1
|
Kinoshita G, Ito-Masui A, Kato T, Okuno F, Ikejiri K, Ishikura K, Suzuki K. Veno-venous extracorporeal membrane oxygenation in managing acute respiratory distress syndrome associated with hemolytic uremic syndrome and septic shock: a case report. J Artif Organs 2025; 28:270-274. [PMID: 38916825 PMCID: PMC12078436 DOI: 10.1007/s10047-024-01457-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Accepted: 06/07/2024] [Indexed: 06/26/2024]
Abstract
Veno-venous extracorporeal membrane oxygenation (VV-ECMO) is a rescue therapy for severe respiratory failure in which conventional mechanical ventilation therapy is unsuccessful. Hemolysis during VV-ECMO support arises from multiple factors associated with organ damage and poor outcomes. Therefore, close and prompt monitoring is needed. Hemolytic uremic syndrome (HUS) is characterized by hemolysis, acute renal failure, and thrombocytopenia. Hemolytic features of the disease may complicate VV-ECMO management. A 26-year-old man with a history of cerebral palsy underwent VV-ECMO for acute respiratory distress syndrome (ARDS) due to septic shock caused by bacterial translocation during treatment for HUS. He showed features of hemolysis, with elevated lactate dehydrogenase (LDH), fragmented red blood cells, and low haptoglobin levels. Plasma free hemoglobin was measured daily throughout the whole course of ECMO with levels higher than 10 mg/dL but not exceeding 50 mg/dL. The extracorporeal membrane oxygenation (ECMO) circuit pressures were carefully monitored to ensure the pump generated no excessive negative pressure. The patient was weaned off ECMO on the eleventh day. There have been several cases of VA-ECMO in patients with HUS; however, there is limited literature on VV-ECMO. As the days on VV-ECMO tend to be longer than those on VA-ECMO, features of hemolysis may complicate management. Although HUS did not directly influence the clinical course in the present case, features of hemolysis were continuously observed. This case highlighted the importance of standard ECMO monitoring, especially daily measurement of plasma free hemoglobin.
Collapse
Affiliation(s)
- Genta Kinoshita
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Asami Ito-Masui
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan.
| | - Takafumi Kato
- Department of Clinical Engineering, Mie University Hospital, Tsu City, Mie, Japan
| | - Fumito Okuno
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Kaoru Ikejiri
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Ken Ishikura
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| | - Kei Suzuki
- Emergency and Critical Care Center, Mie University Hospital, 2-174 Edobashi, Tsu City, Mie, 514-8507, Japan
| |
Collapse
|
2
|
Imdad A, Nelson JR, Tanner-Smith EE, Huang D, Gomez-Duarte OG. Interventions for preventing diarrhoea-associated haemolytic uraemic syndrome. Cochrane Database Syst Rev 2025; 4:CD012997. [PMID: 40277027 PMCID: PMC12023036 DOI: 10.1002/14651858.cd012997.pub3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 04/26/2025]
Abstract
BACKGROUND Haemolytic uraemic syndrome (HUS) is a common cause of acquired kidney failure in children and rarely in adults. The most important risk factor for the development of HUS is a gastrointestinal infection by Shiga toxin-producing Escherichia coli (STEC). This is an update of the Cochrane review published in 2021 and addresses the interventions aimed at secondary prevention of HUS in patients with diarrhoea who are infected with bacteria that increase the risk of HUS. OBJECTIVES To assess the benefits and harms of interventions for secondary prevention of morbidity and death from diarrhoea-associated HUS in children and adults, compared to placebo or no treatment. SEARCH METHODS The Cochrane Kidney and Transplant Register of Studies was searched up to January 2025 by the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Registry Platform (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Studies evaluating any intervention to prevent HUS following the development of high-risk diarrhoeal illness were included. These included interventions such as antibiotics, anti-Shiga toxin monoclonal antibodies, Shiga toxin binding protein (i.e. Synsorb Pk), bovine colostrum containing Shiga toxin antibodies, and aggressive hydration. The comparison groups included placebo and standard care. Only randomised controlled trials (RCTs) or quasi-RCTs were considered eligible for inclusion. The participants of the studies were children and adults with diarrhoeal illnesses due to STEC. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as recommended by Cochrane. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes. The primary outcome of interest was the incidence of HUS; secondary outcomes included kidney failure, need for acute kidney replacement therapy (KRT), need for prolonged dialysis, all-cause death, adverse events, need for blood product transfusions and neurological complications. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS For this 2025 update, no new studies were included. In the 2021 review, we identified four studies (536 participants) undertaken in three countries (Argentina, Canada, Germany) that investigated four different interventions, including antibiotics (trimethoprim-sulfamethoxazole), bovine colostrum containing Shiga toxin antibodies, Shiga toxin binding agent (Synsorb Pk: a silicon dioxide-based agent), and a monoclonal antibody against Shiga toxin (urtoxazumab). The overall risk of bias was unclear for selection, performance and detection bias and low for attrition, reporting and other sources of bias. It was uncertain if antibiotics (trimethoprim-sulfamethoxazole) reduced the incidence of HUS compared to no treatment (47 participants: RR 0.57, 95% CI 0.11 to 2.81; very low-certainty evidence). Adverse events relative to this review, need for KRT, neurological complications and death were not reported. There were no incidences of HUS in either the bovine colostrum group or the placebo group. It was uncertain if bovine colostrum caused more adverse events (27 participants: RR 0.92, 95% CI 0.42 to 2.03; very low-certainty evidence). The need for KRT, neurological complications and death were not reported. It is uncertain whether Synsorb Pk reduced the incidence of HUS compared to placebo (353 participants: RR 0.93, 95% CI 0.39 to 2.22; very low-certainty evidence). Adverse events relevant to this review, need for KRT, neurological complications and death were not reported. One study compared two doses of urtoxazumab (3.0 mg/kg and 1.0 mg/kg) to placebo. It is uncertain if either 3.0 mg/kg urtoxazumab (71 participants: RR 0.34, 95% CI 0.01 to 8.14) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.06 to 14.59) reduced the incidence of HUS compared to placebo (very low-certainty evidence). Low-certainty evidence showed there may be little or no difference in the number of treatment-emergent adverse events with either 3.0 mg/kg urtoxazumab (71 participants: RR 1.00, 95% CI 0.84 to 1.18) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.79 to 1.13) compared to placebo. It is uncertain if either dose of urtoxazumab increased the risk of neurological complications or death (very low-certainty evidence). The need for KRT was not reported. AUTHORS' CONCLUSIONS The included studies assessed antibiotics, bovine colostrum, Shiga toxin binding agent (Synsorb Pk) and monoclonal antibodies (Urtoxazumab) against Shiga toxin for secondary prevention of HUS in patients with diarrhoea due to STEC. However, no firm conclusions about the benefits or harms of these interventions can be drawn given the small number of included studies and the small sample sizes of those included studies. Additional studies, including larger multicentre studies, are needed to assess the benefits and harms of interventions to prevent the development of HUS in patients with diarrhoea due to STEC infection. No new studies were included in this 2025 update, and the results remain unchanged.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology, Pancreatology and Nutrition, University of Iowa, Iowa City, IA, USA
| | | | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Dongmei Huang
- Department of Pediatrics, Division of Pediatric Nephrology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Oscar G Gomez-Duarte
- Department of Pediatrics, Levine Children's Hospital - Atrium Health / Wake Forest University School of Medicine, Charlotte, North Carolina, USA
| |
Collapse
|
3
|
Salência-Ferrão J, Chissaque A, Manhique-Coutinho L, Kenga AN, Cassocera M, de Deus N. Inappropriate use of antibiotics in the management of diarrhoea in children under five years admitted with acute diarrhoea in four provinces of Mozambique 2014-2019. BMC Infect Dis 2025; 25:209. [PMID: 39939844 PMCID: PMC11823034 DOI: 10.1186/s12879-025-10597-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2024] [Accepted: 02/04/2025] [Indexed: 02/14/2025] Open
Abstract
BACKGROUND Even with a great reduction in the last years, diarrhoea continues to be one of the leading causes of hospital admission and mortality in children less than five years of age globally. The success of diarrhoeal disease management relies on the rapid recognition of the symptoms and adequate treatment, with World Health Organization (WHO) guidelines, limiting the use of antibiotics for all diarrhoea cases being reserved to specific circumstances. Therefore, this study aimed to evaluate the frequency of antibiotics use in diarrhoea management in children aged 0-59 months admitted with acute diarrhoea in four provinces of Mozambique, from 2014 to 2019. METHODS A cross-sectional hospital-based surveillance was conducted from January 2014 to December 2019 in six sentinel sites located in four provinces. Socio-demographic, epidemiological and clinical data were obtained by interviewing the child's caregivers and by accessing the child's medical records and children's vaccination card. Data collected through National Surveillance of Diarrhoea (ViNaDia) was double-entered in Epi InfoTM3.5.1. (Centers for Disease Control and Prevention, Atlanta 2008), followed by data comparison. IBM SPSS software was used to conduct the data analysis. RESULTS During the study period 2014-2019 a total of 2382 children presenting at one of the designated health facilities were enrolled via ViNaDia surveillance. Of these 85.1% (2028/2382) provided data of antibiotics (ATB) usage and thus included in the present analysis. The majority was male with 59.3% (1203/2028), with infants aged 0-11 months composing the largest age group with 49.4% (1002/2028). Nutritional assessment revealed that 28.8% (585/2028) were underweight and 15.2% (308/2028) faced wasting. The comorbidities included human immunodeficiency virus (HIV) 7.8% (159/2028), malaria 7.0% (141/2028), and pneumonia 2.1% (42/2028). The rates of bloody diarrhoea and "rice-water" were reported in 1.5% (10/1664) and 2% (29/1664) respectively. Antibiotics use was reported in 93.2% of the children [95% CI: 92.0-94.2; 1890/2028], with s 49.1% [95% CI: 47.0-51.5; 930/1890] received more than one ATB. The most prescribed antibiotics were Ampicillin (46.2%), Gentamicin (38.4%) and Cotrimoxazole (30.5%). CONCLUSIONS The results of this study indicate inappropriate use of antibiotics in the management of acute diarrhoea in children attended in four provinces of Mozambique. The study suggests the drawing of a local guideline for the efficient management of acute diarrhoea, and the need for education on adherence of WHO recommendations on antibiotics use in acute diarrhoea.
Collapse
Affiliation(s)
- Judite Salência-Ferrão
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique.
- Hospital Central de Maputo, Avenida Agostinho Neto n° 164, Maputo, Mozambique.
| | - Assucênio Chissaque
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, Lisboa, 1349-008, Portugal
| | - Lena Manhique-Coutinho
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, Lisboa, 1349-008, Portugal
| | - Andrea Ntanga Kenga
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique
| | - Marta Cassocera
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique
- Instituto de Higiene e Medicina Tropical (IHMT), Universidade Nova de Lisboa, Rua da Junqueira 100, Lisboa, 1349-008, Portugal
| | - Nilsa de Deus
- Instituto Nacional de Saúde, Marracuene district, EN1, Bairro da Vila- Parcela nr 3943, Maputo, Mozambique
- Departamento de Ciências Biológicas, Universidade Eduardo Mondlane, Julius Nyerere Avenue, Maputo, 3453, Mozambique
| |
Collapse
|
4
|
Seabrook P, Floen M, Petgrave Y, DO RZ. Jaundice and Acute Renal Failure in a Healthy 11-Year-Old Boy. Pediatr Rev 2025; 46:115-118. [PMID: 39889781 DOI: 10.1542/pir.2022-005874] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/17/2022] [Accepted: 09/17/2023] [Indexed: 02/03/2025]
Affiliation(s)
- Paige Seabrook
- University of Tennessee Health Science Center Department of Pediatrics, Memphis, Tennessee
- University of Tennessee Health Science Center Department of Internal Medicine, Memphis, Tennessee
| | - Miranda Floen
- University of Nebraska Medical Center Department of Pediatrics, Omaha, Nebraska
- Children's Nebraska, Nephrology, Omaha, Nebraska
| | - Yonique Petgrave
- University of Tennessee Health Science Center Department of Pediatrics, Nephrology and Hypertension, Memphis, Tennessee
| | - Rima Zahr DO
- University of Tennessee Health Science Center Department of Pediatrics, Nephrology and Hypertension, Memphis, Tennessee
| |
Collapse
|
5
|
Abdeen AM, Al-Nusair J, Samardali M, Alshal M, Al-Astal A, Khitan Z. Complement-Mediated Hemolytic Uremic Syndrome Due to MCP/CD46 Mutation: A Case Report. J Investig Med High Impact Case Rep 2025; 13:23247096251316364. [PMID: 39871416 PMCID: PMC11773514 DOI: 10.1177/23247096251316364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 01/01/2024] [Accepted: 01/11/2025] [Indexed: 01/29/2025] Open
Abstract
Thrombotic microangiopathy (TMA) is a severe condition characterized by microangiopathic hemolytic anemia, thrombocytopenia, and end-organ damage, often involving the kidneys. Complement-mediated hemolytic uremic syndrome (cHUS), a rare form of TMA, arises from dysregulated alternative complement pathway activation, frequently due to genetic mutations. We report the case of a 23-year-old male presenting with TMA secondary to a heterozygous mutation in the membrane cofactor protein (MCP/CD46) gene. The patient exhibited severe renal and cardiovascular complications, including acute kidney injury requiring hemodialysis, uremic pericarditis, and persistent anemia. Diagnostic evaluation confirmed complement dysregulation, and management with eculizumab, plasmapheresis, and hemodialysis was initiated. Renal biopsy revealed classic TMA features, and genetic testing identified the MCP mutation, underscoring the importance of genetic predispositions in guiding diagnosis and therapy. This case emphasizes the critical role of genetic testing in TMA evaluation and highlights the potential for improved outcomes through targeted complement inhibition and individualized care strategies.
