal" NETosis and "vital" NETosis. However, NET components, including neutrophil elastase, myeloperoxidase, and cell-free DNA, cause a proinflammatory response and potentially severe diseases. Compelling evidence indicates a link between NETs and the pathogenesis of a number of diseases, including sepsis, systemic lupus erythematosus, rheumatoid arthritis, small-vessel vasculitis, inflammatory bowel disease, cancer, COVID-19, and others. Therefore, targeting the process and products of NETosis is critical for treating diseases linked with NETosis. Researchers have discovered that several NET inhibitors, such as toll-like receptor inhibitors and reactive oxygen species scavengers, can prevent uncontrolled NET development. This review summarizes the mechanism of NETosis, the receptors associated with NETosis, the pathology of NETosis-induced diseases, and NETosis-targeted therapy.
Collapse
Affiliation(s)
- Jiayu Huang
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Weiqi Hong
- Laboratory of Aging Research and Cancer Drug TargetState Key Laboratory of BiotherapyNational Clinical Research Center for GeriatricsWest China HospitalSichuan UniversityChengduChina
| | - Meihua Wan
- Department of Integrated Traditional Chinese and Western MedicineWest China HospitalSichuan UniversityChengduSichuanChina
| | - Limin Zheng
- Guangdong Province Key Laboratory of Pharmaceutical Functional GenesMOE Key Laboratory of Gene Function and RegulationSchool of Life SciencesSun Yat‐Sen UniversityGuangzhouChina
- State Key Laboratory of Oncology in Southern ChinaCollaborative Innovation Center for Cancer MedicineSun Yat‐Sen University Cancer CenterGuangzhouChina
| |
Collapse
|
18
|
Ostermeier B, Soriano-Sarabia N, Maggirwar SB. Platelet-Released Factors: Their Role in Viral Disease and Applications for Extracellular Vesicle (EV) Therapy. Int J Mol Sci 2022; 23:2321. [PMID: 35216433 PMCID: PMC8876984 DOI: 10.3390/ijms23042321] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 02/13/2022] [Accepted: 02/17/2022] [Indexed: 02/04/2023] Open
Abstract
Platelets, which are small anuclear cell fragments, play important roles in thrombosis and hemostasis, but also actively release factors that can both suppress and induce viral infections. Platelet-released factors include sCD40L, microvesicles (MVs), and alpha granules that have the capacity to exert either pro-inflammatory or anti-inflammatory effects depending on the virus. These factors are prime targets for use in extracellular vesicle (EV)-based therapy due to their ability to reduce viral infections and exert anti-inflammatory effects. While there are some studies regarding platelet microvesicle-based (PMV-based) therapy, there is still much to learn about PMVs before such therapy can be used. This review provides the background necessary to understand the roles of platelet-released factors, how these factors might be useful in PMV-based therapy, and a critical discussion of current knowledge of platelets and their role in viral diseases.
Collapse
Affiliation(s)
| | | | - Sanjay B. Maggirwar
- Department of Microbiology Immunology and Tropical Medicine, The George Washington University, 2300 I Street NW, Washington, DC 20037, USA; (B.O.); (N.S.-S.)
| |
Collapse
|
19
|
Chamardani TM, Amiritavassoli S. Inhibition of NETosis for treatment purposes: friend or foe? Mol Cell Biochem 2022; 477:673-688. [PMID: 34993747 PMCID: PMC8736330 DOI: 10.1007/s11010-021-04315-x] [Citation(s) in RCA: 53] [Impact Index Per Article: 17.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/29/2022]
Abstract
Active neutrophils participate in innate and adaptive immune responses through various mechanisms, one of the most important of which is the formation and release of neutrophil extracellular traps (NETs). The NETs are composed of network-like structures made of histone proteins, DNA and other released antibacterial proteins by activated neutrophils, and evidence suggests that in addition to the innate defense against infections, NETosis plays an important role in the pathogenesis of several other non-infectious pathological states, such as autoimmune diseases and even cancer. Therefore, targeting NET has become one of the important therapeutic approaches and has been considered by researchers. NET inhibitors or other molecules involved in the NET formation, such as the protein arginine deiminase 4 (PAD4) enzyme, an arginine-to-citrulline converter, participate in chromatin condensation and NET formation, is the basis of this therapeutic approach. The important point is whether complete inhibition of NETosis can be helpful because by inhibiting this mechanism, the activity of neutrophils is suppressed. In this review, the biology of NETosis and its role in the pathogenesis of some important diseases have been summarized, and the consequences of treatment based on inhibition of NET formation have been discussed.
Collapse
|
20
|
Laparoscopy in Emergency: Why Not? Advantages of Laparoscopy in Major Emergency: A Review. Life (Basel) 2021; 11:life11090917. [PMID: 34575066 PMCID: PMC8470929 DOI: 10.3390/life11090917] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Revised: 08/24/2021] [Accepted: 08/30/2021] [Indexed: 01/09/2023] Open
Abstract
A laparoscopic approach is suggested with the highest grade of recommendation for acute cholecystitis, perforated gastroduodenal ulcers, acute appendicitis, gynaecological disorders, and non-specific abdominal pain (NSAP). To date, the main qualities of laparoscopy for these acute surgical scenarios are clearly stated: quicker surgery, faster recovery and shorter hospital stay. For the remaining surgical emergencies, as well as for abdominal trauma, the role of laparoscopy is still a matter of debate. Patients might benefit from a laparoscopic approach only if performed by experienced teams and surgeons which guarantee a high standard of care. More precisely, laparoscopy can limit damage to the tissue and could be effective for the reduction of the overall amount of cell debris, which is a result of the intensity with which the immune system reacts to the injury and the following symptomatology. In fact, these fragments act as damage-associated molecular patterns (DAMPs). DAMPs, as well as pathogen associated molecular patterns (PAMPs), are recognised by both surface and intracellular receptors of the immune cells and activate the cascade which, in critically ill surgical patients, is responsible for a deranged response. This may result in the development of progressive and multiple organ dysfunctions, manifesting with acute respiratory distress syndrome (ARDS), coagulopathy, liver dysfunction and renal failure. In conclusion, none of the emergency surgical scenarios preclude laparoscopy, provided that the surgical tactic could ensure sufficient cleaning of the abdomen in addition to resolving the initial tissue damage caused by the “trauma”.
Collapse
|
21
|
Fichtner T, Kotarski F, Gärtner U, Conejeros I, Hermosilla C, Wrenzycki C, Taubert A. Bovine sperm samples induce different NET phenotypes in a NADPH oxidase-, PAD4-, and Ca++-dependent process†. Biol Reprod 2021; 102:902-914. [PMID: 31967293 DOI: 10.1093/biolre/ioaa003] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 11/16/2019] [Accepted: 01/06/2020] [Indexed: 12/30/2022] Open
Abstract
Deposition of sperm during artificial insemination in the bovine female reproductive tract results in early host innate immune reactions of polymorphonuclear neutrophils (PMNs). Furthermore, sperm-mediated neutrophil extracellular trap (NET) formation (NETosis) was recently reported to occur in different mammalian species, including humans. We, here, investigated the interactions of bovine PMN with different semen-derived samples and analyzed in more depth molecular aspects of this effector mechanism. Overall, confrontation of PMN with sperm/cell preparation (SCP) resulted in a rapid and dose-dependent NET formation leading to effective spermatozoa entrapment. Thereby, spermatozoa induced different phenotypes of NETs. Immunostaining analyses revealed the presence of histones (H3), neutrophil elastase (NE), and pentraxin (PTX) in sperm-triggered NET structures. Fresh SCP strongly induced NETosis than frozen-thawed ones. The level of NETosis was not related to spermatozoa viability. SCP as well as purified sperm cells (SCs) and supernatant (SN) induce NETosis, although the reaction in SC was lower. Enhanced levels of oxygen consumption and proton leak in PMN revealed sperm SNs but not purified SCs as PMN activators. Functional inhibition experiments revealed sperm-triggered NETosis as an NADPH oxidase- and peptidylarginine deiminase 4-dependent process and proved to be dependent on intra- and extracellular Ca++ influxes while myeloperoxidase activity and as ERK1/2- and PI3K-related signaling pathways did not seem to play a pivotal role in this effector mechanism. From these findings, we speculate that sperm-derived NETosis might also occur in vivo during artificial insemination and might therefore play a role related to reduced fertility.
