1
|
Anumudu CK, Miri T, Onyeaka H. Multifunctional Applications of Lactic Acid Bacteria: Enhancing Safety, Quality, and Nutritional Value in Foods and Fermented Beverages. Foods 2024; 13:3714. [PMID: 39682785 DOI: 10.3390/foods13233714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/30/2024] [Revised: 11/18/2024] [Accepted: 11/19/2024] [Indexed: 12/18/2024] Open
Abstract
Lactic Acid Bacteria (LAB) have garnered significant attention in the food and beverage industry for their significant roles in enhancing safety, quality, and nutritional value. As starter cultures, probiotics, and bacteriocin producers, LAB contributes to the production of high-quality foods and beverages that meet the growing consumer demand for minimally processed functional and health-promoting food products. Industrial food processing, especially in the fresh produce and beverage sector, is shifting to the use of more natural bioproducts in food production, prioritizing not only preservation but also the enhancement of functional characteristics in the final product. Starter cultures, essential to this approach, are carefully selected for their robust adaptation to the food environment. These cultures, often combined with probiotics, contribute beyond their basic fermentation roles by improving the safety, nutritional value, and health-promoting properties of foods. Thus, their selection is critical in preserving the integrity, quality, and nutrition of foods, especially in fresh produce and fruits and vegetable beverages, which have a dynamic microbiome. In addition to reducing the risk of foodborne illnesses and spoilage through the metabolites, including bacteriocins they produce, the use of LAB in these products can contribute essential amino acids, lactic acids, and other bioproducts that directly impact food quality. As a result, LAB can significantly alter the organoleptic and nutritional quality of foods while extending their shelf life. This review is aimed at highlighting the diverse applications of LAB in enhancing safety, quality, and nutritional value across a range of food products and fermented beverages, with a specific focus on essential metabolites in fruit and vegetable beverages and their critical contributions as starter cultures, probiotics, and bacteriocin producers.
Collapse
Affiliation(s)
| | - Taghi Miri
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| | - Helen Onyeaka
- School of Chemical Engineering, University of Birmingham, Birmingham B15 2TT, UK
| |
Collapse
|
2
|
Apud GR, Kristof I, Ledesma SC, Stivala MG, Aredes Fernandez PA. Health-promoting peptides in fermented beverages. Rev Argent Microbiol 2024; 56:336-345. [PMID: 38599912 DOI: 10.1016/j.ram.2024.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2023] [Revised: 11/15/2023] [Accepted: 02/03/2024] [Indexed: 04/12/2024] Open
Abstract
Since ancient times, the consumption of fermented low-alcoholic beverages has enjoyed widespread popularity in various countries, because of their distinct flavors and health benefits. Several studies have demonstrated that light to moderate alcohol consumption is associated with beneficial effects on human health, mainly in cardiovascular disease prevention. Fermented beverages have different non-ethanol components that confer beneficial health effects. These bioactive compounds are mainly peptides that have often been overlooked or poorly explored in numerous fermented beverages. The aim of this review is to provide knowledge and generate interest in the biological activities of peptides that are present and/or released during the fermentation process of widely consumed traditional fermented beverages. Additionally, a brief description of the microorganisms involved in these beverages is provided. Furthermore, this review also explores topics related to the detection, isolation, and identification of peptides, addressing the structure-activity relationships of both antioxidant and angiotensin-converting enzyme inhibitory (ACE-I) activities.
Collapse
Affiliation(s)
- Gisselle Raquel Apud
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina
| | - Irina Kristof
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Silvana Cecilia Ledesma
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Maria Gilda Stivala
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina
| | - Pedro Adrian Aredes Fernandez
- Facultad de Bioquímica, Química y Farmacia, Universidad Nacional de Tucumán, Ayacucho 491, 4000 San Miguel de Tucumán, Argentina; Consejo Nacional de Investigaciones Científicas y Técnicas (CONICET), Argentina.