Collapse
|
6
|
Varughese AA, Waleed MS, Pathalapti R. Amoxicillin-Induced Hemolytic Uremic Syndrome and Kidney Injury: A Case Report. Cureus 2025; 17:e77082. [PMID: 39917156 PMCID: PMC11801401 DOI: 10.7759/cureus.77082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/19/2024] [Indexed: 02/09/2025] Open
Abstract
Amoxicillin (AMX) is a commonly used antibiotic for treating infections and as a prophylactic antimicrobial agent, appreciated for its efficacy and favorable pharmacokinetics. Drug-induced acute kidney injury (AKI) significantly increases morbidity and mortality. Hemolytic uremic syndrome (HUS) is classified under thrombotic microangiopathies (TMAs), which are characterized by hemolysis, low platelet counts, thrombus formation in small vessels, and end-organ damage. While AMX-induced HUS has not been previously reported, AMX can cause AKI through mechanisms such as acute interstitial nephritis and AMX-induced crystal nephropathy (AICN), with AICN being more common. We present the case of a 56-year-old woman who developed AMX-induced HUS and AKI following AMX administration for a tooth infection. A kidney biopsy revealed distinctive glomerular damage, consistent with acute tubular injury and focal segmental glomerulonephritis. The diagnosis of drug-induced kidney injury with concurrent TMA was confirmed. AMX was discontinued, and the patient received plasmapheresis and hemodialysis. Typically, renal impairment is reversible once the offending agent is withdrawn. Physicians should be aware of the potential for AMX-induced HUS. Comprehensive medical history, physical examination, and prompt therapeutic intervention are crucial for effective treatment and improved patient outcomes.
Collapse
|
7
|
Aranzazu Ceballos AD, María Martínez Sánchez L, Pamplona Sierra AP, Vergara Yánez D, Franco Hincapié L, Baquero Rodriguez R. Primary Thrombotic Microangiopathy in Pediatric Patients. Glob Pediatr Health 2024; 11:2333794X241307535. [PMID: 39691204 PMCID: PMC11650636 DOI: 10.1177/2333794x241307535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 11/03/2024] [Indexed: 12/19/2024] Open
Abstract
Background. Primary thrombotic microangiopathy includes hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli, atypical hemolytic uremic syndrome, and thrombotic thrombocytopenic purpura. Methodology. A retrospective study that included patients younger than 18 years diagnosed with primary thrombotic microangiopathy between 2011 and 2021. Results. Thirty patients were included, of which 63% corresponded to a hemolytic uremic syndrome caused by Shiga toxin-producing Escherichia coli, and 30% to the atypical hemolytic uremic syndrome. The median age was 2.8 years and female sex predominated at 57%. On admission to the emergency room, fever and fatigue were the most frequent symptoms (93%), followed by oliguria and anuria (80%). 48% of patients received hemodialysis during their care. Mortality was estimated at 13%. Conclusion. This study constitutes the largest series of primary thrombotic microangiopathy in the pediatric population of Latin America, where the etiological and clinical behavior of this condition is described.
Collapse
Affiliation(s)
| | | | | | | | | | - Richard Baquero Rodriguez
- Universidad de Antioquia, Medellín, Colombia
- Hospital Universitario San Vicente Fundacion, Antioquia, Colombia
| |
Collapse
|
8
|
Celegen K, Gulhan B, Fidan K, Yuksel S, Yilmaz N, Yılmaz AC, Demircioğlu Kılıç B, Gokce I, Kavaz Tufan A, Kalyoncu M, Nalcacıoglu H, Ozlu SG, Kurt Sukur ED, Canpolat N, K Bayazit A, Çomak E, Tabel Y, Tulpar S, Celakil M, Bek K, Zeybek C, Duzova A, Özçakar ZB, Topaloglu R, Soylemezoglu O, Ozaltin F. Adolescence-onset atypical hemolytic uremic syndrome: is it different from infant-onset? Clin Exp Nephrol 2024; 28:1027-1037. [PMID: 38704765 DOI: 10.1007/s10157-024-02505-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Accepted: 04/08/2024] [Indexed: 05/07/2024]
Abstract
BACKGROUND Atypical hemolytic uremic syndrome (aHUS) is a rare, mostly complement-mediated thrombotic microangiopathy. The majority of patients are infants. In contrast to infantile-onset aHUS, the clinical and genetic characteristics of adolescence-onset aHUS have not been sufficiently addressed to date. METHODS A total of 28 patients (21 girls, 7 boys) who were diagnosed as aHUS between the ages of ≥10 years and <18 years were included in this study. All available data in the Turkish Pediatric aHUS registry were collected and analyzed. RESULTS The mean age at diagnosis was 12.8±2.3 years. Extra-renal involvement was noted in 13 patients (46.4%); neurological involvement was the most common (32%). A total of 21 patients (75%) required kidney replacement therapy. Five patients (17.8%) received only plasma therapy and 23 (82%) of the patients received eculizumab. Hematologic remission and renal remission were achieved in 25 (89.3%) and 17 (60.7%) of the patients, respectively. Compared with the infantile-onset aHUS patients, adolescent patients had a lower complete remission rate during the first episode (p = 0.002). Genetic analyses were performed in all and a genetic variant was detected in 39.3% of the patients. The mean follow-up duration was 4.9±2.6 years. At the last visit, adolescent patients had lower eGFR levels (p = 0.03) and higher rates of chronic kidney disease stage 5 when compared to infantile-onset aHUS patients (p = 0.04). CONCLUSIONS Adolescence-onset aHUS is a rare disease but tends to cause more permanent renal dysfunction than infantile-onset aHUS. These results may modify the management approaches in these patients.
Collapse
Affiliation(s)
- Kubra Celegen
- Department of Pediatric Nephrology, Kayseri Education and Research Hospital, Kayseri, Türkiye
| | - Bora Gulhan
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey.
| | - Kibriya Fidan
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Selcuk Yuksel
- Department of Pediatric Nephrology, Faculty of Medicine, Çanakkale Onsekiz Mart University, Çanakkale, Türkiye
| | - Neslihan Yilmaz
- Department of Pediatric Nephrology, Necip Fazil City Hospital, Kahramanmaras, Türkiye
| | - Aysun Caltik Yılmaz
- Department of Pediatric Nephrology, Faculty of Medicine, Baskent University, Ankara, Türkiye
| | | | - Ibrahim Gokce
- Department of Pediatric Nephrology, Faculty of Medicine, Marmara University, Istanbul, Türkiye
| | - Aslı Kavaz Tufan
- Department of Pediatric Nephrology, Faculty of Medicine, Osmangazi University, Eskisehir, Türkiye
| | - Mukaddes Kalyoncu
- Department of Pediatric Nephrology, Faculty of Medicine, Karadeniz Technical University, Trabzon, Türkiye
| | - Hulya Nalcacıoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Ondokuz Mayıs University, Samsun, Türkiye
| | - Sare Gulfem Ozlu
- Department of Pediatric Nephrology, Ankara City Training and Research Hospital, Ankara, Türkiye
| | - Eda Didem Kurt Sukur
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Nur Canpolat
- Department of Pediatric Nephrology, Cerrahpasa Faculty of Medicine, Istanbul University-Cerrahpasa, İstanbul, Türkiye
| | - Aysun K Bayazit
- Department of Pediatric Nephrology, Faculty of Medicine, Cukurova University, Adana, Türkiye
| | - Elif Çomak
- Department of Pediatric Nephrology, Faculty of Medicine, Akdeniz University, Antalya, Türkiye
| | - Yılmaz Tabel
- Department of Pediatric Nephrology, Faculty of Medicine, Inonu University, Malatya, Türkiye
| | - Sebahat Tulpar
- Department of Pediatric Nephrology, Istanbul Bakirkoy Dr. Sadi Konuk Training and Research Hospital, University of Health Sciences, İstanbul, Türkiye
| | - Mehtap Celakil
- Department of Pediatric Nephrology, Sakarya University Training and Research Hospital, Sakarya, Türkiye
| | - Kenan Bek
- Department of Pediatric Nephrology, Faculty of Medicine, Kocaeli University, Kocaeli, Türkiye
| | - Cengiz Zeybek
- Department of Pediatric Nephrology, Gulhane Training and Research Hospital, Ankara, Türkiye
| | - Ali Duzova
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Zeynep Birsin Özçakar
- Department of Pediatric Nephrology, Faculty of Medicine, Ankara University, Ankara, Türkiye
| | - Rezan Topaloglu
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
| | - Oguz Soylemezoglu
- Department of Pediatric Nephrology, Faculty of Medicine, Gazi University, Ankara, Türkiye
| | - Fatih Ozaltin
- Department of Pediatric Nephrology, Faculty of Medicine, Hacettepe University, 06100, Sihhiye, Ankara, Turkey
- Nephrogenetics Laboratory, Faculty of Medicine, Hacettepe University, Ankara, Türkiye
- Center for Genomics and Rare Diseases, Hacettepe University, Ankara, Türkiye
- Department of Bioinformatics, Hacettepe University Institute of Health Sciences, Ankara, Türkiye
| |
Collapse
|
9
|
Fida S, Sharma S. Unprecedented Haemorrhagic Stroke: A Rare Manifestation of Atypical Haemolytic Syndrome. Cureus 2024; 16:e70159. [PMID: 39463586 PMCID: PMC11504139 DOI: 10.7759/cureus.70159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/25/2024] [Indexed: 10/29/2024] Open
Abstract
Atypical haemolytic uraemic syndrome (aHUS) is a rare and complex condition characterized by systemic thrombotic microangiopathy resulting from complement dysregulation. While primarily affecting renal microvasculature, aHUS can present with multi-organ involvement, posing significant diagnostic and therapeutic challenges. We report the case of a 22-year-old female with a history of aHUS who developed a catastrophic haemorrhagic stroke. Her clinical course underscores the severe and unpredictable nature of aHUS, illustrating the critical need for heightened awareness of its potential neurological manifestations. aHUS is typically triggered by a combination of genetic predisposition and environmental factors such as infections or medications. This case highlights the necessity for comprehensive evaluation and prompt intervention in patients with aHUS presenting with atypical symptoms. The complexity of aHUS necessitates a multidisciplinary approach to diagnosis and management to mitigate morbidity and mortality.
Collapse
Affiliation(s)
- Shahzaib Fida
- Internal Medicine, Maidstone General Hospital, Maidstone, GBR
| | - Sucheta Sharma
- Internal Medicine, Maidstone and Tunbridge Wells NHS (National Health Service) Trust, Maidstone, GBR
| |
Collapse
|
10
|
Seliga-Gąsior D, Sokól-Leszczyñska B, Krzysztoñ-Russjan J, Wierzbicka D, Stępieñ-Hołubczat K, Lewandowska P, Frankiewicz E, Cacko A, Leszczyñska B, Demkow U, Podsiadły E. Epidemiological Characteristics of Shiga Toxin-Producing Escherichia coli Responsible for Infections in the Polish Pediatric Population. Pol J Microbiol 2024; 73:177-187. [PMID: 38727736 PMCID: PMC11192175 DOI: 10.33073/pjm-2024-016] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/22/2024] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC) are zoonotic pathogens causing hemorrhagic colitis and hemolytic uremic syndrome (HUS) in children and the elderly. Stool samples were collected from 180 children hospitalized in five pediatric centers in Poland in 2018-2022. Direct stx1/stx2 gene detection by PCR in feces and E. coli isolates was performed. Antibiotic susceptibility was tested according to EUCAST v.12. Randomly selected isolates were serotyped with O157 antiserum and genotyped by pulsed-field gel electrophoresis (PFGE). A total of 44 E. coli isolates were confirmed as STEC by PCR. Among them, 84.4% were positive for stx2, and equally 6,8% for only stx1 and both stx1 and stx2 genes. The stx1 gene was also found in one Citrobacter freundii isolate. E. coli serotype O157 was present in 97.6% of the isolates. STEC infections most often occurred between June-October with a peak in July and August (51%). The highest, 77.8% of STEC isolates were found in the 1-5 years old group. No extended-spectrum β-lactamases (ESBL) were found. Resistance only to amoxicillin/clavulanic acid (24.4%), piperacillin/tazobactam (3%), cefotaxime (6%), gentamicin (6%), ciprofloxacin (3%), azithromycin (3%), trimethoprim/sulfamethoxazole (24,2%) was detected. PFGE analysis showed 18 PFGE types with no clonal distribution. Eight isolates with A, B, and C PFGE types showed genetic relatedness in the type with no detection of transmission way of distribution. STEC strains pose a serious threat to human health, therefore demographic and epidemiological characteristics are crucial for their surveillance.
Collapse
Affiliation(s)
- Dominika Seliga-Gąsior
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Beata Sokól-Leszczyñska
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
- Department of Medical Microbiology, Medical University of Warsaw, Warsaw, Poland
| | - Jolanta Krzysztoñ-Russjan
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Diana Wierzbicka
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | | | - Paulina Lewandowska
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
| | - Ewa Frankiewicz
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Andrzej Cacko
- Department of Medical Informatics and Telemedicine, Medical University of Warsaw, Warsaw, Poland
| | - Beata Leszczyñska
- Department of Pediatrics and Nephrology, Medical University of Warsaw, Warsaw, Poland
| | - Urszula Demkow
- Department of Laboratory Medicine and Clinical Immunology of Developmental Age, Medical University of Warsaw, Warsaw, Poland
| | - Edyta Podsiadły
- Microbiological Laboratory, University Center for Laboratory Medicine, University Medical Center, Medical University of Warsaw, Warsaw, Poland
- Department of Dental Microbiology, Medical University of Warsaw, Warsaw, Poland
| |
Collapse
|
11
|
Pokhriyal SC, Sule-Saa S, Alemonai JA, Al-Ghuraibawi MMH, Pierre L, Parkash S, Panigrahi K. A Rare Case of Atypical Hemolytic Uremic Syndrome (HUS) in an Adult Male: A Catastrophic Presentation. Cureus 2024; 16:e62590. [PMID: 39027763 PMCID: PMC11256214 DOI: 10.7759/cureus.62590] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 06/17/2024] [Indexed: 07/20/2024] Open
Abstract
Atypical hemolytic uremic syndrome (HUS) is extremely rare in adults. HUS is characterized by hallmark features of microangiopathic hemolytic anemia, thrombocytopenia, and acute renal injury. Atypical HUS (aHUS) is caused by uncontrolled complement activation. The complement activation can be triggered by infections such as Streptococcus pneumoniae or influenza, pregnancy, malignancy, cytotoxic drugs, organ transplants, or autoimmune diseases. Genetic mutations and autoantibodies have been found to play a crucial role in the pathogenesis of dysregulated complement activity. The majority of cases of atypical HUS due to invasive S. pneumoniae infection are more commonly seen in children. We present a case of S. pneumoniae HUS (Sp-HUS) presenting with multiorgan failure, disseminated intravascular coagulation (DIC), and limb ischemia in an adult. This case highlights the importance of considering S. pneumoniae HUS (Sp-HUS) in the differential diagnosis of thrombotic microangiopathies (TMA) in adults.
