1
|
Skuljec J, Sardari M, Su C, Müller-Dahlke J, Singh V, Janjic MM, Kleinschnitz C, Pul R. Glatiramer Acetate Modifies the Immune Profiles of Monocyte-Derived Dendritic Cells In Vitro Without Affecting Their Generation. Int J Mol Sci 2025; 26:3013. [PMID: 40243628 PMCID: PMC11989142 DOI: 10.3390/ijms26073013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Revised: 02/28/2025] [Accepted: 03/21/2025] [Indexed: 04/18/2025] Open
Abstract
Glatiramer acetate (GA) is the first-line therapy for relapsing-remitting multiple sclerosis (MS) and is increasingly demonstrating promising therapeutic benefits in a range of other conditions. Despite its extensive use, the precise pharmacological mechanism of GA remains unclear. In addition to T and B cells, dendritic cells (DCs) and monocytes play significant roles in the neuroinflammation associated with MS, positioning them as potential initial targets for GA. Here, we investigated GA's influence on the differentiation of human monocytes from healthy donors into monocyte-derived dendritic cells (moDCs) and assessed their activation status. Our results indicate that GA treatment does not hinder the differentiation of monocytes into moDCs or macrophages. Notably, we observed a significant increase in the expression of molecules required for antigen recognition, presentation, and co-stimulation in GA-treated moDCs. Conversely, there was a significant downregulation of CD1a, which is crucial for activating auto-aggressive T cells that respond to the lipid components of myelin. Furthermore, GA treatment resulted in an increased expression of CD68 on both CD14+CD16+ and CD14+CD16- monocyte subsets. These in vitro findings suggest that GA treatment does not impede the generation of moDCs under inflammatory conditions; however, it may modify their functional characteristics in potentially beneficial ways. This provides a basis for future clinical studies in MS patients to elucidate its precise mode of action.
Collapse
Affiliation(s)
- Jelena Skuljec
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Maryam Sardari
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Chuanxin Su
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | | | - Vikramjeet Singh
- Institute for Experimental Immunology and Imaging, University Medicine Essen, University of Duisburg-Essen, 45147 Essen, Germany
| | - Marija M. Janjic
- Department of Neurobiology, Institute for Biological Research “Sinisa Stankovic”-National Institute of Republic of Serbia, University of Belgrade, 11000 Belgrade, Serbia
| | - Christoph Kleinschnitz
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| | - Refik Pul
- Department of Neurology and Center for Translational Neuro- and Behavioral Sciences (C-TNBS), University Medicine Essen, University Duisburg-Essen, 45147 Essen, Germany (R.P.)
| |
Collapse
|
2
|
Mula A, Yuan X, Lu J. Dendritic cells in Parkinson's disease: Regulatory role and therapeutic potential. Eur J Pharmacol 2024; 976:176690. [PMID: 38815784 DOI: 10.1016/j.ejphar.2024.176690] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 05/02/2024] [Accepted: 05/28/2024] [Indexed: 06/01/2024]
Abstract
Parkinson's Disease (PD) is a debilitating neurodegenerative disorder characterized by the progressive loss of dopaminergic neurons and the presence of Lewy bodies. While the traditional focus has been on neuronal and glial cell dysfunction, recent research has shifted towards understanding the role of the immune system, particularly dendritic cells (DCs), in PD pathogenesis. As pivotal antigen-presenting cells, DCs are traditionally recognized for initiating and regulating immune responses. In PD, DCs contribute to disease progression through the presentation of α-synuclein to T cells, leading to an adaptive immune response against neuronal elements. This review explores the emerging role of DCs in PD, highlighting their potential involvement in antigen presentation and T cell immune response modulation. Understanding the multifaceted functions of DCs could reveal novel insights into PD pathogenesis and open new avenues for therapeutic strategies, potentially altering the course of this devastating disease.
Collapse
Affiliation(s)
- A Mula
- Department of Encephalopathy, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150001, PR China
| | - Xingxing Yuan
- Department of Gastroenterology, Heilongjiang Academy of Traditional Chinese Medicine, Harbin, Heilongjiang, 150006, PR China; Department of First Clinical Medicine, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China
| | - Jinrong Lu
- School of International Education, Heilongjiang University of Chinese Medicine, Harbin, Heilongjiang, 150040, PR China.
| |
Collapse
|
3
|
Liu S, Wei S, Sun Y, Xu G, Zhang S, Li J. Molecular Characteristics, Functional Definitions, and Regulatory Mechanisms for Cross-Presentation Mediated by the Major Histocompatibility Complex: A Comprehensive Review. Int J Mol Sci 2023; 25:196. [PMID: 38203367 PMCID: PMC10778590 DOI: 10.3390/ijms25010196] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 12/19/2023] [Accepted: 12/20/2023] [Indexed: 01/12/2024] Open
Abstract
The major histocompatibility complexes of vertebrates play a key role in the immune response. Antigen-presenting cells are loaded on MHC I molecules, which mainly present endogenous antigens; when MHC I presents exogenous antigens, this is called cross-presentation. The discovery of cross-presentation provides an important theoretical basis for the study of exogenous antigens. Cross-presentation is a complex process in which MHC I molecules present antigens to the cell surface to activate CD8+ T lymphocytes. The process of cross-representation includes many components, and this article briefly outlines the origins and development of MHC molecules, gene structures, functions, and their classical presentation pathways. The cross-presentation pathways of MHC I molecules, the cell lines that support cross-presentation, and the mechanisms of MHC I molecular transporting are all reviewed. After more than 40 years of research, the specific mechanism of cross-presentation is still unclear. In this paper, we summarize cross-presentation and anticipate the research and development prospects for cross-presentation.
