1
|
Pimentel J, García Bustos MF, Ragone P, Marco JD, Barroso P, Mesías AC, Basombrío M, Occhionero M, Ramos F, Laucella SA, Brandán CP, Parodi C. Memory T Cell Subsets Expressing Tissue Homing Receptors and Chemokine Levels in Human Tegumentary Leishmaniasis. Cells 2025; 14:604. [PMID: 40277930 PMCID: PMC12025617 DOI: 10.3390/cells14080604] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2025] [Revised: 04/11/2025] [Accepted: 04/15/2025] [Indexed: 04/26/2025] Open
Abstract
Tegumentary leishmaniasis (TL) presents two main clinical forms: cutaneous (CL) and mucosal (ML) leishmaniasis affecting skin and nasopharyngeal mucosa. Due to parasite localization through disease stages, recruitment of T cells expressing chemokine receptors and their ligands will influence the generated host responses. The aim of this work was to characterize differential profiles of T cells expressing chemokine receptors and their plasma ligands by flow cytometry and ELISA. CL patients showed increased numbers of effector memory CD4+ T cells expressing skin homing receptors (CLA, CCR4), with the reversion of this effector phenotype observed after achieving clinical recovery. Meanwhile, ML patients showed higher frequencies of effector memory/terminal effector CD4+ and CD8+ T cells expressing chemokine receptors directed to skin (CLA, CCR4, CCR10) and mucosal (CCR6) tissues. Additionally, we reported that plasma amounts of ligands (CCL17, CCL20) vary according to the clinical form of TL. Finally, we demonstrated the ability of Leishmania spp. to modulate chemokine production (CCL17) in vitro. This work highlights the effector T cell response directed to skin and mucosal tissues in TL, emphasizing the role of cytotoxic functions in ML. The studied chemokine receptors could contribute to predicting disease progression and guiding future studies targeting relevant receptors to diminish pathogenic effector functions.
Collapse
Affiliation(s)
- Julia Pimentel
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - M. Fernanda García Bustos
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Paula Ragone
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Jorge D. Marco
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Paola Barroso
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Andrea Cecilia Mesías
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Mercedes Basombrío
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - María Occhionero
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Federico Ramos
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Susana Adriana Laucella
- Instituto Nacional de Parasitología Dr. Mario Fatala Chaben, Departamento de Investigación, Buenos Aires C1282AFF, Argentina;
| | - Cecilia Pérez Brandán
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| | - Cecilia Parodi
- Instituto de Patología Experimental, CONICET/Universidad Nacional de Salta, Salta A4408FVY, Argentina; (J.P.); (M.F.G.B.); (P.R.); (J.D.M.); (P.B.); (A.C.M.); (M.B.); (M.O.); (F.R.); (C.P.B.)
| |
Collapse
|
2
|
Li L, Liu J, Lu J, Wu J, Zhang X, Ma T, Wu X, Zhu Q, Chen Z, Tai Z. Interventions in cytokine signaling: novel horizons for psoriasis treatment. Front Immunol 2025; 16:1573905. [PMID: 40303401 PMCID: PMC12037536 DOI: 10.3389/fimmu.2025.1573905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2025] [Accepted: 03/27/2025] [Indexed: 05/02/2025] Open
Abstract
Intricate interactions between immune cells and cytokines define psoriasis, a chronic inflammatory skin condition that is immunological-mediated. Cytokines, including interleukins (ILs), interferons (IFNs), tumor necrosis factors (TNFs), chemokines, and transforming growth factor-β (TGF-β), are essential for controlling cellular activity and immunological responses, maintaining homeostasis and contributing to the pathogenesis of psoriasis. These molecules modulate the immune microenvironment by either promoting or suppressing inflammation, which significantly impacts therapeutic outcomes. Recent research indicates that treatment strategies targeting cytokines and chemokines have significant potential, offering new approaches for regulating the immune system, inhibiting the progression of psoriasis, and reducing adverse effects of traditional therapies. This review consolidates current knowledge on cytokine and chemokine signaling pathways in psoriasis and examines their significance in treatment. Specific attention is given to cytokines like IL-17, IL-23, and TNF-α, underscoring the necessity for innovative therapies to modulate these pathways and address inflammatory processes. This review emphasizes the principal part of cytokines in the -pathological process of psoriasis and explores the challenges and opportunities they present for therapeutic intervention. Furthermore, we examine recent advancements in targeted therapies, with a particular focus on monoclonal antibodies, in ongoing research and clinical trials.
Collapse
Affiliation(s)
- Lisha Li
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery Systems, State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Peking University, Beijing, China
| | - Jun Liu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Jiaye Lu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Junchao Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xinyue Zhang
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Tianyou Ma
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Xiying Wu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Quangang Zhu
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zhongjian Chen
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| | - Zongguang Tai
- Shanghai Skin Disease Hospital, School of Medicine, Tongji University, Shanghai, China
- Shanghai Engineering Research Center of Topical Chinese Medicine, Shanghai, China
| |
Collapse
|
3
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T Cells Promote Distinct Transcriptional Programs of Cutaneous Inflammatory Disease in Keratinocytes and Dermal Fibroblasts. J Invest Dermatol 2025:S0022-202X(25)00401-4. [PMID: 40216155 DOI: 10.1016/j.jid.2025.03.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2024] [Revised: 03/06/2025] [Accepted: 03/23/2025] [Indexed: 04/25/2025]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T-cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify T helper 17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T-cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T-cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T-cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Mitch L Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA
| | - Suraj R Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, Washington, USA
| | - William P Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR - Institute of Genomics and Integrative Biology, New Delhi, India; Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria; EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria; Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, Washington, USA; Division of Rheumatology, Virginia Mason Medical Center, Seattle, Washington, USA
| | - Daniel J Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA; Department of Immunology, University of Washington School of Medicine, Seattle, Washington, USA
| | - Peter A Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, Washington, USA.
| |
Collapse
|
4
|
Wang Y, Hong Y. Investigating the complex roles of immunocyte phenotypes in the pathogenesis of dermatitis: a causal inference Mendelian randomization analysis. Arch Dermatol Res 2025; 317:593. [PMID: 40100330 DOI: 10.1007/s00403-025-04072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 02/07/2025] [Accepted: 02/25/2025] [Indexed: 03/20/2025]
Abstract
The etiology of dermatitis involves complex interactions between immune cells, genetics, and environmental factors. While immunocyte phenotypes have been linked to various forms of dermatitis, their causal role remains unclear. We conducted a two-sample Mendelian randomization (MR) analysis to investigate the causal effects between 731 immunocyte phenotypes and four types of dermatitis: atopic dermatitis, contact dermatitis, infective dermatitis, and seborrhoeic dermatitis. Genetic variants were used as instrumental variables, and the inverse variance-weighted (IVW) method was employed to assess causality. Sensitivity analyses were performed to ensure robustness. The forward MR analysis identified significant associations between 22 immunocyte phenotypes and atopic dermatitis, 8 phenotypes with contact dermatitis, 5 with infective dermatitis, and 6 with seborrhoeic dermatitis. The reverse MR analysis suggested potential bidirectional interactions of atopic dermatitis and CD3 on CD28 + CD45RA- CD8br (OR = 0.924, P = 0.012). This study revealed causal relationships between specific immunocyte phenotypes and dermatitis subtypes, providing novel insights into the immunopathogenesis of dermatitis and potential therapeutic targets.
Collapse
Affiliation(s)
- Yi Wang
- The First School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China
| | - Yanggang Hong
- The Second School of Medicine, Wenzhou Medical University, Wenzhou, Zhejiang Province, 325035, China.
| |
Collapse
|
5
|
Gowtham A, Kaundal RK. Exploring the ncRNA landscape in exosomes: Insights into wound healing mechanisms and therapeutic applications. Int J Biol Macromol 2025; 292:139206. [PMID: 39732230 DOI: 10.1016/j.ijbiomac.2024.139206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Revised: 12/16/2024] [Accepted: 12/24/2024] [Indexed: 12/30/2024]
Abstract
Exosomal non-coding RNAs (ncRNAs), including miRNAs, lncRNAs, and circRNAs, have emerged as crucial modulators in cellular signaling, influencing wound healing processes. Stem cell-derived exosomes, which serve as vehicles for these ncRNAs, show remarkable therapeutic potential due to their ability to modulate wound healing stages, from initial inflammation to collagen formation. These ncRNAs act as molecular signals, regulating gene expression and protein synthesis necessary for cellular responses in healing. Wound healing is a complex, staged process involving inflammation, hemostasis, fibroblast proliferation, angiogenesis, and tissue remodeling. Stem cell-derived exosomal ncRNAs enhance these stages by reducing excessive inflammation, promoting anti-inflammatory responses, guiding fibroblast and keratinocyte maturation, enhancing vascularization, and ensuring organized collagen deposition. Their molecular cargo, particularly ncRNAs, specifically targets pathways to aid chronic wound repair and support scarless regeneration. This review delves into the unique composition and signaling roles of Stem cell-derived exosomes and ncRNAs, highlighting their impact across wound healing stages and their potential as innovative therapeutics. Understanding the interaction between exosomal ncRNAs and cellular signaling pathways opens new avenues in regenerative medicine, positioning Stem cell-derived exosomes and their ncRNAs as promising molecular-level interventions in wound healing.
Collapse
Affiliation(s)
- A Gowtham
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India
| | - Ravinder K Kaundal
- Department of Pharmacology and Toxicology, National Institute of Pharmaceutical Education and Research, Raebareli (NIPER-R), Transit Campus, Bijnor-Sisendi Road, Sarojini Nagar, Near CRPF Base Camp, Lucknow, UP 226002, India.
| |
Collapse
|
6
|
Liang G, Zhao C, Wei Q, Feng S, Wang Y. Single cell transcriptome profiling reveals pathogenesis of bullous pemphigoid. Commun Biol 2025; 8:203. [PMID: 39922909 PMCID: PMC11807148 DOI: 10.1038/s42003-025-07629-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 01/29/2025] [Indexed: 02/10/2025] Open
Abstract
Bullous pemphigoid (BP) triggers profound functional changes in both immune and non-immune cells in the skin and circulation, though the underlying mechanisms remain unclear. In this study, we conduct single-cell transcriptome analysis of lesional and non-lesional skin, as well as blood samples from BP patients. In lesional skin, non-immune cells upregulate pathways related to metabolism, wound healing, immune activation, and cell migration. LAMP3+DCs from cDC2 show stronger pro-inflammatory signatures than those from cDC1, and VEGFA+ mast cells, crucial for BP progression, are predominantly in lesional skin. As BP patients transition from active to remission stages, blood B cell function shifts from differentiation and memory formation to increased type 1 interferon signaling and reduced IL-4 response. Blood CX3CR1+ ZNF683+ and LAG3+ exhausted T cells exhibit the highest TCR expansion among clones shared with skin CD8+T cells, suggesting their role in fueling skin CD8+T cell clonal expansion. Clinical BP severity correlates positively with blood NK cell IFN-γ production and negatively with amphiregulin (AREG) production. NK cell-derived AREG mitigates IFN-γ-induced keratinocyte apoptosis, suggesting a crucial balance between AREG and IFN-γ in BP progression. These findings highlight functional shifts in BP pathology and suggest potential therapeutic targets.
Collapse
Affiliation(s)
- Guirong Liang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Chenjing Zhao
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Qin Wei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - Suying Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| | - Yetao Wang
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
7
|
Qiu F, Lin J, Huang X, Yang B, Lu W, Dai Z. The immunoregulatory effects of scoparone on immune-mediated inflammatory diseases. Front Immunol 2025; 16:1518886. [PMID: 39958341 PMCID: PMC11825328 DOI: 10.3389/fimmu.2025.1518886] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Accepted: 01/15/2025] [Indexed: 02/18/2025] Open
Abstract
Scoparone (SCO), also known as 6,7-Dimethoxycoumarin, is a naturally occurring bioactive ingredient originally derived from Chinese herb Artemisiae Scopariae Herba (Yin-Chen-Hao). Previous studies have shown that it is effective in treating some of the liver diseases. Beyond its hepatoprotective effects, an expanding body of research has underscored the immunoregulatory properties of SCO, indicating its potential therapeutic benefits for autoimmune and other inflammatory diseases. Over the past decade, significant advances have been made in understanding the mechanistic insights into its effects on immune-mediated diseases as well as liver diseases. SCO has an impact on various immune cells, including mast cells, monocytes, macrophages, neutrophils and T cells, and affects a broad range of intracellular signaling pathways, including TLR4/Myd88/NFκB, TGFβR/Smad3 and JNK/Sab/SHP-1 etc. Therefore, this review not only summarizes the immunomodulatory and therapeutic effects of SCO on immune-based inflammatory diseases (IMIDs), such as inflammatory bowel disease, osteoarthritis, allergic rhinitis, acute lung injury, type 1 diabetes and neuroinflammatory diseases etc., but also provides a comprehensive summary of its therapeutic effects on hepatic diseases, including non-alcoholic steatohepatitis, fulminant hepatic failure and hepatic fibrosis. In this review, we also include the broad impacts of SCO on intracellular signaling pathways, such as TLR4/Myd88/NFκB, TGFβR/Smad3, Nrf2/P38, JAK2/STAT3 and JNK/Sab/SHP-1 etc. Further researches on SCO may help understand its in-depth mechanisms of action and pave the way for the development of novel drugs to prevent and treat various immune-mediated inflammatory disorders as well as hepatic diseases, thereby significantly advancing its innovations and pharmaceutical applications.