Collapse
Affiliation(s)
- Theresa Fichtner
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany.,Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Franziska Kotarski
- Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Christine Wrenzycki
- Chair for Molecular Reproductive Medicine, Clinic of Veterinary Obstetrics, Gynecology and Andrology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
22
|
A Review of the Neutrophil Extracellular Traps (NETs) from Cow, Sheep and Goat Models. Int J Mol Sci 2021; 22:ijms22158046. [PMID: 34360812 PMCID: PMC8347029 DOI: 10.3390/ijms22158046] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Revised: 06/28/2021] [Accepted: 07/01/2021] [Indexed: 12/11/2022] Open
Abstract
This review provides insight into the importance of understanding NETosis in cows, sheep, and goats in light of the importance to their health, welfare and use as animal models. Neutrophils are essential to innate immunity, pathogen infection, and inflammatory diseases. The relevance of NETosis as a conserved innate immune response mechanism and the translational implications for public health are presented. Increased understanding of NETosis in ruminants will contribute to the prediction of pathologies and design of strategic interventions targeting NETs. This will help to control pathogens such as coronaviruses and inflammatory diseases such as mastitis that impact all mammals, including humans. Definition of unique attributes of NETosis in ruminants, in comparison to what has been observed in humans, has significant translational implications for one health and global food security, and thus warrants further study.
Collapse
|
23
|
Santagostino SF, Assenmacher CA, Tarrant JC, Adedeji AO, Radaelli E. Mechanisms of Regulated Cell Death: Current Perspectives. Vet Pathol 2021; 58:596-623. [PMID: 34039100 DOI: 10.1177/03009858211005537] [Citation(s) in RCA: 62] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Balancing cell survival and cell death is fundamental to development and homeostasis. Cell death is regulated by multiple interconnected signaling pathways and molecular mechanisms. Regulated cell death (RCD) is implicated in fundamental processes such as organogenesis and tissue remodeling, removal of unnecessary structures or cells, and regulation of cell numbers. RCD can also be triggered by exogenous perturbations of the intracellular or extracellular microenvironment when the adaptive processes that respond to stress fail. During the past few years, many novel forms of non-apoptotic RCD have been identified, and the characterization of RCD mechanisms at a molecular level has deepened our understanding of diseases encountered in human and veterinary medicine. Given the complexity of these processes, it has become clear that the identification of RCD cannot be based simply on morphologic characteristics and that descriptive and diagnostic terms presently used by pathologists-such as individual cell apoptosis or necrosis-appear inadequate and possibly misleading. In this review, the current understanding of the molecular machinery of each type of non-apoptotic RCD mechanisms is outlined. Due to the continuous discovery of new mechanisms or nuances of previously described processes, the limitations of the terms apoptosis and necrosis to indicate microscopic findings are also reported. In addition, the need for a standard panel of biomarkers and functional tests to adequately characterize the underlying RCD and its role as a mechanism of disease is considered.
Collapse
Affiliation(s)
| | - Charles-Antoine Assenmacher
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | - James C Tarrant
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| | | | - Enrico Radaelli
- Department of Pathobiology, School of Veterinary Medicine, 6572University of Pennsylvania, Philadelphia, PA, USA
| |
Collapse
|
24
|
Vorobjeva NV, Chernyak BV. NETosis: Molecular Mechanisms, Role in Physiology and Pathology. BIOCHEMISTRY (MOSCOW) 2020; 85:1178-1190. [PMID: 33202203 PMCID: PMC7590568 DOI: 10.1134/s0006297920100065] [Citation(s) in RCA: 248] [Impact Index Per Article: 49.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
NETosis is a program for formation of neutrophil extracellular traps (NETs), which consist of modified chromatin decorated with bactericidal proteins from granules and cytoplasm. Various pathogens, antibodies and immune complexes, cytokines, microcrystals, and other physiological stimuli can cause NETosis. Induction of NETosis depends on reactive oxygen species (ROS), the main source of which is NADPH oxidase. Activation of NADPH oxidase depends on increase in the concentration of Ca2+ in the cytoplasm and in some cases on the generation of ROS in mitochondria. NETosis includes release of the granule components into the cytosol, modification of histones leading to chromatin decondensation, destruction of the nuclear envelope, as well as formation of pores in the plasma membrane. In this review, basic mechanisms of NETosis, as well as its role in the pathogenesis of some diseases including COVID-19 are discussed.
Collapse
Affiliation(s)
- N V Vorobjeva
- Faculty of Biology, Lomonosov Moscow State University, Moscow, 119991, Russia.
| | - B V Chernyak
- Belozersky Institute of Physico-Chemical Biology, Lomonosov Moscow State University, Moscow, 119992, Russia.
| |
Collapse
|
25
|
Pérez D, Muñoz-Caro T, Silva LMR, Muñoz MC, Molina JM, Taubert A, Hermosilla C, Ruiz A. Eimeria ninakohlyakimovae casts NOX-independent NETosis and induces enhanced IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in caprine PMN. Exp Parasitol 2020; 220:108034. [PMID: 33188795 DOI: 10.1016/j.exppara.2020.108034] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2020] [Revised: 11/06/2020] [Accepted: 11/07/2020] [Indexed: 12/25/2022]
Abstract
Eimeria ninakohlyakimovae represents a highly pathogenic coccidian parasite causing severe haemorrhagic typhlocolitis in goat kids worldwide. NETosis was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites in vitro and in vivo. In vitro interactions of caprine PMN with parasitic stages of E. ninakohlyakimovae (i. e. oocysts and sporozoites) as well as soluble oocyst antigens (SOA) were analyzed at different ratios, concentrations and time spans. Extracellular DNA staining was used to illustrate classical molecules induced during caprine NETosis [i. e. histones (H3) and neutrophil elastase (NE)] via antibody-based immunofluorescence analyses. Functional inhibitor treatments with DPI and DNase I were applied to unveil role of NADPH oxidase (NOX) and characterize DNA-backbone composition of E. ninakohlyakimovae-triggered caprine NETosis. Scanning electron microscopy (SEM)- and immunofluorescence-analyses demonstrated that caprine PMN underwent NETosis upon contact with sporozoites and oocysts of E. ninakohlyakimovae, ensnaring filaments which firmly entrapped parasites. Detailed co-localization studies of E. ninakohlyakimovae-induced caprine NETosis revealed presence of PMN-derived DNA being adorned with nuclear H3 and NE corroborating molecular characteristics of NETosis. E. ninakohlyakoimovae-induced caprine NETosis was found to be NOX-independent since DPI inhibition led to a slight decrease of NETosis. Exposure of caprine PMN to vital E. ninakohlyakimovae sporozoites as well as SOA resulted in up-regulation of IL-12, TNF-α, IL-6, CCL2 and iNOS gene transcription in stimulated PMN. Since vital E. ninakohlyakimovae-sporozoites induced caprine NETosis, this effective entrapment mechanism might reduce initial sporozoite epithelial host cell invasion during goat coccidiosis ultimately resulting in less macromeront formation and reduced merozoites I production.
Collapse
Affiliation(s)
- D Pérez
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - T Muñoz-Caro
- Escuela de Medicina Veterinaria, Facultad de Recursos Naturales y Medicina Veterinaria, Universidad Santo Tomas, Chile
| | - L M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - M C Muñoz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - J M Molina
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen, Germany
| | - A Ruiz
- Parasitology Unit, Department of Animal Pathology, Faculty of Veterinary Medicine, University of Las Palmas de Gran Canaria, Las Palmas, Spain.
| |
Collapse
|
26
|
Abstract
PURPOSE OF REVIEW To explore the pathogenic association between periodontal disease and rheumatoid arthritis focusing on the role of Porphyromonas gingivalis. RECENT FINDINGS In the last decades our knowledge about the pathogenesis of rheumatoid arthritis substantially changed. Several evidences demonstrated that the initial production of autoantibodies is not localized in the joint, rather in other immunological-active sites. A central role seems to be played by periodontal disease, in particular because of the ability of P. gingivalis to induce citrullination, the posttranslational modification leading to the production of anticitrullinated protein/peptide antibodies, the most sensitive and specific rheumatoid arthritis biomarker. SUMMARY The pathogenic role of P. gingivalis has been demonstrated in mouse models in which arthritis was either triggered or worsened in infected animals. P. gingivalis showed its detrimental role not only by inducing citrullination but also by means of other key mechanisms including induction of NETosis, osteoclastogenesis, and Th17 proinflammatory response leading to bone damage and systemic inflammation.
Collapse
|
27
|
Stoikou M, van Breda SV, Schäfer G, Vokalova L, Giaglis S, Plattner A, Infanti L, Holbro A, Hahn S, Rossi SW, Buser A. G-CSF Infusion for Stem Cell Mobilization Transiently Increases Serum Cell-Free DNA and Protease Concentrations. Front Med (Lausanne) 2020; 7:155. [PMID: 32411715 PMCID: PMC7198785 DOI: 10.3389/fmed.2020.00155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2019] [Accepted: 04/08/2020] [Indexed: 01/13/2023] Open
Abstract
G-CSF for stem cell mobilization increases circulating levels of myeloid cells at different stages of maturation. Polymorphonuclear cells (PMNs) are also mobilized in high numbers. It was previously reported that G-CSF primes PMNs toward the release of neutrophils extracellular traps (NETs). Since NETs are often involved in thrombotic events, we hypothesized that high G-CSF blood concentrations could enhance PMN priming toward NET formation in healthy hematopoietic stem cell donors, predisposing them to thrombotic events. However, we found that G-CSF does not prime PMNs toward NETs formation, but increases the serum concentration of cell-free DNA, proteases like neutrophils elastase and myeloperoxidase, and reactive oxygen species. This could possibly create an environment disposed to induce thrombotic events in the presence of additional predisposing factors.