Collapse
Affiliation(s)
| | | | | | | | - Shidong Zhang
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| | - Jianxi Li
- Engineering Technology Research Center of Traditional Chinese Veterinary Medicine of Gansu Province, Lanzhou Institute of Animal Husbandry and Pharmaceutical Sciences, Chinese Academy of Agricultural Sciences, Lanzhou 730050, China; (S.L.); (S.W.); (Y.S.); (G.X.)
| |
Collapse
|
4
|
Peng X, Zhang Y, Bai X, Li X, Zhao R. Phasic regulation of the ATP/P2X7 receptor signaling pathway affects the function of antigen-presenting cells in experimental autoimmune uveitis. Int Immunopharmacol 2023; 119:110241. [PMID: 37141671 DOI: 10.1016/j.intimp.2023.110241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/06/2023]
Abstract
Purinergic ligand-gated ion channel 7 receptor (P2X7R) is a purine type P2 receptor that is expressed on a variety of immune cells. Recent studies have shown that P2X7R signaling is required to trigger an immune response, and P2X7R antagonist-oxidized ATP (oxATP) effectively blocks P2X7R activation. In this study, we investigated the effect of phasic regulation of the ATP/P2X7R signaling pathway on antigen-presenting cells (APCs) by constructing an experimental autoimmune uveitis (EAU) disease model. Our results demonstrated that APCs isolated from the 1st, 4th, 7th and 11th days of EAU presented antigen function and could stimulate the differentiation of naive T cells. Moreover, after stimulation by ATP and BzATP (a P2X7R agonist), antigen presentation, promoting differentiation and inflammation were enhanced. The regulation of the Th17 cell response was significantly stronger than that of the Th1 cell response. In addition, we verified that oxATP blocked the P2X7R signaling pathway on APCs, attenuated the effect of BzATP, and significantly improved the adoptive transfer EAU induced by antigen-specific T cells cocultured with APCs. Our results demonstrated that at an early stage of EAU, the ATP/P2X7R signaling pathway regulation of APCs was time dependent, and the treatment of EAU could be achieved by intervening in P2X7R function on APCs.
Collapse
Affiliation(s)
- Xiaoxiang Peng
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Yunfang Zhang
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xue Bai
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Xinyu Li
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China
| | - Ronglan Zhao
- School of Medical Laboratory, Weifang Medical University, Weifang, Shandong, China; Institutional Key Laboratory of Clinical Laboratory Diagnostics, 12th 5-Year Project of Shandong Province, Weifang Medical University, Weifang, Shandong, China.
| |
Collapse
|
5
|
High K + intake alleviates experimental autoimmune encephalomyelitis (EAE) and increases T regulatory cells. Cell Immunol 2022; 382:104637. [PMID: 36343517 DOI: 10.1016/j.cellimm.2022.104637] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2022] [Revised: 10/25/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022]
Abstract
Multiple sclerosis is believed to be triggered by the interplay between the environmental and genetic factors. In contrast to the Paleolithic diet, the modern Western diet is high in Na+ and low in K+. The present study was undertaken to determine whether high K+ intake alleviated experimental autoimmune encephalomyelitis (EAE), a model of multiple sclerosis. Treatment of C57BL/6 or SJL mice for 7 days with a 5 % K+ diet prior to induction of EAE and maintaining mice on the diet until the end of experiments delayed the onset, reduced the peak, and accelerated the recovery of EAE in both strains compared with mice on a control diet (0.7 % K+), whereas feeding C57BL/6 mice with a 0.1 % K+ diet did the opposite. High K+ intake increased the splenic Treg cell frequency in the pretreatment and peak EAE. Thus, high K+ intake attenuates EAE, possibly by increasing the Treg cells.
Collapse
|
6
|
Attfield KE, Jensen LT, Kaufmann M, Friese MA, Fugger L. The immunology of multiple sclerosis. Nat Rev Immunol 2022; 22:734-750. [PMID: 35508809 DOI: 10.1038/s41577-022-00718-z] [Citation(s) in RCA: 172] [Impact Index Per Article: 57.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/30/2022] [Indexed: 12/11/2022]
Abstract
Our incomplete understanding of the causes and pathways involved in the onset and progression of multiple sclerosis (MS) limits our ability to effectively treat this complex neurological disease. Recent studies explore the role of immune cells at different stages of MS and how they interact with cells of the central nervous system (CNS). The findings presented here begin to question the exclusivity of an antigen-specific cause and highlight how seemingly distinct immune cell types can share common functions that drive disease. Innovative techniques further expose new disease-associated immune cell populations and reinforce how environmental context is critical to their phenotype and subsequent role in disease. Importantly, the differentiation of immune cells into a pathogenic state is potentially reversible through therapeutic manipulation. As such, understanding the mechanisms that provide plasticity to causal cell types is likely key to uncoupling these disease processes and may identify novel therapeutic targets that replace the need for cell ablation.
Collapse
Affiliation(s)
- Kathrine E Attfield
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK
| | - Lise Torp Jensen
- Department of Clinical Medicine, Aarhus University Hospital, Aarhus, Denmark
| | - Max Kaufmann
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Manuel A Friese
- Institut für Neuroimmunologie und Multiple Sklerose, Zentrum für Molekulare Neurobiologie Hamburg, Universitätsklinikum Hamburg-Eppendorf, Hamburg, Germany
| | - Lars Fugger
- Oxford Centre for Neuroinflammation, Nuffield Department of Clinical Neurosciences, Oxford University Hospitals, University of Oxford, Oxford, UK.
- MRC Human Immunology Unit, Weatherall Institute of Molecular Medicine, University of Oxford, Oxford, UK.
| |
Collapse
|
7
|
Mundt S, Greter M, Becher B. The CNS mononuclear phagocyte system in health and disease. Neuron 2022; 110:3497-3512. [PMID: 36327896 DOI: 10.1016/j.neuron.2022.10.005] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2022] [Revised: 09/21/2022] [Accepted: 10/04/2022] [Indexed: 11/05/2022]
Abstract
CNS-resident macrophages-including parenchymal microglia and border-associated macrophages (BAMs)-contribute to neuronal development and health, vascularization, and tissue integrity at steady state. Border-patrolling mononuclear phagocytes such as dendritic cells and monocytes confer important immune functions to the CNS, protecting it from pathogenic threats including aberrant cell growth and brain malignancies. Even though we have learned much about the contribution of lymphocytes to CNS pathologies, a better understanding of differential roles of tissue-resident and -invading phagocytes is slowly emerging. In this perspective, we propose that in CNS neuroinflammatory diseases, tissue-resident macrophages (TRMs) contribute to the clearing of debris and resolution of inflammation, whereas blood-borne phagocytes are drivers of immunopathology. We discuss the remaining challenges to resolve which specialized mononuclear phagocyte populations are driving or suppressing immune effector function, thereby potentially dictating the outcome of autoimmunity or brain cancer.