Collapse
Affiliation(s)
- Feifei Qiu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Jingru Lin
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Xiaofei Huang
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Bin Yang
- Department of Cardiovascular Sciences, College of Life Sciences University of Leicester, Leicester, United Kingdom
| | - Weihui Lu
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| | - Zhenhua Dai
- Section of Immunology, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
- State Key Laboratory of Dampness Syndrome of Chinese Medicine, the Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, Guangdong, China
| |
Collapse
|
8
|
DeBerg HA, Fahning ML, Varkhande SR, Schlenker JD, Schmitt WP, Gupta A, Singh A, Gratz IK, Carlin JS, Campbell DJ, Morawski PA. T cells promote distinct transcriptional programs of cutaneous inflammatory disease in keratinocytes and dermal fibroblasts. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.31.606077. [PMID: 39131334 PMCID: PMC11312529 DOI: 10.1101/2024.07.31.606077] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/13/2024]
Abstract
T cells and structural cells coordinate appropriate inflammatory responses and restoration of barrier integrity following insult. Dysfunctional T cells precipitate skin pathology occurring alongside altered structural cell frequencies and transcriptional states, but to what extent different T cells promote disease-associated changes remains unclear. We show that functionally diverse circulating and skin-resident CD4+CLA+ T cell populations promote distinct transcriptional outcomes in human keratinocytes and fibroblasts associated with inflamed or healthy tissue. We identify Th17 cell-induced genes in keratinocytes that are enriched in psoriasis patient skin and normalized by anti-IL-17 therapy. We also describe a CD103+ skin-resident T cell-induced transcriptional module enriched in healthy controls that is diminished during psoriasis and scleroderma and show that CD103+ T cell frequencies are altered during disease. Interrogating clinical data using immune-dependent transcriptional signatures defines the T cell subsets and genes distinguishing inflamed from healthy skin and allows investigation of heterogeneous patient responses to biologic therapy.
Collapse
Affiliation(s)
- Hannah A. DeBerg
- Center for Systems Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Mitch L. Fahning
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| | - Suraj R. Varkhande
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
| | - James D. Schlenker
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - William P. Schmitt
- Plastic and Reconstructive Surgery, Virginia Mason Medical Center, Seattle, WA, USA
| | - Aayush Gupta
- Department of Dermatology, Leprology, and Venereology, Dr. D. Y. Patil Medical College, Hospital and Research Centre, Pune, India
| | - Archana Singh
- Systems Biology Lab, CSIR – Institute of Genomics and Integrative Biology, New Delhi, India
- Academy of Scientific and Innovative Research (AcSIR), Gaziabad, India
| | - Iris K. Gratz
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Biosciences and Medical Biology, University of Salzburg, Salzburg, Austria
- EB House Austria, Department of Dermatology, University Hospital of the Paracelsus Medical University, Salzburg, Austria
- Center for Tumor Biology and Immunology, University of Salzburg, Salzburg, Austria
| | - Jeffrey S. Carlin
- Center for Translational Immunology, Benaroya Research Institute, Seattle, WA, USA
- Division of Rheumatology, Virginia Mason Medical Center, Seattle, WA, USA
| | - Daniel J. Campbell
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
- Department of Immunology, University of Washington School of Medicine, Seattle, WA, USA
| | - Peter A. Morawski
- Center for Fundamental Immunology, Benaroya Research Institute, Seattle, WA, USA
| |
Collapse
|
9
|
Hu Y, Wang Y, Zhi L, Yu L, Hu X, Shen Y, Du W. SDC4 protein action and related key genes in nonhealing diabetic foot ulcers based on bioinformatics analysis and machine learning. Int J Biol Macromol 2024; 283:137789. [PMID: 39557273 DOI: 10.1016/j.ijbiomac.2024.137789] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 11/12/2024] [Accepted: 11/15/2024] [Indexed: 11/20/2024]
Abstract
Diabetic foot ulcers (DFU) is a complication associated with diabetes characterised by high morbidity, disability, and mortality, involving chronic inflammation and infiltration of multiple immune cells. We aimed to identify the critical genes in nonhealing DFU using single-cell RNA sequencing, transcriptomic analysis and machine learning. The GSE165816, GSE134431, and GSE143735 datasets were downloaded from the GEO database. We processed and screened the datasets, and identified the cell subsets. Each cell subtype was annotated, and the predominant cell types contributing to the disease were analysed. Key genes were identified using the LASSO regression algorithm, followed by verification of model accuracy and stability. We investigated the molecular mechanisms and changes in signalling pathways associated with this disease using immunoinfiltration analysis, GSEA, and GSVA. Through scRNA-seq analysis, we identified 12 distinct cell clusters and determined that the basalKera cell type was important in disease development. A high accuracy and stability prediction model was constructed incorporating five key genes (TXN, PHLDA2, RPLP1, MT1G, and SDC4). Among these five genes, SDC4 has the strongest correlation and plays an important role in the development of DFU. Our study identified SDC4 significantly associated with nonhealing DFU development, potentially serving as new prevention and treatment strategies for DFU.
Collapse
Affiliation(s)
- Yungang Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China; Department of Plastic Surgery, Jiangxi Provincial People's Hospital, The First Affiliated Hospital of Nanchang Medical College, Nanchang 330006, China
| | - Yiwen Wang
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lin Zhi
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Lu Yu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Xiaohua Hu
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Yuming Shen
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China
| | - Weili Du
- Department of Burns and Plastic Surgery, Beijing Jishuitan Hospital, Capital Medical University, Beijing 100035, China.
| |
Collapse
|
10
|
Sun J, Yuan H, Yu Y, Li A, Zhao Z, Tang Y, Zheng F. Immunomodulatory potential of primary cilia in the skin. Front Immunol 2024; 15:1456875. [PMID: 39676858 PMCID: PMC11638010 DOI: 10.3389/fimmu.2024.1456875] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2024] [Accepted: 11/15/2024] [Indexed: 12/17/2024] Open
Abstract
Primary cilia (PC) are essential signaling hubs for proper epithelial formation and the maintenance of skin homeostasis. Found on most cells in the human body, including skin cells, PC facilitate signal transduction that allows ciliated cells to interact with the immune system via multiple pathways, helping to maintain immune system homeostasis. PC can be altered by various microenvironmental stimuli to develop corresponding regulatory functions. Both PC and ciliary signaling pathways have been shown to be involved in the immune processes of various skin lesions. However, the mechanisms by which PC regulate cellular functions and maintain immune homeostasis in tissues are highly complex, and our understanding of them in the skin remains limited. In this paper, we discuss key ciliary signaling pathways and ciliated cells in the skin, with a focus on their immunomodulatory functions. We have compiled evidence from various cells, tissues and disease models to help explore the potential immunomodulatory effects of PC in the skin and their molecular mechanisms.
Collapse
Affiliation(s)
- Jingwei Sun
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Huimin Yuan
- Department of Dermatology, Beijing Tsinghua Changgung Hospital, School of Clinical Medicine, Tsinghua University, Beijing, China
| | - Yanru Yu
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Aorou Li
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Zihe Zhao
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Yang Tang
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| | - Fengjie Zheng
- School of Traditional Chinese Medicine, Beijing University of Chinese Medicine, Beijing, China
| |
Collapse
|
11
|
Srishti SA, Pinky PP, Taylor R, Guess J, Karlik N, Janjic JM. Quality by Design (QbD)-Driven Development and Optimization of Tacrolimus-Loaded Microemulsion for the Treatment of Skin Inflammation. Pharmaceutics 2024; 16:1487. [PMID: 39771467 PMCID: PMC11678404 DOI: 10.3390/pharmaceutics16121487] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Revised: 11/08/2024] [Accepted: 11/13/2024] [Indexed: 01/11/2025] Open
Abstract
Background: Skin inflammation represents a hallmark of many skin conditions, from psoriasis to eczema. Here, we present a novel microemulsion formulation for delivering a low dose of potent immunosuppressant, tacrolimus, to the skin for local inflammation control. The efficacy of topically delivered tacrolimus in controlling skin inflammation can be enhanced by packaging it into microemulsions. Microemulsions are small-size, thermodynamically stable, and surfactant-rich emulsions that can enhance tissue penetration and local tissue retention of poorly soluble drugs, which can reduce dosing frequency and potentially improve patient compliance. Methods: We present a novel approach for microemulsion manufacturing that uses a combination of both low and high-energy methods. The microemulsion composition and manufacturing parameters were optimized by adopting Quality by Design methodologies. The FMECA (Failure, Mode, Effects, Criticality Analysis)-based risk assessment, D-optimal Design of Experiment (DoE), and statistical analysis of parameters impacting responses through the multiple linear regression (MLR) was implemented for identifying critical formulation and process parameters. Results: Through QbD strategy, a stable microemulsion with optimized drug loading that met all critical quality attributes (CQAs) was identified. The optimal microemulsion candidate was successfully scaled up three-fold with retained CQAs. The presented microemulsion showed a slow and extended drug release profile in vitro. Conclusions: Presented findings suggest that microemulsions are a promising novel approach for tacrolimus delivery to the skin. Further, we also demonstrated that a combination of low-energy emulsification and microfluidization processes can produce stable and robust microemulsions with small droplet size that can be implemented in drug delivery of poorly soluble anti-inflammatory drugs. To the best of our knowledge, this is the first report of QbD-driven optimization of microemulsion manufacturing by microfluidization.
Collapse
Affiliation(s)
| | | | | | | | | | - Jelena M. Janjic
- School of Pharmacy, Graduate School of Pharmaceutical Sciences, Duquesne University, Pittsburgh, PA 15282, USA
| |
Collapse
|
12
|
Qi J, Wu Y, Liu Y, Ma J, Wang Z. hsa_circ_0007755 competitively adsorbs miR-27b-3p to mediate CXCL2 expression and recruit Th1 cells to promote hypertrophic scars development. Heliyon 2024; 10:e39169. [PMID: 39524791 PMCID: PMC11544067 DOI: 10.1016/j.heliyon.2024.e39169] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Revised: 10/08/2024] [Accepted: 10/08/2024] [Indexed: 11/16/2024] Open
Abstract
Background and objective The circular RNA hsa_circ_0007755 is markedly upregulated in hypertrophic scars (HS), yet its functional roles in this fibroproliferative disorder remain to be elucidated. This investigation aims to delineate the regulatory mechanisms of hsa_circ_0007755 in HS and to decode its downstream molecular signaling pathways. Methods We established a murine model of HS. Tissue histopathology was assessed using Hematoxylin and Eosin and Masson's trichrome staining. Peripheral blood from the animals was collected and the ratio of T-helper 1 (Th1) to T-helper 2 (Th2) cells was quantified via flow cytometry. The proliferation and apoptosis rates of human hypertrophic scar fibroblasts (hHSFs) were evaluated using the Cell Counting Kit-8 assay and flow cytometry, respectively. The invasive capacity of hHSFs was assessed via a Transwell assay. Co-culture experiments of hHSFs with T cells were conducted, and alterations in Th1/Th2 ratios were monitored using flow cytometry. Levels of cytokines, fibrosis-associated proteins, nuclear factor-kappaB (NF-κB) pathway-related protein, and C-X-C Motif Chemokine Ligand 2 (CXCL2) were quantified using Enzyme-Linked Immunosorbent Assay or Western blot analysis. The interactions between hsa_circ_0007755, miR-27b-3p, and CXCL2 were investigated using dual-luciferase reporter assays and RNA immunoprecipitation. Results Both hsa_circ_0007755 and CXCL2 were highly expressed in HS, whereas miR-27b-3p was downregulated. Knockdown of hsa_circ_0007755 inhibited the proliferation and invasion of hHSFs, promoted apoptosis, and reduced the expression of fibrotic proteins α-SMA and Collagen I, as well as the phosphorylation of the inflammatory pathway protein p65. Co-culture experiments confirmed that hHSFs lowly expressing hsa_circ_0007755 showed a decreased Th1 cell proportion and an increased Th2 cell proportion, alongside lower levels of TNF-α and INF-γ and higher levels of IL-4 and IL-10. The effects of either knocking down or overexpressing hsa_circ_0007755 were reversed by knocking down either miR-27b-3p or CXCL2, respectively. hsa_circ_0007755 acted as a "molecular sponge" for miR-27b-3p, sequestering and diminishing its availability, thereby alleviating its suppression of the target gene CXCL2. Conclusion hsa_circ_0007755 plays a pivotal role in modulating the immune response of HS by influencing the miR-27b-3p/CXCL2 axis, regulating the function and proportion of Th1 and Th2 cells, and thereby affecting the inflammatory and fibrotic processes in scar tissue.
Collapse
Affiliation(s)
- Jun Qi
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - YangYang Wu
- Department of Burn and Plastic Surgery, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - YiFei Liu
- Department of Pathology, Affiliated Hospital of Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - JiuCheng Ma
- Nantong University, Nantong City, Jiangsu Province, 226001, China
| | - ZhaoNan Wang
- Nantong University, Nantong City, Jiangsu Province, 226001, China
| |
Collapse
|
13
|
Zhai S, Chen L, Liu H, Wang M, Xue J, Zhao X, Jiang H. Skin barrier: new therapeutic targets for chronic kidney disease-associated pruritus - a narrative review. Int J Dermatol 2024; 63:1513-1521. [PMID: 38855995 DOI: 10.1111/ijd.17254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/05/2023] [Revised: 04/13/2024] [Accepted: 04/30/2024] [Indexed: 06/11/2024]
Abstract
The current incidence of chronic kidney disease-associated pruritus (CKD-aP) in patients with end-stage renal disease (ESRD) is approximately 70%, especially in those receiving dialysis, which negatively affects their work and private lives. The CKD-aP pathogenesis remains unclear, but uremic toxin accumulation, histamine release, and opioid imbalance have been suggested to lead to CKD-aP. Current therapeutic approaches, such as opioid receptor modulators, antihistamines, and ultraviolet B irradiation, are associated with some limitations and adverse effects. The skin barrier is the first defense in preventing external injury to the body. Patients with chronic kidney disease often experience itch due to the damaged skin barrier and reduced secretion of sweat and secretion from sebaceous glands. Surprisingly, skin barrier-repairing agents repair the skin barrier and inhibit the release of inflammatory cytokines, maintain skin immunity, and ameliorate the micro-inflammatory status of afferent nerve fibers. Here, we summarize the epidemiology, pathogenesis, and treatment status of CKD-aP and explore the possibility of skin barrier repair in CKD-aP treatment.