Collapse
Affiliation(s)
- Maria Stoikou
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Shane V van Breda
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Günther Schäfer
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Lenka Vokalova
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Stavros Giaglis
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | | | - Laura Infanti
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| | - Andreas Holbro
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University of Basel and University Hospital of Basel, Basel, Switzerland
| | - Andreas Buser
- Blood Transfusion Service, Swiss Red Cross Basel, Basel, Switzerland
| |
Collapse
|
28
|
Han XA, Jie HY, Wang JH, Zhang XM, Wang J, Yu CX, Zhang JL, He J, Chen JQ, Lai KF, Sun EW. Necrostatin-1 Ameliorates Neutrophilic Inflammation in Asthma by Suppressing MLKL Phosphorylation to Inhibiting NETs Release. Front Immunol 2020; 11:666. [PMID: 32391007 PMCID: PMC7194114 DOI: 10.3389/fimmu.2020.00666] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 03/24/2020] [Indexed: 11/26/2022] Open
Abstract
Neutrophilic inflammation occurs during asthma exacerbation, and especially, in patients with steroid-refractory asthma, but the underlying mechanisms are poorly understood. Recently, a significant accumulation of neutrophil extracellular traps (NETs) in the airways of neutrophilic asthma has been documented, suggesting that NETs may play an important role in the pathogenesis. In this study, we firstly demonstrated that NETs could induce human airway epithelial cell damage in vitro. In a mouse asthmatic model of neutrophil-dominated airway inflammation, we found that NETs were markedly increased in bronchoalveolar lavage (BAL), and the formation of NETs exacerbated the airway inflammation. Additionally, a small-molecule drug necrostatin-1 (Nec-1) shown to inhibit NETs formation was found to alleviate the neutrophil-dominated airway inflammation. Nec-1 reduced total protein concentration, myeloperoxidase activity, and the levels of inflammatory cytokines in BAL. Finally, further experiments proved that the inhibition of Nec-1 on NETs formation might be related to its ability to inhibiting mixed lineage kinase domain-like (MLKL) phosphorylation and perforation. Together, these results document that NETs are closely associated with the pathogenesis of neutrophilic asthma and inhibition of the formation of NETs by Nec-1 may be a new therapeutic strategy to ameliorate neutrophil-dominated airway inflammation.
Collapse
Affiliation(s)
- X A Han
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - H Y Jie
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J H Wang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - X M Zhang
- Department of Respiratory and Critical Care Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - Jun Wang
- Department of Respiration, Nan Fang Hospital, Southern Medical University, Guangzhou, China
| | - C X Yu
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J L Zhang
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - J He
- Department of Rheumatology and Immunology, Peking University Shenzhen Hospital, Shenzhen, China
| | - J Q Chen
- Department of Rehabilitation Medicine, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| | - K F Lai
- State Key Laboratory of Respiratory Disease, Guangzhou Institute of Respiratory Disease, The First Affiliated Hospital, Guangzhou Medical College, Guangzhou, China
| | - E W Sun
- Department of Rheumatology and Immunology, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China.,Guangdong Provincial Key Laboratory of Bone and Joint Degeneration Diseases, The Third Affiliated Hospital, Southern Medical University, Guangzhou, China
| |
Collapse
|
29
|
Ruiz-Limon P, Ladehesa-Pineda ML, Castro-Villegas MDC, Abalos-Aguilera MDC, Lopez-Medina C, Lopez-Pedrera C, Barbarroja N, Espejo-Peralbo D, Gonzalez-Reyes JA, Villalba JM, Perez-Sanchez C, Escudero-Contreras A, Collantes-Estevez E, Font-Ugalde P, Jimenez-Gomez Y. Enhanced NETosis generation in radiographic axial spondyloarthritis: utility as biomarker for disease activity and anti-TNF-α therapy effectiveness. J Biomed Sci 2020; 27:54. [PMID: 32303225 PMCID: PMC7164280 DOI: 10.1186/s12929-020-00634-1] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2019] [Accepted: 02/26/2020] [Indexed: 12/21/2022] Open
Abstract
Background Radiographic axial spondyloarthritis (r-axSpA) is a chronic inflammatory form of arthritis in which tumor necrosis factor (TNF)-α, a potent inducer of inflammatory response and a key regulator of innate immunity and of Th1 immune responses, plays a central role. NETosis is a mechanism of innate immune defense that is involved in diverse rheumatology diseases. Nevertheless, spontaneous NETosis generation in r-axSpA, its association to disease pathogenesis, and the NETosis involvement on anti-TNF-α therapy’s effects has never been explored. Methods Thirty r-axSpA patients and 32 healthy donors (HDs) were evaluated. Neutrophil extracellular trap (NET) formation, mediators of signal-transduction cascade required for NETosis induction and cell-free NETosis-derived products were quantified. An additional cohort of 15 r-axSpA patients treated with infliximab (IFX) for six months were further analyzed. In vitro studies were designed to assess the effects of IFX in NETosis generation and the inflammatory profile triggered. Results Compared to HDs, neutrophils from r-axSpA patients displayed augmented spontaneous NET formation, elevated expression of NET-associated signaling components, nuclear peptidylarginine deiminase 4 translocation and increased citrullinated histone H3. Furthermore, patients exhibited altered circulating levels of cell-free NETosis-derived products (DNA, nucleosomes and elastase). Additional studies revealed that cell-free NETosis-derived products could be suitable biomarkers for distinguish r-axSpA patients from HDs. Correlation studies showed association between cell-free NETosis-derived products and clinical inflammatory parameters. Besides, nucleosomes displayed potential as a biomarker for discriminate patients according to disease activity. IFX therapy promoted a reduction in both NETosis generation and disease activity in r-axSpA patients. Mechanistic in vitro studies further unveiled the relevance of IFX in reducing NET release and normalizing the augmented inflammatory activities promoted by NETs in mononuclear cells. Conclusions This study reveals that NETosis is enhanced in r-axSpA patients and identifies the NETosis-derived products as potential disease activity biomarkers. In addition, the data suggests the potential role of NET generation analysis for assessment of therapeutic effectiveness in r-axSpA.
Collapse
Affiliation(s)
- Patricia Ruiz-Limon
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Unidad de Gestión Clínica Endocrinología y Nutrición, Instituto de Investigación Biomédica de Málaga (IBIMA), Hospital Clínico Virgen de la Victoria, Campus Teatinos s/n, 29010, Málaga, Spain.
| | - Maria Lourdes Ladehesa-Pineda
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Maria Del Carmen Castro-Villegas
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Maria Del Carmen Abalos-Aguilera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Clementina Lopez-Medina
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Chary Lopez-Pedrera
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Nuria Barbarroja
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Daniel Espejo-Peralbo
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Jose Antonio Gonzalez-Reyes
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Jose Manuel Villalba
- Departamento de Biología Celular, Fisiología e Inmunología, Universidad de Córdoba, Campus de Excelencia Internacional Agroalimentario ceiA3, Campus de Rabanales, Edificio Severo Ochoa, 3ª planta, 14014, Córdoba, Spain
| | - Carlos Perez-Sanchez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Alejandro Escudero-Contreras
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Eduardo Collantes-Estevez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Pilar Font-Ugalde
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain
| | - Yolanda Jimenez-Gomez
- Instituto Maimónides de Investigación Biomédica de Córdoba (IMIBIC), Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Unidad de Gestión Clínica Reumatología, Hospital Universitario Reina Sofía, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain. .,Departamento de Medicina (Medicina, Dermatología y Otorrinolaringología), Universidad de Córdoba, Avda. Menéndez Pidal s/n, 14004, Córdoba, Spain.
| |
Collapse
|
30
|
Imlau M, Conejeros I, Muñoz-Caro T, Zhou E, Gärtner U, Ternes K, Taubert A, Hermosilla C. Dolphin-derived NETosis results in rapid Toxoplasma gondii tachyzoite ensnarement and different phenotypes of NETs. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2020; 103:103527. [PMID: 31655127 DOI: 10.1016/j.dci.2019.103527] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2019] [Revised: 10/20/2019] [Accepted: 10/20/2019] [Indexed: 06/10/2023]
Abstract
Toxoplasma gondii is a cosmopolitan zoonotic parasite and nowadays considered as an emerging neozoan pathogen in the marine environment. Cetacean innate immune reactions against T. gondii stages have not yet been investigated. Thus, T. gondii tachyzoites were utilized to trigger neutrophil extracellular traps (NETs) in bottlenose dolphin (Tursiops truncatus) polymorphonuclear neutrophils (PMN). Scanning electron microscopy unveiled T. gondii tachyzoites as potent and rapid inducers of cetacean-derived NETosis. Co-localization of extracellular chromatin with global histones, granulocytic myeloperoxidase and neutrophil elastase confirmed classical characteristics of NETosis. Interestingly, different phenotypes of NETs were induced by tachyzoites resulting in spread, diffuse and aggregated NET formation and moreover, 'anchored' and 'cell free' NETosis was also detected. Current data indicate that cetacean-derived NETosis might represent an early, ancient and well-conserved host innate defense mechanism that not only acts against T. gondii but might also occur in response to other closely related emerging apicomplexan parasites affecting marine cetaceans.