Collapse
Affiliation(s)
- Sarah Mundt
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Melanie Greter
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland
| | - Burkhard Becher
- Institute of Experimental Immunology, University of Zurich, Zurich, Switzerland.
| |
Collapse
|
8
|
Li X, Yuan W, Wu J, Zhen J, Sun Q, Yu M. Andrographolide, a natural anti-inflammatory agent: An Update. Front Pharmacol 2022; 13:920435. [PMID: 36238575 PMCID: PMC9551308 DOI: 10.3389/fphar.2022.920435] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 08/31/2022] [Indexed: 12/15/2022] Open
Abstract
Botanicals have attracted much attention in the field of anti-inflammatory due to their good pharmacological activity and efficacy. Andrographis paniculata is a natural plant ingredient that is widely used around the world. Andrographolide is the main active ingredient derived from Andrographis paniculata, which has a good effect on the treatment of inflammatory diseases. This article reviews the application, anti-inflammatory mechanism and molecular targets of andrographolide in different inflammatory diseases, including respiratory, digestive, immune, nervous, cardiovascular, skeletal, and tumor system diseases. And describe its toxicity and explain its safety. Studies have shown that andrographolide can be used to treat inflammatory lesions of various systemic diseases. In particular, it acts on many inflammation-related signalling pathways. The future direction of andrographolide research is also introduced, as is the recent research that indicates its potential clinical application as an anti-inflammatory agent.
Collapse
Affiliation(s)
- Xiaohong Li
- First Clinical School of Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
- *Correspondence: Xiaohong Li,
| | - Weichen Yuan
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jibiao Wu
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Jianhua Zhen
- School of Life Sciences, Beijing University of Chinese Medicine, Beijing, China
| | - Qihui Sun
- Shandong University of Traditional Chinese Medicine, Jinan, China
| | - Minmin Yu
- Affiliated Hospital of Shandong University of Traditional Chinese Medicine, Jinan, China
| |
Collapse
|
9
|
Packialakshmi B, Hira S, Lund K, Zhang AH, Halterman J, Feng Y, Scott DW, Lees JR, Zhou X. NFAT5 contributes to the pathogenesis of experimental autoimmune encephalomyelitis (EAE) and decrease of T regulatory cells in female mice. Cell Immunol 2022; 375:104515. [DOI: 10.1016/j.cellimm.2022.104515] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2022] [Revised: 03/24/2022] [Accepted: 03/29/2022] [Indexed: 11/03/2022]
|
10
|
Campolo M, Filippone A, Biondo C, Mancuso G, Casili G, Lanza M, Cuzzocrea S, Esposito E, Paterniti I. TLR7/8 in the Pathogenesis of Parkinson's Disease. Int J Mol Sci 2020; 21:ijms21249384. [PMID: 33317145 PMCID: PMC7763162 DOI: 10.3390/ijms21249384] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/02/2020] [Accepted: 12/07/2020] [Indexed: 12/18/2022] Open
Abstract
Neuroinflammation and autoimmune mechanisms have a key part in the pathogenesis of Parkinson’s disease (PD). Therefore, we evaluated the role of Toll-like receptors (TLRs) as a link between inflammation and autoimmunity in PD. An in vivo model of PD was performed by administration of 1-metil 4-fenil 1,2,3,6-tetraidro-piridina (MPTP) at the dose of 20 mg/kg every 2 h for a total administration of 80/kg, both in single Knock Out (KO) mice for TLR7, TLR 8, and TLR9 and in double KO mice for TLR 7/8-/-. All animals were compared with WT animals used as a control group. All animals were sacrificed after 7 days form the first administration of MPTP. The genetic absence of TLR 7 and 8 modified the PD pathway, increasing the immunoreactivity for TH and DAT compared to PD groups and decreasing microglia and astrocytes activation. Moreover, the deletion of TLR7 and TLR8 significantly reduced T-cell infiltration in the substantia nigra and lymph nodes, suggesting a reduction of T-cell activation. Therefore, our result highlights a possibility that an immunotherapy approach, by using a dual antagonist of TLR 7 and 8, could be considered as a possible target to develop new therapies for Parkinson diseases.
Collapse
Affiliation(s)
- Michela Campolo
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Alessia Filippone
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Carmelo Biondo
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giuseppe Mancuso
- Metchnikoff Laboratory, Department of Human Pathology and Medicine, University of Messina, 31-98166 Messina, Italy; (C.B.); (G.M.)
| | - Giovanna Casili
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Marika Lanza
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Salvatore Cuzzocrea
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Department of Pharmacological and Physiological Science, Saint Louis University School of Medicine, St. Louis, MO 63104, USA
| | - Emanuela Esposito
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
| | - Irene Paterniti
- Department of Chemical, Biological, Pharmacological and Environmental Sciences, University of Messina, Viale Ferdinando Stagno D’alcontres, 31-98166 Messina, Italy; (M.C.); (A.F.); (G.C.); (M.L.); (S.C.); (E.E.)
- Correspondence: ; Tel.: +39-090-676-5208
| |
Collapse
|
11
|
Autophagy Pathways in CNS Myeloid Cell Immune Functions. Trends Neurosci 2020; 43:1024-1033. [DOI: 10.1016/j.tins.2020.09.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 08/17/2020] [Accepted: 09/04/2020] [Indexed: 02/06/2023]
|
12
|
Borst K, Prinz M. Deciphering the heterogeneity of myeloid cells during neuroinflammation in the single-cell era. Brain Pathol 2020; 30:1192-1207. [PMID: 33058309 PMCID: PMC8018048 DOI: 10.1111/bpa.12910] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2020] [Revised: 08/23/2020] [Accepted: 10/12/2020] [Indexed: 12/13/2022] Open
Abstract
Multiple sclerosis (MS) is a disabling neuroinflammatory disease, which is little understood and lacks a sufficient therapeutic regimen. Myeloid cells have repeatedly shown to play a pivotal role in the disease progression. During homeostasis, only the CNS‐resident microglia and CNS‐associated macrophages are present in the CNS. Neuroinflammation causes peripheral immune cells to infiltrate the CNS contributing to disease progression and neurological sequelae. The differential involvement of the diverse peripheral and resident myeloid cell subsets to the disease pathogenesis and outcome are highly debated and difficult to assess. However, novel technological advances (new mouse models, single‐cell RNA‐Sequencing, and CYTOF) have improved the depth of immune profiling, which allows the characterization of distinct myeloid subsets. This review provides an overview of current knowledge on the phenotypes and roles of these different myeloid subsets in neuroinflammatory disease and their therapeutic relevance.