Collapse
Affiliation(s)
- Siyue Zhai
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Lei Chen
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hua Liu
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Meng Wang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Jinhong Xue
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Xue Zhao
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
- Central for Translational Medicine, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| | - Hongli Jiang
- Department of Critical Care Nephrology and Blood Purification, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an, Shaanxi, China
| |
Collapse
|
14
|
Jiang Y, Zhao Y, Liu Z, Fang JKH, Lai KP, Li R. Roles and mechanisms of fucoidan against dermatitis: A review. Int J Biol Macromol 2024; 279:135268. [PMID: 39233164 DOI: 10.1016/j.ijbiomac.2024.135268] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 08/26/2024] [Accepted: 08/31/2024] [Indexed: 09/06/2024]
Abstract
Fucoidan is a sulfate-containing polysaccharide derived from the cell walls of brown algae and marine invertebrates. Fucoidan is widely used for the treatment of various diseases owing to its various biological activities. Dermatitis is an inflammatory reaction that affects the skin. The primary clinical manifestations include atopic dermatitis (AD or eczema) and various subtypes of contact dermatitis. The treatment of dermatitis primarily improves symptoms and reduces inflammation. However, owing to individual variations, some patients have a poor prognosis or symptom recurrence after conventional treatment. Owing to the excellent anti-allergic and anti-inflammatory activities of the low cost nature compound fucoidan, its therapeutic effect in inflammatory diseases has recently attracted the attention of researchers. This article summarizes and analyzes the advantages and pharmacological mechanisms of fucoidan against dermatitis to provide a reference for the selection of drugs for the treatment of dermatitis.
Collapse
Affiliation(s)
- Yingqi Jiang
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Yin Zhao
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - Zhuoqing Liu
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; Lingui Clinical College of Guilin Medical University, Guilin, China
| | - James Kar-Hei Fang
- Department of Food Science and Nutrition, The Hong Kong Polytechnic University, Hong Kong Special Administrative Region of China
| | - Keng Po Lai
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China; School of Science and Technology, Hong Kong Metropolitan University, Hong Kong SAR, China.
| | - Rong Li
- Key Laboratory of Environmental Pollution and Integrative Omics, Education Department of Guangxi Zhuang Autonomous Region, Guilin Medical University, Guilin, China.
| |
Collapse
|
15
|
Kohlhauser M, Mayrhofer M, Kamolz LP, Smolle C. An Update on Molecular Mechanisms of Scarring-A Narrative Review. Int J Mol Sci 2024; 25:11579. [PMID: 39519131 PMCID: PMC11546163 DOI: 10.3390/ijms252111579] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Revised: 10/01/2024] [Accepted: 10/03/2024] [Indexed: 11/16/2024] Open
Abstract
Fibroblasts, the principal cellular mediators of connective tissue remodeling, play a crucial role in the formation of physiological and pathological scars. Understanding the intricate interplay between fibroblasts and other cellular and molecular components is essential for elucidating the underlying mechanisms driving scar formation. Hypertrophic scars, keloids and atrophic scars arise from dysregulated wound healing processes characterized by persistent inflammation, aberrant collagen deposition, and impaired extracellular matrix remodeling. Fibroblasts play a central role in the pathogenesis of such pathological scars, driving aberrant extracellular matrix remodeling, subsequently contributing to the formation of raised or depressed fibrotic lesions. The investigation of complex interactions between fibroblasts and the microenvironment is crucial for developing targeted therapeutic interventions aimed at modulating fibroblast activity and improving clinical outcomes in patients with pathological scars. Further research into the molecular pathways governing fibroblast behavior and their heterogeneity holds promise for advancing scar management strategies. This narrative review was performed to shed light on the mechanisms behind scar formation, with a special focus on the role of fibroblasts in the formation of different types of scars, providing insights into the pathophysiology of these conditions. Through the analysis of current knowledge, this review seeks to identify the key cellular and molecular mechanisms involved in fibroblast activation, collagen synthesis, and extracellular matrix remodeling in hypertrophic scar, keloid, or atrophic scar formation.
Collapse
Affiliation(s)
- Michael Kohlhauser
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Marcel Mayrhofer
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| | - Lars-Peter Kamolz
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
- COREMED—Centre for Regenerative Medicine and Precision Medicine, JOANNEUM RESEARCH Forschungsgesellschaft mbH, 8010 Graz, Austria
| | - Christian Smolle
- Division of Plastic, Aesthetic and Reconstructive Surgery, Department of Surgery, Medical University of Graz, 8036 Graz, Austria
| |
Collapse
|
16
|
Martínez-Vila C, González-Navarro EA, Teixido C, Martin R, Aya F, Juan M, Arance A. Lymphocyte T Subsets and Outcome of Immune Checkpoint Inhibitors in Melanoma Patients: An Oncologist's Perspective on Current Knowledge. Int J Mol Sci 2024; 25:9506. [PMID: 39273452 PMCID: PMC11394732 DOI: 10.3390/ijms25179506] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 08/09/2024] [Accepted: 08/26/2024] [Indexed: 09/15/2024] Open
Abstract
Melanoma is the most aggressive and deadly form of skin cancer, and its incidence has been steadily increasing over the past few decades, particularly in the Caucasian population. Immune checkpoint inhibitors (ICI), anti-PD-1 monotherapy or in combination with anti-CTLA-4, and more recently, anti-PD-1 plus anti-LAG-3 have changed the clinical evolution of this disease. However, a significant percentage of patients do not benefit from these therapies. Therefore, to improve patient selection, it is imperative to look for novel biomarkers. Immune subsets, particularly the quantification of lymphocyte T populations, could contribute to the identification of ICI responders. The main purpose of this review is to thoroughly examine significant published data on the potential role of lymphocyte T subset distribution in peripheral blood (PB) or intratumorally as prognostic and predictive of response biomarkers in advanced melanoma patients treated with ICI regardless of BRAFV600 mutational status.
Collapse
Affiliation(s)
- Clara Martínez-Vila
- Department of Medical Oncology, Althaia Xarxa Assistencial Universitària de Manresa, Dr. Joan Soler, 1-3, 08243 Manresa, Spain
- Programa de Doctorat en Medicina i Recerca Translacional, Facultat de Medicina, Universitat de Barcelona, 08036 Barcelona, Spain
- Institut de Recerca i Innovació en Ciències de la Vida i de la Salut a la Catalunya Central (IRIS-CC), Roda 70, 08500 Vic, Spain
| | - Europa Azucena González-Navarro
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
| | - Cristina Teixido
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Pathology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
| | - Roberto Martin
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Francisco Aya
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Manel Juan
- Department of Immunology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| | - Ana Arance
- August Pi i Sunyer Biomedical Research Institute (IDIBAPS), Rosselló 149, 08036 Barcelona, Spain
- Department of Medical Oncology, Hospital Clínic of Barcelona, University of Barcelona, Villarroel 170, 08036 Barcelona, Spain
- Grupo Español de Terapias Inmunobiológicas en Cáncer (GETICA), Velázquez 7, 28001 Madrid, Spain
| |
Collapse
|
17
|
Jin S, Wan S, Xiong R, Li Y, Dong T, Guan C. The role of regulatory T cells in vitiligo and therapeutic advances: a mini-review. Inflamm Res 2024; 73:1311-1332. [PMID: 38839628 DOI: 10.1007/s00011-024-01900-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2024] [Revised: 05/21/2024] [Accepted: 05/29/2024] [Indexed: 06/07/2024] Open
Abstract
BACKGROUND Regulatory T cells (Tregs) play vital roles in controlling immune reactions and maintaining immune tolerance in the body. The targeted destruction of epidermal melanocytes by activated CD8+T cells is a key event in the development of vitiligo. However, Tregs may exert immunosuppressive effects on CD8+T cells, which could be beneficial in treating vitiligo. METHODS A comprehensive search of PubMed and Web of Science was conducted to gather information on Tregs and vitiligo. RESULTS In vitiligo, there is a decrease in Treg numbers and impaired Treg functions, along with potential damage to Treg-related signaling pathways. Increasing Treg numbers and enhancing Treg function could lead to immunosuppressive effects on CD8+T cells. Recent research progress on Tregs in vitiligo has been summarized, highlighting various Treg-related therapies being investigated for clinical use. The current status of Treg-related therapeutic strategies and potential future directions for vitiligo treatment are also discussed. CONCLUSIONS A deeper understanding of Tregs will be crucial for advancing Treg-related drug discovery and treatment development in vitiligo.
Collapse
Affiliation(s)
- Shiyu Jin
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Sheng Wan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Renxue Xiong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China
| | - Yujie Li
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Tingru Dong
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China
| | - Cuiping Guan
- Hangzhou Third Hospital Affiliated to Zhejiang Chinese Medical University, Hangzhou, 310009, China.
- Department of Dermatology, Hangzhou Third People's Hospital, Hangzhou, 310009, China.
| |
Collapse
|
18
|
Jiang L, Hu Y, Zhang Y, Zhao Y, Gao L, Dong Y, Liang Y, Guo H, Wu S, Zhang Y, Chen J, Zeng Q. Abnormal metabolism in melanocytes participates in the activation of dendritic cell in halo nevus. Clin Immunol 2024; 265:110300. [PMID: 38950722 DOI: 10.1016/j.clim.2024.110300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Revised: 06/16/2024] [Accepted: 06/24/2024] [Indexed: 07/03/2024]
Abstract
A comprehensive analysis of spatial transcriptomics was carried out to better understand the progress of halo nevus. We found that halo nevus was characterized by overactive immune responses, triggered by chemokines and dendritic cells (DCs), T cells, and macrophages. Consequently, we observed abnormal cell death, such as apoptosis and disulfidptosis in halo nevus, some were closely related to immunity. Interestingly, we identified aberrant metabolites such as uridine diphosphate glucose (UDP-G) within the halo nevus. UDP-G, accompanied by the infiltration of DCs and T cells, exhibited correlations with certain forms of cell death. Subsequent experiments confirmed that UDP-G was increased in vitiligo serum and could activate DCs. We also confirmed that oxidative response is an inducer of UDP-G. In summary, the immune response in halo nevus, including DC activation, was accompanied by abnormal cell death and metabolites. Especially, melanocyte-derived UDP-G may play a crucial role in DC activation.
Collapse
Affiliation(s)
- Ling Jiang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yibo Hu
- Clinical Research Center, The Second Xiangya Hospital, Central South University, No.139 Renmin Road, Changsha, Hunan 410011, PR China
| | - Yushan Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yuanyuan Zhao
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Lijuan Gao
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yumeng Dong
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yixuan Liang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Haoran Guo
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Songjiang Wu
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Yuanmin Zhang
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Jing Chen
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China
| | - Qinghai Zeng
- Department of Dermatology, The Third Xiangya Hospital, Central South University, No.138 Tongzipo Road, Changsha, Hunan 410013, PR China.
| |
Collapse
|
19
|
Lin J, Chen X, Luo M, Zhuo Q, Zhang H, Chen N, Zhuo Y, Han Y. Safety of tildrakizumab: a disproportionality analysis based on the FDA adverse event reporting system (FAERS) database from 2018-2023. Front Pharmacol 2024; 15:1420478. [PMID: 39050749 PMCID: PMC11267582 DOI: 10.3389/fphar.2024.1420478] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2024] [Accepted: 06/13/2024] [Indexed: 07/27/2024] Open
Abstract
Background: Tildrakizumab, the IL-23 inhibitor, is used to treat plaque psoriasis and psoriatic arthritis. Many studies have reported adverse drug reactions (ADRs) associated with Tildrakizumab. Objective: The aim of this study was to describe ADRs associated with Tildrakizumab monotherapy by mining data from the U.S. Food and Drug Administration Adverse Event Reporting System (FAERS). Methods: The signals of Tildrakizumab-associated ADRs were quantified using disproportionality analyses such as the reporting odds ratio (ROR), the proportional reporting ratio (PRR), the Bayesian confidence propagation neural network (BCPNN), and the multiitem gamma Poisson shrinker (MGPS) algorithms. Results: A total of 10,530,937 reports of ADRs were collected from the FAERS database, of which 1,177 reports were identified with tildrakizumab as the "primary suspect (PS)". Tildrakizumab-induced ADRs occurred against 27 system organ classes (SOCs). A total of 32 significant disproportionality Preferred Terms (PTs) conformed to the algorithms. Unexpected significant ADRs such as coronavirus infection, herpes simplex, diverticulitis, atrial fibrillation and aortic valve incompetence were also possible. The median time to onset of Tildrakizumab-associated ADRs was 194 days (interquartile range [IQR] 84-329 days), with the majority occurring, within the first 1 and 3 months after initiation of Tildrakizumab. Conclusion: This study identified a potential signal for new ADRs with Tildrakizumab, which might provide important support for clinical monitoring and risk prediction.