Collapse
Affiliation(s)
- Michelle Imlau
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany.
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | | | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
31
|
Metabolic requirements of Besnoitia besnoiti tachyzoite-triggered NETosis. Parasitol Res 2019; 119:545-557. [PMID: 31782011 DOI: 10.1007/s00436-019-06543-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Accepted: 11/06/2019] [Indexed: 01/19/2023]
Abstract
Besnoitia besnoiti is the causative agent of bovine besnoitiosis, a disease affecting both, animal welfare and cattle productivity. NETosis represents an important and early host innate effector mechanism of polymorphonuclear neutrophils (PMN) that also acts against B. besnoiti tachyzoites. So far, no data are available on metabolic requirements of B. besnoiti tachyzoite-triggered NETosis. Therefore, here we analyzed metabolic signatures of tachyzoite-exposed PMN and determined the relevance of distinct PMN-derived metabolic pathways via pharmacological inhibition experiments. Overall, tachyzoite exposure induced a significant increase in glucose and serine consumption as well as glutamate production in PMN. Moreover, tachyzoite-induced cell-free NETs were significantly diminished via PMN pre-treatments with oxamate and dichloroacetate which both induce an inhibition of lactate release as well as oxythiamine, which inhibits pyruvate dehydrogenase, α-ketoglutarate dehydrogenase, and transketolase, thereby indicating a key role of pyruvate- and lactate-mediated metabolic pathways for proper tachyzoite-mediated NETosis. Furthermore, NETosis was increased by enhanced pH conditions; however, inhibitors of MCT-lactate transporters (AR-C141900, AR-C151858) failed to influence NET formation. Moreover, a significant reduction of tachyzoite-induced NET formation was also achieved by treatments with oligomycin A (inhibitor of ATP synthase) and NF449 (purinergic receptor P2X1 antagonist) thereby suggesting a pivotal role of ATP availability for tachyzoite-mediated NETosis. In summary, the current data provide first evidence on carbohydrate-related metabolic pathways and energy supply to be involved in B. besnoiti tachyzoite-induced NETosis.
Collapse
|
32
|
Balogh A, Toth E, Romero R, Parej K, Csala D, Szenasi NL, Hajdu I, Juhasz K, Kovacs AF, Meiri H, Hupuczi P, Tarca AL, Hassan SS, Erez O, Zavodszky P, Matko J, Papp Z, Rossi SW, Hahn S, Pallinger E, Than NG. Placental Galectins Are Key Players in Regulating the Maternal Adaptive Immune Response. Front Immunol 2019; 10:1240. [PMID: 31275299 PMCID: PMC6593412 DOI: 10.3389/fimmu.2019.01240] [Citation(s) in RCA: 52] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2019] [Accepted: 05/16/2019] [Indexed: 12/12/2022] Open
Abstract
Galectins are potent immunomodulators that regulate maternal immune responses in pregnancy and prevent the rejection of the semi-allogeneic fetus that also occurs in miscarriages. We previously identified a gene cluster on Chromosome 19 that expresses a subfamily of galectins, including galectin-13 (Gal-13) and galectin-14 (Gal-14), which emerged in anthropoid primates. These galectins are expressed only by the placenta and induce the apoptosis of activated T lymphocytes, possibly contributing to a shifted maternal immune balance in pregnancy. The placental expression of Gal-13 and Gal-14 is decreased in preeclampsia, a life-threatening obstetrical syndrome partly attributed to maternal anti-fetal rejection. This study is aimed at revealing the effects of Gal-13 and Gal-14 on T cell functions and comparing the expression of these galectins in placentas from healthy pregnancies and miscarriages. First-trimester placentas were collected from miscarriages and elective termination of pregnancies, tissue microarrays were constructed, and then the expression of Gal-13 and Gal-14 was analyzed by immunohistochemistry and immunoscoring. Recombinant Gal-13 and Gal-14 were expressed and purified, and their effects were investigated on primary peripheral blood T cells. The binding of Gal-13 and Gal-14 to T cells and the effects of these galectins on apoptosis, activation marker (CD25, CD71, CD95, HLA-DR) expression and cytokine (IL-1β, IL-6, IL-8, IL-10, IFNγ) production of T cells were examined by flow cytometry. Gal-13 and Gal-14 are primarily expressed by the syncytiotrophoblast at the maternal-fetal interface in the first trimester, and their placental expression is decreased in miscarriages compared to first-trimester controls. Recombinant Gal-13 and Gal-14 bind to T cells in a population- and activation-dependent manner. Gal-13 and Gal-14 induce apoptosis of Th and Tc cell populations, regardless of their activation status. Out of the investigated activation markers, Gal-14 decreases the cell surface expression of CD71, Gal-13 increases the expression of CD25, and both galectins increase the expression of CD95 on T cells. Non-activated T cells produce larger amounts of IL-8 in the presence of Gal-13 or Gal-14. In conclusion, these results show that Gal-13 and Gal-14 already provide an immunoprivileged environment at the maternal-fetal interface during early pregnancy, and their reduced expression is related to miscarriages.
Collapse
Affiliation(s)
- Andrea Balogh
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Eszter Toth
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Roberto Romero
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, University of Michigan, Ann Arbor, MI, United States.,Department of Epidemiology and Biostatistics, Michigan State University, East Lansing, MI, United States.,Center for Molecular Medicine and Genetics, Wayne State University, Detroit, MI, United States
| | - Katalin Parej
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Diana Csala
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Nikolett L Szenasi
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Istvan Hajdu
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Kata Juhasz
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Arpad F Kovacs
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | | | - Petronella Hupuczi
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary
| | - Adi L Tarca
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Computer Science, Wayne State University College of Engineering, Detroit, MI, United States
| | - Sonia S Hassan
- Perinatology Research Branch, Eunice Kennedy Shriver National Institute of Child Health and Human Development, National Institutes of Health, U.S. Department of Health and Human Services, Bethesda, MD and Detroit, MI, United States.,Department of Obstetrics and Gynecology, Wayne State University School of Medicine, Detroit, MI, United States.,Department of Physiology, Wayne State University School of Medicine, Detroit, MI, United States
| | - Offer Erez
- Division of Obstetrics and Gynecology, Maternity Department "D", Faculty of Health Sciences, Soroka University Medical Center, School of Medicine, Ben Gurion University of the Negev, Beer-Sheva, Israel
| | - Peter Zavodszky
- Structural Biophysics Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - Janos Matko
- Department of Immunology, Eotvos Lorand University, Budapest, Hungary
| | - Zoltan Papp
- Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,Department of Obstetrics and Gynecology, Semmelweis University, Budapest, Hungary
| | - Simona W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - Eva Pallinger
- Department of Genetics, Cell and Immunobiology, Semmelweis University, Budapest, Hungary
| | - Nandor Gabor Than
- Systems Biology of Reproduction Momentum Research Group, Institute of Enzymology, Research Centre for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary.,Maternity Private Clinic of Obstetrics and Gynecology, Budapest, Hungary.,First Department of Pathology and Experimental Cancer Research, Semmelweis University, Budapest, Hungary
| |
Collapse
|
33
|
Henthorn CR, Chris Minion F, Sahin O. Utilization of macrophage extracellular trap nucleotides by Mycoplasma hyopneumoniae. MICROBIOLOGY-SGM 2019; 164:1394-1404. [PMID: 30383520 DOI: 10.1099/mic.0.000717] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
Abstract
Mycoplasma hyopneumoniae is the causative agent of enzootic pneumonia in swine, an important disease worldwide. It has finite biosynthetic capabilities, including a deficit in de novo nucleotide synthesis. The source(s) for nucleotides in vivo are unknown, but mycoplasmas are known to carry membrane-bound nucleases thought to participate in the acquisition of nucleotides from host genomic DNA. Recent research has demonstrated that neutrophils can produce extracellular traps (NETs), chromatin NETs decorated with granular proteins to interact with and eliminate pathogens. We hypothesized that M. hyopneumoniae could utilize its membrane nuclease to obtain nucleotides from extracellular traps to construct its own DNA. Using the human monocytic cell line THP-1, we induced macrophage extracellular traps (METs), which are structurally similar to NETs. The thymidine analogue ethynyl deoxyuridine (EdU) was incorporated into THP-1 DNA and METs were induced. When incubated with M. hyopneumoniae, METs were degraded and the modified nucleotide label could be co-localized within M. hyopneumoniae DNA. When the nucleases were inhibited, MET degradation and nucleotide transfer were also inhibited. Controls confirmed that the EdU originated directly from the METs and not from free nucleotides arising from intracellular pools released during extrusion of the chromosomal DNA. M. hyopneumoniae incorporated labelled nucleotides more efficiently when 'fed' on METs than from free nucleotides in the medium, suggesting a tight linkage between nuclease degradation of DNA and nucleotide transport. These results strongly suggest that M. hyopneumoniae could degrade extracellular traps formed in vivo during infection and incorporate those host nucleotides into its own DNA.