Collapse
Affiliation(s)
- Katharina Borst
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany
| | - Marco Prinz
- Institute of Neuropathology, Medical Faculty, University of Freiburg, Freiburg, Germany.,Center for Basics in NeuroModulation (NeuroModulBasics), Faculty of Medicine, University of Freiburg, Freiburg, Germany.,Signalling Research Centres BIOSS and CIBSS, University of Freiburg, Freiburg, Germany
| |
Collapse
|
13
|
Runtsch MC, Ferrara G, Angiari S. Metabolic determinants of leukocyte pathogenicity in neurological diseases. J Neurochem 2020; 158:36-58. [PMID: 32880969 DOI: 10.1111/jnc.15169] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2020] [Revised: 07/31/2020] [Accepted: 08/26/2020] [Indexed: 12/15/2022]
Abstract
Neuroinflammatory and neurodegenerative diseases are characterized by the recruitment of circulating blood-borne innate and adaptive immune cells into the central nervous system (CNS). These leukocytes sustain the detrimental response in the CNS by releasing pro-inflammatory mediators that induce activation of local glial cells, blood-brain barrier (BBB) dysfunction, and neural cell death. However, infiltrating peripheral immune cells could also dampen CNS inflammation and support tissue repair. Recent advances in the field of immunometabolism demonstrate the importance of metabolic reprogramming for the activation and functionality of such innate and adaptive immune cell populations. In particular, an increasing body of evidence suggests that the activity of metabolites and metabolic enzymes could influence the pathogenic potential of immune cells during neuroinflammatory and neurodegenerative disorders. In this review, we discuss the role of intracellular metabolic cues in regulating leukocyte-mediated CNS damage in Alzheimer's and Parkinson's disease, multiple sclerosis and stroke, highlighting the therapeutic potential of drugs targeting metabolic pathways for the treatment of neurological diseases.
Collapse
Affiliation(s)
- Marah C Runtsch
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| | | | - Stefano Angiari
- School of Biochemistry and Immunology, Trinity College Dublin, Dublin, Ireland
| |
Collapse
|
14
|
Zheng J, Sariol A, Meyerholz D, Zhang Q, Abrahante Lloréns JE, Narumiya S, Perlman S. Prostaglandin D2 signaling in dendritic cells is critical for the development of EAE. J Autoimmun 2020; 114:102508. [PMID: 32624353 PMCID: PMC7332282 DOI: 10.1016/j.jaut.2020.102508] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2020] [Revised: 06/08/2020] [Accepted: 06/12/2020] [Indexed: 12/24/2022]
Abstract
Priming of autoreactive T cells in lymph nodes by dendritic cells (DCs) is critical for the pathogenesis of experimental autoimmune encephalitis (EAE). DC activation reflects a balance of pro- and anti-inflammatory signals. One anti-inflammatory factor is prostaglandin D2 signaling through its cognate receptor, D-prostanoid receptor 1 (PTGDR), on myeloid cells. Loss of PTGDR signaling might be expected to enhance DC activation and EAE but here we show that PTGDR−/− mice developed only mild signs of MOG35-55 peptide immunization-induced EAE. Compared to wild type mice, PTGDR−/− mice exhibited less demyelination, decreased leukocyte infiltration and diminished microglia activation. These effects resulted from increased pro-inflammatory responses in the lymph nodes, most notably in IL-1β production, with the unexpected consequence of increased activation-induced apoptosis of MOG35-55 peptide-specific T cells. Conditional deletion of PTGDR on DCs, and not other myeloid cells ameliorated EAE. Together, these results demonstrate the indispensable role that PGD2/PTGDR signaling on DCs has in development of pathogenic T cells in autoimmune demyelination. Increased T cell activation occurred in PTGDR−/- mice resulting in T cell apoptosis. AICD decreased T cell infiltration into, and demyelination in CNS during EAE. Decreased PGD2/PTGDR signaling in DCs resulted in increased IL-1β expression. Anakinra treatment in PTGDR−/- mice increased EAE severity.
Collapse
Affiliation(s)
- Jian Zheng
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA
| | - Alan Sariol
- Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA
| | - David Meyerholz
- Department of Pathology, University of Iowa, Iowa City, IA, USA
| | - Qinran Zhang
- School of Mathematics and Statistics, Wuhan University, Wuhan, PR China
| | | | - Shuh Narumiya
- Department of Pharmacology, Kyoto University, Tokyo, 606-8501, Japan
| | - Stanley Perlman
- Department of Microbiology and Immunology, University of Iowa, Iowa City, IA, USA; Interdisciplinary Program in Immunology, University of Iowa, Iowa City, IA, USA.
| |
Collapse
|
15
|
Wang B, Tian Q, Guo D, Lin W, Xie X, Bi H. Activated γδ T Cells Promote Dendritic Cell Maturation and Exacerbate the Development of Experimental Autoimmune Uveitis (EAU) in Mice. Immunol Invest 2020; 50:164-183. [PMID: 31985304 DOI: 10.1080/08820139.2020.1716786] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
Our previous study reveals that gamma delta (γδ) T cells were activated and dendritic cells (DCs) underwent maturation during the inflammation phase in experimental autoimmune uveitis (EAU) mice, and the interaction between DCs and γδ T cells may significantly exacerbate the development of EAU. However, the interactions between DCs and γδ T cells that can affect DCs maturation to influence EAU development must be further addressed. In this study we showed that mature DC numbers in TCR-δ-/- (KO) EAU mice were lower than those in wild-type (WT) C57BL/6 (B6) mice. The γδ T cells harvested from WT EAU mice secreted more interferon-γ (IFN-γ), however, after blocking IFN-γ, the maturation of DCs was significantly downregulated. By contrast, the percentage of IFN-γ- and IL-17-producing CD4+ T cells in KO EAU mice decreased to a greater extent than that in WT EAU mice during the inflammatory phase. Additionally, the levels of IFN-γ/IL-17 in serum were in agreement with those of CD4+ T cells. Furthermore, after activated γδ T cells injection, the inflammatory symptoms of EAU mice were more aggravated. In vitro co-cultures of both cell types showed that activated γδ T cells may induce DCs to generate higher levels of intracellular cell adhesion molecule-1 (ICAM-1/CD54), CD80, CD83, and CD86. Moreover, co-culture of the two cells may induce the activation of CD4+ T cells. Taken together, our results demonstrated that activated γδ T cells may promote DCs maturation and further enhance the generation of Th1/Th17 cells in EAU mice, resulting in exacerbated EAU.