Collapse
Affiliation(s)
- Sindhu C Pokhriyal
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| | - Samuel Sule-Saa
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| | - Jemima A Alemonai
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| | | | - Luckencia Pierre
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| | - Sunil Parkash
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| | - Kalpana Panigrahi
- Internal Medicine, One Brooklyn Health-Interfaith Medical Center, Brooklyn, USA
| |
Collapse
|
12
|
Kalalah AA, Koenig SSK, Feng P, Bosilevac JM, Bono JL, Eppinger M. Pathogenomes of Shiga Toxin Positive and Negative Escherichia coli O157:H7 Strains TT12A and TT12B: Comprehensive Phylogenomic Analysis Using Closed Genomes. Microorganisms 2024; 12:699. [PMID: 38674643 PMCID: PMC11052207 DOI: 10.3390/microorganisms12040699] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Revised: 03/18/2024] [Accepted: 03/26/2024] [Indexed: 04/28/2024] Open
Abstract
Shiga toxin-producing Escherichia coli are zoonotic pathogens that cause food-borne human disease. Among these, the O157:H7 serotype has evolved from an enteropathogenic O55:H7 ancestor through the displacement of the somatic gene cluster and recurrent toxigenic conversion by Shiga toxin-converting bacteriophages. However, atypical strains that lack the Shiga toxin, the characteristic virulence hallmark, are circulating in this lineage. For this study, we analyzed the pathogenome and virulence inventories of the stx+ strain, TT12A, isolated from a patient with hemorrhagic colitis, and its respective co-isolated stx- strain, TT12B. Sequencing the genomes to closure proved critical to the cataloguing of subtle strain differentiating sequence and structural polymorphisms at a high-level of phylogenetic accuracy and resolution. Phylogenomic profiling revealed SNP and MLST profiles similar to the near clonal outbreak isolates. Their prophage inventories, however, were notably different. The attenuated atypical non-shigatoxigenic status of TT12B is explained by the absence of both the ΦStx1a- and ΦStx2a-prophages carried by TT12A, and we also recorded further alterations in the non-Stx prophage complement. Phenotypic characterization indicated that culture growth was directly impacted by the strains' distinct lytic phage complement. Altogether, our phylogenomic and phenotypic analyses show that these intimately related isogenic strains are on divergent Stx(+/stx-) evolutionary paths.
Collapse
Affiliation(s)
- Anwar A. Kalalah
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Sara S. K. Koenig
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| | - Peter Feng
- U.S. Food and Drug Administration (FDA), College Park, MD 20740, USA
| | - Joseph M. Bosilevac
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - James L. Bono
- U.S. Department of Agriculture (USDA), Agricultural Research Service (ARS), U.S. Meat Animal Research Center, Clay Center, NE 68933, USA
| | - Mark Eppinger
- Department of Molecular Microbiology and Immunology, University of Texas at San Antonio, San Antonio, TX 78249, USA
- South Texas Center for Emerging Infectious Diseases (STCEID), San Antonio, TX 78249, USA
| |
Collapse
|
13
|
Sándor N, Schneider AE, Matola AT, Barbai VH, Bencze D, Hammad HH, Papp A, Kövesdi D, Uzonyi B, Józsi M. The human factor H protein family - an update. Front Immunol 2024; 15:1135490. [PMID: 38410512 PMCID: PMC10894998 DOI: 10.3389/fimmu.2024.1135490] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 01/08/2024] [Indexed: 02/28/2024] Open
Abstract
Complement is an ancient and complex network of the immune system and, as such, it plays vital physiological roles, but it is also involved in numerous pathological processes. The proper regulation of the complement system is important to allow its sufficient and targeted activity without deleterious side-effects. Factor H is a major complement regulator, and together with its splice variant factor H-like protein 1 and the five human factor H-related (FHR) proteins, they have been linked to various diseases. The role of factor H in inhibiting complement activation is well studied, but the function of the FHRs is less characterized. Current evidence supports the main role of the FHRs as enhancers of complement activation and opsonization, i.e., counter-balancing the inhibitory effect of factor H. FHRs emerge as soluble pattern recognition molecules and positive regulators of the complement system. In addition, factor H and some of the FHR proteins were shown to modulate the activity of immune cells, a non-canonical function outside the complement cascade. Recent efforts have intensified to study factor H and the FHRs and develop new tools for the distinction, quantification and functional characterization of members of this protein family. Here, we provide an update and overview on the versatile roles of factor H family proteins, what we know about their biological functions in healthy conditions and in diseases.
Collapse
Affiliation(s)
- Noémi Sándor
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | | | | | - Veronika H. Barbai
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dániel Bencze
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Hani Hashim Hammad
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Alexandra Papp
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dorottya Kövesdi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Barbara Uzonyi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| | - Mihály Józsi
- Department of Immunology, ELTE Eötvös Loránd University, Budapest, Hungary
- HUN-REN-ELTE Complement Research Group, Hungarian Research Network, Budapest, Hungary
| |
Collapse
|
14
|
Bitsadze V, Yakubova F, Khizroeva J, Lazarchuk A, Salnikova P, Vorobev A, Tretyakova M, Degtyareva N, Grigoreva K, Gashimova N, Kvaratskheliia M, Makatsariya N, Kudryavtseva E, Tomlenova A, Gris JC, Elalamy I, Ay C, Makatsariya A. Catastrophic Antiphospholipid Syndrome. Int J Mol Sci 2024; 25:668. [PMID: 38203837 PMCID: PMC10779422 DOI: 10.3390/ijms25010668] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2023] [Revised: 12/26/2023] [Accepted: 12/28/2023] [Indexed: 01/12/2024] Open
Abstract
Unlike classic APS, CAPS causes multiple microthrombosis due to an increased inflammatory response, known as a "thrombotic storm". CAPS typically develops after infection, trauma, or surgery and begins with the following symptoms: fever, thrombocytopenia, muscle weakness, visual and cognitive disturbances, abdominal pain, renal failure, and disseminated intravascular coagulation. Although the presence of antiphospholipid antibodies in the blood is one of the diagnostic criteria, the level of these antibodies can fluctuate significantly, which complicates the diagnostic process and can lead to erroneous interpretation of rapidly developing symptoms. Triple therapy is often used to treat CAPS, which includes the use of anticoagulants, plasmapheresis, and high doses of glucocorticosteroids and, in some cases, additional intravenous immunoglobulins. The use of LMWH is recommended as the drug of choice due to its anti-inflammatory and anticoagulant properties. CAPS is a multifactorial disease that requires not only an interdisciplinary approach but also highly qualified medical care, adequate and timely diagnosis, and appropriate prevention in the context of relapse or occurrence of the disease. Improved new clinical protocols and education of medical personnel regarding CAPS can significantly improve the therapeutic approach and reduce mortality rates.
Collapse
Affiliation(s)
- Victoria Bitsadze
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Fidan Yakubova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Jamilya Khizroeva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Arina Lazarchuk
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Polina Salnikova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Alexander Vorobev
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Maria Tretyakova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Natalia Degtyareva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Kristina Grigoreva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Nilufar Gashimova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Margaret Kvaratskheliia
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Nataliya Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Ekaterina Kudryavtseva
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Anna Tomlenova
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| | - Jean-Christophe Gris
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
- Faculty of Pharmaceutical and Biological Sciences, Montpellier University, 34093 Montpellier, France
| | - Ismail Elalamy
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
- Department Hematology and Thrombosis Center, Medicine Sorbonne University, 75012 Paris, France
- Hospital Tenon, 4 Rue de la Chine, 75020 Paris, France
| | - Cihan Ay
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
- Department of Medicine I, Clinical Division of Hematology and Hemostaseology, Medical University of Vienna, 1080 Vienna, Austria
| | - Alexander Makatsariya
- Department of Obstetrics, Gynecology and Perinatal Medicine, N. F. Filatov Clinical Institute of Children’s Health, I. M. Sechenov First Moscow State Medical University (Sechenov University), Trubetskaya Str. 8-2, 119991 Moscow, Russia; (F.Y.); (J.K.); (A.L.); (P.S.); (A.V.); (M.T.); (N.D.); (K.G.); (N.G.); (M.K.); (N.M.); (E.K.); (A.T.); (J.-C.G.); (I.E.); (C.A.)
| |
Collapse
|
15
|
Kunwor B, Sharma B, Chhetri ST, Joshi P, Pradhan D. Atypical hemolytic uremic syndrome in a child: A rare case report. Clin Case Rep 2024; 12:e8356. [PMID: 38161638 PMCID: PMC10753129 DOI: 10.1002/ccr3.8356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 11/07/2023] [Accepted: 12/14/2023] [Indexed: 01/03/2024] Open
Abstract
Atypical hemolytic uremic syndrome, a rare thrombotic microangiopathy, necessitates early diagnosis and comprehensive care due to its potential severity, emphasizing the importance of a multidisciplinary approach to improve outcomes.
Collapse
Affiliation(s)
- Bishal Kunwor
- Nepalese Army Institute of Health SciencesKathmanduNepal
| | - Bishal Sharma
- Nepalese Army Institute of Health SciencesKathmanduNepal
| | | | | | | |
Collapse
|
16
|
Avdonin PP, Blinova MS, Generalova GA, Emirova KM, Avdonin PV. The Role of the Complement System in the Pathogenesis of Infectious Forms of Hemolytic Uremic Syndrome. Biomolecules 2023; 14:39. [PMID: 38254639 PMCID: PMC10813406 DOI: 10.3390/biom14010039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/24/2023] [Accepted: 12/18/2023] [Indexed: 01/24/2024] Open
Abstract
Hemolytic uremic syndrome (HUS) is an acute disease and the most common cause of childhood acute renal failure. HUS is characterized by a triad of symptoms: microangiopathic hemolytic anemia, thrombocytopenia, and acute kidney injury. In most of the cases, HUS occurs as a result of infection caused by Shiga toxin-producing microbes: hemorrhagic Escherichia coli and Shigella dysenteriae type 1. They account for up to 90% of all cases of HUS. The remaining 10% of cases grouped under the general term atypical HUS represent a heterogeneous group of diseases with similar clinical signs. Emerging evidence suggests that in addition to E. coli and S. dysenteriae type 1, a variety of bacterial and viral infections can cause the development of HUS. In particular, infectious diseases act as the main cause of aHUS recurrence. The pathogenesis of most cases of atypical HUS is based on congenital or acquired defects of complement system. This review presents summarized data from recent studies, suggesting that complement dysregulation is a key pathogenetic factor in various types of infection-induced HUS. Separate links in the complement system are considered, the damage of which during bacterial and viral infections can lead to complement hyperactivation following by microvascular endothelial injury and development of acute renal failure.
Collapse
Affiliation(s)
- Piotr P. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Maria S. Blinova
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| | - Galina A. Generalova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Khadizha M. Emirova
- Saint Vladimir Moscow City Children’s Clinical Hospital, 107014 Moscow, Russia; (G.A.G.); (K.M.E.)
- Department of Pediatrics, A.I. Evdokimov Moscow State University of Medicine and Dentistry, 127473 Moscow, Russia
| | - Pavel V. Avdonin
- Koltzov Institute of Developmental Biology RAS, ul. Vavilova, 26, 119334 Moscow, Russia; (M.S.B.); (P.V.A.)
| |
Collapse
|
17
|
Nagaoka K, Kaneko K, Miyagawa E, Abe S, Kohno C, Tsurane K, Mito A, Ozawa N, Sago H, Arata N, Murashima A. Clinical features of women with thrombotic microangiopathy in pregnancy: A case series from a single Japanese tertiary perinatal care center. J Obstet Gynaecol Res 2023; 49:2804-2810. [PMID: 37671494 DOI: 10.1111/jog.15790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 08/27/2023] [Indexed: 09/07/2023]
Abstract
AIM Although perinatal thrombotic microangiopathy has become increasingly understood, the racial characteristics of patients with this condition remain unclear. Herein, we report the characteristics of patients with perinatal thrombotic microangiopathy at a single institution in Japan. METHODS We conducted a retrospective study over a 5-year period from January 1, 2017, to December 31, 2021, using the electronic medical records of pregnant women who delivered at the perinatal center of our hospital. We extracted the data of those who developed perinatal thrombotic microangiopathy and evaluated their characteristics at the time of disease onset, final diagnosis, and maternal and fetal outcomes. RESULTS Of the 10 224 deliveries that occurred during the 5-year period, only seven patients (0.06%) had perinatal thrombotic microangiopathy. The median pre-pregnant body mass index was 18.65 kg/m2 (minimum 17.3 kg/m2 , maximum 20.7 kg/m2 ). More than half of the patients were conceived by in-vitro fertilization, and 42% these had twin deliveries. Four patients had a history of rheumatic disease. The other three patients without underlying diseases developed thrombotic microangiopathy with HELLP syndrome, and one patient transitioned to atypical hemolytic uremic syndrome. CONCLUSIONS Based on low body mass index and in-vitro fertilization, which are characteristic of Japanese women, medical complications and twin pregnancies may be a risk for thrombotic microangiopathy. Additionally, depending on the cause of thrombotic microangiopathy, its timing and onset differed.