Collapse
Affiliation(s)
- Clair R Henthorn
- †Present address: Promega Corporation, 2800 Woods Hollow Road, Madison, WI 53711, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA.,1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA
| | - F Chris Minion
- 3Department of Veterinary Microbiology and Preventive Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| | - Orhan Sahin
- 1Department of Veterinary Diagnostic and Production Animal Medicine, College of Veterinary Medicine, Iowa State University, Ames IA, USA.,2Interdepartmental Microbiology Graduate Program, Iowa State University, Ames IA, USA
| |
Collapse
|
34
|
Zhou E, Conejeros I, Velásquez ZD, Muñoz-Caro T, Gärtner U, Hermosilla C, Taubert A. Simultaneous and Positively Correlated NET Formation and Autophagy in Besnoitia besnoiti Tachyzoite-Exposed Bovine Polymorphonuclear Neutrophils. Front Immunol 2019; 10:1131. [PMID: 31191523 PMCID: PMC6540735 DOI: 10.3389/fimmu.2019.01131] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 05/03/2019] [Indexed: 12/29/2022] Open
Abstract
Given that B. besnoiti tachyzoites infect host endothelial cells of vessels in vivo, they become potential targets for professional phagocytes [e.g., polymorphonuclear neutrophils (PMN)] when in search for adequate host cells or in case of host cell lysis. It was recently reported that B. besnoiti-tachyzoites can efficiently be trapped by neutrophil extracellular traps (NETs) released by bovine PMN. So far, the potential role of autophagy in parasite-triggered NET formation is unclear. Thus, we here analyzed autophagosome formation and activation of AMP-activated protein kinase α (AMPKα) in potentially NET-forming innate leukocytes being exposed to B. besnoiti tachyzoites. Blood was collected from healthy adult dairy cows, and bovine PMN were isolated via density gradient centrifugation. Scanning electron microscopy confirmed PMN to undergo NET formation upon contact with B. besnoiti tachyzoites. Nuclear area expansion (NAE) analysis and cell-free and anchored NETs quantification were performed in B. besnoiti-induced NET formation. Interestingly, tachyzoites of B. besnoiti additionally induced LC3B-related autophagosome formation in parallel to NET formation in bovine PMN. Notably, both rapamycin- and wortmannin-treatments failed to influence B. besnoiti-triggered NET formation and autophagosome formation. Also, isolated NETs fail to induce autophagy suggesting independence between both cellular processes. Finally, enhanced phosphorylation of AMP activated kinase α (AMPKα), a key regulator molecule of autophagy, was observed within the first minutes of interaction in tachyzoite-exposed PMN thereby emphasizing that B. besnoiti-triggered NET formation indeed occurs in parallel to autophagy.
Collapse
Affiliation(s)
- Ershun Zhou
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Iván Conejeros
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Zahady D Velásquez
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Carlos Hermosilla
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Biomedical Research Center Seltersberg, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
35
|
Bornhöfft KF, Galuska SP. Glycans as Modulators for the Formation and Functional Properties of Neutrophil Extracellular Traps: Used by the Forces of Good and Evil. Front Immunol 2019; 10:959. [PMID: 31134066 PMCID: PMC6514094 DOI: 10.3389/fimmu.2019.00959] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/15/2019] [Indexed: 12/13/2022] Open
Abstract
A very common mechanism to trap pathogens is the release of DNA. Like flies in a spider's web, pathogens are enclosed in a sticky chromatin meshwork. Interestingly, plants already use this mechanism to catch bacteria. In mammals, especially neutrophils release their DNA to prevent an invasion of bacteria. These neutrophil extracellular traps (NETs) are equipped with antimicrobial molecules, including, for instance, histones, antimicrobial peptides, lactoferrin, and neutrophil elastase. Thus, in a defined area, pathogens and toxic molecules are directly adjacent. However, several of these antimicrobial substances are also cytotoxic for endogenous cells. It is, therefore, not surprising that distinct control mechanisms exist to prevent an exaggerated NETosis. Nevertheless, despite these endogenous control instruments, an extraordinary NET release is characteristic for several pathologies. Consequently, NETs are a novel target for developing therapeutic strategies. In this review, we summarize the roles of glycans in the biology of NETs; on the one hand, we focus on the glycan-dependent strategies of endogenous cells to control NET formation or to inactivate its cytotoxic effects, and, on the other hand, the “sweet” tricks of pathogens to inhibit the release of NETs or to prevent NET-mediated killing mechanisms are examined. Understanding both, the forces of good and evil, allows the development of novel glycan-based approaches to combat the harmful side of NETs during distinct pathologies.
Collapse
Affiliation(s)
- Kim F Bornhöfft
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| | - Sebastian P Galuska
- Institute of Reproductive Biology, Leibniz Institute for Farm Animal Biology, Dummerstorf, Germany
| |
Collapse
|
36
|
The role of platelets in mediating a response to human influenza infection. Nat Commun 2019; 10:1780. [PMID: 30992428 PMCID: PMC6467905 DOI: 10.1038/s41467-019-09607-x] [Citation(s) in RCA: 251] [Impact Index Per Article: 41.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2018] [Accepted: 03/20/2019] [Indexed: 02/07/2023] Open
Abstract
Influenza infection increases the incidence of myocardial infarction but the reason is unknown. Platelets mediate vascular occlusion through thrombotic functions but are also recognized to have immunomodulatory activity. To determine if platelet processes are activated during influenza infection, we collected blood from 18 patients with acute influenza infection. Microscopy reveals activated platelets, many containing viral particles and extracellular-DNA associated with platelets. To understand the mechanism, we isolate human platelets and treat them with influenza A virus. Viral-engulfment leads to C3 release from platelets as a function of TLR7 and C3 leads to neutrophil-DNA release and aggregation. TLR7 specificity is confirmed in murine models lacking the receptor, and platelet depletion models support platelet-mediated C3 and neutrophil-DNA release post-influenza infection. These findings demonstrate that the initial intrinsic defense against influenza is mediated by platelet–neutrophil cross-communication that tightly regulates host immune and complement responses but can also lead to thrombotic vascular occlusion. Influenza viremia is rare in human blood and not well studied. Here, the authors show that influenza can be found in human platelets and that platelet engulfment of influenza A results in TLR7-dependent C3 release, which in turn promotes neutrophil-DNA release and formation of platelet-DNA aggregates.
Collapse
|
37
|
The Immunomodulatory Effect of Alpha-Lipoic Acid in Autoimmune Diseases. BIOMED RESEARCH INTERNATIONAL 2019; 2019:8086257. [PMID: 31016198 PMCID: PMC6446120 DOI: 10.1155/2019/8086257] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/10/2018] [Revised: 02/11/2019] [Accepted: 02/21/2019] [Indexed: 01/08/2023]
Abstract
Αlpha-lipoic acid is a naturally occurring antioxidant in human body and has been widely used as an antioxidant clinically. Accumulating evidences suggested that α-lipoic acid might have immunomodulatory effects on both adaptive and innate immune systems. This review focuses on the evidences and potential targets involved in the immunomodulatory effects of α-lipoic acid. It highlights the fact that α-lipoic acid may have beneficial effects in autoimmune diseases once the immunomodulatory effects can be confirmed by further investigation.
Collapse
|
38
|
Hahn S, Hasler P, Vokalova L, van Breda SV, Lapaire O, Than NG, Hoesli I, Rossi SW. The role of neutrophil activation in determining the outcome of pregnancy and modulation by hormones and/or cytokines. Clin Exp Immunol 2019; 198:24-36. [PMID: 30768780 DOI: 10.1111/cei.13278] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/20/2018] [Indexed: 12/16/2022] Open
Abstract
Neutrophils are often exclusively considered as a first-line innate immune defence, able to rapidly kill or trap pathogens and causing in case of over-activation tissue damage. In the female reproductive tract, however, the presence and activity of neutrophils seems to be tightly regulated. Major players in orchestrating this regulation are cyclical steroid sex hormones present during the menstrual cycle and pregnancy. This review describes the role of sex hormones in regulating directly or indirectly the functionality of neutrophils, the role of neutrophils during fertilization and pregnancy and in controlling viral, fungal and bacterial infection. This review also discusses the consequence of overt neutrophil activation in pregnancy pathologies.