| |
Collapse
|
3
|
Aumiller K, Scheffler R, Stevens ET, Güvener ZT, Tung E, Grimaldo AB, Carlson HK, Deutschbauer AM, Taga ME, Marco ML, Ludington WB. A chemically-defined growth medium to support Lactobacillus-Acetobacter sp. community analysis. PLoS One 2023; 18:e0292585. [PMID: 37824485 PMCID: PMC10569604 DOI: 10.1371/journal.pone.0292585] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Accepted: 09/25/2023] [Indexed: 10/14/2023] Open
Abstract
Lactobacilli and Acetobacter sp. are commercially important bacteria that often form communities in natural fermentations, including food preparations, spoilage, and in the digestive tract of the fruit fly Drosophila melanogaster. Communities of these bacteria are widespread and prolific, despite numerous strain-specific auxotrophies, suggesting they have evolved nutrient interdependencies that regulate their growth. The use of a chemically-defined medium (CDM) supporting the growth of both groups of bacteria would facilitate the identification of the molecular mechanisms for the metabolic interactions between them. While numerous CDMs have been developed that support specific strains of lactobacilli or Acetobacter, there has not been a medium formulated to support both genera. We developed such a medium, based on a previous CDM designed for growth of lactobacilli, by modifying the nutrient abundances to improve growth yield. We further simplified the medium by substituting casamino acids in place of individual amino acids and the standard Wolfe's vitamins and mineral stocks in place of individual vitamins and minerals, resulting in a reduction from 40 to 8 stock solutions. These stock solutions can be used to prepare several CDM formulations that support robust growth of numerous lactobacilli and Acetobacters. Here, we provide the composition and several examples of its use, which is important for tractability in dissecting the genetic and metabolic basis of natural bacterial species interactions.
Collapse
Affiliation(s)
- Kevin Aumiller
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
| | - Robert Scheffler
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
| | - Eric T. Stevens
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States of America
| | - Zehra T. Güvener
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States of America
| | - Emily Tung
- Molecular and Cell Biology Department, University of California, Berkeley, Berkeley, CA, United States of America
| | - Anna B. Grimaldo
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Hans K. Carlson
- Lawrence Berkeley National Laboratory, Department of Environmental Genomics and Systems Biology, Berkeley, CA, United States of America
| | - Adam M. Deutschbauer
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
- Lawrence Berkeley National Laboratory, Department of Environmental Genomics and Systems Biology, Berkeley, CA, United States of America
| | - Michiko E. Taga
- Department of Plant and Microbial Biology, University of California, Berkeley, Berkeley, CA, United States of America
| | - Maria L. Marco
- Department of Food Science and Technology, University of California, Davis, Davis, CA, United States of America
| | - William B. Ludington
- Department of Embryology, Carnegie Institution of Washington, Baltimore, MD, United States of America
- Department of Biology, Johns Hopkins University, Baltimore, MD, United States of America
| |
Collapse
|
4
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Prebiotic Supplements on the Gastrointestinal Microbiota and Associated Health Parameters in Pigs. Animals (Basel) 2023; 13:3012. [PMID: 37835619 PMCID: PMC10572080 DOI: 10.3390/ani13193012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/18/2023] [Accepted: 09/22/2023] [Indexed: 10/15/2023] Open
Abstract
Establishing a balanced and diverse microbiota in the GIT of pigs is crucial for optimizing health and performance throughout the production cycle. The post-weaning period is a critical phase, as it is often associated with dysbiosis, intestinal dysfunction and poor performance. Traditionally, intestinal dysfunctions associated with weaning have been alleviated using antibiotics and/or antimicrobials. However, increasing concerns regarding the prevalence of antimicrobial-resistant bacteria has prompted an industry-wide drive towards identifying natural sustainable dietary alternatives. Modulating the microbiota through dietary intervention can improve animal health by increasing the production of health-promoting metabolites associated with the improved microbiota, while limiting the establishment and proliferation of pathogenic bacteria. Prebiotics are a class of bioactive compounds that resist digestion by gastrointestinal enzymes, but which can still be utilized by beneficial microbes within the GIT. Prebiotics are a substrate for these beneficial microbes and therefore enhance their proliferation and abundance, leading to the increased production of health-promoting metabolites and suppression of pathogenic proliferation in the GIT. There are a vast range of prebiotics, including carbohydrates such as non-digestible oligosaccharides, beta-glucans, resistant starch, and inulin. Furthermore, the definition of a prebiotic has recently expanded to include novel prebiotics such as peptides and amino acids. A novel class of -biotics, referred to as "stimbiotics", was recently suggested. This bioactive group has microbiota-modulating capabilities and promotes increases in short-chain fatty acid (SCFA) production in a disproportionally greater manner than if they were merely substrates for bacterial fermentation. The aim of this review is to characterize the different prebiotics, detail the current understating of stimbiotics, and outline how supplementation to pigs at different stages of development and production can potentially modulate the GIT microbiota and subsequently improve the health and performance of animals.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, Belfield, D04 W6F6 Dublin, Ireland;