Collapse
Affiliation(s)
- Kanako Nagaoka
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kayoko Kaneko
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Eiko Miyagawa
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Sawako Abe
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Chie Kohno
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Kotoyi Tsurane
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Asako Mito
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Nobuaki Ozawa
- Department of Obstetrics, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Haruhiko Sago
- Department of Obstetrics, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Naoko Arata
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| | - Atsuko Murashima
- Department of Maternal Medicine, Center of Maternal-Fetal, Neonatal and Reproductive Medicine, National Center for Child Health and Development, Tokyo, Japan
| |
Collapse
|
18
|
Imanifard Z, Liguori L, Remuzzi G. TMA in Kidney Transplantation. Transplantation 2023; 107:2329-2340. [PMID: 36944606 DOI: 10.1097/tp.0000000000004585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/23/2023]
Abstract
Thrombotic microangiopathy (TMA) is a rare and devastating complication of kidney transplantation, which often leads to graft failure. Posttransplant TMA (PT-TMA) may occur either de novo or as a recurrence of the disease. De novo TMA can be triggered by immunosuppressant drugs, antibody-mediated rejection, viral infections, and ischemia/reperfusion injury in patients with no evidence of the disease before transplantation. Recurrent TMA may occur in the kidney grafts of patients with a history of atypical hemolytic uremic syndrome (aHUS) in the native kidneys. Studies have shown that some patients with aHUS carry genetic abnormalities that affect genes that code for complement regulators (CFH, MCP, CFI) and components (C3 and CFB), whereas in 10% of patients (mostly children), anti-FH autoantibodies have been reported. The incidence of aHUS recurrence is determined by the underlying genetic or acquired complement abnormality. Although treatment of the causative agents is usually the first line of treatment for de novo PT-TMA, this approach might be insufficient. Plasma exchange typically resolves hematologic abnormalities but does not improve kidney function. Targeted complement inhibition is an effective treatment for recurrent TMA and may be effective in de novo PT-TMA as well, but it is necessary to establish which patients can benefit from different therapeutic options and when and how these can be applied.
Collapse
Affiliation(s)
- Zahra Imanifard
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | | | | |
Collapse
|
19
|
Rivas M, Pichel M, Colonna M, Casanello AL, Alconcher LF, Galavotti J, Principi I, Araujo SP, Ramírez FB, González G, Pianciola LA, Mazzeo M, Suarez Á, Oderiz S, Ghezzi LFR, Arrigo DJ, Paladini JH, Baroni MR, Pérez S, Tamborini A, Chinen I, Miliwebsky ES, Goldbaum F, Muñoz L, Spatz L, Sanguineti S. Surveillance of Shiga toxin-producing Escherichia coli associated bloody diarrhea in Argentina. Rev Argent Microbiol 2023; 55:345-354. [PMID: 37301652 DOI: 10.1016/j.ram.2023.03.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2022] [Revised: 12/12/2022] [Accepted: 03/27/2023] [Indexed: 06/12/2023] Open
Abstract
In Argentina, hemolytic uremic syndrome (HUS) caused by Shiga toxin-producing Escherichia coli (STEC-HUS) infection is endemic, and reliable data about prevalence and risk factors have been available since 2000. However, information about STEC-associated bloody diarrhea (BD) is limited. A prospective study was performed during the period October 2018-June 2019 in seven tertiary-hospitals and 18 referral units from different regions, aiming to determine (i) the frequency of STEC-positive BD cases in 714 children aged 1-9 years of age and (ii) the rate of progression of bloody diarrhea to HUS. The number and regional distribution of STEC-HUS cases in the same hospitals and during the same period were also assessed. Twenty-nine (4.1%) of the BD patients were STEC-positive, as determined by the Shiga Toxin Quik Chek (STQC) test and/or the multiplex polymerase chain reaction (mPCR) assay. The highest frequencies were found in the Southern region (Neuquén, 8.7%; Bahía Blanca, 7.9%), in children between 12 and 23 month of age (8.8%), during summertime. Four (13.8%) cases progressed to HUS, three to nine days after diarrhea onset. Twenty-seven STEC-HUS in children under 5 years of age (77.8%) were enrolled, 51.9% were female; 44% were Stx-positive by STQC and all by mPCR. The most common serotypes were O157:H7 and O145:H28 and the prevalent genotypes, both among BD and HUS cases, were stx2a-only or -associated. Considering the endemic behavior of HUS and its high incidence, these data show that the rate of STEC-positive cases is low among BD patients. However, the early recognition of STEC-positive cases is important for patient monitoring and initiation of supportive treatment.
Collapse
Affiliation(s)
- Marta Rivas
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina.
| | - Mariana Pichel
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Mariana Colonna
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | | | - Laura F Alconcher
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Jimena Galavotti
- Hospital Interzonal "Dr. José Penna", Av. Laínez 2401, B8000 Bahía Blanca, Buenos Aires, Argentina
| | - Iliana Principi
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Sofía Pérez Araujo
- Hospital de Niños "Dr. Humberto Notti", Av. Bandera de los Andes 2603, M5521 Guaymallén, Mendoza, Argentina
| | - Flavia B Ramírez
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Gladys González
- Hospital Provincial Neuquén Dr. Castro Rendón, Buenos Aires 450, Q8300 Neuquén, Argentina
| | - Luis A Pianciola
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Melina Mazzeo
- Laboratorio Central, Gregorio Martínez 65, Q8300 Neuquén, Argentina
| | - Ángela Suarez
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Sebastián Oderiz
- Hospital De Niños "Sor María Ludovica", Calle 14 1631 entre 65 y 66, B1904CSI La Plata, Buenos Aires, Argentina
| | - Lidia F R Ghezzi
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - Diego J Arrigo
- Hospital Italiano de Buenos Aires, Tte. Gral. Juan Domingo Perón 4190, C1199AB, Buenos Aires, Argentina
| | - José H Paladini
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - María R Baroni
- Hospital Dr. Orlando Alassia, Mendoza 4151, 3000 Santa Fe, Argentina
| | - Susana Pérez
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Ana Tamborini
- Hospital "Dr. Lucio Molas", Raúl B. Díaz Pilcomayo, 6300 Santa Rosa, La Pampa, Argentina
| | - Isabel Chinen
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Elizabeth S Miliwebsky
- Servicio Fisiopatogenia, Instituto Nacional de Enfermedades Infecciosas, ANLIS "Dr. Carlos G. Malbrán", Av. Vélez Sarsfield 563, 1281 Buenos Aires, Argentina
| | - Fernando Goldbaum
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Luciana Muñoz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Linus Spatz
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| | - Santiago Sanguineti
- Inmunova S.A., Av. 25 de Mayo 1021, San Martín, 1650 Buenos Aires, Argentina
| |
Collapse
|
20
|
Hadar N, Schreiber R, Eskin-Schwartz M, Kristal E, Shubinsky G, Ling G, Cohen I, Geylis M, Nahum A, Yogev Y, Birk OS. X-linked C1GALT1C1 mutation causes atypical hemolytic uremic syndrome. Eur J Hum Genet 2023; 31:1101-1107. [PMID: 36599939 PMCID: PMC10545727 DOI: 10.1038/s41431-022-01278-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/11/2022] [Accepted: 12/15/2022] [Indexed: 01/05/2023] Open
Abstract
Hemolytic-uremic syndrome (HUS), mostly secondary to infectious diseases, is a common cause of acute kidney injury in children. It is characterized by progressive acute kidney failure due to severe thrombotic microangiopathy, associated with nonimmune, Coombs-negative hemolytic anemia and thrombocytopenia. HUS is caused mostly by Shiga toxin-producing E. Coli, and to a lesser extent by Streptococcus pneumonia. In Streptococcus pneumonia HUS (pHUS), bacterial neuraminidase A exposes masked O-glycan sugar residues on erythrocytes, known as the T antigen, triggering a complement cascade causing thrombotic microangiopathy. Atypical HUS (aHUS) is a life-threatening genetic form of the disease, whose molecular mechanism is only partly understood. Through genetic studies, we demonstrate a novel X-linked form of aHUS that is caused by a de-novo missense mutation in C1GALT1C1:c.266 C > T,p.(T89I), encoding a T-synthase chaperone essential for the proper formation and incorporation of the T antigen on erythrocytes. We demonstrate the presence of exposed T antigen on the surface of mutant erythrocytes, causing aHUS in a mechanism similar to that suggested in pHUS. Our findings suggest that both aHUS caused by mutated C1GALT1C1 and pHUS are mediated by the lectin-complement-pathway, not comprehensively studied in aHUS. We thus delineate a shared molecular basis of aHUS and pHUS, highlighting possible therapeutic opportunities.
Collapse
Affiliation(s)
- Noam Hadar
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ruth Schreiber
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Marina Eskin-Schwartz
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel
| | - Eyal Kristal
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - George Shubinsky
- Flow Cytometry Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Galina Ling
- Pediatric Ambulatory Unit, Soroka University Medical Center, Beer-Sheva, Israel
| | - Idan Cohen
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Michael Geylis
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
| | - Amit Nahum
- Pediatric Nephrology Clinic and Pediatric Department A, Soroka University Medical Center, Beer-Sheva, Israel
- The Primary Immunodeficiency Research Laboratory and Pediatric Department A, Soroka University Medical Center, Beer Sheva, Israel
| | - Yuval Yogev
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel
| | - Ohad S Birk
- The Morris Kahn Laboratory of Human Genetics at the National Institute of Biotechnology in the Negev and Faculty of Health Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel.
- Genetics Institute, Soroka University Medical Center, Beer-Sheva, Israel.
- The Shraga Segal Department of Microbiology, Immunology, and Genetics, Faculty of Health Science, Ben-Gurion University of the Negev, Beer Sheva, Israel.
| |
Collapse
|
21
|
Jones E, Song J, Alam S. Diarrhoea, vomiting and reduced wet nappies - a familiar story with unexpected twists. Arch Dis Child Educ Pract Ed 2023; 108:385-390. [PMID: 37339861 DOI: 10.1136/archdischild-2023-325682] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/08/2023] [Accepted: 05/28/2023] [Indexed: 06/22/2023]
Abstract
Vomiting and diarrhoea is a common presenting complaint in paediatrics. Most often it is due to a benign and self-limiting infectious illness. Here, we explore the diagnostic journey of a 7-month-old infant with these symptoms presenting in a secondary care hospital and the overnight clinical problem solving involved in tackling the unexpected complexities.
Collapse
Affiliation(s)
- Elena Jones
- Paediatrics, Swansea Bay University Health Board, Swansea, UK
| | - JongEun Song
- Paediatrics, Aneurin Bevan University Health Board, Newport, UK
| | - Shouja Alam
- Paediatric Nephrology, Noah's Ark Children's Hospital for Wales, Cardiff, UK
| |
Collapse
|
22
|
Mitrea L, Medeleanu M, Pop CR, Rotar AM, Vodnar DC. Biotics (Pre-, Pro-, Post-) and Uremic Toxicity: Implications, Mechanisms, and Possible Therapies. Toxins (Basel) 2023; 15:548. [PMID: 37755974 PMCID: PMC10535688 DOI: 10.3390/toxins15090548] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Revised: 08/25/2023] [Accepted: 09/02/2023] [Indexed: 09/28/2023] Open
Abstract
In recent years, more scientific data have pointed out the close connection between intestinal microbial community, nutritional habits, lifestyle, and the appearance of various affections located at certain anatomical systems. Gut dysbiosis enhances the formation and accumulation of specific metabolites with toxic potential that induce the appearance of kidney-associated illnesses. Intestinal microbes are involved in the degradation of food, drugs, or other ingested products that lead to the formation of various metabolites that end up in renal tissue. Over the last few years, the possibilities of modulating the gut microbiota for the biosynthesis of targeted compounds with bioactive properties for reducing the risk of chronic illness development were investigated. In this regard, the present narrative review provides an overview of the scientific literature across the last decade considering the relationship between bioactive compounds, pre-, pro-, and post-biotics, uremic toxicity, and kidney-associated affections, and the possibility of alleviating the accumulation and the negative effects of uremic toxins into the renal system.
Collapse
Affiliation(s)
- Laura Mitrea
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| | - Mădălina Medeleanu
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Carmen-Rodica Pop
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Ancuța-Mihaela Rotar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
| | - Dan-Cristian Vodnar
- Faculty of Food Science and Technology, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania; (L.M.); (M.M.); (A.-M.R.)
- Life Science Institute, University of Agricultural Sciences and Veterinary Medicine, 400372 Cluj-Napoca, Romania
| |
Collapse
|
23
|
Donadelli R, Sinha A, Bagga A, Noris M, Remuzzi G. HUS and TTP: traversing the disease and the age spectrum. Semin Nephrol 2023; 43:151436. [PMID: 37949684 DOI: 10.1016/j.semnephrol.2023.151436] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2023]
Abstract
Hemolytic uremic syndrome (HUS) and thrombotic thrombocytopenia purpura (TTP) are rare diseases sharing a common pathological feature, thrombotic microangiopathy (TMA). TMA is characterized by microvascular thrombosis with consequent thrombocytopenia, microangiopathic hemolytic anemia and/or multiorgan dysfunction. In the past, the distinction between HUS and TTP was predominantly based on clinical grounds. However, clinical presentation of the two syndromes often overlaps and, the differential diagnosis is broad. Identification of underlying pathogenic mechanisms has enabled the classification of these syndromes on a molecular basis: typical HUS caused by Shiga toxin-producing Escherichia coli (STEC-HUS); atypical HUS or complement-mediated TMA (aHUS/CM-TMA) associated with genetic or acquired defects leading to dysregulation of the alternative pathway (AP) of complement; and TTP that results from a severe deficiency of the von Willebrand Factor (VWF)-cleaving protease, ADAMTS13. The etiology of TMA differs between pediatric and adult patients. Childhood TMA is chiefly caused by STEC-HUS, followed by CM-TMA and pneumococcal HUS (Sp-HUS). Rare conditions such as congenital TTP (cTTP), vitamin B12 metabolism defects, and coagulation disorders (diacylglycerol epsilon mutation) present as TMA chiefly in children under 2 years of age. In contrast secondary causes and acquired ADAMT13 deficiency are more common in adults. In adults, compared to children, diagnostic delays are more frequent due to the wide range of differential diagnoses. In this review we focus on the three major forms of TMA, STEC-HUS, aHUS and TTP, outlining the clinical presentation, diagnosis and management of the affected patients, to help highlight the salient features and the differences between adult and pediatric patients which are relevant for management.