Collapse
Affiliation(s)
- Beibei Wang
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Qingmei Tian
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Dadong Guo
- Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Wei Lin
- Department of Microbiology, Shandong Academy of Medical Sciences , Jinan, People's Republic of China
| | - Xiaofeng Xie
- Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| | - Hongsheng Bi
- First Clinical College, Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Department of Ophthalmology, Affiliated Eye Hospital of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China.,Shandong Provincial Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases, Key Laboratory of Integrated Traditional Chinese and Western Medicine for Prevention and Therapy of Ocular Diseases in Universities of Shandong, Eye Institute of Shandong University of Traditional Chinese Medicine , Jinan, P. R. China
| |
Collapse
|
16
|
Ren C, Yao RQ, Zhang H, Feng YW, Yao YM. Sepsis-associated encephalopathy: a vicious cycle of immunosuppression. J Neuroinflammation 2020; 17:14. [PMID: 31924221 PMCID: PMC6953314 DOI: 10.1186/s12974-020-1701-3] [Citation(s) in RCA: 156] [Impact Index Per Article: 31.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 01/03/2020] [Indexed: 12/12/2022] Open
Abstract
Sepsis-associated encephalopathy (SAE) is commonly complicated by septic conditions, and is responsible for increased mortality and poor outcomes in septic patients. Uncontrolled neuroinflammation and ischemic injury are major contributors to brain dysfunction, which arises from intractable immune malfunction and the collapse of neuroendocrine immune networks, such as the cholinergic anti-inflammatory pathway, hypothalamic-pituitary-adrenal axis, and sympathetic nervous system. Dysfunction in these neuromodulatory mechanisms compromised by SAE jeopardizes systemic immune responses, including those of neutrophils, macrophages/monocytes, dendritic cells, and T lymphocytes, which ultimately results in a vicious cycle between brain injury and a progressively aberrant immune response. Deep insight into the crosstalk between SAE and peripheral immunity is of great importance in extending the knowledge of the pathogenesis and development of sepsis-induced immunosuppression, as well as in exploring its effective remedies.
Collapse
Affiliation(s)
- Chao Ren
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Ren-Qi Yao
- Department of Burn Surgery, Changhai Hospital, The Navy Medical University, Shanghai, 200433, People's Republic of China
| | - Hui Zhang
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China
| | - Yong-Wen Feng
- Department of Critical Care Medicine, The Second People's Hospital of Shenzhen, Shenzhen, 518035, People's Republic of China
| | - Yong-Ming Yao
- Trauma Research Center, Fourth Medical Center of the Chinese PLA General Hospital, Beijing, 100048, People's Republic of China.
| |
Collapse
|
17
|
Cao Q, Zheng C, Xie Z, Liu L, Zhu J, Jin T. The change of PD1, PDL1 in experimental autoimmune encephalomyelitis treated by 1,25(OH)2D3. J Neuroimmunol 2020; 338:577079. [DOI: 10.1016/j.jneuroim.2019.577079] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 09/28/2019] [Accepted: 10/01/2019] [Indexed: 12/17/2022]
|
18
|
Krivenko L, Sviridova A, Melnikov M, Rogovskii V, Boyko A, Pashenkov M. The influence of fluoxetine on interleukin-6 and interleukin-1β production by dendritic cells in multiple sclerosis in vitro. Zh Nevrol Psikhiatr Im S S Korsakova 2020; 120:67-72. [DOI: 10.17116/jnevro202012007267] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
19
|
Olcum M, Tastan B, Kiser C, Genc S, Genc K. Microglial NLRP3 inflammasome activation in multiple sclerosis. ADVANCES IN PROTEIN CHEMISTRY AND STRUCTURAL BIOLOGY 2019; 119:247-308. [PMID: 31997770 DOI: 10.1016/bs.apcsb.2019.08.007] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
Multiple sclerosis (MS) is a chronic, autoimmune and neuroinflammatory disease of the central nervous system (CNS) mediated by autoreactive T cells directed against myelin antigens. Although the crucial role of adaptive immunity is well established in MS, the contribution of innate immunity has only recently been appreciated. Microglia are the main innate immune cells of the CNS. Similar to other myeloid cells, microglia recognize both exogenous and host-derived endogenous danger signals through pattern recognition receptors (PRRs) localized on their cell surface such as Toll Like receptor 4, or in the cytosol such as NLRP3. The second one is the sensor protein of the multi-molecular NLRP3 inflammasome complex in activated microglia that promotes the maturation and secretion of proinflammatory cytokines, interleukin-1β and interleukin-18. Overactivation of microglia and aberrant activation of the NLRP3 inflammasome have been implicated in the pathogenesis of MS. Indeed, experimental data, together with post-mortem and clinical studies have revealed an increased expression of NLRP3 inflammasome complex elements in microglia and other immune cells. In this review, we focus on microglial NLRP3 inflammasome activation in MS. First, we overview the basic knowledge about MS, microglia and the NLRP3 inflammasome. Then, we summarize studies about microglial NLRP3 inflammasome activation in MS and its animal models. We also highlight experimental therapeutic approaches that target different steps of NLRP inflammasome activation. Finally, we discuss future research avenues and new methods in this rapidly evolving area.