| |
Collapse
|
5
|
Kiernan DP, O’Doherty JV, Sweeney T. The Effect of Maternal Probiotic or Synbiotic Supplementation on Sow and Offspring Gastrointestinal Microbiota, Health, and Performance. Animals (Basel) 2023; 13:2996. [PMID: 37835602 PMCID: PMC10571980 DOI: 10.3390/ani13192996] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 09/14/2023] [Accepted: 09/20/2023] [Indexed: 10/15/2023] Open
Abstract
The increasing prevalence of antimicrobial-resistant pathogens has prompted the reduction in antibiotic and antimicrobial use in commercial pig production. This has led to increased research efforts to identify alternative dietary interventions to support the health and development of the pig. The crucial role of the GIT microbiota in animal health and performance is becoming increasingly evident. Hence, promoting an improved GIT microbiota, particularly the pioneer microbiota in the young pig, is a fundamental focus. Recent research has indicated that the sow's GIT microbiota is a significant contributor to the development of the offspring's microbiota. Thus, dietary manipulation of the sow's microbiota with probiotics or synbiotics, before farrowing and during lactation, is a compelling area of exploration. This review aims to identify the potential health benefits of maternal probiotic or synbiotic supplementation to both the sow and her offspring and to explore their possible modes of action. Finally, the results of maternal sow probiotic and synbiotic supplementation studies are collated and summarized. Maternal probiotic or synbiotic supplementation offers an effective strategy to modulate the sow's microbiota and thereby enhance the formation of a health-promoting pioneer microbiota in the offspring. In addition, this strategy can potentially reduce oxidative stress and inflammation in the sow and her offspring, enhance the immune potential of the milk, the immune system development in the offspring, and the sow's feed intake during lactation. Although many studies have used probiotics in the maternal sow diet, the most effective probiotic or probiotic blends remain unclear. To this extent, further direct comparative investigations using different probiotics are warranted to advance the current understanding in this area. Moreover, the number of investigations supplementing synbiotics in the maternal sow diet is limited and is an area where further exploration is warranted.
Collapse
Affiliation(s)
- Dillon P. Kiernan
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - John V. O’Doherty
- School of Agriculture and Food Science, University College Dublin, D04 C1P1 Dublin, Ireland;
| | - Torres Sweeney
- School of Veterinary Medicine, University College Dublin, D04 C1P1 Dublin, Ireland;
| |
Collapse
|
6
|
Pérez MB, Argañaraz Martinez E, Babot JD, Pérez Chaia A, Saguir FM. Growth studies of dominant lactic acid bacteria in orange juice and selection of strains to ferment citric fruit juices with probiotic potential. Braz J Microbiol 2022; 53:2145-2156. [PMID: 36151453 PMCID: PMC9679108 DOI: 10.1007/s42770-022-00830-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Accepted: 09/13/2022] [Indexed: 01/13/2023] Open
Abstract
The study aimed to evaluate the ability of dominant lactic acid bacteria (LAB) in orange juice to growth on N-depleted MRS medium supplemented or not with cysteine (mMRS), then to select the most nutritionally promising strains for growth assays in the food matrix and evaluation of beneficial attributes for fruit juice fermentation. Levilactobacillus brevis and Lactiplantibacillus plantarum were dominant species among the total of 103 LAB isolates as confirmed by multiplex PCR and/or 16 s rDNA sequence analysis. Based on growing lower than 20% and higher than 70% in mMRS (1.0 g/l meat extract, without peptone and yeast extract) with and without cysteine requirement, one L. brevis (JNB23) and two L. plantarum (JNB21 and JNB25) were selected. These bacteria and the L. plantarum strains N4 and N8 (previously isolated from oranges peel) when inoculated in orange juice grew up to 1.0 log cfu/ml for 24 h incubation at 30 °C and mainly produced lactic acid, with strains JNB25 and JNB23 reaching the highest and lowest cell densities in agreement with their nutritional exigency. In addition, all L. plantarum strains exhibited antagonistic activity against the majority of tested bacterial pathogens (in opposition to L. brevis), ability to grow or survive to pH 3.0 for 3 h, to grow with 0.5% sodium taurocholate, and a decrease after simulated gastrointestinal digestion assay which did not exceed 1.0 or 2.0 log units, depending on the strain. Thus, autochthonous L. plantarum strains with ability for overcoming nutritional limitations and beneficial attributes are promising candidates for further investigations as novel probiotic and/or preservative starters to ferment citric fruit juices.