Collapse
Affiliation(s)
- Roberta Donadelli
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Aditi Sinha
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Arvind Bagga
- Department of Pediatrics, All India Institute of Medical Sciences, New Delhi
| | - Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Clinical Research Center for Rare Diseases Aldo e Cele Daccò, Ranica, Italy.
| |
Collapse
|
24
|
Söderlund R, Flink C, Aspán A, Eriksson E. Shiga toxin-producing Escherichia coli (STEC) and atypical enteropathogenic E. coli (aEPEC) in Swedish retail wheat flour. Access Microbiol 2023; 5:acmi000577.v3. [PMID: 37323947 PMCID: PMC10267659 DOI: 10.1099/acmi.0.000577.v3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 03/11/2023] [Indexed: 06/17/2023] Open
Abstract
Wheat flour has been identified as the source of multiple outbreaks of gastrointestinal disease caused by shiga toxin-producing Escherichia coli (STEC). We have investigated the presence and genomic characteristics of STEC and related atypical enteropathogenic E. coli (aEPEC) in 200 bags of Swedish-produced retail wheat flour, representing 87 products and 25 brands. Samples were enriched in modified tryptone soya broth (mTSB) and screened with real-time PCR targeting stx1, stx2 and eae, and the serogroups O157, O121 and O26. Isolation was performed by immunomagnetic separation (IMS) for suspected STEC/aEPEC O157, O121 and O26, and by screening pools of colonies for other STEC. Real-time PCR after enrichment revealed 12 % of samples to be positive for shiga toxin genes (stx1 and/or stx2) and 11 % to be positive for intimin (eae). Organic production, small-scale production or whole grain did not significantly influence shiga toxin gene presence or absence in a generalized linear mixed model analysis. Eight isolates of STEC were recovered, all of which were intimin-negative. Multiple serotype/sequence type/shiga toxin subtype combinations that have also been found in flour samples in other European countries were recovered. Most STEC types recovered were associated with sporadic cases of STEC among humans in Sweden, but no types known to have caused outbreaks or severe cases of disease (i.e. haemolytic uraemic syndrome) were found. The most common finding was O187:H28 ST200 with stx2g, with possible links to cervid hosts. Wildlife associated with crop damage is a plausible explanation for at least some of the surprisingly high frequency of STEC in wheat flour.
Collapse
Affiliation(s)
- Robert Söderlund
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Catarina Flink
- Department of Biology, Swedish Food Agency, Uppsala, Sweden
| | - Anna Aspán
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| | - Erik Eriksson
- Department of Microbiology, Swedish National Veterinary Institute (SVA), Uppsala, Sweden
| |
Collapse
|
25
|
Teoh CW, Riedl Khursigara M, Ortiz-Sandoval CG, Park JW, Li J, Bohorquez-Hernandez A, Bruno V, Bowen EE, Freeman SA, Robinson LA, Licht C. The loss of glycocalyx integrity impairs complement factor H binding and contributes to cyclosporine-induced endothelial cell injury. Front Med (Lausanne) 2023; 10:891513. [PMID: 36860338 PMCID: PMC9968885 DOI: 10.3389/fmed.2023.891513] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2022] [Accepted: 01/06/2023] [Indexed: 02/16/2023] Open
Abstract
Background Calcineurin inhibitors (CNIs) are associated with nephrotoxicity, endothelial cell dysfunction, and thrombotic microangiopathy (TMA). Evolving evidence suggests an important role for complement dysregulation in the pathogenesis of CNI-induced TMA. However, the exact mechanism(s) of CNI-induced TMA remain(s) unknown. Methods Using blood outgrowth endothelial cells (BOECs) from healthy donors, we evaluated the effects of cyclosporine on endothelial cell integrity. Specifically, we determined complement activation (C3c and C9) and regulation (CD46, CD55, CD59, and complement factor H [CFH] deposition) as these occurred on the endothelial cell surface membrane and glycocalyx. Results We found that exposing the endothelium to cyclosporine resulted in a dose- and time-dependent enhancement of complement deposition and cytotoxicity. We, therefore, employed flow cytometry, Western blotting/CFH cofactor assays, and immunofluorescence imaging to determine the expression of complement regulators and the functional activity and localization of CFH. Notably, while cyclosporine led to the upregulation of complement regulators CD46, CD55, and CD59 on the endothelial cell surface, it also diminished the endothelial cell glycocalyx through the shedding of heparan sulfate side chains. The weakened endothelial cell glycocalyx resulted in decreased CFH surface binding and surface cofactor activity. Conclusion Our findings confirm a role for complement in cyclosporine-induced endothelial injury and suggest that decreased glycocalyx density, induced by cyclosporine, is a mechanism that leads to complement alternative pathway dysregulation via decreased CFH surface binding and cofactor activity. This mechanism may apply to other secondary TMAs-in which a role for complement has so far not been recognized-and provide a potential therapeutic target and an important marker for patients on calcineurin inhibitors.
Collapse
Affiliation(s)
- Chia Wei Teoh
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Magdalena Riedl Khursigara
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Jee Woo Park
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | - Jun Li
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada
| | | | - Valentina Bruno
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Division of Paediatric Nephrology, Santobono-Pausilipon Children's Hospital, Naples, Italy
| | - Emily E. Bowen
- Bristol Renal, School of Clinical Sciences, University of Bristol, Bristol, United Kingdom
| | - Spencer A. Freeman
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Department of Biochemistry, University of Toronto, Toronto, ON, Canada
| | - Lisa A. Robinson
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada
| | - Christoph Licht
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON, Canada,Department of Paediatrics, University of Toronto, Toronto, ON, Canada,Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON, Canada,Institute of Medical Science, University of Toronto, Toronto, ON, Canada,Department of Laboratory Medicine and Pathobiology, University of Toronto, Toronto, ON, Canada,*Correspondence: Christoph Licht ✉
| |
Collapse
|
26
|
Noris M, Remuzzi G. Every Fifteen Days Forever? Kidney Int Rep 2023; 8:4-7. [PMID: 36644343 PMCID: PMC9832037 DOI: 10.1016/j.ekir.2022.11.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Marina Noris
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Giuseppe Remuzzi
- Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| |
Collapse
|
27
|
Liu Y, Thaker H, Wang C, Xu Z, Dong M. Diagnosis and Treatment for Shiga Toxin-Producing Escherichia coli Associated Hemolytic Uremic Syndrome. Toxins (Basel) 2022; 15:10. [PMID: 36668830 PMCID: PMC9862836 DOI: 10.3390/toxins15010010] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 12/13/2022] [Accepted: 12/17/2022] [Indexed: 12/24/2022] Open
Abstract
Shiga toxin-producing Escherichia coli (STEC)-associated hemolytic uremic syndrome (STEC-HUS) is a clinical syndrome involving hemolytic anemia (with fragmented red blood cells), low levels of platelets in the blood (thrombocytopenia), and acute kidney injury (AKI). It is the major infectious cause of AKI in children. In severe cases, neurological complications and even death may occur. Treating STEC-HUS is challenging, as patients often already have organ injuries when they seek medical treatment. Early diagnosis is of great significance for improving prognosis and reducing mortality and sequelae. In this review, we first briefly summarize the diagnostics for STEC-HUS, including history taking, clinical manifestations, fecal and serological detection methods for STEC, and complement activation monitoring. We also summarize preventive and therapeutic strategies for STEC-HUS, such as vaccines, volume expansion, renal replacement therapy (RRT), antibiotics, plasma exchange, antibodies and inhibitors that interfere with receptor binding, and the intracellular trafficking of the Shiga toxin.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Chunyan Wang
- Department of Nephrology, Children’s Hospital of Fudan University, Shanghai 201102, China
| | - Zhonggao Xu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA
- Department of Microbiology, Harvard Medical School, Boston, MA 02115, USA
- Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
28
|
Luzzatto L. Closing remarks. Am J Hematol 2022; 98 Suppl 4:S90-S92. [PMID: 36322103 DOI: 10.1002/ajh.26776] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/09/2022] [Revised: 09/30/2022] [Accepted: 10/12/2022] [Indexed: 12/12/2022]
Affiliation(s)
- Lucio Luzzatto
- Muhimbili University of Health and Allied Sciences Dar‐es‐Salaam Tanzania
- University of Florence Florence Italy
| |
Collapse
|
29
|
Studies on Simultaneous Enrichment and Detection of Escherichia coli O157:H7 during Sample Shipment. Foods 2022; 11:foods11223653. [PMID: 36429244 PMCID: PMC9689055 DOI: 10.3390/foods11223653] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 10/19/2022] [Accepted: 10/24/2022] [Indexed: 11/18/2022] Open
Abstract
The USDA-FSIS has zero tolerance for E. coli O157:H7 in raw ground beef. Currently, FSIS collects samples from beef processing facilities and ships them overnight to regional testing laboratories. Pathogen detection requires robust methods that employ an initial 15-24 h culture enrichment. This study assessed the potential of using the ΦV10nluc phage-based luminescence detection assay during enrichment while the sample is in transit. Parameters including phage concentrations, temperature, and media-to-sample ratios were evaluated. Results in liquid media showed that 1.73× 103 pfu/mL of ΦV10nluc was able to detect 2 CFU in 10 h. The detection of E. coli O157:H7 was further evaluated in kinetic studies using ratios of 1:3, 1:2, and 1:1 ground beef sample to enrichment media, yielding positive results for as little as 2-3 CFU in 325 g ground beef in about 15 h at 37 °C. These results suggest that this approach is feasible, allowing the detection of a presumptive positive upon arrival of the sample to the testing lab. As the current cargo hold controlled temperature is required to be 15-25 °C, the need for elevated temperature should be easily addressed. If successful, this approach could be expanded to other pathogens and foods.
Collapse
|
30
|
Tao Y, Shi L, Han J, Jian X, Li Y. Toxic Encephalopathy and Methemoglobinemia after 5-Amino-2-(trifluoromethyl)pyridine Poisoning. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:14031. [PMID: 36360910 PMCID: PMC9656071 DOI: 10.3390/ijerph192114031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 10/19/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
The aromatic amino compound 5-amino-2-(trifluoromethyl)pyridine acts as an intermediate in the synthesis of pharmaceutical products. However, the toxicity profile of this compound is sparse and no related poisoning events have been reported. Here, we report the case of a 35-year-old man who inhaled 5-amino-2-(trifluoromethyl)pyridine at work. After inhalation, the patient rapidly developed symptoms such as dizziness, fatigue, nausea, vomiting, chest tightness, and loss of consciousness. After admission, methemoglobinemia, hemolytic anemia, acute renal failure, and toxic encephalopathy occurred. Symptoms improved significantly after intravenous treatment with a low dose of methylene blue. This revealed that 5-amino-2-(trifluoromethyl)pyridine is toxic to the human body and can be absorbed through the respiratory tract, resulting in methemoglobinemia and toxic encephalopathy; thus, caution should be taken in industrial production.
Collapse
Affiliation(s)
- Yiming Tao
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan 430030, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan 430030, China
| | - Longke Shi
- School of Public Health, Cheeloo College of Medicine, Shandong University, Jinan 250012, China
| | - Jie Han
- Department of Emergency, Qingdao Municipal Hospital, School of Medicine, Qingdao University, Qingdao 266071, China
| | - Xiangdong Jian
- Department of Poisoning and Occupational Diseases, Qilu Hospital of Shandong University, No. 107, Road Wenhuaxi, Jinan 250012, China
| | - Yongsheng Li
- Department of Intensive Care Medicine, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan 430030, China
- Department of Emergency, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Hankou, Wuhan 430030, China
| |
Collapse
|
31
|
Overview on the role of complement-specific autoantibodies in diseases. Mol Immunol 2022; 151:52-60. [PMID: 36084516 DOI: 10.1016/j.molimm.2022.08.011] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/03/2022] [Accepted: 08/15/2022] [Indexed: 11/24/2022]
Abstract
The complement system is recognized as a major pathogenic or contributing factor in an ever-growing number of diseases. In addition to inherited factors, autoantibodies to complement proteins have been detected in various systemic and organ-specific disorders. These include antibodies directed against complement components, regulators and receptors, but also protein complexes such as autoantibodies against complement convertases. In some cases, the autoantibodies are relatively well characterized and a pathogenic role is incurred and their detection has diagnostic value. In other cases, the relevance of the autoantibodies is rather unclear. This review summarizes what we know of complement specific autoantibodies in diseases and identifies unresolved questions regarding their functional effect and relevance.
Collapse
|
32
|
Pryzdial ELG, Leatherdale A, Conway EM. Coagulation and complement: Key innate defense participants in a seamless web. Front Immunol 2022; 13:918775. [PMID: 36016942 PMCID: PMC9398469 DOI: 10.3389/fimmu.2022.918775] [Citation(s) in RCA: 49] [Impact Index Per Article: 16.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2022] [Accepted: 07/06/2022] [Indexed: 12/30/2022] Open
Abstract
In 1969, Dr. Oscar Ratnoff, a pioneer in delineating the mechanisms by which coagulation is activated and complement is regulated, wrote, “In the study of biological processes, the accumulation of information is often accelerated by a narrow point of view. The fastest way to investigate the body’s defenses against injury is to look individually at such isolated questions as how the blood clots or how complement works. We must constantly remind ourselves that such distinctions are man-made. In life, as in the legal cliché, the devices through which the body protects itself form a seamless web, unwrinkled by our artificialities.” Our aim in this review, is to highlight the critical molecular and cellular interactions between coagulation and complement, and how these two major component proteolytic pathways contribute to the seamless web of innate mechanisms that the body uses to protect itself from injury, invading pathogens and foreign surfaces.