Collapse
Affiliation(s)
- Melis Olcum
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey
| | - Bora Tastan
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Cagla Kiser
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Sermin Genc
- Izmir Biomedicine and Genome Center, Dokuz Eylul University Health Campus Balcova, Izmir, Turkey; Izmir International Biomedicine and Genome Institute (iBG-Izmir), Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey; Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| | - Kursad Genc
- Department of Neuroscience, Institute of Health and Science, Dokuz Eylul University Health Campus, Balcova, Izmir, Turkey
| |
Collapse
|
20
|
Xia QP, Cheng ZY, He L. The modulatory role of dopamine receptors in brain neuroinflammation. Int Immunopharmacol 2019; 76:105908. [PMID: 31622861 DOI: 10.1016/j.intimp.2019.105908] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2019] [Revised: 09/03/2019] [Accepted: 09/08/2019] [Indexed: 01/11/2023]
Abstract
Neuroinflammation is a general pathological feature of central nervous system (CNS) diseases, primarily caused by activation of astrocytes and microglia, as well as the infiltration of peripheral immune cells. Inhibition of neuroinflammation is an important strategy in the treatment of brain disorders. Dopamine (DA) receptor, a significant G protein-coupled receptor (GPCR), is classified into two families: D1-like (D1 and D5) and D2-like (D2, D3 and D4) receptor families, according to their downstream signaling pathways. Traditionally, DA receptor forms a wide variety of psychological activities and motor functions, such as voluntary movement, working memory and learning. Recently, the role of DA receptor in neuroinflammation has been investigated widely, mainly focusing on nucleotide-binding oligomerization domain-like receptor pyrin domain-containing 3 (NLRP3) inflammasome, renin-angiotensin system, αB-crystallin, as well as invading peripheral immune cells, including T cells, dendritic cells, macrophages and monocytes. This review briefly outlined the functions and signaling pathways of DA receptor subtypes as well as its role in inflammation-related glial cells, and subsequently summarized the mechanisms of DA receptors affecting neuroinflammation. Meaningfully, this article provided a theoretical basis for drug development targeting DA receptors in inflammation-related brain diseases.
Collapse
Affiliation(s)
- Qing-Peng Xia
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Zhao-Yan Cheng
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China
| | - Ling He
- Department of Pharmacology, China Pharmaceutical University, Nanjing 210009, China.
| |
Collapse
|
21
|
A review for the neuroprotective effects of andrographolide in the central nervous system. Biomed Pharmacother 2019; 117:109078. [DOI: 10.1016/j.biopha.2019.109078] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 05/26/2019] [Accepted: 06/02/2019] [Indexed: 12/12/2022] Open
|
22
|
Sie C, Perez LG, Kreutzfeldt M, Potthast M, Ohnmacht C, Merkler D, Huber S, Krug A, Korn T. Dendritic Cell Accumulation in the Gut and Central Nervous System Is Differentially Dependent on α4 Integrins. THE JOURNAL OF IMMUNOLOGY 2019; 203:1417-1427. [PMID: 31399516 DOI: 10.4049/jimmunol.1900468] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2019] [Accepted: 07/13/2019] [Indexed: 12/11/2022]
Abstract
Homing of pathogenic CD4+ T cells to the CNS is dependent on α4 integrins. However, it is uncertain whether α4 integrins are also required for the migration of dendritic cell (DC) subsets, which sample Ags from nonlymphoid tissues to present it to T cells. In this study, after genetic ablation of Itga4 in DCs and monocytes in mice via the promoters of Cd11c and Lyz2 (also known as LysM), respectively, the recruitment of α4 integrin-deficient conventional and plasmacytoid DCs to the CNS was unaffected, whereas α4 integrin-deficient, monocyte-derived DCs accumulated less efficiently in the CNS during experimental autoimmune encephalomyelitis in a competitive setting than their wild-type counterparts. In a noncompetitive setting, α4 integrin deficiency on monocyte-derived DCs was fully compensated. In contrast, in small intestine and colon, the fraction of α4 integrin-deficient CD11b+CD103+ DCs was selectively reduced in steady-state. Yet, T cell-mediated inflammation and host defense against Citrobacter rodentium were not impaired in the absence of α4 integrins on DCs. Thus, inflammatory conditions can promote an environment that is indifferent to α4 integrin expression by DCs.
Collapse
Affiliation(s)
- Christopher Sie
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany
| | - Laura Garcia Perez
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Mario Kreutzfeldt
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Maria Potthast
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Caspar Ohnmacht
- Center of Allergy and Environment, Helmholtz Center and Technical University of Munich, 80802 Munich, Germany
| | - Doron Merkler
- Division of Clinical Pathology, Department of Pathology and Immunology, University of Geneva, 1211 Geneva, Switzerland
| | - Samuel Huber
- I. Medizinische Klinik und Poliklinik, Universitätsklinikum Hamburg-Eppendorf, 20246 Hamburg, Germany
| | - Anne Krug
- Institute for Immunology, Biomedical Center, Ludwig Maximilians University of Munich, 82152 Planegg-Martinsried, Germany; and
| | - Thomas Korn
- Abteilung für Experimentelle Neuroimmunologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany; .,Klinik für Neurologie, Klinikum rechts der Isar, Technische Universität München, 81675 Munich, Germany.,Munich Cluster for Systems Neurology, SyNergy, 81377 Munich, Germany
| |
Collapse
|
23
|
Garnier A, Laffont S, Garnier L, Kaba E, Deutsch U, Engelhardt B, Guéry J. CD49d/CD29‐integrin controls the accumulation of plasmacytoid dendritic cells into the CNS during neuroinflammation. Eur J Immunol 2019; 49:2030-2043. [DOI: 10.1002/eji.201948086] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2019] [Revised: 05/28/2019] [Accepted: 07/16/2019] [Indexed: 12/27/2022]
Affiliation(s)
- Arnaud Garnier
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Sophie Laffont
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Laure Garnier
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| | - Elisa Kaba
- Theodor Kocher Institute University of Bern Bern Switzerland
| | - Urban Deutsch
- Theodor Kocher Institute University of Bern Bern Switzerland
| | | | - Jean‐Charles Guéry
- Centre de Physiopathologie de Toulouse Purpan (CPTP) Université de Toulouse INSERM CNRS UPS Toulouse France
| |
Collapse
|
24
|
Dopaminergic Therapeutics in Multiple Sclerosis: Focus on Th17-Cell Functions. J Neuroimmune Pharmacol 2019; 15:37-47. [PMID: 31011885 DOI: 10.1007/s11481-019-09852-3] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2018] [Accepted: 04/08/2019] [Indexed: 12/15/2022]
Abstract
Multiple sclerosis (MS) is a chronic inflammatory demyelinating disease of the central nervous system (CNS) with an autoimmune mechanism of development. Currently, one of the most promising directions in the study of MS pathogenesis are the neuroimmune interactions. Dopamine is one of the key neurotransmitters in CNS. Furthermore, dopamine is a direct mediator of interactions between the immune and nervous systems and can influence MS pathogenesis by modulating immune cells activity and cytokine production. Recent studies have shown that dopamine can enhance or inhibit the functions of innate and adaptive immune system, depending on the activation of different dopaminergic receptors, and can therefore influence the course of experimental autoimmune encephalomyelitis (EAE) and MS. In this review, we discuss putative dopaminergic therapeutics in EAE and MS with focus on Th17-cells, which are thought to play crucial role in MS pathogenesis. We suggest that targeting dopaminergic receptors could be explored as a new kind of disease-modifying treatment of MS. Graphical Abstract.