Collapse
Affiliation(s)
- Jinger Lin
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Xiangqi Chen
- Department of Dermatology, 900Th Hospital of Joint Logistics Support Force, Chinese People's Liberation Army, Fuzhou, Fujian, China
| | - Min Luo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qianwei Zhuo
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Haosong Zhang
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Nuo Chen
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Yunqian Zhuo
- Department of Dermatology, Fuzhou First General Hospital, Fuzhou, Fujian, China
| | - Yue Han
- Department of Dermatology, The Union Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
20
|
Lei L, Feng S. Immune interplay from circulation to local lesion in pemphigus pathogenesis. J Autoimmun 2024; 147:103261. [PMID: 38797047 DOI: 10.1016/j.jaut.2024.103261] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/29/2024] [Accepted: 05/21/2024] [Indexed: 05/29/2024]
Abstract
Pemphigus, a potentially lethal autoimmune skin disease, is mediated by desmoglein-specific antibodies, manifesting cutaneous and mucosal blisters and erosions. The interaction between multiple immune counterparts contributes to the progress of pemphigus. Currently, the emergence of bioinformatic analysis enables investigators to gain a global picture of the pemphigus immune network, based on the exhaustive pedigree annotation of multiple subsets. T helper subsets dominate the landscape as mentioned previously, and innate immune cells have been involved as well. Of particular interests is which phenotype of T cells orchestrates the autoimmune process and chronic inflammation in a certain condition. In this review, the circulatory and peripheral immune cells and cytokine components constituting the immune microenvironment are separately discussed to provide a perspective on pemphigus pathogenesis, with particular reference to insights provided by the bioinformation technique.
Collapse
Affiliation(s)
- Li Lei
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China
| | - SuYing Feng
- Hospital for Skin Diseases, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, China.
| |
Collapse
|
21
|
Wolk K, Schielein M, Maul JT, Widmayer F, Wanke K, Fischmann W, Nathan P, Sabat R. Patient-reported assessment of medical care for chronic inflammatory skin diseases: an enterprise-based survey. Front Med (Lausanne) 2024; 11:1384055. [PMID: 38698787 PMCID: PMC11064793 DOI: 10.3389/fmed.2024.1384055] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2024] [Accepted: 03/15/2024] [Indexed: 05/05/2024] Open
Abstract
Background Chronic inflammatory skin diseases (CISDs) are among the most common diseases in the Western world. Current estimates of medical care for CISDs are primarily based on surveys among patients in medical care facilities and on health insurance data. Aim Survey-based examination to what extent CISD patients in health-aware environment consider their skin disease to be controlled. Methods The survey of CISD patients was carried out in 2022 among the employees of a pharmaceutical company located in Germany and Switzerland. Software-based, anonymous, self-reported questionnaires were used. Results The number of employees, who answered the questionnaire, was 905. Of these, 222 participants (24.5%) reported having at least one CISD. 28.7% of participants with CISD described their disease as being hardly or not controlled. Regarding the nature of disease, more than one third of participants suffering from hidradenitis suppurativa (HS) or psoriasis fell into the hardly/not controlled category. In contrast, the largest proportion of participants with chronic spontaneous urticaria (43%) or atopic dermatitis (42%) considered their CISD to be completely or well controlled. Only 35.5% of CISD sufferers stated that they were currently under medical care for their skin condition. Being under medical care, however, had no influence on the extent CISD sufferers considered their skin disease to be controlled. The number of active CISD episodes but not the total number of symptomatic days per year was negatively associated with poor disease control (p = 0.042 and p = 0.856, respectively). Poor disease control had a negative effect on the personal and professional lives of those affected, as deduced from its positive association with the extent of daily activity impairment and presenteeism (p = 0.005 and p = 0.005, respectively). Moreover, 41.4 and 20.7% of participants with hardly/not controlled disease stated that their CISD had a moderate and severe or very severe impact on their overall lives (p < 0.001), respectively. A severe or very severe impact of their CISD on their overall life was most commonly reported by participants with HS. Conclusion Medical care for CISDs, even in an environment with high socio-economic standard and high health-awareness, still appears to be limited and has a negative impact on individuals and society.
Collapse
Affiliation(s)
- Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | | | - Julia-Tatjana Maul
- Department of Dermatology, University Hospital Zurich, Zurich, Switzerland
- Faculty of Medicine, University of Zurich, Zurich, Switzerland
| | | | | | | | | | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
- Interdisciplinary Group Molecular Immunopathology, Dermatology/Medical Immunology, Charité – Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
22
|
Cioce A, Cavani A, Cattani C, Scopelliti F. Role of the Skin Immune System in Wound Healing. Cells 2024; 13:624. [PMID: 38607063 PMCID: PMC11011555 DOI: 10.3390/cells13070624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2024] [Revised: 03/21/2024] [Accepted: 03/31/2024] [Indexed: 04/13/2024] Open
Abstract
Wound healing is a dynamic and complex process, characterized by the coordinated activities of multiple cell types, each with distinct roles in the stages of hemostasis, inflammation, proliferation, and remodeling. The cells of the immune system not only act as sentinels to monitor the skin and promote homeostasis, but they also play an important role in the process of skin wound repair. Skin-resident and recruited immune cells release cytokines and growth factors that promote the amplification of the inflammatory process. They also work with non-immune cells to remove invading pathogens and debris, as well as guide the regeneration of damaged host tissues. Dysregulation of the immune system at any stage of the process may lead to a prolongation of the inflammatory phase and the development of a pathological condition, such as a chronic wound. The present review aims to summarize the roles of different immune cells, with special emphasis on the different stages of the wound healing process.
Collapse
Affiliation(s)
| | | | | | - Fernanda Scopelliti
- National Institute for Health, Migration and Poverty INMP/NIHMP, Via di S.Gallicano, 25, 00153 Rome, Italy; (A.C.); (A.C.); (C.C.)
| |
Collapse
|
23
|
Ødum AWF, Geisler C. Vitamin D in Cutaneous T-Cell Lymphoma. Cells 2024; 13:503. [PMID: 38534347 PMCID: PMC10969440 DOI: 10.3390/cells13060503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2024] [Revised: 03/05/2024] [Accepted: 03/12/2024] [Indexed: 03/28/2024] Open
Abstract
Cutaneous T-cell lymphoma (CTCL) is characterized by the proliferation of malignant T cells in inflamed skin lesions. Mycosis fungoides (MF)-the most common variant of CTCL-often presents with skin lesions around the abdomen and buttocks ("bathing suit" distribution), i.e., in skin areas devoid of sun-induced vitamin D. For decades, sunlight and vitamin D have been connected to CTCL. Thus, vitamin D induces apoptosis and inhibits the expression of cytokines in malignant T cells. Furthermore, CTCL patients often display vitamin D deficiency, whereas phototherapy induces vitamin D and has beneficial effects in CTCL, suggesting that light and vitamin D have beneficial/protective effects in CTCL. Inversely, vitamin D promotes T helper 2 (Th2) cell specific cytokine production, regulatory T cells, tolerogenic dendritic cells, as well as the expression of immune checkpoint molecules, all of which may have disease-promoting effects by stimulating malignant T-cell proliferation and inhibiting anticancer immunity. Studies on vitamin D treatment in CTCL patients showed conflicting results. Some studies found positive effects, others negative effects, while the largest study showed no apparent clinical effect. Taken together, vitamin D may have both pro- and anticancer effects in CTCL. The balance between the opposing effects of vitamin D in CTCL is likely influenced by treatment and may change during the disease course. Therefore, it remains to be discovered whether and how the effect of vitamin D can be tilted toward an anticancer response in CTCL.
Collapse
Affiliation(s)
| | - Carsten Geisler
- The LEO Foundation Skin Immunology Research Center, Department of Immunology and Microbiology, Faculty of Health and Medical Sciences, University of Copenhagen, DK-2200 Copenhagen, Denmark
| |
Collapse
|
24
|
Budair FM, Nomura T, Hirata M, Kabashima K. PNAd-expressing vessels characterize the dermis of CD3+ T-cell-mediated cutaneous diseases. Clin Exp Immunol 2024; 216:80-88. [PMID: 38227774 PMCID: PMC10929698 DOI: 10.1093/cei/uxae003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 10/04/2023] [Accepted: 01/15/2024] [Indexed: 01/18/2024] Open
Abstract
T-cell recruitment to skin tissues is essential for inflammation in different cutaneous diseases; however, the mechanisms by which these T cells access the skin remain unclear. High endothelial venules expressing peripheral node address in (PNAd), an L-selectin ligand, are located in secondary lymphoid organs and are responsible for increasing T-cell influx into the lymphoid tissues. They are also found in non-lymphoid tissues during inflammation. However, their presence in different common inflammatory cutaneous diseases and their correlation with T-cell infiltration remain unclear. Herein, we explored the mechanisms underlying the access of T cells to the skin by investigating the presence of PNAd-expressing vessels in different cutaneous diseases, and its correlation with T cells' presence. Skin sections of 43 patients with different diseases were subjected to immunohistochemical and immunofluorescence staining to examine the presence of PNAd-expressing vessels in the dermis. The correlation of the percentage of these vessels in the dermis of these patients with the severity/grade of CD3+ T-cell infiltration was assessed. PNAd-expressing vessels were commonly found in the skin of patients with different inflammatory diseases. A high percentage of these vessels in the dermis was associated with increased severity of CD3+ T-cell infiltration (P < 0.05). Additionally, CD3+ T cells were found both around the PNAd-expressing vessels and within the vessel lumen. PNAd-expressing vessels in cutaneous inflammatory diseases, characterized by CD3+ T-cell infiltration, could be a crucial entry point for T cells into the skin. Thus, selective targeting of these vessels could be beneficial in cutaneous inflammatory disease treatment.
Collapse
Affiliation(s)
- Fatimah Mohammad Budair
- Department of Dermatology, King Fahd University Hospital, Alkhobar, College of Medicine, Imam Abdulrahman bin Faisal University, Dammam, Saudi Arabia
| | - Takashi Nomura
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
- Department of Drug Development for Intractable Diseases, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Masahiro Hirata
- Department of Diagnostic Pathology, Kyoto University Hospital, Kyoto, Japan
| | - Kenji Kabashima
- Department of Dermatology, Kyoto University Graduate School of Medicine, Kyoto, Japan
| |
Collapse
|
25
|
Zhang XE, Zheng P, Ye SZ, Ma X, Liu E, Pang YB, He QY, Zhang YX, Li WQ, Zeng JH, Guo J. Microbiome: Role in Inflammatory Skin Diseases. J Inflamm Res 2024; 17:1057-1082. [PMID: 38375021 PMCID: PMC10876011 DOI: 10.2147/jir.s441100] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Accepted: 01/23/2024] [Indexed: 02/21/2024] Open
Abstract
As the body's largest organ, the skin harbors a highly diverse microbiota, playing a crucial role in resisting foreign pathogens, nurturing the immune system, and metabolizing natural products. The dysregulation of human skin microbiota is implicated in immune dysregulation and inflammatory responses. This review delineates the microbial alterations and immune dysregulation features in common Inflammatory Skin Diseases (ISDs) such as psoriasis, rosacea, atopic dermatitis(AD), seborrheic dermatitis(SD), diaper dermatitis(DD), and Malassezia folliculitis(MF).The skin microbiota, a complex and evolving community, undergoes changes in composition and function that can compromise the skin microbial barrier. These alterations induce water loss and abnormal lipid metabolism, contributing to the onset of ISDs. Additionally, microorganisms release toxins, like Staphylococcus aureus secreted α toxins and proteases, which may dissolve the stratum corneum, impairing skin barrier function and allowing entry into the bloodstream. Microbes entering the bloodstream activate molecular signals, leading to immune disorders and subsequent skin inflammatory responses. For instance, Malassezia stimulates dendritic cells(DCs) to release IL-12 and IL-23, differentiating into a Th17 cell population and producing proinflammatory mediators such as IL-17, IL-22, TNF-α, and IFN-α.This review offers new insights into the role of the human skin microbiota in ISDs, paving the way for future skin microbiome-specific targeted therapies.
Collapse
Affiliation(s)
- Xue-Er Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Pai Zheng
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Sheng-Zhen Ye
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| | - Xiao Ma
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, 611137, People’s Republic of China
| | - E Liu
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yao-Bin Pang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Qing-Ying He
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Yu-Xiao Zhang
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Wen-Quan Li
- Chengdu University of Traditional Chinese Medicine, Chengdu, 6610075, People’s Republic of China
| | - Jin-Hao Zeng
- TCM Regulating Metabolic Diseases Key Laboratory of Sichuan Province, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 610072, People’s Republic of China
| | - Jing Guo
- Department of Dermatology, Hospital of Chengdu University of Traditional Chinese Medicine, Chengdu, 6610072, People’s Republic of China
| |
Collapse
|
26
|
Wu T, Bai Y, Jing Y, Chen F. What can we learn from treatments of oral lichen planus? Front Cell Infect Microbiol 2024; 14:1279220. [PMID: 38426013 PMCID: PMC10902003 DOI: 10.3389/fcimb.2024.1279220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Accepted: 01/22/2024] [Indexed: 03/02/2024] Open
Abstract
Oral lichen planus (OLP), a T-lymphocyte-mediated disease of the oral mucosa, has a complex pathogenesis that involves a number of factors. The disease is characterized by recurrent episodes and requires continuous follow up, and there is no curative treatment available. Erosive lichen planus, among others, has a risk of malignant transformation and requires standardized treatment to control its progression. Different clinical subtypes of oral lichen planus require appropriate treatment. Pharmacological treatments are the most widely available and have the greatest variety of options and a number of novel pharmacological treatments are presented as highlights, including JAK enzyme inhibitors. The second is photodynamic therapy, which is the leading physiological treatment. In addition, periodontal treatment and psychological treatment should not be neglected. In this review, we briefly discuss the most recent developments in therapies for oral lichen planus after summarizing the most widely used clinical treatments, aiming to provide different proposals for future clinical treatment.