Collapse
Affiliation(s)
- Edward L. G. Pryzdial
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| | - Alexander Leatherdale
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
| | - Edward M. Conway
- Centre for Blood Research, Life Sciences Institute, University of British Columbia, Vancouver, BC, Canada
- Department of Pathology and Laboratory Medicine, University of British Columbia, Vancouver, BC, Canada
- Canadian Blood Services, Medical Affairs and Innovation, Vancouver, BC, Canada
- Division of Hematology, Department of Medicine, University of British Columbia, Vancouver, BC, Canada
- *Correspondence: Edward L. G. Pryzdial, ; Edward M. Conway,
| |
Collapse
|
33
|
Landoni VI, Pittaluga JR, Carestia A, Castillo LA, Nebel MDC, Martire-Greco D, Birnberg-Weiss F, Schattner M, Schierloh P, Fernández GC. Neutrophil Extracellular Traps Induced by Shiga Toxin and Lipopolysaccharide-Treated Platelets Exacerbate Endothelial Cell Damage. Front Cell Infect Microbiol 2022; 12:897019. [PMID: 35811684 PMCID: PMC9262415 DOI: 10.3389/fcimb.2022.897019] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2022] [Accepted: 05/18/2022] [Indexed: 11/13/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is the most common cause of acute renal failure in the pediatric population. The etiology of HUS is linked to Gram-negative, Shiga toxin (Stx)-producing enterohemorrhagic bacterial infections. While the effect of Stx is focused on endothelial damage of renal glomerulus, cytokines induced by Stx or bacterial lipopolysaccharide (LPS) and polymorphonuclear cells (PMNs) are involved in the development of the disease. PMN release neutrophil extracellular traps (NETs) to eliminate pathogens, although NETs favor platelets (Plts) adhesion/thrombus formation and can cause tissue damage within blood vessels. Since thrombus formation and occlusion of vessels are characteristic of HUS, PMN–Plts interaction in the context of Stx may promote netosis and contribute to the endothelial damage observed in HUS. The aim of this study was to determine the relevance of netosis induced by Stx in the context of LPS-sensitized Plts on endothelial damage. We observed that Stx2 induced a marked enhancement of netosis promoted by Plts after LPS stimulation. Several factors seemed to promote this phenomenon. Stx2 itself increased the expression of its receptor on Plts, increasing toxin binding. Stx2 also increased LPS binding to Plts. Moreover, Stx2 amplified LPS induced P-selectin expression on Plts and mixed PMN–Plts aggregates formation, which led to activation of PMN enhancing dramatically NETs formation. Finally, experiments revealed that endothelial cell damage mediated by PMN in the context of Plts treated with LPS and Stx2 was decreased when NETs were disrupted or when mixed aggregate formation was impeded using an anti-P-selectin antibody. Using a murine model of HUS, systemic endothelial damage/dysfunction was decreased when NETs were disrupted, or when Plts were depleted, indicating that the promotion of netosis by Plts in the context of LPS and Stx2 plays a fundamental role in endothelial toxicity. These results provide insights for the first time into the pivotal role of Plts as enhancers of endothelial damage through NETs promotion in the context of Stx and LPS. Consequently, therapies designed to reduce either the formation of PMN–Plts aggregates or NETs formation could lessen the consequences of endothelial damage in HUS.
Collapse
Affiliation(s)
- Verónica Inés Landoni
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Jose R. Pittaluga
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Agostina Carestia
- Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Luis Alejandro Castillo
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Marcelo de Campos Nebel
- Laboratorio de Mutagénesis, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Daiana Martire-Greco
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Federico Birnberg-Weiss
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Mirta Schattner
- Laboratorio de Trombosis Experimental e Inmunobiología de la Inflamación, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
| | - Pablo Schierloh
- Instituto de Investigación y Desarrollo en Bioingeniería y Bioinformática, Centro Científico Tecnológico Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Santa Fe, Argentina
| | - Gabriela C. Fernández
- Laboratorio de Fisiología de los Procesos Inflamatorios, Instituto de Medicina Experimental (IMEX)-Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET)/Academia Nacional de Medicina de Buenos Aires, Ciudad Autónoma de Buenos Aires (CABA), Argentina
- *Correspondence: Gabriela C. Fernández, ;
| |
Collapse
|
34
|
Minary K, Tanne C, Kwon T, Faudeux C, Clave S, Langevin L, Pietrement C, Enoch C, Parmentier C, Mariani-Kurkdjian P, Weill FX, Jones G, Djouadi N, Morin D, Fila M. Outbreak of hemolytic uremic syndrome with unusually severe clinical presentation caused by Shiga toxin-producing Escherichia coli O26:H11 in France. Arch Pediatr 2022; 29:448-452. [DOI: 10.1016/j.arcped.2022.05.011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2022] [Revised: 04/04/2022] [Accepted: 05/12/2022] [Indexed: 12/01/2022]
|
35
|
Çelikkaya E, Güngör T, Karakaya D, Kargın Çakıcı E, Yazılıtaş F, Özaltın F, Bülbül M. Clinically Different Presentations of Family Members With the Same Homozygote Diacylglycerol Kinase Epsilon Mutation: Case Report. EXP CLIN TRANSPLANT 2022; 20:45-48. [PMID: 35570599 DOI: 10.6002/ect.pediatricsymp2022.o13] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Abstract
Membranoproliferative glomerulonephritis and renal microangiopathies may manifest similar clinical presentations and histology. Many genetic mutations that cause these diseases have been reported. Studies on mutations in the gene encoding diacylglycerol kinase epsilon identified a novel pathophysiologic mechanism leading to atypical hemolytic uremic syndrome and/or membranoproliferative glomerulonephritis. Here, we present the different clinical presentations and treatments in 4 family members who carried the same homozygous diacylglycerol kinase epsilon mutation. The first patient (age 5 years, 3 months old at diagnosis) had nephrotic syndrome. The kidney biopsy was membranoproliferative glomerulonephritis; partial remission was achieved with cyclophosphamide, cyclosporine, and mycophenolate mofetil treatment. The second patient (age 5 years, 7 months at diagnosis) presented with overlapping atypical hemolytic uremic syndrome and membranoproliferative glomerulonephritis. Remission could not be achieved with cyclophosphamide, cyclosporine, and mycophenolate mofetil, and hemodialysis treatment was started. At 10 years from first admission, the patient had end-stage kidney disease, and kidney transplant was performed successfully. The third patient was admitted with the diagnosis of nephrotic syndrome at 13 months of age, kidney biopsy showed membranoproliferative glomerulonephritis, and spontaneous remission developed during followup. He presented with hemolytic uremic syndrome 15 months after the first admission, and dialysis was started. Remission was achieved with plasma infusion and eculizumab treatment. The fourth patient (a 7-month-old boy and brother of patient 3) had no clinical or laboratory findings. All patients had genetic analysis, and mutation in exon 2:c.473G>A(p. W158*) was detected. Our related patients with the same mutation showed different clinical and histological findings. However, we did not observe a clear genotype-phenotype correlation in patients with diacylglycerol kinase epsilon nephropathy, suggesting additional factors mediating phenotypic heterogeneity.
Collapse
Affiliation(s)
- Evra Çelikkaya
- From the Department of Pediatric Nephrology, Dr. Sami Ulus Maternity and Child Health and Diseases Training and Research Hospital, Ankara, Turkey
| | | | | | | | | | | | | |
Collapse
|
36
|
OZTURK İ, GÖK S, SAYLAK HK, ERKEN E, ALTUNÖREN O, GÜNGÖR Ö. NADİR BİR HEMOLİTİK ÜREMİK SENDROM NEDENİ: SALMONELLA TYPHİİ. KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNIVERSITESI TIP FAKÜLTESI DERGISI 2022. [DOI: 10.17517/ksutfd.1026255] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
Hemolitik üremik sendrom (HÜS), mikroanjiyopatik hemolitik anemi, trombositopeni ve akut böbrek yetmezliği ile karakterize olan ciddi bir hastalıktır. Hızlı tanı konulup uygun tedavi başlanmadığı takdirde ölümcül seyredebilir. Etyolojide enfeksiyöz ajanlar sıklıkla suçlanmaktadır. Genellikle verositotoksin (Shiga benzeri toksin) üreten mikroorganizmalara bağlı enfeksiyonlar etyolojide önemli yer almaktadır. Bu enfeksiyonlardan sorumlu patojenler çoğunlukla Enterohemorajik Escherichia coli (EHEC), Shigella dysanteria tip 1, daha nadir olarak da Citrobacter freundi olarak bildirilmiştir. Daha nadir olarak Streptococcus pneumoniae, HIV, Clostiridium difficile’ye bağlı HÜS vakaları literatürde bildirilmiştir. Bu olgu, 28 yaşındaki erkek hastada gelişen HÜS tablosunun etyolojisinde çok nadir görülen bir etken olan Salmonella Typhii’nin tesbit edilmesi nedeniyle sunulmuştur.
Collapse
Affiliation(s)
- İlyas OZTURK
- KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİ NEFROLOJİ BİLİM DALI
| | - Serdal GÖK
- KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ, TIP FAKÜLTESİ, TIP PR
| | | | | | | | - Özkan GÜNGÖR
- KAHRAMANMARAŞ SÜTÇÜ İMAM ÜNİVERSİTESİ, TIP FAKÜLTESİ
| |
Collapse
|
37
|
Bos F, Chauveau B, Ruel J, Fontant G, Campistron E, Meunier C, Jambon F, Moreau K, Delmas Y, Couzi L, Korbi S, Charrier M, Viallard JF, Luciani L, Merville P, Lazaro E, Kaminski H. Serious and atypical presentations of Bartonella henselae infection in kidney transplant recipients. Open Forum Infect Dis 2022; 9:ofac059. [PMID: 35211636 PMCID: PMC8863078 DOI: 10.1093/ofid/ofac059] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2021] [Accepted: 02/03/2022] [Indexed: 11/14/2022] Open
Abstract
This article describes 5 cases of bartonellosis with fever and atypical clinical presentations in kidney transplant recipients: thrombotic microangiopathies, recurrent hemophagocytosis, and immune reconstitution syndrome after treatment. The diagnosis, the pathological lesions, and treatments are described. Bartonellosis must be researched in solid organ transplant recipients with fever of undetermined origin.
Collapse
Affiliation(s)
- Feline Bos
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Bertrand Chauveau
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Jules Ruel
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Gabriel Fontant
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Elise Campistron
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Camille Meunier
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Frédéric Jambon
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Karine Moreau
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Yahsou Delmas
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Lionel Couzi
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Skander Korbi
- Department of Pathology, Bordeaux University Hospital, Bordeaux, France
| | - Manon Charrier
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
| | - Jean-François Viallard
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Internal Medicine, Bordeaux University Hospital, Bordeaux, France
| | - Léa Luciani
- Centre National de Référence des Rickettsies, Coxiella et Bartonella IHU-Méditerranée Infection, APHM, Marseille, France
| | - Pierre Merville
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| | - Estibaliz Lazaro
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
- Department of Internal Medicine, Bordeaux University Hospital, Bordeaux, France
| | - Hannah Kaminski
- Department of Nephrology, Transplantation, Dialysis and Apheresis, Bordeaux University Hospital, Bordeaux, France
- CNRS-UMR 5164 ImmunoConcEpT, Bordeaux University, Bordeaux, France
| |
Collapse
|
38
|
Tang Y, Yang S, Yao M, Yang M, Wei L, Chen H, Lin J, Huang Y, Lin L, Qin Z. Hemoglobin induces inflammation through NF-kB signaling pathway and causes cell oxidative damage in grass carp ( Ctenopharyngodon idella). Front Immunol 2022; 13:1044299. [PMID: 36505464 PMCID: PMC9727223 DOI: 10.3389/fimmu.2022.1044299] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/14/2022] [Accepted: 10/31/2022] [Indexed: 11/24/2022] Open
Abstract
Hemolytic disease in grass carp (C. idella) leads to hemolysis in vivo, releasing damage-related molecular patterns (DAMPs) hemoglobin (Hb; which is rapidly oxidized to Hb-Fe3+ and Hb-Fe4+) and generating a high level of reactive oxygen species (ROS) that cause oxidative damage. However, the effect of cell-free Hb on tissue cells of grass carp has yet to be elucidated. In this study, western blotting (WB) and immunofluorescence analysis (IFA) results showed that PHZ-induced hemolysis caused Hb and iron accumulation, increased the production of ROS and resulted in apoptosis in head kidney and middle kidney of the grass carp. Quantitative real-time PCR (qRT-PCR), WB, and IFA revealed that PHZ-induced hemolysis significantly upregulated the expression of inflammation-related genes through activation of the NF-κB signaling pathway. To further explore the effect of Hb, three forms of Hb (Hb, MetHb, and FerrylHb) were prepared. The incubation with the different forms of Hb and heme markedly upregulated the expression of cytokine genes through NF-κB signaling pathway, which was further confirmed by a specific inhibitor (caffeic acid phenethyl ester, CAPE). Flow cytometry analysis data showed that the stimulation of different forms of Hb and heme increased the production of ROS, and resulted in apoptosis. In summary, our data suggest that the excess cell-free Hb released during hemolysis modulates the inflammatory response through activation of the NF-κB signaling pathway and causes cell oxidative damage and apoptosis.
Collapse
Affiliation(s)
- Ying Tang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Shiyi Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Minshan Yao
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Minxuan Yang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Lixiang Wei
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Hong Chen
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Junyan Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Yao Huang
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Li Lin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| | - Zhendong Qin
- Guangdong Provincial Water Environment and Aquatic Products Security Engineering Technology Research Center, Guangzhou Key Laboratory of Aquatic Animal Diseases and Waterfowl Breeding, College of Animal Sciences and Technology, Zhongkai University of Agriculture and Engineering, Guangzhou, Guangdong, China
| |
Collapse
|
39
|
Shiga Toxin 2a Induces NETosis via NOX-Dependent Pathway. Biomedicines 2021; 9:biomedicines9121807. [PMID: 34944623 PMCID: PMC8698832 DOI: 10.3390/biomedicines9121807] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 11/23/2021] [Accepted: 11/25/2021] [Indexed: 11/17/2022] Open
Abstract
Shiga toxin (Stx)-producing Escherichia coli (STEC) infection is the most common cause of hemolytic uremic syndrome (HUS), one of the main causes of acute kidney injury in children. Stx plays an important role in endothelium damage and pathogenesis of STEC-HUS. However, the effects of Stx on neutrophils and neutrophil extracellular trap (NET) formation are not well understood. In this study, we investigated how Stx2a affects NET formation and NETotic pathways (NADPH or NOX-dependent and -independent) using neutrophils isolated from healthy donors and patients with STEC-HUS, during the acute and recovery phase of the disease. Stx2a dose-dependently induced NETosis in neutrophils isolated from both healthy controls and STEC-HUS patients. NETosis kinetics and mechanistic data with pathway-specific inhibitors including diphenyleneiodonium (DPI)-, ERK-, and P38-inhibitors showed that Stx2a-induced NETosis via the NOX-dependent pathway. Neutrophils from STEC-HUS patients in the acute phase showed less ROS and NETs formation compared to neutrophils of the recovery phase of the disease and in healthy controls. NETs induced by Stx2a may lead to the activation of endothelial cells, which might contribute to the manifestation of thrombotic microangiopathy in STEC-HUS.