Collapse
Affiliation(s)
- S Hahn
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - P Hasler
- Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - L Vokalova
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| | - S V van Breda
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland.,Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - O Lapaire
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - N G Than
- Systems Biology of Reproduction Lendulet Research Group, Institute of Enzymology, Research Center for Natural Sciences, Hungarian Academy of Sciences, Budapest, Hungary
| | - I Hoesli
- Department of Obstetrics, University Women's Hospital Basel, Basel, Switzerland
| | - S W Rossi
- Department of Biomedicine, University and University Hospital Basel, Basel, Switzerland
| |
Collapse
|
39
|
Villagra-Blanco R, Silva LMR, Conejeros I, Taubert A, Hermosilla C. Pinniped- and Cetacean-Derived ETosis Contributes to Combating Emerging Apicomplexan Parasites ( Toxoplasma gondii, Neospora caninum) Circulating in Marine Environments. BIOLOGY 2019; 8:biology8010012. [PMID: 30857289 PMCID: PMC6466332 DOI: 10.3390/biology8010012] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/29/2019] [Revised: 02/25/2019] [Accepted: 03/06/2019] [Indexed: 12/15/2022]
Abstract
Leukocytes play a major role in combating infections either by phagocytosis, release of antimicrobial granules, or extracellular trap (ET) formation. ET formation is preceded by a certain leukocyte cell death form, known as ETosis, an evolutionarily conserved mechanism of the innate immune system also observed in marine mammals. Besides several biomolecules and microbial stimuli, marine mammal ETosis is also trigged by various terrestrial protozoa and metazoa, considered nowadays as neozoan parasites, which are circulating in oceans worldwide and causing critical emerging marine diseases. Recent studies demonstrated that pinniped- and cetacean-derived polymorphonuclear neutrophils (PMNs) and monocytes are able to form different phenotypes of ET structures composed of nuclear DNA, histones, and cytoplasmic peptides/proteases against terrestrial apicomplexan parasites, e.g., Toxoplasma gondii and Neospora caninum. Detailed molecular analyses and functional studies proved that marine mammal PMNs and monocytes cast ETs in a similar way as terrestrial mammals, entrapping and immobilizing T. gondii and N. caninum tachyzoites. Pinniped- and cetacean leukocytes induce vital and suicidal ETosis, with highly reliant actions of nicotinamide adenine dinucleotide phosphate oxidase (NOX), generation of reactive oxygen species (ROS), and combined mechanisms of myeloperoxidase (MPO), neutrophil elastase (NE), and DNA citrullination via peptidylarginine deiminase IV (PAD4).This scoping review intends to summarize the knowledge on emerging protozoans in the marine environment and secondly to review limited data about ETosis mechanisms in marine mammalian species.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Iván Conejeros
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, 35392 Giessen, Germany.
| |
Collapse
|
40
|
Jung N, Bueb JL, Tolle F, Bréchard S. Regulation of neutrophil pro-inflammatory functions sheds new light on the pathogenesis of rheumatoid arthritis. Biochem Pharmacol 2019; 165:170-180. [PMID: 30862503 DOI: 10.1016/j.bcp.2019.03.010] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2019] [Accepted: 03/07/2019] [Indexed: 02/08/2023]
Abstract
For more than two centuries now, rheumatoid arthritis (RA) is under investigation intending to discover successful treatment. Despite decades of scientific advances, RA is still representing a challenge for contemporary medicine. Current drug therapies allow to improve significantly the quality of life of RA patients; however, they are still insufficient to reverse tissue injury and are often generating side-effects. The difficulty arises from the considerable fluctuation of the clinical course of RA among patients, making the predictive prognosis difficult. More and more studies underline the profound influence of the neutrophil multifaceted functions in the pathogenesis of RA. This renewed interest in the complexity of neutrophil functions in RA offers new exciting opportunities for valuable therapeutic targets as well as for safe and well-tolerated RA treatments. In this review, we aim to update the recent findings on the multiple facets of neutrophils in RA, in particular their impact in promoting the RA-based inflammation through the release of the cytokine-like S100A8/A9 protein complex, as well as the importance of NETosis in the disease progression and development. Furthermore, we delve into the complex question of neutrophil heterogeneity and plasticity and discuss the emerging role of miRNAs and epigenetic markers influencing the inflammatory response of neutrophils in RA and how they could constitute the starting point for novel attractive targets in RA therapy.
Collapse
Affiliation(s)
- N Jung
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - J-L Bueb
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - F Tolle
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg
| | - S Bréchard
- Life Sciences Research Unit, Immune Cells and Inflammatory Diseases group, University of Luxembourg, 6 Avenue du Swing, L-4367 Belvaux, Luxembourg.
| |
Collapse
|
41
|
Trump LR, Nayak RC, Singh AK, Emberesh S, Wellendorf AM, Lutzko CM, Cancelas JA. Neutrophils Derived from Genetically Modified Human Induced Pluripotent Stem Cells Circulate and Phagocytose Bacteria In Vivo. Stem Cells Transl Med 2019; 8:557-567. [PMID: 30793529 PMCID: PMC6525559 DOI: 10.1002/sctm.18-0255] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2018] [Accepted: 01/08/2019] [Indexed: 01/01/2023] Open
Abstract
Bacterial and fungal infections are a major cause of morbidity and mortality in neutropenic patients. Donor‐derived neutrophil transfusions have been used for prophylaxis or treatment for infection in neutropenic patients. However, the short half‐life and the limited availability of large numbers of donor‐derived neutrophils for transfusion remain a significant hurdle in the implementation of neutrophil transfusion therapy. Here, we investigate the in vitro and in vivo activity of neutrophils generated from human induced pluripotent stem cells (iPSC), a potentially unlimited resource to produce neutrophils for transfusion. Phenotypic analysis of iPSC‐derived neutrophils reveal reactive oxygen species production at similar or slightly higher than normal peripheral blood neutrophils, but have an ∼50%–70% reduced Escherichia coli phagocytosis and phorbol 12‐myristate 13‐acetate induced formation of neutrophil extracellular traps (NET). Signaling of granulocytic precursors identified impaired AKT activation, but not ERK or STAT3, in agonist‐stimulated iPSC‐derived neutrophils. Expression of a constitutively activated AKT in iPSC‐derived neutrophils restores most phagocytic activity and NET formation. In a model of bacterial induced peritonitis in immunodeficient mice, iPSC‐derived neutrophils, with or without corrected AKT activation, migrate similarly to the peritoneal fluid as peripheral blood neutrophils, whereas the expression of activated AKT significantly improves their phagocytic activity in vivo. stem cells translational medicine2019;8:557–567
Collapse
Affiliation(s)
- Lisa R Trump
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ramesh C Nayak
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Abhishek K Singh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Sana Emberesh
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Ashley M Wellendorf
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA
| | - Carolyn M Lutzko
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| | - Jose A Cancelas
- Division of Experimental Hematology and Cancer Biology, Cincinnati Children's Hospital Medical Center, Cincinnati, Ohio, USA.,Hoxworth Blood Center, University of Cincinnati College of Medicine, Cincinnati, Ohio, USA
| |
Collapse
|
42
|
Chlorpyrifos Suppresses Neutrophil Extracellular Traps in Carp by Promoting Necroptosis and Inhibiting Respiratory Burst Caused by the PKC/MAPK Pathway. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2019; 2019:1763589. [PMID: 30881588 PMCID: PMC6383406 DOI: 10.1155/2019/1763589] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Revised: 11/01/2018] [Accepted: 12/07/2018] [Indexed: 02/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are reticular structures formed by myeloperoxidase (MPO), histones, and neutrophil elastase (NE) that are released from neutrophils in response to pathogenic stimuli. Chlorpyrifos (CPF) is wildly used as an organophosphorus pesticide that causes a range of toxicological and environmental problems. Exposure to CPF can increase the production of neutrophils in carps, and this increase can be considered a biomarker of water pollution. To explore a relationship between NETs and CPF and its mechanism of influence, we treated neutrophils from the blood of carp with 1 μg/mL phorbol 12-myristate 13-acetate (PMA), 0.325 mg/L CPF, or 20 μM necrostatin-1 (Nec-1). The production of MPO and NETs was reduced in the CPF+PMA group compared with that in the PMA group. CPF can cause an increase in reactive oxygen species (ROS), while inhibiting respiratory burst caused by PMA stimulation. We found that the expression levels of protein-coupled receptor 84 (gpr84), dystroglycan (DAG), proto-oncogene serine/threonine kinase (RAF), protein kinase C (PKC), and mitogen-activated protein kinase 3 (MAPK3) in the CPF+PMA group were lower than those in the PMA group, indicating that the PKC-MAPK pathway was suppressed. The expression levels of cylindromatosis (CYLD), mixed lineage kinase domain-like pseudokinase (MLKL), receptor-interacting serine-threonine kinase 1 (RIP1), and receptor-interacting serine-threonine kinase 3 (RIP3) were increased, and the expression levels of caspase 8 were reduced by CPF, indicating that CPF may cause necroptosis. The addition of Nec-1 restored the number of NETs in the CPF+PMA group. The results indicate that CPF reduced the production of NETs by inhibiting respiratory burst and increasing necroptosis. The results contribute to the understanding of the immunotoxicological mechanism of CPF and provide a reference for comparative medical studies.