Collapse
Affiliation(s)
- Tingting Wu
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yang Bai
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Yin Jing
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| | - Fangchun Chen
- Stomatological Hospital of Chongqing Medical University, Chongqing, China
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing, China
- Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Chongqing, China
| |
Collapse
|
27
|
Chaudet KM, Russell-Goldman E, Horn TD, Schuler AM, Chan MP, Nazarian RM. Characterization of T-Helper Immune Phenotype in Symmetrical Drug-Related Intertriginous and Flexural Exanthema (SDRIFE) Endorses a Delayed-Type Hypersensitivity Reaction. Am J Dermatopathol 2024; 46:71-78. [PMID: 38133537 DOI: 10.1097/dad.0000000000002455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
ABSTRACT Symmetrical drug-related intertriginous and flexural exanthema (SDRIFE) is a cutaneous drug eruption with a characteristic distribution of erythema on the gluteal/inguinal region and intertriginous areas with unclear pathogenesis. In this study, we aimed to characterize the T-helper immune phenotype in SDRIFE in comparison with psoriasis and eczema to further the understanding of the pathophysiology and immune response of this rare disorder. Immunohistochemical staining was performed on 9 skin biopsies each from SDRIFE, psoriasis, and eczema using immunohistochemistry for CD3 and dual CD4/T-bet, CD4/GATA3, and CD4/RORC to quantify the percentage of Th1, Th2, and Th17 cells, respectively. A significant difference was detected in the average percentage of Th1 between all 3 groups with the highest percentage of Th1 cells seen in psoriasis, followed by SDRIFE and eczema. SDRIFE showed significantly lower Th2 expression as compared to both psoriasis and eczema. There was a trend towards a higher average percentage of Th17 in psoriasis and SDRIFE, and the ratio of Th17:Th2 was significantly higher in samples of SDRIFE compared with both eczema and psoriasis. The findings characterize SDRIFE as a Th1 and possibly Th17-driven process, which could inform future therapeutic options and substantiate the model of SDRIFE as a delayed-type hypersensitivity reaction.
Collapse
Affiliation(s)
- Kristine M Chaudet
- Pathologist, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| | - Eleanor Russell-Goldman
- Pathologist, Department of Pathology, Brigham and Women's Hospital, Harvard Medical School, Boston MA
| | - Thomas D Horn
- Pathologist, Departments of Dermatology and Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA; and
| | - Amy M Schuler
- Pathologist, Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - May P Chan
- Pathologist, Department of Dermatology, Michigan Medicine, University of Michigan, Ann Arbor, MI
| | - Rosalynn M Nazarian
- Pathologist, Department of Pathology, Massachusetts General Hospital, Harvard Medical School, Boston, MA
| |
Collapse
|
28
|
Bhatt D, Singh S, Singh MK, Maurya AK, Chauhan A, Padalia RC, Verma RS, Bawankule DU. Acyclic monoterpenoid-rich essential oil of Cymbopogon distans mitigates skin inflammation: a chemico-pharmacological study. Inflammopharmacology 2024; 32:509-521. [PMID: 37541972 DOI: 10.1007/s10787-023-01302-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2023] [Accepted: 07/18/2023] [Indexed: 08/06/2023]
Abstract
The topical application of essential oils is considered an effective treatment for skin diseases. Cymbopogon distans (Nees ex Steud.) Wats (Poaceae) is a promising aromatic grass widespread in the Himalayan temperate zone. Therefore, using in-vitro and in-vivo bioassays, we examined the chemical and pharmacological characteristics of essential oil hydro-distilled from C. distans coded as CDA-01, specifically concerning skin inflammation. Characterization using GC-FID and GC-MS provided a chemical fingerprint for CDA-01, enabling the identification of 54 compounds; amongst them, citral (34.3%), geranyl acetate (21.2%), and geraniol (16.4%) were the most abundant. To examine the anti-inflammatory potential, CDA-01 treatment on LPS-stimulated macrophage cells in addition to 12-O-tetradecanoylphorbol-13-acetate (TPA) generated cutaneous inflammatory reaction in the mouse ear was assessed through quantification of the inflammatory markers. Consequently, CDA-01 demonstrated protection against inflammation caused by LPS by lowering the pro-inflammatory cytokines (IL-6 and TNF-α) level in HaCaT cells with negligible cytotoxicity. Consistent with the in-vitro findings, CDA-01 treatment reduced pro-inflammatory mediators (TNF-, IL-6, and NO) and lipid peroxidation in an in-vivo investigation. Subcutaneous inflammation in TPA-treated mice ears was similarly decreased, as evidenced by the histological and morphological studies. As a result of our findings, it is possible that CDA-01 could be an effective treatment for skin inflammation disorders.
Collapse
Affiliation(s)
- Divya Bhatt
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Swati Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Munmun Kumar Singh
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India
| | - Anil Kumar Maurya
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India
| | - Amit Chauhan
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre Pantnagar, Udham Singh Nagar, P.O. Dairy Farm Nagla, Uttarakhand, 263149, India
| | - Rajendra Chandra Padalia
- CSIR-Central Institute of Medicinal and Aromatic Plants, Research Centre Pantnagar, Udham Singh Nagar, P.O. Dairy Farm Nagla, Uttarakhand, 263149, India
| | - Ram Swaroop Verma
- Phytochemistry Division, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| | - Dnyaneshwar U Bawankule
- Bio-Prospection and Product Development, CSIR-Central Institute of Medicinal and Aromatic Plants (CIMAP), PO CIMAP, Lucknow, 226015, India.
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad, Uttar Pradesh, 201002, India.
| |
Collapse
|
29
|
Lee WH, Kim W. Self-assembled hyaluronic acid nanoparticles for the topical treatment of inflammatory skin diseases: Beyond drug carriers. J Control Release 2024; 366:114-127. [PMID: 38145664 DOI: 10.1016/j.jconrel.2023.12.026] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/10/2023] [Accepted: 12/17/2023] [Indexed: 12/27/2023]
Abstract
Inflammatory skin diseases represent a significant health concern, affecting approximately 20-25% of the global population. These conditions not only reduce an individual's quality of life but also impose a huge burden on both humanity and society. However, addressing these challenges is hindered by their chronic nature, insufficient therapeutic effectiveness, and the propensity for recurrence and adverse side effects. Hyaluronic acid (HA) has emerged as a potential solution to these barriers, owing to its excellent attributes such as biocompatibility, non-toxicity, and targeted drug delivery. However, its practical application has been limited because endogenous hyaluronidase (HYAL) rapidly degrades HA in inflamed skin thus reducing its ability to penetrate deep into the skin. Interestingly, recent research has expanded the role of self-assembled HA-nanoparticles (HA-NPs) beyond drug carriers; they are resistant to HYAL, thereby enabling deep skin penetration, and possess inherent anti-inflammatory properties. Moreover, these abilities can be fine-tuned depending on the conditions during particle synthesis. Additionally, their role as a drug delivery system holds potential for use as a multi-target drug or hybrid drug. In conclusion, this review aims to specifically introduce and highlight the emerging potential of HA-NPs as a topical treatment for inflammatory skin conditions.
Collapse
Affiliation(s)
- Wang Hee Lee
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea
| | - Wook Kim
- Department of Molecular Science & Technology, Ajou University, Suwon 16499, Republic of Korea.
| |
Collapse
|
30
|
Li Y, Zeng Y, Chen Z, Tan X, Mei X, Wu Z. The role of aryl hydrocarbon receptor in vitiligo: a review. Front Immunol 2024; 15:1291556. [PMID: 38361944 PMCID: PMC10867127 DOI: 10.3389/fimmu.2024.1291556] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2023] [Accepted: 01/18/2024] [Indexed: 02/17/2024] Open
Abstract
Vitiligo is an acquired autoimmune dermatosis characterized by patchy skin depigmentation, causing significant psychological distress to the patients. Genetic susceptibility, environmental triggers, oxidative stress, and autoimmunity contribute to melanocyte destruction in vitiligo. Due to the diversity and complexity of pathogenesis, the combination of inhibiting melanocyte destruction and stimulating melanogenesis gives the best results in treating vitiligo. The aryl hydrocarbon receptor (AhR) is a ligand-activated transcription factor that can regulate the expression of various downstream genes and play roles in cell differentiation, immune response, and physiological homeostasis maintenance. Recent studies suggested that AhR signaling pathway was downregulated in vitiligo. Activation of AhR pathway helps to activate antioxidant pathways, inhibit abnormal immunity response, and upregulate the melanogenesis gene, thereby protecting melanocytes from oxidative stress damage, controlling disease progression, and promoting lesion repigmentation. Here, we review the relevant literature and summarize the possible roles of the AhR signaling pathway in vitiligo pathogenesis and treatment, to further understand the links between the AhR and vitiligo, and provide new potential therapeutic strategies.
Collapse
Affiliation(s)
- Yiting Li
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yibin Zeng
- Department of Dermatology, Minhang Hospital, Fudan University, Shanghai, China
| | - Zile Chen
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xi Tan
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Xingyu Mei
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Zhouwei Wu
- Department of Dermatology, Shanghai General Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| |
Collapse
|
31
|
Pegoraro NS, Gehrcke M, Camponogara C, Fialho MFP, Cruz L, Oliveira SM. The Association of Oleic Acid and Dexamethasone Acetate into Nanocapsules Enables a Reduction in the Effective Corticosteroid Dose in a UVB Radiation-Induced Sunburn Model in Mice. Pharmaceutics 2024; 16:176. [PMID: 38399236 PMCID: PMC10892665 DOI: 10.3390/pharmaceutics16020176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/25/2024] Open
Abstract
Dexamethasone has a high anti-inflammatory efficacy in treating skin inflammation. However, its use is related to the rebound effect, rosacea, purple, and increased blood glucose levels. Nanotechnology approaches have emerged as strategies for drug delivery due to their advantages in improving therapeutic effects. To reduce dexamethasone-related adverse effects and improve the anti-inflammatory efficacy of treatments, we developed nanocarriers containing this corticosteroid and oleic acid. Nanocapsules and nanoemulsion presented dexamethasone content close to the theoretical value and controlled dexamethasone release in an in vitro assay. Gellan gum-based hydrogels were successfully prepared to employ the nanostructured systems. A permeation study employing porcine skin showed that hydrogels containing non-nanoencapsulated dexamethasone (0.025%) plus oleic acid (3%) or oleic acid (3%) plus dexamethasone (0.025%)-loaded nanocapsules provided a higher amount of dexamethasone in the epidermis compared to non-nanoencapsulated dexamethasone (0.5%). Hydrogels containing oleic acid plus dexamethasone-loaded nanocapsules effectively inhibited mice ear edema (with inhibitions of 89.26 ± 3.77% and 85.11 ± 2.88%, respectively) and inflammatory cell infiltration (with inhibitions of 49.58 ± 4.29% and 27.60 ± 11.70%, respectively). Importantly, the dexamethasone dose employed in hydrogels containing the nanocapsules that effectively inhibited ear edema and cell infiltration was 20-fold lower (0.025%) than that of non-nanoencapsulated dexamethasone (0.5%). Additionally, no adverse effects were observed in preliminary toxicity tests. Our study suggests that nanostructured hydrogel containing a reduced effective dose of dexamethasone could be a promising therapeutic alternative to treat inflammatory disorders with reduced or absent adverse effects. Additionally, testing our formulation in a clinical study on patients with skin inflammatory diseases would be very important to validate our study.
Collapse
Affiliation(s)
- Natháli Schopf Pegoraro
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Mailine Gehrcke
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Camila Camponogara
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Maria Fernanda Pessano Fialho
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
| | - Letícia Cruz
- Graduate Program in Pharmaceutical Sciences, Centre of Health Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (M.G.); (L.C.)
| | - Sara Marchesan Oliveira
- Graduate Program in Biological Sciences: Toxicological Biochemistry, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil; (N.S.P.); (C.C.); (M.F.P.F.)
- Department of Biochemistry and Molecular Biology, Centre of Natural and Exact Sciences, Federal University of Santa Maria, Santa Maria 97105-900, RS, Brazil
| |
Collapse
|
32
|
Bonelli M, Kerschbaumer A, Kastrati K, Ghoreschi K, Gadina M, Heinz LX, Smolen JS, Aletaha D, O'Shea J, Laurence A. Selectivity, efficacy and safety of JAKinibs: new evidence for a still evolving story. Ann Rheum Dis 2024; 83:139-160. [PMID: 37923366 PMCID: PMC10850682 DOI: 10.1136/ard-2023-223850] [Citation(s) in RCA: 37] [Impact Index Per Article: 37.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 05/18/2023] [Indexed: 11/07/2023]
Abstract
Fundamental insight gained over the last decades led to the discovery of cytokines as pivotal drivers of inflammatory diseases such as rheumatoid arthritis, psoriasis/psoriasis arthritis, inflammatory bowel diseases, atopic dermatitis and spondylarthritis. A deeper understanding of the pro-inflammatory and anti-inflammatory effects of various cytokines has prompted new cytokine-targeting therapies, which revolutionised the treatment options in the last years for patients with inflammatory disorders. Disease-associated immune responses typically involve a complex interplay of multiple cytokines. Therefore, blockade of one single cytokine does not necessarily lead to a persistent remission in all patients with inflammatory disorders and fostered new therapeutic strategies targeting intracellular pathways shared by multiple cytokines. By inhibiting JAK-STAT signalling pathways common to families of cytokines, JAK-inhibitors (JAKinibs) have created a new paradigm for the treatment of inflammatory diseases. Multiple agents have been approved for various disorders and more are being investigated for several new indications. Second-generation selective JAKinibs have been devised with the aim to achieve an increased selectivity and a possible reduced risk of side effects. In the current review, we will summarise the current body of evidence of pan versus selective JAKinibs and the most recent insights on new side effects and indications, including COVID-19.