Collapse
|
40
|
Long B, Bridwell RE, Manchanda S, Gottlieb M. Evaluation and Management of Thrombotic Thrombocytopenic Purpura in the Emergency Department. J Emerg Med 2021; 61:674-682. [PMID: 34518045 DOI: 10.1016/j.jemermed.2021.07.045] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2021] [Revised: 07/15/2021] [Accepted: 07/25/2021] [Indexed: 01/28/2023]
Abstract
BACKGROUND Thrombotic thrombocytopenic purpura (TTP) is a dangerous condition that can be misdiagnosed in the emergency department. OBJECTIVE The purpose of this narrative review article is to provide a summary of the background, pathophysiology, diagnosis, and management of TTP, with a focus on emergency clinicians. DISCUSSION TTP is a disorder with microangiopathic hemolytic anemia, severe thrombocytopenia, and multiorgan ischemic injury. It may be acquired or hereditary, and is caused by a reduced amount or function of a disintegrin and metalloproteinase with a thrombospondin type 1 motif, member 13 (ADAMTS13), which is an enzyme involved in cleaving von Willebrand factor. The classic presentation of TTP includes fever, neurologic abnormalities, thrombocytopenia with purpura, microangiopathic hemolytic anemia, and acute renal injury. However, < 7% of cases have all of these findings present. Testing should include a complete blood count, complete metabolic panel, blood smear, coagulation panel, fibrinogen, D-dimer, lactate dehydrogenase, ADAMTS13 level, troponin, human immunodeficiency virus assessment, urinalysis, pregnancy test as appropriate, and electrocardiogram. Management includes hematology consultation if available, plasma exchange and corticosteroids, and treatment of end-organ complications. All patients require admission for treatment and close monitoring. CONCLUSION TTP is a potentially dangerous medical condition requiring rapid diagnosis and management. It is essential for emergency clinicians to know how to diagnose and treat this disorder.
Collapse
Affiliation(s)
- Brit Long
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Rachel E Bridwell
- Department of Emergency Medicine, Brooke Army Medical Center, Fort Sam Houston, Texas
| | - Shivon Manchanda
- Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois
| | - Michael Gottlieb
- Department of Emergency Medicine, Rush University Medical Center, Chicago, Illinois
| |
Collapse
|
41
|
Santangelo L, Netti GS, Torres DD, Piscopo G, Carbone V, Losito L, Milella L, Lasorella ML, Conti P, Gagliardi D, Chironna M, Spadaccino F, Bresin E, Trabacca A, Ranieri E, Giordano M. Peripheral nervous system manifestations of Shiga toxin-producing E. coli-induced haemolytic uremic syndrome in children. Ital J Pediatr 2021; 47:181. [PMID: 34488831 PMCID: PMC8422760 DOI: 10.1186/s13052-021-01133-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 08/16/2021] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND The Neurological involvement is the most common extra-renal complication of Shiga toxin-producing E. coli-hemolytic uremic syndrome (HUS) or typical HUS. On brain magnetic resonance examination, main neurological signs encompass acute lesions of the basal ganglia and the white matter, which could usually regress after Eculizumab infusion. In contrast, peripheral nervous system (PNS) manifestations in typical HUS are very rare and, when occurring, they require a careful management of neurological sequelae and an intensive multidisciplinary neuro-rehabilitation program. CASE PRESENTATION Here, we present two pediatric cases of severe and complicated typical HUS with PNS manifestations who required therapeutic treatment and an intensive multidisciplinary neuro-rehabilitation program. In both cases, PNS manifestations were followed by the recovery from typical HUS-related severe central neurological damage and manifested mainly with marked bilateral motor deficit and hyporeflexia/areflexia in the lower limbs. The peripheral polyneuropathy was treated with immunosuppressive therapy (methylprednisolone boluses, i.v. immunoglobulins, plasma exchange), followed by a prolonged intensive neuro-rehabilitation program. After 8 months of rehabilitation, both patients gained complete functional recovery. CONCLUSIONS PNS manifestations during typical HUS are a rare event and potentially leading to severe disability. A timely clinical assessment is mandatory to set up a prompt therapeutic and rehabilitation program and to obtain a complete clinical and functional recovery.
Collapse
Affiliation(s)
- Luisa Santangelo
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Giuseppe Stefano Netti
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy.
| | | | - Giovanni Piscopo
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Vincenza Carbone
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| | - Luciana Losito
- Scientific Institute I.R.C.C.S. "E. Medea"- Unit for Severe disabilities in developmental age and young adults (Developmental Neurology and Neurorehabilitation), Brindisi, Italy
| | - Leonardo Milella
- Intensive Care Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | | | - Pasquale Conti
- Pediatric Neurology Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | - Delio Gagliardi
- Pediatric Neurology Unit, Pediatric Hospital "Giovanni XXIII", Bari, Italy
| | - Maria Chironna
- Department of Biomedical Sciences and Human Oncology, Hygiene Unit, University of Bari "Aldo Moro", Bari, Italy
| | - Federica Spadaccino
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy
| | - Elena Bresin
- Clinical Research Center for Rare Diseases 'Aldo e Cele Daccò', Istituto di Ricerche Farmacologiche Mario Negri IRCCS, Bergamo, Italy
| | - Antonio Trabacca
- Scientific Institute I.R.C.C.S. "E. Medea"- Unit for Severe disabilities in developmental age and young adults (Developmental Neurology and Neurorehabilitation), Brindisi, Italy
| | - Elena Ranieri
- Department of Medical and Surgical Sciences, Clinical Pathology Unit and Center for Molecular Medicine, University of Foggia, Viale Luigi Pinto -, 71122, Foggia, Italy
| | - Mario Giordano
- Pediatric Nephrology and Dialysis Unit, Pediatric Hospital 'Giovanni XXIII', Bari, Italy
| |
Collapse
|
42
|
Imdad A, Mackoff SP, Urciuoli DM, Syed T, Tanner-Smith EE, Huang D, Gomez-Duarte OG. Interventions for preventing diarrhoea-associated haemolytic uraemic syndrome. Cochrane Database Syst Rev 2021; 7:CD012997. [PMID: 34219224 PMCID: PMC8255341 DOI: 10.1002/14651858.cd012997.pub2] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
BACKGROUND Haemolytic uraemic syndrome (HUS) is a common cause of acquired kidney failure in children and rarely in adults. The most important risk factor for development of HUS is a gastrointestinal infection by Shiga toxin-producing Escherichia coli (STEC). This review addressed the interventions aimed at secondary prevention of HUS in patients with diarrhoea who were infected with a bacteria that increase the risk of HUS. OBJECTIVES Our objective was to evaluate evidence regarding secondary preventative strategies for HUS associated with STEC infections. In doing so, we sought to assess the effectiveness and safety of interventions as well as their potential to impact the morbidity and death associated with this condition. SEARCH METHODS We searched the Cochrane Kidney and Transplant Register of Studies up to 12 November 2020 through contact with the Information Specialist using search terms relevant to this review. Studies in the Register are identified through searches of CENTRAL, MEDLINE, and EMBASE, conference proceedings, the International Clinical Trials Register (ICTRP) Search Portal and ClinicalTrials.gov. SELECTION CRITERIA Studies were considered based on the methods, participants, and research goals. Only randomised controlled trials were considered eligible for inclusion. The participants of the studies were paediatric and adult patients with diarrhoeal illnesses due to STEC. The primary outcome of interest was incidence of HUS. DATA COLLECTION AND ANALYSIS We used standard methodological procedures as recommended by Cochrane. Summary estimates of effect were obtained using a random-effects model, and results were expressed as risk ratios (RR) and their 95% confidence intervals (CI) for dichotomous outcomes. Confidence in the evidence was assessed using the Grading of Recommendations Assessment, Development and Evaluation (GRADE) approach. MAIN RESULTS We identified four studies (536 participants) for inclusion that investigated four different interventions including antibiotics (trimethoprim-sulfamethoxazole), anti-Shiga toxin antibody-containing bovine colostrum, Shiga toxin binding agent (Synsorb Pk: a silicon dioxide-based agent), and a monoclonal antibody against Shiga toxin (urtoxazumab). The overall risk of bias was unclear for selection, performance and detection bias and low for attrition, reporting and other sources of bias. It was uncertain if trimethoprim-sulfamethoxazole reduced the incidence of HUS compared to no treatment (47 participants: RR 0.57, 95% CI 0.11-2.81, very low certainty evidence). Adverse events relative to this review, need for acute dialysis, neurological complication and death were not reported. There were no incidences of HUS in either the bovine colostrum group or the placebo group. It was uncertain if bovine colostrum caused more adverse events (27 participants: RR 0.92, 95% CI 0.42 to 2.03; very low certainty evidence). The need for acute dialysis, neurological complications or death were not reported. It is uncertain whether Synsorb Pk reduces the incidence of HUS compared to placebo (353 participants: RR 0.93, 95% CI 0.39 to 2.22; very low certainty evidence). Adverse events relevant to this review, need for acute dialysis, neurological complications or death were not reported. One study compared two doses of urtoxazumab (3.0 mg/kg and 1.0 mg/kg) to placebo. It is uncertain if either 3.0 mg/kg urtoxazumab (71 participants: RR 0.34, 95% CI 0.01 to 8.14) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.79 to 1.13) reduced the incidence of HUS compared to placebo (very low certainty evidence). Low certainty evidence showed there may be little or no difference in the number of treatment-emergent adverse events with either 3.0 mg/kg urtoxazumab (71 participants: RR 1.00, 95% CI 0.84 to 1.18) or 1.0 mg/kg urtoxazumab (74 participants: RR 0.95, 95% CI 0.79 to 1.13) compared to placebo. There were 25 serious adverse events reported in 18 patients: 10 in the placebo group, and 9 and 6 serious adverse events in the 1.0 mg/kg and 3.0 mg/kg urtoxazumab groups, respectively. It is unclear how many patients experienced these adverse events in each group, and how many patients experienced more than one event. It is uncertain if either dose of urtoxazumab increased the risk of neurological complications or death (very low certainty evidence). Need for acute dialysis was not reported. AUTHORS' CONCLUSIONS The included studies assessed antibiotics, bovine milk, and Shiga toxin inhibitor (Synsorb Pk) and monoclonal antibodies (Urtoxazumab) against Shiga toxin for secondary prevention of HUS in patients with diarrhoea due to STEC. However, no firm conclusions about the efficacy of these interventions can be drawn given the small number of included studies and the small sample sizes of those included studies. Additional studies, including larger multicentre studies, are needed to assess the efficacy of interventions to prevent development of HUS in patients with diarrhoea due to STEC infection.
Collapse
Affiliation(s)
- Aamer Imdad
- Department of Pediatrics, Division of Pediatric Gastroenterology, Hepatology and Nutrition, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Samuel P Mackoff
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | - David M Urciuoli
- College of Medicine, SUNY Upstate Medical University, Syracuse, NY, USA
| | | | - Emily E Tanner-Smith
- Counseling Psychology and Human Services, University of Oregon, Eugene, Oregon, USA
| | - Dongmei Huang
- Department of Pediatrics, Division of Pediatric Nephrology, SUNY Upstate Medical University, Syracuse, NY, USA
| | - Oscar G Gomez-Duarte
- Division of Pediatric Infectious Diseases, Department of Pediatrics, University at Buffalo, State University of New York, Buffalo, NY, USA
| |
Collapse
|
43
|
Lazem M, Sheikhtaheri A, Hooman N. Lessons learned from hemolytic uremic syndrome registries: recommendations for implementation. Orphanet J Rare Dis 2021; 16:240. [PMID: 34034793 PMCID: PMC8146148 DOI: 10.1186/s13023-021-01871-9] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2021] [Accepted: 05/14/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND Hemolytic uremic syndrome (HUS) is a rare condition which diagnosed with the triad of thrombocytopenia, microangiopathic hemolytic anemia, and acute renal injury. There is a high requirement for research to discover treatments. HUS registries can be used as an important information infrastructure. In this study, we identified and compared the different features of HUS registries to present a guide for the development and implementation of HUS registries. RESULTS The purposes of registries were classified as clinical (9 registries), research (7 registries), and epidemiological (5 registries), and only 3 registries pursued all three types of purposes. The data set included demographic data, medical and family history, para-clinical and diagnostic measures, treatment and pharmacological data, complications, and outcomes. The assessment strategies of data quality included monthly evaluation and data audit, the participation of physicians to collect data, editing and correcting data errors, increasing the rate of data completion, following guidelines and data quality training, using specific data quality indicators, and real-time evaluation of data at the time of data entry. 8 registries include atypical HUS patients, and 7 registries include all patients regardless of age. Only two registries focused on children. 4 registries apply prospective and 4 applied both prospective, and retrospective data collection. Finally, specialized hospitals were the main data source for these registries. CONCLUSION Based on the findings, we suggested a learning framework for developing and implementing an HUS registry. This framework includes lessons learned and suggestions for HUS registry purposes, minimum data set, data quality assurance, data collection methods, inclusion and exclusion criteria as well as data sources. This framework can help researchers develop HUS registries.
Collapse
Affiliation(s)
- Mina Lazem
- Department of Health Information Management, School of Health Management and Information Sciences, Iran University of Medical Sciences, Tehran, Iran
| | - Abbas Sheikhtaheri
- Health Management and Economics Research Center, Health Management Research Institute, Iran University of Medical Sciences, Tehran, Iran.
| | - Nakysa Hooman
- Pediatric Nephrology Department, Aliasghar Clinical Research Development Center (AACRDC), Aliasghar Children Hospital, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
44
|
Feitz WJC, van Setten PA, van der Velden TJAM, Licht C, van den Heuvel LPJW, van de Kar NCAJ. Cell Biological Responses after Shiga Toxin-1 Exposure to Primary Human Glomerular Microvascular Endothelial Cells from Pediatric and Adult Origin. Int J Mol Sci 2021; 22:ijms22115615. [PMID: 34070679 PMCID: PMC8199108 DOI: 10.3390/ijms22115615] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 05/17/2021] [Accepted: 05/22/2021] [Indexed: 01/16/2023] Open
Abstract
Hemolytic uremic syndrome (HUS) is characterized by a triad of symptoms consisting of hemolytic anemia, thrombocytopenia and acute renal failure. The most common form of HUS is caused by an infection with Shiga toxin (Stx) producing Escherichia coli bacteria (STEC-HUS), and the kidneys are the major organs affected. The development of HUS after an infection with Stx occurs most frequently in children under the age of 5 years. However, the cause for the higher incidence of STEC-HUS in children compared to adults is still not well understood. Human glomerular microvascular endothelial cells (HGMVECs) isolated and cultured from pediatric and adult kidney tissue were investigated with respect to Stx binding and different cellular responses. Shiga toxin-1 (Stx-1) inhibited protein synthesis in both pediatric and adult HGMVECs in a dose-dependent manner at basal conditions. The preincubation of pediatric and adult HGMVECs for 24 hrs with TNFα resulted in increased Stx binding to the cell surface and a 20-40% increase in protein synthesis inhibition in both age groups. A decreased proliferation of cells was found when a bromodeoxyuridine (BrdU) assay was performed. A trend towards a delay in endothelial wound closure was visible when pediatric and adult HGMVECs were incubated with Stx-1. Although minor differences between pediatric HGMVECs and adult HGMVECs were found in the assays applied in this study, no significant differences were observed. In conclusion, we have demonstrated that in vitro primary HGMVECs isolated from pediatric and adult kidneys do not significantly differ in their cell biological responses to Stx-1.