Collapse
Affiliation(s)
- María B Pérez
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
| | - Eloy Argañaraz Martinez
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
| | - Jaime D Babot
- Centro de Referencia Para Lactobacilos (CERELA)-CCT NOA Sur-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Argentina
| | - Adriana Pérez Chaia
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina
- Centro de Referencia Para Lactobacilos (CERELA)-CCT NOA Sur-CONICET, Chacabuco 145, T4000ILC, San Miguel de Tucumán, Argentina
| | - Fabiana M Saguir
- Instituto de Microbiología, Facultad de Bioquímica, Química y Farmacia (FBQF), Universidad Nacional de Tucumán (UNT), Ayacucho 471, (T4000ILC), San Miguel de Tucumán, Argentina.
| |
Collapse
|
7
|
Biosynthesis of gamma-aminobutyric acid by Lactiplantibacillus plantarum K16 as an alternative to revalue agri-food by-products. Sci Rep 2022; 12:18904. [PMID: 36344571 PMCID: PMC9640535 DOI: 10.1038/s41598-022-22875-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 10/20/2022] [Indexed: 11/09/2022] Open
Abstract
Probiotic metabolites, known as postbiotics, have received attention due to their wide variety of promoting health effects. One of the most exciting postbiotic is gamma-aminobutyric acid (GABA), widely produced by lactic acid bacteria, due to its benefits in health. In addition, the performance of the biosynthesis of GABA by Lactiplantibacillus plantarum could be modulated through the modification of fermentation parameters. Due to their high nutritional value, agri-food by-products could be considered a useful fermentation source for microorganisms. Therefore, these by-products were proposed as fermentation substrates to produce GABA in this study. Previously, several experiments in Man Rogosa Sharpe (MRS) broth were performed to identify the most critical parameters to produce GABA using the strain Lactiplantibacillus plantarum K16. The percentage of inoculum, the initial pH, and the concentration of nutrients, such as monosodium glutamate or glucose, significantly affected the biosynthetic pathway of GABA. The highest GABA yield was obtained with 500 mM of monosodium glutamate and 25 g/L of glucose, and an initial pH of 5.5 and 1.2% inoculum. Furthermore, these investigated parameters were used to evaluate the possibility of using tomato, green pepper, apple, or orange by-products to get GABA-enriched fermented media, which is an excellent way to revalorise them.