Collapse
|
25
|
Jordão MJC, Sankowski R, Brendecke SM, Sagar, Locatelli G, Tai YH, Tay TL, Schramm E, Armbruster S, Hagemeyer N, Groß O, Mai D, Çiçek Ö, Falk T, Kerschensteiner M, Grün D, Prinz M. Single-cell profiling identifies myeloid cell subsets with distinct fates during neuroinflammation. Science 2019; 363:363/6425/eaat7554. [DOI: 10.1126/science.aat7554] [Citation(s) in RCA: 385] [Impact Index Per Article: 64.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 12/14/2018] [Indexed: 12/15/2022]
Abstract
The innate immune cell compartment is highly diverse in the healthy central nervous system (CNS), including parenchymal and non-parenchymal macrophages. However, this complexity is increased in inflammatory settings by the recruitment of circulating myeloid cells. It is unclear which disease-specific myeloid subsets exist and what their transcriptional profiles and dynamics during CNS pathology are. Combining deep single-cell transcriptome analysis, fate mapping, in vivo imaging, clonal analysis, and transgenic mouse lines, we comprehensively characterized unappreciated myeloid subsets in several CNS compartments during neuroinflammation. During inflammation, CNS macrophage subsets undergo self-renewal, and random proliferation shifts toward clonal expansion. Last, functional studies demonstrated that endogenous CNS tissue macrophages are redundant for antigen presentation. Our results highlight myeloid cell diversity and provide insights into the brain’s innate immune system.
Collapse
|
26
|
Sviridova AA, Melnikov MV, Belousova OO, Rogovskii VS, Pashenkov MV, Boyko AN. Serotonergic system as a therapeutic target in multiple sclerosis. Zh Nevrol Psikhiatr Im S S Korsakova 2019; 119:64-72. [DOI: 10.17116/jnevro20191192264] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
27
|
Abstract
In this issue of Immunity, Mrdjen et al. (2018) use high-dimensional single-cell proteomics and high parametric mass cytometry to provide insight into the long-lasting issue of how to identify and characterize both resident and recruited leukocyte populations in healthy, aged, and diseased CNS.
Collapse
Affiliation(s)
- Nàdia Villacampa
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Sigmund-Freud Straße 25, 53127 Bonn, Germany
| | - Michael T Heneka
- Department of Neurodegenerative Diseases and Gerontopsychiatry, University of Bonn, Sigmund-Freud Straße 25, 53127 Bonn, Germany; Deutsches Zentrum für Neurodegenerative Erkrankungen (DZNE), 53127 Bonn, Germany.
| |
Collapse
|
28
|
Casella G, Colombo F, Finardi A, Descamps H, Ill-Raga G, Spinelli A, Podini P, Bastoni M, Martino G, Muzio L, Furlan R. Extracellular Vesicles Containing IL-4 Modulate Neuroinflammation in a Mouse Model of Multiple Sclerosis. Mol Ther 2018; 26:2107-2118. [PMID: 30017878 DOI: 10.1016/j.ymthe.2018.06.024] [Citation(s) in RCA: 110] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2018] [Revised: 06/22/2018] [Accepted: 06/25/2018] [Indexed: 12/31/2022] Open
Abstract
Extracellular vesicles (EVs) play a major role in cell-to-cell communication in physiological and pathological conditions, and their manipulation may represent a promising therapeutic strategy. Microglia, the parenchymal mononuclear phagocytes of the brain, modulate neighboring cells also through the release of EVs. The production of custom EVs filled with desired molecules, possibly targeted to make their uptake cell specific, and their administration in biological fluids may represent a valid approach for drug delivery. We engineered a murine microglia cell line, BV-2, to release EVs overexpressing the endogenous "eat me" signal Lactadherin (Mfg-e8) on the surface to target phagocytes and containing the anti-inflammatory cytokine IL-4. A single injection of 107 IL-4+Mfg-e8+ EVs into the cisterna magna modulated established neuroinflammation and significantly reduced clinical signs in the mouse model of multiple sclerosis, experimental autoimmune encephalomyelitis (EAE). Injected IL-4+Mfg-e8+ EVs target mainly phagocytes (i.e., macrophages and microglia) surrounding liquoral spaces, and their cargo promote the upregulation of anti-inflammatory markers chitinase 3-like 3 (ym1) and arginase-1 (arg1), significantly reducing tissue damage. Engineered EVs may represent a biological drug delivery tool able to deliver multiple functional molecules simultaneously to treat neuroinflammatory diseases.
Collapse
Affiliation(s)
- Giacomo Casella
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Federico Colombo
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Annamaria Finardi
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Hélène Descamps
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gerard Ill-Raga
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Antonello Spinelli
- Experimental Imaging Centre, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Paola Podini
- Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Mattia Bastoni
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Gianvito Martino
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Luca Muzio
- Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology, San Raffaele Scientific Institute, 20132 Milan, Italy
| | - Roberto Furlan
- Clinical Neuroimmunology Unit, Department of Neuroscience, Institute of Experimental Neurology (InSpe), San Raffaele Scientific Institute, 20132 Milan, Italy.