Collapse
Affiliation(s)
- Wouter J. C. Feitz
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Petra A. van Setten
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
| | - Thea J. A. M. van der Velden
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
| | - Christoph Licht
- Cell Biology Program, Research Institute, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada;
- Division of Nephrology, The Hospital for Sick Children, Toronto, ON M5G 1X8, Canada
- Department of Pediatrics, University of Toronto, Toronto, ON M5G 1X8, Canada
| | - Lambert P. J. W. van den Heuvel
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Department of Development and Regeneration, Department of Pediatric Nephrology, KU, 3000 Leuven, Belgium
| | - Nicole C. A. J. van de Kar
- Department of Pediatric Nephrology, Amalia Children’s Hospital, Radboud Institute for Molecular Life Sciences, Radboudumc, 6525 GA Nijmegen, The Netherlands; (W.J.C.F.); (T.J.A.M.v.d.V.); (L.P.J.W.v.d.H.)
- Department of Pediatrics, Amalia Children’s Hospital, Radboudumc, 6525 GA Nijmegen, The Netherlands;
- Correspondence: ; Tel.: +31-24-36-14430
| |
Collapse
|
45
|
Páramo JA. [Microvascular thrombosis and clinical implications]. Med Clin (Barc) 2021; 156:609-614. [PMID: 33875227 DOI: 10.1016/j.medcli.2020.12.042] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/10/2023]
Abstract
Thrombosis is often present in the microcirculation in a variety of significant human diseases, such as disseminated intravascular coagulation, thrombotic microangiopathy, sickle cell disease, and others. Microvascular thrombosis has also recently been demonstrated in patients with COVID-19 and has been proposed to mediate the pathogenesis of organ injury in the lung and other organs. In many of these conditions, microvascular thrombosis is accompanied by inflammation, an association referred to as thromboinflammation or immunothrombosis. A greater understanding of the links between inflammation and thrombosis in the microcirculation will provide new therapeutic options for human diseases accompanied by microvascular thrombosis.
Collapse
Affiliation(s)
- José A Páramo
- Servicio de Hematología, Clínica Universidad de Navarra, IdiSNA, CIBERCV, Pamplona, Navarra, España.
| |
Collapse
|
46
|
Liu Y, Tian S, Thaker H, Dong M. Shiga Toxins: An Update on Host Factors and Biomedical Applications. Toxins (Basel) 2021; 13:222. [PMID: 33803852 PMCID: PMC8003205 DOI: 10.3390/toxins13030222] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2021] [Revised: 03/13/2021] [Accepted: 03/15/2021] [Indexed: 12/18/2022] Open
Abstract
Shiga toxins (Stxs) are classic bacterial toxins and major virulence factors of toxigenic Shigella dysenteriae and enterohemorrhagic Escherichia coli (EHEC). These toxins recognize a glycosphingolipid globotriaosylceramide (Gb3/CD77) as their receptor and inhibit protein synthesis in cells by cleaving 28S ribosomal RNA. They are the major cause of life-threatening complications such as hemolytic uremic syndrome (HUS), associated with severe cases of EHEC infection, which is the leading cause of acute kidney injury in children. The threat of Stxs is exacerbated by the lack of toxin inhibitors and effective treatment for HUS. Here, we briefly summarize the Stx structure, subtypes, in vitro and in vivo models, Gb3 expression and HUS, and then introduce recent studies using CRISPR-Cas9-mediated genome-wide screens to identify the host cell factors required for Stx action. We also summarize the latest progress in utilizing and engineering Stx components for biomedical applications.
Collapse
Affiliation(s)
- Yang Liu
- Department of Nephrology, The First Hospital of Jilin University, Changchun 130021, China
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Songhai Tian
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Hatim Thaker
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| | - Min Dong
- Department of Urology, Boston Children’s Hospital, Boston, MA 02115, USA; (S.T.); (H.T.)
- Department of Microbiology and Department of Surgery, Harvard Medical School, Boston, MA 02115, USA
| |
Collapse
|
47
|
Gómez Delgado I, Corvillo F, Nozal P, Arjona E, Madrid Á, Melgosa M, Bravo J, Szilágyi Á, Csuka D, Veszeli N, Prohászka Z, Sánchez-Corral P. Complement Genetic Variants and FH Desialylation in S. pneumoniae-Haemolytic Uraemic Syndrome. Front Immunol 2021; 12:641656. [PMID: 33777036 PMCID: PMC7991904 DOI: 10.3389/fimmu.2021.641656] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Accepted: 02/15/2021] [Indexed: 12/15/2022] Open
Abstract
Haemolytic Uraemic Syndrome associated with Streptococcus pneumoniae infections (SP-HUS) is a clinically well-known entity that generally affects infants, and could have a worse prognosis than HUS associated to E. coli infections. It has been assumed that complement genetic variants associated with primary atypical HUS cases (aHUS) do not contribute to SP-HUS, which is solely attributed to the action of the pneumococcal neuraminidase on the host cellular surfaces. We previously identified complement pathogenic variants and risk polymorphisms in a few Hungarian SP-HUS patients, and have now extended these studies to a cohort of 13 Spanish SP-HUS patients. Five patients presented rare complement variants of unknown significance, but the frequency of the risk haplotypes in the CFH-CFHR3-CFHR1 region was similar to the observed in aHUS. Moreover, we observed desialylation of Factor H (FH) and the FH-Related proteins in plasma samples from 2 Spanish and 4 Hungarian SP-HUS patients. To analyze the functional relevance of this finding, we compared the ability of native and "in vitro" desialylated FH in: (a) binding to C3b-coated microtiter plates; (b) proteolysis of fluid-phase and surface-bound C3b by Factor I; (c) dissociation of surface bound-C3bBb convertase; (d) haemolytic assays on sheep erythrocytes. We found that desialylated FH had reduced capacity to control complement activation on sheep erythrocytes, suggesting a role for FH sialic acids on binding to cellular surfaces. We conclude that aHUS-risk variants in the CFH-CFHR3-CFHR1 region could also contribute to disease-predisposition to SP-HUS, and that transient desialylation of complement FH by the pneumococcal neuraminidase may have a role in disease pathogenesis.
Collapse
Affiliation(s)
- Irene Gómez Delgado
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Fernando Corvillo
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| | - Pilar Nozal
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Immunology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Emilia Arjona
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
- Department of Cellular and Molecular Medicine, Margarita Salas Center for Biological Research, Madrid, Spain
| | - Álvaro Madrid
- Pediatric Nephrology, Hospital Sant Joan de Déu, Barcelona, Spain
| | - Marta Melgosa
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Juan Bravo
- Pediatric Nephrology Unit, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
| | - Ágnes Szilágyi
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Dorottya Csuka
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Nóra Veszeli
- Research Group for Immunology and Haematology, Semmelweis University- Eötvös Loránd Research Network (Office for Supported Research Groups), Budapest, Hungary
| | - Zoltán Prohászka
- Research Laboratory, Department of Internal Medicine and Hematology, Semmelweis University, Budapest, Hungary
| | - Pilar Sánchez-Corral
- Complement Research Group, Hospital La Paz Institute for Health Research (IdiPAZ), La Paz University Hospital, Madrid, Spain
- Center for Biomedical Network Research on Rare Diseases (CIBERER), Madrid, Spain
| |
Collapse
|
48
|
Wadehra A, Alkassis S. Atypical Hemolytic Uremic Syndrome in the Setting of Acute Clostridium difficile Colitis. Cureus 2021; 13:e13244. [PMID: 33728192 PMCID: PMC7948306 DOI: 10.7759/cureus.13244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022] Open
Abstract
Hemolytic uremic syndrome (HUS) is characterized by microangiopathic hemolytic anemia, thrombocytopenia, and acute renal failure. HUS can be secondary to multiple etiologies such as infections, medications, and immune processes. A rare, yet significant, etiology of HUS includes acute Clostridium difficile colitis. Here, we present a case of atypical HUS secondary to acute C. difficile colitis, successfully treated with hemodialysis and systemic corticosteroids. It is imperative that clinicians are cognizant of C. difficile-associated HUS given the overall rising incidence of acute C. difficile infections.
Collapse
Affiliation(s)
- Anshu Wadehra
- Internal Medicine, Wayne State University/Detroit Medical Center, Detroit, USA
| | - Samer Alkassis
- Internal Medicine, Wayne State University/Detroit Medical Center, Detroit, USA
| |
Collapse
|
49
|
Wijnsma KL, Veissi ST, de Wijs S, van der Velden T, Volokhina EB, Wagener FADTG, van de Kar NCAJ, van den Heuvel LP. Heme as Possible Contributing Factor in the Evolvement of Shiga-Toxin Escherichia coli Induced Hemolytic-Uremic Syndrome. Front Immunol 2020; 11:547406. [PMID: 33414780 PMCID: PMC7783363 DOI: 10.3389/fimmu.2020.547406] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Accepted: 11/16/2020] [Indexed: 01/29/2023] Open
Abstract
Shiga-toxin (Stx)-producing Escherichia coli hemolytic-uremic syndrome (STEC-HUS) is one of the most common causes of acute kidney injury in children. Stx-mediated endothelial injury initiates the cascade leading to thrombotic microangiopathy (TMA), still the exact pathogenesis remains elusive. Interestingly, there is wide variability in clinical presentation and outcome. One explanation for this could be the enhancement of TMA through other factors. We hypothesize that heme, as released during extensive hemolysis, contributes to the etiology of TMA. Plasma levels of heme and its scavenger hemopexin and degrading enzyme heme-oxygenase-1 (HO-1) were measured in 48 STEC-HUS patients. Subsequently, the effect of these disease-specific heme concentrations, in combination with Stx, was assessed on primary human glomerular microvascular endothelial cells (HGMVECs). Significantly elevated plasma heme levels up to 21.2 µM were found in STEC-HUS patients compared to controls and were inversely correlated with low or depleted plasma hemopexin levels (R2 −0.74). Plasma levels of HO-1 are significantly elevated compared to controls. Interestingly, especially patients with high heme levels (n = 12, heme levels above 75 quartile range) had high plasma HO-1 levels with median of 332.5 (86–720) ng/ml (p = 0.008). Furthermore, heme is internalized leading to a significant increase in reactive oxygen species production and stimulated both nuclear translocation of NF-κB and increased levels of its target gene (tissue factor). In conclusion, we are the first to show elevated heme levels in patients with STEC-HUS. These increased heme levels mediate endothelial injury by promoting oxidative stress and a pro-inflammatory and pro-thrombotic state. Hence, heme may be a contributing and driving factor in the pathogenesis of STEC-HUS and could potentially amplify the cascade leading to TMA.
Collapse
Affiliation(s)
- Kioa L Wijnsma
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Susan T Veissi
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Sem de Wijs
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Thea van der Velden
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - Elena B Volokhina
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands
| | - Frank A D T G Wagener
- Department of Dentistry-Orthodontics and Craniofacial Biology, Radboud Institute for Molecular Life Sciences, Radboud University Medical Center, Nijmegen, Netherlands
| | - Nicole C A J van de Kar
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands
| | - L P van den Heuvel
- Department of Pediatric Nephrology, Radboud Institute for Molecular Life Sciences, Amalia Children's Hospital, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Laboratory Medicine, Radboud University Medical Center, Nijmegen, Netherlands.,Department of Development and Regeneration, University Hospital Leuven, Leuven, Belgium
| |
Collapse
|
50
|
Shah S, Sweis L. A Case Report of Atypical Hemolytic Uremic Syndrome in a Two-Month-Old Infant With a Negative Reported Genetic Profile and Five-Year Follow-Up on Eculizumab. Cureus 2020; 12:e10392. [PMID: 32944483 PMCID: PMC7489445 DOI: 10.7759/cureus.10392] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Atypical hemolytic uremic syndrome (aHUS) is a rare but life-threatening pediatric disease caused by uncontrolled activation of the alternative complement pathway related to genetic mutations and carries a worse prognosis. In the last decade, a monoclonal antibody against complement C5, eculizumab, has dramatically improved the disease outcomes. The complement mutations in aHUS are detected only in 60%-70% of cases in previous studies. We report a severe presentation of aHUS diagnosed in a two-month-old child who presented with seizures, renal failure with anuria, and microangiopathic hemolytic anemia and required peritoneal dialysis soon after admission. The patient was clinically diagnosed having aHUS and was started on eculizumab on day 4 of hospital admission. The genetic study for major known complement mutations causing aHUS was reported negative. He had a major episode of disease relapse associated with seizures four weeks after eculizumab therapy and required prolonged peritoneal dialysis over more than two months at the time of initial admission. He developed dilated cardiomyopathy and oro-motor dysfunction as complications of aHUS. At five-year follow-up, the patient has stage 3 chronic kidney disease (CKD), proteinuria, hypertension, and required G-tube for feeds. This report discussed the long-term outcome of an infant diagnosed with aHUS and tested negative for common complement mutations on eculizumab therapy. More research is needed to identify novel genes and antibodies contributing to aHUS. While the eculizumab is expensive, and the duration of treatment is not definite, the clinical severity of the disease, relapses, and presence of long-term renal complications are essential factors to decide treatment continuation.
Collapse
Affiliation(s)
- Siddharth Shah
- Pediatric Nephrology, Norton Children's and University of Louisville, Louisville, USA
| | - Laith Sweis
- Pediatrics, Norton Children's and University of Louisville, Louisville, USA
| |
Collapse
|