Collapse
Affiliation(s)
- Michael Bonelli
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Andreas Kerschbaumer
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kastriot Kastrati
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin, Humboldt-Universität zu Berlin, Berlin Institute of Health, Berlin, Germany
| | - Massimo Gadina
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Leonhard X Heinz
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Josef S Smolen
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - Daniel Aletaha
- Division of Rheumatology, Department of Internal Medicine III, Medical University of Vienna, Vienna, Austria
| | - John O'Shea
- Molecular Immunology and Inflammation Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland, USA
| | - Arian Laurence
- Translational Gastroenterology Unit, Department of Haematology, University College Hospital, UCLH Hospitals NHS Trust, University of Oxford, Oxford, UK
| |
Collapse
|
33
|
Sudo M, Fujimoto K. Diffusive mediator feedbacks control the health-to-disease transition of skin inflammation. PLoS Comput Biol 2024; 20:e1011693. [PMID: 38236792 PMCID: PMC10796066 DOI: 10.1371/journal.pcbi.1011693] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 11/16/2023] [Indexed: 01/22/2024] Open
Abstract
The spatiotemporal dynamics of inflammation provide vital insights into the understanding of skin inflammation. Skin inflammation primarily depends on the regulatory feedback between pro- and anti-inflammatory mediators. Healthy skin exhibits fading erythema. In contrast, diseased skin exhibits expanding erythema with diverse patterns, which are clinically classified into five types: circular, annular, arcuate, gyrate, and polycyclic. Inflammatory diseases with expanding erythema are speculated to result from the overproduction of pro-inflammatory mediators. However, the mechanism by which feedback selectively drives the transition from a healthy fading erythema to each of the five types of diseased expanding erythema remains unclear. This study theoretically elucidates the imbalanced production between pro- and anti-inflammatory mediators and prospective treatment strategies for each expanding pattern. Our literature survey showed that eleven diseases exhibit some of the five expanding erythema, thereby suggesting a common spatiotemporal regulation underlying different patterns and diseases. Accordingly, a reaction-diffusion model incorporating mediator feedback reproduced the five observed types of diseased expanding and healthy fading patterns. Importantly, the fading pattern transitioned to the arcuate, gyrate, and polycyclic patterns when the productions of anti-inflammatory and pro-inflammatory mediators were lower and higher, respectively than in the healthy condition. Further depletion of anti-inflammatory mediators caused a circular pattern, whereas further overproduction of pro-inflammatory mediators caused an annular pattern. Mechanistically, the bistability due to stabilization of the diseased state exhibits circular and annular patterns, whereas the excitability exhibits the gyrate, polycyclic, arcuate, and fading patterns as the threshold of pro-inflammatory mediator concentration relative to the healthy state increases. These dynamic regulations of diffusive mediator feedback provide effective treatment strategies for mediator production wherein skins recover from each expanding pattern toward a fading pattern. Thus, these strategies can estimate disease severity and risk based on erythema patterns, paving the way for developing noninvasive and personalized treatments for inflammatory skin diseases.
Collapse
Affiliation(s)
- Maki Sudo
- Department of Biological Sciences, Osaka University, Machikaneyama-cho, Toyonaka, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| | - Koichi Fujimoto
- Department of Biological Sciences, Osaka University, Machikaneyama-cho, Toyonaka, Japan
- Program of Mathematical and Life Sciences, Graduate School of Integrated Sciences for Life, Hiroshima University, Kagamiyama, Higashi-Hiroshima, Japan
| |
Collapse
|
34
|
Chagan-Yasutan H, He N, Arlud S, Fang J, Hattori T. The elevation of plasma galectin-9 levels in patients with psoriasis and its associations with inflammatory and immune checkpoint molecules in skin tissues. Hum Immunol 2024; 85:110741. [PMID: 38092632 DOI: 10.1016/j.humimm.2023.110741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2023] [Revised: 11/29/2023] [Accepted: 12/04/2023] [Indexed: 01/24/2024]
Abstract
Psoriasis is a chronic, immune-mediated disorder that mainly affects the skin, with an estimated global prevalence of 2-3%. Galectin-9 (Gal-9) is a β-galactoside-binding lectin capable of promoting or suppressing the progression of infectious and immune-mediated diseases. Here, we determined if the expression of Gal-9 is observed in psoriasis. Gal-9 levels were measured in plasma of psoriasis (n = 62) and healthy control (HC) (n = 31) using an enzyme-linked immunosorbent assay. In addition, skin samples from seven patients were screened for RNA transcriptomes and the expression of Gal-9 was compared with inflammatory, immune checkpoint molecules (ICMs) and Foxp3. The plasma Gal-9 levels in patients with psoriasis were significantly higher (841 pg/mL) than in HCs (617 pg/mL) (P < 0.0001) and were associated with white blood cell numbers, eosinophils (%) and alanine transaminase. The levels of inflammatory molecules IL-36B, IL-17RA, IL-6R, IL-10, IRF8, TGFb1, and IL-37, and those of ICMs of Tim-3, CTLA-4, CD86, CD80, PD-1LG2, CLEC4G, and Foxp3 were significantly correlated with Gal-9 (LGALS9) in skin. However, HMGB1, CD44, CEACAM1 and PDL1-known to be associated with a variety of Gal-9 biological functions were not correlated with LGALS9. Thus, it is likely that Gal-9 expression affects the disease state of PS.
Collapse
Affiliation(s)
- Haorile Chagan-Yasutan
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan.
| | - Nagongbilige He
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China.
| | - Sarnai Arlud
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China
| | - Jun Fang
- Mongolian Psychosomatic Medicine Department, Inner Mongolia International Mongolian Medicine Hospital, Hohhot 010065, China; The Inner Mongolia Institute of Chinese and Mongolian Medicine, Hohhot 010010, China
| | - Toshio Hattori
- Research Institute of Health and Welfare, Kibi International University, 8-Iga-machi, Takahashi, Okayama 716-8508, Japan; Shizuoka Graduate University of Public Health, 4-27-2 Kita Ando Aoi-ku, Shizuoka City 420-0881, Japan.
| |
Collapse
|
35
|
Waterhölter A, Wunderlich M, Turner JE. MAIT cells in immune-mediated tissue injury and repair. Eur J Immunol 2023; 53:e2350483. [PMID: 37740567 DOI: 10.1002/eji.202350483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2023] [Revised: 09/20/2023] [Accepted: 09/21/2023] [Indexed: 09/24/2023]
Abstract
Mucosal-associated invariant T (MAIT) cells are T cells that express a semi-invariant αβ T-cell receptor (TCR), recognizing non-peptide antigens, such as microbial-derived vitamin B2 metabolites, presented by the nonpolymorphic MHC class I related-1 molecule. Like NKT cells and γδT cells, MAIT cells belong to the group of innate-like T cells that combine properties of the innate and adaptive immune systems. They account for up to 10% of the blood T-cell population in humans and are particularly abundant at mucosal sites. Beyond the emerging role of MAIT cells in antibacterial and antiviral defenses, increasing evidence suggests additional functions in noninfectious settings, including immune-mediated inflammatory diseases and tissue repair. Here, we discuss recent advances in the understanding of MAIT cell functions in sterile tissue inflammation, with a particular focus on autoimmunity, chronic inflammatory diseases, and tissue repair.
Collapse
Affiliation(s)
- Alex Waterhölter
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Malte Wunderlich
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| | - Jan-Eric Turner
- III. Department of Medicine, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Translational Immunology, University Medical Center Hamburg-Eppendorf, Hamburg, Germany
- Hamburg Center for Kidney Health (HCKH), University Medical Center Hamburg-Eppendorf, Hamburg, Germany
| |
Collapse
|
36
|
Sabat R, Gudjonsson JE, Brembilla NC, van Straalen KR, Wolk K. Biology of Interleukin-17 and Novel Therapies for Hidradenitis Suppurativa. J Interferon Cytokine Res 2023; 43:544-556. [PMID: 37824200 DOI: 10.1089/jir.2023.0105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2023] Open
Abstract
Skin disorders affect ∼40% of the human population. One of the most debilitating cutaneous disorders is Hidradenitis suppurativa (HS), a noncommunicable chronic inflammatory disease with an estimated global prevalence of 0.4% to 2.5%. In January 2011, high levels of IL-17 were discovered in skin lesions of HS patients. In the following years, translational and clinical research led to a better understanding of the pathogenesis of HS. In June 2023, more than 12 years after the initial note, secukinumab, an anti-IL-17A monoclonal antibody, was approved for the treatment of moderate to severe HS. This is the next milestone in improving the treatment of these patients after the approval of the anti-TNF-α monoclonal antibody adalimumab in 2015. In this review article, we present the IL-17 pathway in HS and discuss the use of secukinumab as a therapeutic option for this disease. Our review starts with a description of the epidemiology, clinical features, etiology, and pathogenesis of HS. An overview of the IL-17/IL-17 receptor system in general and a detailed description of the known facts about the expression and action of IL-17 in HS follow. Afterward, we consider the results of clinical trials evaluating the safety and efficacy of IL-17 inhibitors in HS. Finally, a comparison is made between secukinumab and adalimumab and the characteristics of the patients that may be particularly suitable for each of these biologics are described.
Collapse
Affiliation(s)
- Robert Sabat
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| | - Johann Eli Gudjonsson
- Department of Dermatology, University of Michigan, Ann Arbor, Michigan, USA
- Taubman Medical Research Institute, University of Michigan Medical School, Ann Arbor, Michigan, USA
| | | | - Kelsey R van Straalen
- Department of Dermatology, Erasmus University Medical Center, Rotterdam, The Netherlands
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
37
|
Zhang M, Qin X, Gao Y, Liang J, Xiao D, Zhang X, Zhou M, Lin Y. Transcutaneous Immunotherapy for RNAi: A Cascade-Responsive Decomposable Nanocomplex Based on Polyphenol-Mediated Framework Nucleic Acid in Psoriasis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2303706. [PMID: 37797168 PMCID: PMC10667853 DOI: 10.1002/advs.202303706] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 08/09/2023] [Indexed: 10/07/2023]
Abstract
Skin is the first barrier against external threats, and skin immune dysfunction leads to multiple diseases. Psoriasis is an inflammatory, chronic, common, immune-related skin disease that affects more than 125 million people worldwide. RNA interference (RNAi) therapy is superior to traditional therapies, but rapid degradation and poor cell uptake are the greatest obstacles to its clinical transformation. The transdermal delivery of siRNA and controllable assembly/disassembly of nanodrug delivery systems can maximize the therapeutic effect. Tetrahedral framework nucleic acid (tFNA) is undoubtedly the best carrier for the transdermal transport of genes due to its excellent noninvasive transdermal effect and editability. The authors combine acid-responsive tannic acid (TA), RNase H-responsive sequences, siRNA, and tFNA into a novel transdermal RNAi drug with controllable assembly and disassembly: STT. STT has heightened resistance to enzyme, serum, and lysosomal degradation, and its size is similar to that of tFNA, enabling easy transdermal transport. After transdermal administration, STT can specifically silence nuclear factor kappa-B (NF-κB) p65, thereby maintaining the stability of the skin's microenvironment and reshaping normal skin immune defense. This work demonstrates the advantages of STT in RNAi therapy and the potential for future treatment of skin-related diseases.
Collapse
Affiliation(s)
- Mei Zhang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xin Qin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Yang Gao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Jiale Liang
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Dexuan Xiao
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
| | - Xiaolin Zhang
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Mi Zhou
- Department of Orthopedics, Orthopedic Research Institute, West China HospitalSichuan UniversityChengdu610041P. R. China
| | - Yunfeng Lin
- State Key Laboratory of Oral Diseases, National Clinical Research Center for Oral Diseases, West China Hospital of StomatologySichuan UniversityChengdu610041P. R. China
- College of Biomedical EngineeringSichuan UniversityChengdu610041P. R. China
| |
Collapse
|
38
|
Wang S, Zhang G, Cui Q, Yang Y, Wang D, Liu A, Xia Y, Li W, Liu Y, Yu J. The DC-T cell axis is an effective target for the treatment of non-small cell lung cancer. Immun Inflamm Dis 2023; 11:e1099. [PMID: 38018578 PMCID: PMC10681037 DOI: 10.1002/iid3.1099] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 11/06/2023] [Accepted: 11/09/2023] [Indexed: 11/30/2023] Open
Abstract
The dendritic cell (DC)-T cell axis is a bridge that connects innate and adaptive immunities. The initial immune response against tumors is mainly induced by mature antigen-presenting DCs. Enhancing the crosstalk between DCs and T cells may be an effective approach to improve the immune response to non-small cell lung cancer (NSCLC). In this article, a review was made of the interaction between DCs and T cells in the treatment of NSCLC and how this interaction affects the treatment outcome.