Collapse
|
43
|
Garza JJ, Greiner SP, Bowdridge SA. Ovine vital neutrophil extracellular traps bind and impair Haemonchus contortus L3 in a breed-dependent manner. Parasite Immunol 2018; 40:e12572. [PMID: 29992577 DOI: 10.1111/pim.12572] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2017] [Revised: 07/03/2018] [Accepted: 07/04/2018] [Indexed: 12/31/2022]
Abstract
This study aimed to characterize neutrophil response to Haemonchus contortus (Hc) in vitro using cells from parasite-resistant St. Croix (STC) and parasite-susceptible Suffolk (SUF) sheep. Neutrophils from Hc-primed and naive STC and SUF sheep were incubated with Hc larval antigen (HcLA), Hc worm antigen (HcWA) or complete media (CM). After HcLA exposure, neutrophils from STC and SUF formed extracellular traps composed of DNA. Stimulation with HcLA induced a 35-fold increase in extracellular DNA compared to CM controls. However, extracellular DNA was not found when neutrophils were cultured with HcWA. The formation of neutrophil extracellular traps (NET) in response to HcLA yields a low percentage of necrotic cells indicating a form of vital NETosis. Neutrophils from primed and naïve STC bound Hc L3 greater (93% and 68%) than SUF (78% and 45%; P < 0.001). Furthermore, STC neutrophils significantly reduced larval ATP levels compared to SUF neutrophils (0.05 μmol/L vs 0.1 μmol/L ATP, P < 0.001). These data indicate that ovine neutrophils bind, form vital NET and reduce ATP to Hc L3 in a breed and infection status-dependent manner.
Collapse
Affiliation(s)
- Javier J Garza
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| | - Scott P Greiner
- Department of Animal and Poultry Sciences, Virginia Tech, Blacksburg, Virginia
| | - Scott A Bowdridge
- Division of Animal and Nutritional Sciences, West Virginia University, Morgantown, West Virginia
| |
Collapse
|
44
|
Cathelicidins prime platelets to mediate arterial thrombosis and tissue inflammation. Nat Commun 2018; 9:1523. [PMID: 29670076 PMCID: PMC5906636 DOI: 10.1038/s41467-018-03925-2] [Citation(s) in RCA: 98] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/11/2017] [Accepted: 03/23/2018] [Indexed: 12/14/2022] Open
Abstract
Leukocyte-released antimicrobial peptides contribute to pathogen elimination and activation of the immune system. Their role in thrombosis is incompletely understood. Here we show that the cathelicidin LL-37 is abundant in thrombi from patients with acute myocardial infarction. Its mouse homologue, CRAMP, is present in mouse arterial thrombi following vascular injury, and derives mainly from circulating neutrophils. Absence of hematopoietic CRAMP in bone marrow chimeric mice reduces platelet recruitment and thrombus formation. Both LL-37 and CRAMP induce platelet activation in vitro by involving glycoprotein VI receptor with downstream signaling through protein tyrosine kinases Src/Syk and phospholipase C. In addition to acute thrombosis, LL-37/CRAMP-dependent platelet activation fosters platelet–neutrophil interactions in other inflammatory conditions by modulating the recruitment and extravasation of neutrophils into tissues. Absence of CRAMP abrogates acid-induced lung injury, a mouse pneumonia model that is dependent on platelet–neutrophil interactions. We suggest that LL-37/CRAMP represents an important mediator of platelet activation and thrombo-inflammation. Cathelicidins are antimicrobial peptides that eliminate pathogens and contribute to the innate immune response. Here the authors show that neutrophil-derived LL-37/CRAMP induces platelet activation and promotes arterial thrombosis and thrombo-inflammation.
Collapse
|
45
|
Influence of Different Bacteria Strains Isolated from Septic Children on Release and Degradation of Extracellular Traps by Neutrophils from Healthy Adults. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2018; 1108:1-12. [DOI: 10.1007/5584_2018_245] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
46
|
Villagra-Blanco R, Silva L, Aguilella-Segura A, Arcenillas-Hernández I, Martínez-Carrasco C, Seipp A, Gärtner U, Ruiz de Ybañez R, Taubert A, Hermosilla C. Bottlenose dolphins ( Tursiops truncatus) do also cast neutrophil extracellular traps against the apicomplexan parasite Neospora caninum. Int J Parasitol Parasites Wildl 2017; 6:287-294. [PMID: 28951834 PMCID: PMC5607148 DOI: 10.1016/j.ijppaw.2017.09.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2017] [Revised: 08/24/2017] [Accepted: 09/01/2017] [Indexed: 01/07/2023]
Abstract
Neutrophil extracellular traps (NETs) are web-like structures composed of nuclear DNA decorated with histones and cytoplasmic peptides which antiparasitic properties have not previously been investigated in cetaceans. Polymorphonuclear neutrophils (PMN) were isolated from healthy bottlenose dolphins (Tursiops truncatus), and stimulated with Neospora caninum tachyzoites and the NETs-agonist zymosan. In vitro interactions of PMN with the tachyzoites resulted in rapid extrusion of NETs. For the demonstration and quantification of cetacean NETs, extracellular DNA was stained by using either Sytox Orange® or Pico Green®. Scanning electron microscopy (SEM) and fluorescence analyses demonstrated PMN-derived release of NETs upon exposure to tachyzoites of N. caninum. Co-localization studies of N. caninum induced cetacean NETs proved the presence of DNA adorned with histones (H1, H2A/H2B, H3, H4), neutrophil elastase (NE), myeloperoxidase (MPO) and pentraxin (PTX) confirming the molecular properties of mammalian NETosis. Dolphin-derived N. caninum-NETosis were efficiently suppressed by DNase I and diphenyleneiodonium (DPI) treatments. Our results indicate that cetacean-derived NETs represent an ancient, conserved and relevant defense effector mechanism of the host innate immune system against N. caninum and probably other related neozoan parasites circulating in the marine environment.
Collapse
Affiliation(s)
- R. Villagra-Blanco
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - L.M.R. Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - A. Aguilella-Segura
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - I. Arcenillas-Hernández
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - C. Martínez-Carrasco
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Seipp
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - U. Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - R. Ruiz de Ybañez
- Department of Animal Health, Veterinary Faculty, Regional Campus of International Excellence “Campus Mare Nostrum”, University of Murcia, Murcia, Spain
| | - A. Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - C. Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|
47
|
Villagra-Blanco R, Silva LMR, Gärtner U, Wagner H, Failing K, Wehrend A, Taubert A, Hermosilla C. Molecular analyses on Neospora caninum-triggered NETosis in the caprine system. DEVELOPMENTAL AND COMPARATIVE IMMUNOLOGY 2017; 72:119-127. [PMID: 28254622 DOI: 10.1016/j.dci.2017.02.020] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2017] [Revised: 02/22/2017] [Accepted: 02/22/2017] [Indexed: 06/06/2023]
Abstract
Neospora caninum is an obligate intracellular protozoan parasite causing serious reproductive disorders in large and small ruminants worldwide. Polymorphonuclear neutrophils (PMN) react against multiple invading pathogens through different mechanisms including the release of neutrophil extracellular traps (NETs). Here, in vitro interactions of caprine PMN and N. caninum tachyzoites were studied. Scanning electron microscopic- and immunofluorescence-analyses demonstrated that caprine PMN undergo NETosis upon contact with tachyzoites of N. caninum, extruding filaments that entrap parasites. Detailed co-localization studies of N. caninum tachyzoite-induced NETs revealed the presence of PMN-derived DNA being decorated with histones (H1, H2A/H2B, H3,H4) and neutrophil elastase (NE) corroborating the molecular characteristics of classical mammalian NETs. As a new result for parasite-induced NETosis, we identified pentraxin and cathepsin B in N. caninum-triggered NETs. Nonetheless, functional inhibition assays revealed that during caprine NET formation triggered by N. caninum different molecular signaling pathways are induced, when compared to other apicomplexan parasites or host species. As such, N. caninum-induced NETosis appears to be influenced by MPO but independent of NADPH oxidase, SOCE, ERK1/2 and p38 MAPK activities. Furthermore, the inhibition of PMN autophagy via blockage of the PI3K-mediated signaling pathway failed to influence tachyzoite-induced NETosis. Since N. caninum-tachyzoites induced caprine NETosis, this effector mechanism should be considered as an early host immune response during acute caprine neosporosis.