| |
Collapse
|
29
|
Jimenez RV, Wright TT, Jones NR, Wu J, Gibson AW, Szalai AJ. C-Reactive Protein Impairs Dendritic Cell Development, Maturation, and Function: Implications for Peripheral Tolerance. Front Immunol 2018; 9:372. [PMID: 29556231 PMCID: PMC5845098 DOI: 10.3389/fimmu.2018.00372] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Accepted: 02/09/2018] [Indexed: 12/23/2022] Open
Abstract
C-reactive protein (CRP) is the prototypical acute phase reactant, increasing in blood concentration rapidly and several-fold in response to inflammation. Recent evidence indicates that CRP has an important physiological role even at low, baseline levels, or in the absence of overt inflammation. For example, we have shown that human CRP inhibits the progression of experimental autoimmune encephalomyelitis (EAE) in CRP transgenic mice by shifting CD4+ T cells away from the TH1 and toward the TH2 subset. Notably, this action required the inhibitory Fcγ receptor IIB (FcγRIIB), but did not require high levels of human CRP. Herein, we sought to determine if CRP's influence in EAE might be explained by CRP acting on dendritic cells (DC; antigen presenting cells known to express FcγRIIB). We found that CRP (50 µg/ml) reduced the yield of CD11c+ bone marrow-derived DCs (BMDCs) and CRP (≥5 μg/ml) prevented their full expression of major histocompatibility complex class II and the co-stimulatory molecules CD86 and CD40. CRP also decreased the ability of BMDCs to stimulate antigen-driven proliferation of T cells in vitro. Importantly, if the BMDCs were genetically deficient in mouse FcγRIIB then (i) the ability of CRP to alter BMDC surface phenotype and impair T cell proliferation was ablated and (ii) CD11c-driven expression of a human FCGR2B transgene rescued the CRP effect. Lastly, the protective influence of CRP in EAE was fully restored in mice with CD11c-driven human FcγRIIB expression. These findings add to the growing evidence that CRP has important biological effects even in the absence of an acute phase response, i.e., CRP acts as a tonic suppressor of the adaptive immune system. The ability of CRP to suppress development, maturation, and function of DCs implicates CRP in the maintenance of peripheral T cell tolerance.
Collapse
Affiliation(s)
- Rachel V. Jimenez
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Tyler T. Wright
- Division of Drug Development, Southern Research, Birmingham, AL, United States
| | - Nicholas R. Jones
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Jianming Wu
- Department of Veterinary and Biomedical Sciences, University of Minnesota, Minneapolis, MN, United States
| | - Andrew W. Gibson
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| | - Alexander J. Szalai
- Department of Medicine, Division of Clinical Immunology & Rheumatology, University of Alabama at Birmingham, Birmingham, AL, United States
| |
Collapse
|
30
|
Herz J, Filiano AJ, Wiltbank AT, Yogev N, Kipnis J. Myeloid Cells in the Central Nervous System. Immunity 2017; 46:943-956. [PMID: 28636961 PMCID: PMC5657250 DOI: 10.1016/j.immuni.2017.06.007] [Citation(s) in RCA: 258] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2017] [Revised: 05/17/2017] [Accepted: 06/02/2017] [Indexed: 02/07/2023]
Abstract
The central nervous system (CNS) and its meningeal coverings accommodate a diverse myeloid compartment that includes parenchymal microglia and perivascular macrophages, as well as choroid plexus and meningeal macrophages, dendritic cells, and granulocytes. These myeloid populations enjoy an intimate relationship with the CNS, where they play an essential role in both health and disease. Although the importance of these cells is clearly recognized, their exact function in the CNS continues to be explored. Here, we review the subsets of myeloid cells that inhabit the parenchyma, meninges, and choroid plexus and discuss their roles in CNS homeostasis. We also discuss the role of these cells in various neurological pathologies, such as autoimmunity, mechanical injury, neurodegeneration, and infection. We highlight the neuroprotective nature of certain myeloid cells by emphasizing their therapeutic potential for the treatment of neurological conditions.
Collapse
Affiliation(s)
- Jasmin Herz
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Anthony J Filiano
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA.
| | - Ashtyn T Wiltbank
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA
| | - Nir Yogev
- Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany
| | - Jonathan Kipnis
- Center for Brain Immunology and Glia, Department of Neuroscience, School of Medicine, University of Virginia, Charlottesville, VA 22908, USA; Gutenberg Research Fellowship Group of Neuroimmunology, Focus Program Translational Neuroscience and Immunotherapy, Rhine Main Neuroscience Network, University Medical Center of the Johannes Gutenberg University Mainz, 55131 Mainz, Germany.
| |
Collapse
|
31
|
Diny NL, Rose NR, Čiháková D. Eosinophils in Autoimmune Diseases. Front Immunol 2017; 8:484. [PMID: 28496445 PMCID: PMC5406413 DOI: 10.3389/fimmu.2017.00484] [Citation(s) in RCA: 115] [Impact Index Per Article: 14.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 04/07/2017] [Indexed: 12/15/2022] Open
Abstract
Eosinophils are multifunctional granulocytes that contribute to initiation and modulation of inflammation. Their role in asthma and parasitic infections has long been recognized. Growing evidence now reveals a role for eosinophils in autoimmune diseases. In this review, we summarize the function of eosinophils in inflammatory bowel diseases, neuromyelitis optica, bullous pemphigoid, autoimmune myocarditis, primary biliary cirrhosis, eosinophilic granulomatosis with polyangiitis, and other autoimmune diseases. Clinical studies, eosinophil-targeted therapies, and experimental models have contributed to our understanding of the regulation and function of eosinophils in these diseases. By examining the role of eosinophils in autoimmune diseases of different organs, we can identify common pathogenic mechanisms. These include degranulation of cytotoxic granule proteins, induction of antibody-dependent cell-mediated cytotoxicity, release of proteases degrading extracellular matrix, immune modulation through cytokines, antigen presentation, and prothrombotic functions. The association of eosinophilic diseases with autoimmune diseases is also examined, showing a possible increase in autoimmune diseases in patients with eosinophilic esophagitis, hypereosinophilic syndrome, and non-allergic asthma. Finally, we summarize key future research needs.
Collapse
Affiliation(s)
- Nicola L Diny
- W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins University Bloomberg School of Public Health, Baltimore, MD, USA
| | - Noel R Rose
- Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston, MA, USA
| | - Daniela Čiháková
- Department of Pathology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| |
Collapse
|
32
|
Dendritic cells in autoimmunity, infections, and cancer. Semin Immunopathol 2017; 39:97-98. [PMID: 28093619 DOI: 10.1007/s00281-016-0618-5] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2016] [Accepted: 12/20/2016] [Indexed: 01/01/2023]
|