Collapse
Affiliation(s)
- Shuangcui Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Guan Zhang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Qian Cui
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Yanjie Yang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Dong Wang
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Aqing Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Ying Xia
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
- National Clinical Research Center for Chinese Medicine Acupuncture and MoxibustionTianjinChina
- Graduate SchoolTianjin University of Traditional Chinese MedicineTianjinChina
| | - Wentao Li
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Yunhe Liu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| | - Jianchun Yu
- Department of OncologyFirst Teaching Hospital of Tianjin University of Traditional Chinese MedicineTianjinChina
| |
Collapse
|
39
|
Zolotas M, Schleusener J, Lademann J, Meinke MC, Kokolakis G, Darvin ME. Atopic Dermatitis: Molecular Alterations between Lesional and Non-Lesional Skin Determined Noninvasively by In Vivo Confocal Raman Microspectroscopy. Int J Mol Sci 2023; 24:14636. [PMID: 37834083 PMCID: PMC10572245 DOI: 10.3390/ijms241914636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/14/2023] [Accepted: 09/25/2023] [Indexed: 10/15/2023] Open
Abstract
Atopic dermatitis (AD)/atopic eczema is a chronic relapsing inflammatory skin disease affecting nearly 14% of the adult population. An important pathogenetic pillar in AD is the disrupted skin barrier function (SBF). The atopic stratum corneum (SC) has been examined using several methods, including Raman microspectroscopy, yet so far, there is no depth-dependent analysis over the entire SC thickness. Therefore, we recruited 21 AD patients (9 female, 12 male) and compared the lesional (LAS) with non-lesional atopic skin (nLAS) in vivo with confocal Raman microspectroscopy. Our results demonstrated decreased total intercellular lipid and carotenoid concentrations, as well as a shift towards decreased orthorhombic lateral lipid organisation in LAS. Further, we observed a lower concentration of natural moisturising factor (NMF) and a trend towards increased strongly bound and decreased weakly bound water in LAS. Finally, LAS showed an altered secondary and tertiary keratin structure, demonstrating a more folded keratin state than nLAS. The obtained results are discussed in comparison with healthy skin and yield detailed insights into the atopic SC structure. LAS clearly shows molecular alterations at certain SC depths compared with nLAS which imply a reduced SBF. A thorough understanding of these alterations provides useful information on the aetiology of AD and for the development/control of targeted topical therapies.
Collapse
Affiliation(s)
- Michael Zolotas
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Johannes Schleusener
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Jürgen Lademann
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Martina C Meinke
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Georgios Kokolakis
- Psoriasis Research and Treatment Centre, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| | - Maxim E Darvin
- Center of Experimental and Applied Cutaneous Physiology, Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, Charitéplatz 1, 10117 Berlin, Germany
| |
Collapse
|
40
|
Lai NS, Yu HC, Huang HB, Huang Tseng HY, Lu MC. Increased Expression of Long Noncoding RNA LOC100506314 in T cells from Patients with Nonsegmental Vitiligo and Its Contribution to Vitiligo Pathogenesis. Mediators Inflamm 2023; 2023:2440377. [PMID: 37731844 PMCID: PMC10509001 DOI: 10.1155/2023/2440377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Revised: 07/04/2023] [Accepted: 08/23/2023] [Indexed: 09/22/2023] Open
Abstract
This study aimed to identify the abnormal expression of long noncoding RNAs (lncRNAs) in T cells from patients with vitiligo and to investigate their functional roles in the immune system. Using microarray analysis, the expression levels of RNA transcripts in T cells from patients with vitiligo and controls were compared. We identified several genes and validated their expression levels in T cells from 41 vitiligo patients and 41 controls. The biological functions of the lncRNAs were studied in a transfection study using an RNA pull-down assay, followed by proteomic analysis and western blotting. The expression levels of 134 genes were significantly increased, and those of 142 genes were significantly decreased in T cells from vitiligo patients. After validation, six genes had increased expression, and three genes had decreased expression in T cells from patients with vitiligo. T-cell expression of LOC100506314 was increased in vitiligo, especially CD4+, but not CD8+ T cells. The expression levels of LOC100506314 in CD4+ T cells was positively and significantly associated with the severity of vitiligo. LOC100506314 was bound to the signal transducer and activator of transcription 3 (STAT3) and macrophage migration inhibitory factor (MIF). Enhanced expression of LOC100506314 inhibited the phosphorylation of STAT3, protein kinase B (AKT), and extracellular signal-regulated protein kinases (ERK), as well as the levels of nuclear protein of p65 and the expression of IL-6 and IL-17 in Jurkat cells and T cells from patients with vitiligo. In conclusion, this study showed that the expression of LOC100506314 was elevated in CD4+ T cells from patients with vitiligo and associated the severity of vitiligo. LOC100506314 interacted with STAT3 and MIF and inhibited IL-6 and IL-17 expression by suppressing the STAT3, nuclear factor kappa-light-chain-enhancer of activated B cells (NF-κB), AKT, and ERK pathways. Enhanced expression of LOC100506314 in T cells may be a potential treatment strategy for vitiligo.
Collapse
Affiliation(s)
- Ning-Sheng Lai
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| | - Hui-Chun Yu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
| | - Hsien-Bin Huang
- Department of Biomedical Sciences, National Chung Cheng University, Minxiong, Chiayi 62130, Taiwan
| | - Hsien-Yu Huang Tseng
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
| | - Ming-Chi Lu
- Division of Allergy, Immunology and Rheumatology, Dalin Tzu Chi Hospital, Buddhist Tzu Chi Medical Foundation, Dalin 62247, Chiayi, Taiwan
- School of Medicine, Tzu Chi University, Hualien City 97071, Taiwan
| |
Collapse
|
41
|
Wang Y, Hu W, Lin F, Xu A. Generalized Vitiligo After Stem Cell Transplantation: A Case Report. Clin Cosmet Investig Dermatol 2023; 16:1945-1948. [PMID: 37519939 PMCID: PMC10386828 DOI: 10.2147/ccid.s420342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 07/18/2023] [Indexed: 08/01/2023]
Abstract
Graft versus host disease (GVHD) is a complex immune-mediated pathophysiological process, which is caused by allogenic immune reactions between donors and recipients. No matter ac-ute or chronic GVHD, skin involvement is the most common, severe skin damage can lead to permanent disfigurement, which seriously affects the long-term quality of life of patients. We herein report a patient with generalized vitiligo after allogeneic peripheral hematopoietic stem cell transplantation (allo-HSCT) for aplastic anemia.
Collapse
Affiliation(s)
- Yunxia Wang
- Department of Dermatology, The First Affiliated Hospital of Anhui Medical University, Hefei, Anhui Province, People’s Republic of China
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Dermatology, Hangzhou Clinical College of Anhui Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Wenting Hu
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Fuquan Lin
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
- Department of Dermatology, Hangzhou Clinical College of Anhui Medical University, Hangzhou, Zhejiang Province, People’s Republic of China
| | - Ai′e Xu
- Department of Dermatology, Hangzhou Third People’s Hospital, Hangzhou, Zhejiang Province, People’s Republic of China
| |
Collapse
|
42
|
Zhao G, Tong Y, Xu J, Zhu W, Zeng J, Liu R, Luan F, Zeng N. Jing-Fang powder ethyl acetate extracts attenuate atopic dermatitis by modulating T-cell activity. Mol Immunol 2023; 160:133-149. [PMID: 37429064 DOI: 10.1016/j.molimm.2023.07.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/24/2023] [Accepted: 07/02/2023] [Indexed: 07/12/2023]
Abstract
Jing-Fang powder ethyl acetate extract (JFEE) and its isolated C (JFEE-C) possess favorable anti-inflammatory and anti-allergic properties; however, their inhibitory effects on T cell activity remain unknown. In vitro, Jurkat T cells and primary mouse CD4+ T cells were used to explore the regulatory effects of JFEE and JFEE-C as well as their potential mechanisms on activated T cells. Furthermore, T cell-mediated atopic dermatitis (AD) mouse model was established to confirm these inhibitory effects in vivo. The results showed that JFEE and JFEE-C inhibited T cell activation by suppressing the production of interleukin-2 (IL-2) and interferon-gamma (IFN-γ) without showing cytotoxicity. Flow cytometry showed the inhibitory effects of JFEE and JFEE-C on the activation-induced proliferation and apoptosis of T cells. Pretreatment with JFEE and JFEE-C also decreased the expression levels of several surface molecules, including CD69, CD25, and CD40L. Moreover, it was confirmed that JFEE and JFEE-C inhibited T cell activation by downregulating the TGF-β-activated kinase 1 (TAK1)/nuclear kappa-light-chain-enhancer of activated B cells (NF-κB)/mitogen-activated protein kinase (MAPK) signaling pathways. The combination of these extracts with C25-140 intensified the inhibitory effects on IL-2 production and p65 phosphorylation. The oral administration of JFEE and JFEE-C notably weakened AD manifestations, including the infiltration of mast cells and CD4+ cells, epidermis and dermis thicknesses, serum levels of immunoglobulin E (IgE) and thymic stromal lymphopoietin (TSLP), and gene expression levels of T helper (Th) cells-related cytokines in vivo. The underlying mechanisms of the inhibitory effects of JFEE and JFEE-C on AD were related to attenuating T cell activity through NF-κB/MAPK pathways. In conclusion, this study suggested that JFEE and JFEE-C exhibited anti-atopic efficacy by attenuating T cell activity and might possess a curative potential for T cell-mediated diseases.
Collapse
Affiliation(s)
- Ge Zhao
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Yue Tong
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Jie Xu
- College of Material and Chemical Engineering, Chuzhou University, Chuzhou, Anhui 239000, PR China
| | - Wenjing Zhu
- Department of Pharmacy, Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China
| | - Jiuseng Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Rong Liu
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China
| | - Fei Luan
- Department of Pharmaceutics, The Key Laboratory of Basic and New Drug Research of Traditional Chinese Medicine, Shaanxi University of Chinese Medicine, Xianyang, Shaanxi 712046, PR China.
| | - Nan Zeng
- State Key Laboratory of Southwestern Chinese Medicine Resources, School of Pharmacy, Chengdu University of Traditional Chinese Medicine, Chengdu, Sichuan 611137, PR China.
| |
Collapse
|
43
|
Yang X, Chen L, Wang S, Wu Y, Zhou X, Meng Z. The correlation between Th17/Treg immune dysregulation and the disease severity in chronic spontaneous urticaria patients. Immun Inflamm Dis 2023; 11:e920. [PMID: 37506162 PMCID: PMC10373571 DOI: 10.1002/iid3.920] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2023] [Revised: 05/30/2023] [Accepted: 06/01/2023] [Indexed: 07/30/2023] Open
Abstract
OBJECTIVE Chronic spontaneous urticaria (CSU) has a profound impact on the sleep quality, productivity and overall quality of life of affected individuals. This study aimed to investigate the correlation between serum Th17/Treg immune dysregulation and the severity of CSU in patients. METHODS Clinical baseline data of 120 CSU patients and matched healthy controls were recorded. The pruritus level, disease severity, and quality of life of CSU patients were assessed using the visual analogue scale, weekly Urticaria Activity Score and chronic urticaria quality of life questionnaire, respectively. The Th17/Treg cell ratio was detected by flow cytometry. ELISA was used to measure the levels of serum Th17 cytokines (IL-17, IL-21) and Treg cytokines (TGF-β1, IL-35). Pearson's correlation analysis was conducted to examine the associations between these indicators. RESULTS No significant differences were identified in terms of sex, age, and BMI between the two groups. However, CSU patients exhibited a significant increase in the Th17 cell ratio, as well as the elevated serum levels of TGF-β1, IL-17 and, IL-21. Conversely, the proportion of Treg cells and the levels of IL-35 were remarkably decreased in CSU patients. Peripheral blood Th17 cells were negatively correlated with Treg cells. The severity of pruritus, life quality, and disease severity in CSU patients were positively correlated to Th17 cell ratio, and inversely correlated with Treg cell proportion. CONCLUSIONS A positive correlation was found between the percentage of peripheral blood Th17 cell in CSU patients and the pruritus level, life quality, and disease severity. In constrast, there was a negative correlation between the proportion of peripheral blood Treg cells and these clinical parameters.
Collapse
Affiliation(s)
- Xiaojing Yang
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| | - Leigang Chen
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| | - Shining Wang
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| | - Yuanhui Wu
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| | - Xiangzhao Zhou
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| | - Zhaoying Meng
- Department of DermatologyThe First Affiliated Hospital of Hebei North UniversityZhangjiakou CityHebei ProvinceChina
| |
Collapse
|
44
|
Jang HJ, Lee JB, Yoon JK. Advanced In Vitro Three-Dimensional Skin Models of Atopic Dermatitis. Tissue Eng Regen Med 2023; 20:539-552. [PMID: 36995643 PMCID: PMC10313606 DOI: 10.1007/s13770-023-00532-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2023] [Revised: 02/11/2023] [Accepted: 02/19/2023] [Indexed: 03/31/2023] Open
Abstract
Atopic dermatitis (AD) is one of the most prevalent inflammatory skin diseases that is characterized by eczematous rashes, intense itching, dry skin, and sensitive skin. Although AD significantly impacts the quality of life and the number of patients keeps increasing, its pathological mechanism is still unknown because of its complexity. The importance of developing new in vitro three-dimensional (3D) models has been underlined in order to understand the mechanisms for the development of therapeutics since the limitations of 2D models or animal models have been repeatedly reported. Thus, the new in vitro AD models should not only be created in 3D structure, but also reflect the pathological characteristics of AD, which are known to be associated with Th2-mediated inflammatory responses, epidermal barrier disruption, increased dermal T-cell infiltration, filaggrin down-regulation, or microbial imbalance. In this review, we introduce various types of in vitro skin models including 3D culture methods, skin-on-a-chips, and skin organoids, as well as their applications to AD modeling for drug screening and mechanistic studies.