Collapse
Affiliation(s)
- R Villagra-Blanco
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany; Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany.
| | - L M R Silva
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - U Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen 35392, Germany
| | - H Wagner
- Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - K Failing
- Unit for Biomathematics and Data Processing, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - A Wehrend
- Clinic for Obstetrics, Gynecology and Andrology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - A Taubert
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| | - C Hermosilla
- Institute of Parasitology, Faculty of Veterinary Medicine, Justus Liebig University Giessen, Giessen 35392, Germany
| |
Collapse
|
48
|
Stoikou M, Grimolizzi F, Giaglis S, Schäfer G, van Breda SV, Hoesli IM, Lapaire O, Huhn EA, Hasler P, Rossi SW, Hahn S. Gestational Diabetes Mellitus Is Associated with Altered Neutrophil Activity. Front Immunol 2017; 8:702. [PMID: 28659928 PMCID: PMC5469883 DOI: 10.3389/fimmu.2017.00702] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2016] [Accepted: 05/31/2017] [Indexed: 01/13/2023] Open
Abstract
Gestational diabetes mellitus (GDM) is a unique form of glucose intolerance, in that it is transient and solely occurs in pregnancy. Pregnancies with GDM are at high risk of developing preeclampsia (PE), a leading cause of fetal and maternal morbidity or mortality. Since PE is associated with excessive activation of circulatory neutrophils and occurrence of neutrophil extracellular traps (NETs) in affected placentae, we examined these features in cases with GDM, as this could be a feature linking the two conditions. Our data indicate that neutrophil activity is indeed altered in GDM, exhibiting pronounced activation and spontaneous generation of NETs by isolated neutrophils in in vitro culture. In this manner, GDM may similarly affect neutrophil behavior and NET formation as witnessed in other forms of diabetes, with the addition of the physiological changes mediated by pregnancy. Since circulatory TNF-α levels are elevated in cases with GDM, a feature also observed in this study, we examined whether this pro-inflammatory cytokine contributed to neutrophil activation. By using infliximab, a clinically utilized TNF-α antagonist, we observed that the pro-NETotic effect of GDM sera was significantly reduced. We also detected pronounced neutrophil infiltrates in placentae from GDM cases. The occurrence of NETs in these tissues is suggested by the extracellular co-localization of citrullinated histones and myeloperoxidase. In addition, elevated neutrophil elastase (NE) mRNA and active enzymatic protein were also detected in such placentae. This latter finding could be important in the context of previous studies in cancer or diabetes model systems, which indicated that NE liberated from infiltrating neutrophils enters surrounding cells, altering cell signaling by the degradation of IRS1. These findings could potentiate the underlying inflammatory response process in GDM and possibly open an avenue for the therapeutic interventions in gestational hyperglycemia.
Collapse
Affiliation(s)
- Maria Stoikou
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland
| | - Franco Grimolizzi
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland.,Department Clinical Sciences, Polytechnic University Marche, Ancona, Italy
| | - Stavros Giaglis
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland.,Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Günther Schäfer
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland
| | - Shane Vontelin van Breda
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland
| | | | - Olav Lapaire
- University Women's Hospital, University Hospital of Basel, Basel, Switzerland
| | - Evelyn A Huhn
- University Women's Hospital, University Hospital of Basel, Basel, Switzerland
| | - Paul Hasler
- Department of Rheumatology, Kantonsspital Aarau, Aarau, Switzerland
| | - Simona W Rossi
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland
| | - Sinuhe Hahn
- Department of Biomedicine, University of Basel, University Hospital of Basel, Basel, Switzerland
| |
Collapse
|
49
|
Toussaint M, Jackson DJ, Swieboda D, Guedán A, Tsourouktsoglou TD, Ching YM, Radermecker C, Makrinioti H, Aniscenko J, Bartlett NW, Edwards MR, Solari R, Farnir F, Papayannopoulos V, Bureau F, Marichal T, Johnston SL. Host DNA released by NETosis promotes rhinovirus-induced type-2 allergic asthma exacerbation. Nat Med 2017; 23:681-691. [PMID: 28459437 PMCID: PMC5821220 DOI: 10.1038/nm.4332] [Citation(s) in RCA: 254] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2016] [Accepted: 04/04/2017] [Indexed: 02/06/2023]
Abstract
Respiratory viral infections represent the most common cause of allergic asthma exacerbations. Amplification of the type-2 immune response is strongly implicated in asthma exacerbation, but how virus infection boosts type-2 responses is poorly understood. We report a significant correlation between the release of host double-stranded DNA (dsDNA) following rhinovirus infection and the exacerbation of type-2 allergic inflammation in humans. In a mouse model of allergic airway hypersensitivity, we show that rhinovirus infection triggers dsDNA release associated with the formation of neutrophil extracellular traps (NETs), known as NETosis. We further demonstrate that inhibiting NETosis by blocking neutrophil elastase or by degrading NETs with DNase protects mice from type-2 immunopathology. Furthermore, the injection of mouse genomic DNA alone is sufficient to recapitulate many features of rhinovirus-induced type-2 immune responses and asthma pathology. Thus, NETosis and its associated extracellular dsDNA contribute to the pathogenesis and may represent potential therapeutic targets of rhinovirus-induced asthma exacerbations.
Collapse
Affiliation(s)
- Marie Toussaint
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - David J Jackson
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
- Guy's and St Thomas' NHS Trust, London, UK
| | - Dawid Swieboda
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Anabel Guedán
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | | | - Yee Man Ching
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Coraline Radermecker
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Heidi Makrinioti
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Julia Aniscenko
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Nathan W Bartlett
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Michael R Edwards
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Roberto Solari
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
| | - Frédéric Farnir
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- Fundamental and Applied Research for Animals &Health, University of Liège, Liège, Belgium
| | | | - Fabrice Bureau
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
- WELBIO, Walloon Excellence in Life Sciences and Biotechnology, Wallonia, Belgium
| | - Thomas Marichal
- Laboratory of Cellular and Molecular Immunology, Groupe Interdisciplinaire de Génoprotéomique Appliquée (GIGA), University of Liège, Liège, Belgium
- Faculty of Veterinary Medicine, University of Liège, Liège, Belgium
| | - Sebastian L Johnston
- Airway Disease Infection Section, National Heart and Lung Institute (NHLI), Imperial College London, London, UK
- Medical Research Council (MRC) and Asthma UK Centre in Allergic Mechanisms of Asthma, London, UK
- Imperial College Healthcare NHS Trust, London, UK
| |
Collapse
|
50
|
Villagra-Blanco R, Silva LMR, Muñoz-Caro T, Yang Z, Li J, Gärtner U, Taubert A, Zhang X, Hermosilla C. Bovine Polymorphonuclear Neutrophils Cast Neutrophil Extracellular Traps against the Abortive Parasite Neospora caninum. Front Immunol 2017; 8:606. [PMID: 28611772 PMCID: PMC5447047 DOI: 10.3389/fimmu.2017.00606] [Citation(s) in RCA: 74] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Accepted: 05/08/2017] [Indexed: 01/01/2023] Open
Abstract
Neospora caninum represents a relevant apicomplexan parasite causing severe reproductive disorders in cattle worldwide. Neutrophil extracellular trap (NET) generation was recently described as an efficient defense mechanism of polymorphonuclear neutrophils (PMN) acting against different parasites. In vitro interactions of bovine PMN with N. caninum were analyzed at different ratios and time spans. Extracellular DNA staining was used to illustrate the typical molecules of NETs [i.e., histones (H3), neutrophil elastase (NE), myeloperoxidase (MPO), pentraxin] via antibody-based immunofluorescence analyses. Functional inhibitor treatments were applied to reveal the role of several enzymes [NADPH oxidase (NOX), NE, MPO, PAD4], ATP-dependent P2Y2 receptor, store-operated Ca++entry (SOCE), CD11b receptor, ERK1/2- and p38 MAPK-mediated signaling pathway in tachyzoite-triggered NETosis. N. caninum tachyzoites triggered NETosis in a time- and dose-dependent manner. Scanning electron microscopy analyses revealed NET structures being released by bovine PMN and entrapping tachyzoites. N. caninum-induced NET formation was found not to be NOX-, NE-, MPO-, PAD4-, ERK1/2-, and p38 MAP kinase-dependent process since inhibition of these enzymes led to a slight decrease of NET formation. CD11b was also identified as a neutrophil receptor being involved in NETosis. Furthermore, N. caninum-triggered NETosis depends on Ca++ influx as well as neutrophil metabolism since both the inhibition of SOCE and of P2Y2-mediated ATP uptake diminished NET formation. Host cell invasion assays indicated that PMN-derived NETosis hampered tachyzoites from active host cell invasion, thereby inhibiting further intracellular replication. NET formation represents an early and effective mechanism of response of the innate immune system, which might reduce initial infection rates during the acute phase of cattle neosporosis.
Collapse
Affiliation(s)
| | - Liliana M R Silva
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Tamara Muñoz-Caro
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Zhengtao Yang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Jianhua Li
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Ulrich Gärtner
- Institute of Anatomy and Cell Biology, Justus Liebig University Giessen, Giessen, Germany
| | - Anja Taubert
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| | - Xichen Zhang
- College of Veterinary Medicine, Jilin University, Changchun, China
| | - Carlos Hermosilla
- Institute of Parasitology, Justus Liebig University Giessen, Giessen, Germany
| |
Collapse
|