Collapse
Affiliation(s)
- Hye-Jeong Jang
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea
| | - Jung Bok Lee
- Department of Biological Sciences, Research Institute of Women's Health, Sookmyung Women's University, Seoul, 04310, Republic of Korea.
| | - Jeong-Kee Yoon
- Department of Systems Biotechnology, Chung-Ang University, Anseong-Si, Gyeonggi-Do, 17546, Republic of Korea.
| |
Collapse
|
45
|
Li L, Liu C, Fu J, Wang Y, Yang D, Peng B, Liu X, Han X, Meng Y, Feng F, Hu X, Qi C, Wang Y, Zheng Y, Li P. CD44 targeted indirubin nanocrystal-loaded hyaluronic acid hydrogel for the treatment of psoriasis. Int J Biol Macromol 2023; 243:125239. [PMID: 37295696 DOI: 10.1016/j.ijbiomac.2023.125239] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 05/30/2023] [Accepted: 06/04/2023] [Indexed: 06/12/2023]
Abstract
Despite advances in transdermal drug delivery for treating psoriasis, there are still unmet medical needs, hyaluronic acid (HA)-based topical formulations as nanocarriers, which can increase drug concentration in psoriatic skin through CD44-assisted targeting. Here, HA was utilized as a matrix for nanocrystal-based hydrogel (NC-gel) to deliver indirubin topically for psoriasis treatments. Indirubin nanocrystals (NCs) were prepared through wet media milling and were then mixed with HA to create indirubin NC/HA gels. A mouse model of imiquimod (IMQ)-induced psoriasis and M5-induced keratinocyte proliferation were established. Then, the efficacy of indirubin delivery targeted at CD44, and anti-psoriatic efficacy using indirubin NC/HA gels (HA-NC-IR group) were evaluated. The HA hydrogel network embedding indirubin NCs enhanced cutaneous absorption of poorly water-soluble indirubin. The co-localization of CD44 and HA in psoriasis-like inflamed skin was highly elevated, suggesting that indirubin NC/HA gels specifically adhered to CD44, leading to an increase in indirubin accumulation in the skin. Additionally, indirubin NC/HA gels enhanced the anti-psoriatic effect of indirubin in both a mouse model and HaCaT cells stimulated with M5. The results indicate that NC/HA gels targeting overexpressed CD44 protein can improve the delivery of topical indirubin to psoriatic inflamed tissues. This suggests that a topical drug delivery system could be a viable approach for formulating multiple insoluble natural products to treat psoriasis.
Collapse
Affiliation(s)
- Lin Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Chang Liu
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau
| | - Jing Fu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yan Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Danyang Yang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Bing Peng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xin Liu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xuyang Han
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yujiao Meng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Fang Feng
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Xueqing Hu
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Cong Qi
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Yazhuo Wang
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China
| | - Ying Zheng
- State Key Laboratory of Quality Research in Chinese Medicine, Institute of Chinese Medical Science, University of Macau, Macau.
| | - Ping Li
- Beijing Hospital of Traditional Chinese Medicine, Capital Medical University, Beijing Institute of Traditional Chinese Medicine, Beijing 100010, China.
| |
Collapse
|
46
|
Luo L, Zhu J, Guo Y, Li C. Mitophagy and immune infiltration in vitiligo: evidence from bioinformatics analysis. Front Immunol 2023; 14:1164124. [PMID: 37287971 PMCID: PMC10242039 DOI: 10.3389/fimmu.2023.1164124] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2023] [Accepted: 05/11/2023] [Indexed: 06/09/2023] Open
Abstract
Background Vitiligo is an acquired, autoimmune, depigmented skin disease with unclear pathogenesis. Mitochondrial dysfunction contributes significantly to vitiligo, and mitophagy is vital for removing damaged mitochondria. Herein, using bioinformatic analysis, we sought to determine the possible role of mitophagy-associated genes in vitiligo and immune infiltration. Methods Microarrays GSE53146 and GSE75819 were used to identify differentially expressed genes (DEGs) in vitiligo. By crossing vitiligo DEGs with mitophagy-related genes, the mitophagy-related DEGs were identified. Functional enrichment and protein-protein intersection (PPI) analyses were conducted. Then, the hub genes were identified using two machine algorithms, and receiver operating characteristic (ROC) curves were generated. Next, the immune infiltration and its connection with hub genes in vitiligo were investigated. Finally, the Regnetwork database and NetworkAnalyst were used to predict the upstream transcriptional factors (TFs), microRNAs (miRNAs), and the protein-compound network. Results A total of 24 mitophagy-related genes were screened. Then, five mitophagy hub genes (GABARAPL2, SP1, USP8, RELA, and TBC1D17) were identified using two machine learning algorithms, and these genes showed high diagnostic specificity for vitiligo. The PPI network showed that hub genes interacted with each other. The mRNA expression levels of five hub genes were validated in vitiligo lesions by qRT-PCR and were compatible with the bioinformatic results. Compared with controls, the abundance of activated CD4+ T cells, CD8+ T cells, immature dendritic cells and B cells, myeloid-derived suppressor cells (MDSCs), gamma delta T cells, mast cells, regulatory T cells (Tregs), and T helper 2 (Th2) cells was higher. However, the abundance of CD56 bright natural killer (NK) cells, monocytes, and NK cells was lower. Correlation analysis revealed a link between hub genes and immune infiltration. Meanwhile, we predicted the upstream TFs and miRNAs and the target compounds of hub genes. Conclusion Five hub mitophagy-related genes were identified and correlated with immune infiltration in vitiligo. These findings suggested that mitophagy may promote the development of vitiligo by activating immune infiltration. Our study might enhance our comprehension of the pathogenic mechanism of vitiligo and offer a treatment option for vitiligo.
Collapse
Affiliation(s)
- Lingling Luo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Jing Zhu
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Youming Guo
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
| | - Chengrang Li
- Department of Dermatology, Hospital for Skin Disease, Institute of Dermatology, Chinese Academy of Medical Sciences and Peking Union Medical College, Nanjing, Jiangsu, China
- Department of Dermatology, Jiangsu Key Laboratory of Molecular Biology for Skin Diseases and Sexually Transmitted Infections, Nanjing, Jiangsu, China
| |
Collapse
|
47
|
Witte K, Schneider-Burrus S, Salinas G, Mössner R, Ghoreschi K, Wolk K, Sabat R. Blood T Helper Memory Cells: A Tool for Studying Skin Inflammation in HS? Int J Mol Sci 2023; 24:ijms24108854. [PMID: 37240200 DOI: 10.3390/ijms24108854] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Revised: 05/04/2023] [Accepted: 05/08/2023] [Indexed: 05/28/2023] Open
Abstract
Hidradenitis suppurativa (HS) is an inflammatory skin disease characterized by painful lesions on intertriginous body areas such as the axillary, inguinal, and perianal sites. Given the limited treatment options for HS, expanding our knowledge of its pathogenetic mechanisms is a prerequisite for novel therapeutic developments. T cells are assumed to play a crucial role in HS pathogenesis. However, it is currently unknown whether blood T cells show specific molecular alterations in HS. To address this, we studied the molecular profile of CD4+ memory T (Thmem) cells purified from the blood of patients with HS and matched healthy participants. About 2.0% and 1.9% of protein-coding transcripts were found to be up- and down-regulated in blood HS Thmem cells, respectively. These differentially expressed transcripts (DETs) are known to be involved in nucleoside triphosphate/nucleotide metabolic processes, mitochondrion organization, and oxidative phosphorylation. The detected down-regulation of transcripts involved in oxidative phosphorylation suggest a metabolic shift of HS Thmem cells towards glycolysis. The inclusion of transcriptome data from skin from HS patients and healthy participants in the analyses revealed that in HS skin lesions, the expression pattern of transcripts identified as DETs in blood HS Thmem cells was very similar to the expression pattern of the totality of protein-coding transcripts. Furthermore, there was no significant association between the extent of the expressional changes in the DETs of blood HS Thmem cells and the extent of the expressional changes in these transcripts in HS skin lesions compared to healthy donor skin. Additionally, a gene ontology enrichment analysis did not demonstrate any association of the DETs of blood HS Thmem cells with skin disorders. Instead, there were associations with different neurological diseases, non-alcoholic fatty liver disease, and thermogenesis. The levels of most DETs linked to neurological diseases showed a positive correlation to each other, suggesting common regulatory mechanisms. In summary, the transcriptomic changes in blood Thmem cells observed in patients with manifest cutaneous HS lesions do not appear to be characteristic of the molecular changes in the skin. Instead, they could be useful for studying comorbidities and identifying corresponding blood biomarkers in these patients.
Collapse
Affiliation(s)
- Katrin Witte
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Sylke Schneider-Burrus
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Center for Dermatosurgery, Havelklinik Berlin, 13595 Berlin, Germany
| | - Gabriela Salinas
- NGS-Integrative Genomics Core Unit, Institute of Human Genetics, University Medical Center Göttingen, 37073 Göttingen, Germany
| | - Rotraut Mössner
- Department of Dermatology, Georg-August-University Goettingen, 37073 Goettingen, Germany
| | - Kamran Ghoreschi
- Department of Dermatology, Venereology and Allergology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| | - Kerstin Wolk
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Berlin Institute of Health Center for Regenerative Therapies (BCRT), Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 13353 Berlin, Germany
| | - Robert Sabat
- Psoriasis Research and Treatment Center, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
- Interdisciplinary Group of Molecular Immunopathology, Dermatology/Medical Immunology, Charité-Universitätsmedizin Berlin, Corporate Member of Freie Universität Berlin and Humboldt-Universität zu Berlin, 10117 Berlin, Germany
| |
Collapse
|
48
|
Su Z, Zeng YP. Dupilumab-Associated Psoriasis and Psoriasiform Manifestations: A Scoping Review. Dermatology 2023; 239:646-657. [PMID: 37100035 PMCID: PMC10407831 DOI: 10.1159/000530608] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2022] [Accepted: 04/03/2023] [Indexed: 04/28/2023] Open
Abstract
BACKGROUND Dupilumab is the first approved IL-4Rα inhibitor for the treatment of atopic dermatitis at present with good efficacy and safety. However, there have been several reports of psoriasis and psoriasiform manifestations occurring after dupilumab therapy in recent years, showing a new paradoxical cutaneous reaction associated with biologics. SUMMARY This is a scoping review in order to summarize the demographics and epidemiology, clinical manifestations, diagnosis, potential pathogenesis, and promising management of dupilumab-associated psoriasis and psoriasiform manifestations.
Collapse
Affiliation(s)
- Zheng Su
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| | - Yue-Ping Zeng
- Department of Dermatology, State Key Laboratory of Complex Severe and Rare Diseases, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, National Clinical Research Center for Dermatologic and Immunologic Diseases, Beijing, China
| |
Collapse
|
49
|
Luo X, Su Y, Zhong L, Kuang Q, Zhu Y, Zhou X, Tang G, Fu Y, Li S, Wu R. Auranofin ameliorates psoriasis-like dermatitis in an imiquimod-induced mouse by inhibiting of inflammation and upregulating FA2H expression. Biomed Pharmacother 2023. [DOI: 10.1016/j.biopha.2023.114421] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/21/2023] Open
|
50
|
Wang T, Qiao W, Xie Y, Ma J, Hu W, Yang L, Li X, Duan C, Wu S, Wang Y, Cheng K, Zhang Y, Zhuang R. CD226 deficiency exacerbated intestinal immune dysregulation in mice with dinitrochlorobenzene-induced atopic dermatitis. Immunology 2023. [PMID: 36938934 DOI: 10.1111/imm.13640] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/02/2022] [Accepted: 02/16/2023] [Indexed: 03/21/2023] Open
Abstract
Intestinal mucosal immunity plays a pivotal role in host defence. In this study, we found that cluster of differentiation 226 (CD226) gene knockout (KO) led to more severe atopic dermatitis (AD)-related skin pathologies and bowel abnormalities in a 2,4-dinitrochlorobenzene (DNCB)-induced AD-like mouse model. Following DNCB administration, the expression of CD226 was elevated in intestinal mucosal tissues, including group 3 innate lymphoid cells (ILC3s) and CD4+ T cells of Peyer's patches (PPs). CD226 deficiency led to an overactive intestinal immune response in the AD-like mice, as evidenced by increased inflammation and Th1/Th2-related cytokine levels as well as increased Paneth cell numbers and antimicrobial peptide (AMP) expression, which was likely due to the higher interleukin (IL)-22 production in the lamina propria. Additionally, CD226 deficiency increased the production of IL-4 and IL-17 in mesenteric lymph nodes as well as the number of PPs and expression of immunoglobulin (Ig) A in B cells. Moreover, insufficient expression of CD226 affected the characterization of intraepithelial and lamina propria lymphocytes in the intestinal mucosa. Finally, the number of PPs was increased in CD4+ T cell-specific CD226 KO and regulatory T (Treg) cell-specific CD226 KO mice; thus, loss of CD226 in Treg cells resulted in impaired Treg cell-suppressive function. Therefore, our findings indicate that CD226 deficiency alters intestinal immune functionality in inflammatory diseases.
Collapse
Affiliation(s)
- Tingting Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Qiao
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yang Xie
- Department of Otolaryngological, Tangdu Hospital, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Jingchang Ma
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Wei Hu
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Lu Yang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Xuemei Li
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Chujun Duan
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Shuwen Wu
- Institute of Medical Research, Northwestern Polytechnical University, Xi'an, Shaanxi, China
| | - Yuling Wang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Kun Cheng
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Yuan Zhang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| | - Ran Zhuang
- Department of Immunology, Fourth Military Medical University, Xi'an, Shaanxi, China
| |
Collapse
|