Collapse
|
8
|
Lee J, Hong H, Lee J, Hong Y, Hwang HW, Jin H, Shim H, Hong Y, Park W, Chung J, Lee D. Valorization of leftover green tea residues through conversion to bioactive peptides using probiotics-aided anaerobic digestion. Microb Biotechnol 2022; 16:418-431. [PMID: 36285915 PMCID: PMC9871527 DOI: 10.1111/1751-7915.14155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Revised: 09/16/2022] [Accepted: 09/20/2022] [Indexed: 01/27/2023] Open
Abstract
Bioactive peptides (BPs) are protein fragments that benefit human health. To assess whether leftover green tea residues (GTRs) can serve as a resource for new BPs, we performed in silico proteolysis of GTRs using the BIOPEP database, revealing a wide range of BPs embedded in GTRs. Comparative genomics and the percentage of conserved protein analyses enabled us to select a few probiotic strains for GTR hydrolysis. The selected probiotics digested GTRs anaerobically to yield GTR-derived peptide fractions. To examine whether green tea (GT) peptide fractions could be potential mediators of host-microbe interactions, we comprehensively screened agonistic and antagonistic activities of 168 human G protein-coupled receptors (GPCRs). NanoLC-MS/MS analysis and thin-layer chromatography allowed the identification of peptide sequences and the composition of glycan moieties in the GTRs. Remarkably, GT peptide fractions produced by Lactiplantibacillus plantarum APsulloc 331261, a strain isolated from GT, showed a potent-binding activity for P2RY6, a GPCR involved in intestinal homeostasis. Therefore, this study suggests the potential use of probiotics-aided GTR hydrolysates as postbiotic BPs, providing a biological process for recycling GTRs from agro-waste into renewable resources as health-promoting BPs.
Collapse
Affiliation(s)
- Ji‐Young Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Hyein Hong
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Jae‐Eun Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Yi‐Jee Hong
- Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| | - Hye Won Hwang
- Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| | - Hyeon‐Su Jin
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | - Hyunkyou Shim
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea
| | | | | | | | - Dong‐Woo Lee
- Department of BiotechnologyYonsei UniversitySeoulSouth Korea,Department of Bioindustrial EngineeringYonsei UniversitySeoulSouth Korea
| |
Collapse
|
9
|
Nitrogen source: an effective component for the growth and viability of Lactobacillus delbrueckii subsp. bulgaricus. J DAIRY RES 2022. [DOI: 10.1017/s0022029922000541] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Abstract
Abstract
In this study, we developed and optimized a growth media by evaluating various nitrogen sources for the cultivation of Lactobacillus bulgaricus, a probiotic and an important dairy starter culture. We modified the composition of deMan, Rogosa and Sharpe (MRS) culture media and substituted the nitrogen content with alternative nitrogen sources X-Seed KAT, X-Seed Carbo Max and X-Seed Nucleo Max in various blends of 5 g/l and 10 g/l respectively. Results showed that bacterial growth was significantly higher when the nitrogen source blend KCMax (10/10) was used. The optical density (OD610 nm) of the Lactobacillus bulgaricus strains were higher (1.34 and 1.79) in the KCMax (10/10) medium than in the MRS medium (0.89 and 1.42) (P < 0.05). There was no significant difference in the bacterial counts for both the MRS medium and the KCMax (10/10) medium, and all bacterial counts were estimated at 8 log CFU/ml. The buffering capacity of KCMax (10/10) was also tested and supplemented with l-histidine and was significantly different (P < 0.05) than that of the MRS control medium. Calcium supplemented in the KCMax (10/10) also served as a cryoprotectant for the cells during freezing and freeze-drying. Bacterial counts of the recovered calcium-treated freeze-dried cells were statistically significant (P < 0.05). We hypothesized that alternative nitrogen sources such as selected yeast extracts from the X-Seed brand of complex nitrogen sources could efficiently support the viability of Lb. bulgaricus. Our results thus suggested the growth of Lb. bulgaricus was efficiently supported by the X-Seed KAT, X-Seed Nucleo Max and X-Seed Carbo Max nitrogen sources. Consequently, these alternative nitrogen sources could potentially be recommended for dairy starter culture fermentations.
Collapse
|
10
|
Lee JY, Hwang HW, Jin HS, Lee JE, Kang NJ, Lee DW. A Genomics-Based Semirational Approach for Expanding the Postbiotic Potential of Collagen Peptides Using Lactobacillaceae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2022; 70:8365-8376. [PMID: 35758868 DOI: 10.1021/acs.jafc.2c01251] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Food-derived bioactive peptides (BPs) have received considerable attention as postbiotics for human gut health. Here we used a genomics-based semirational approach to expand the postbiotic potential of collagen peptides (CPs) produced from probiotic fermentation. In silico digestion revealed distinct BPs embedded in fish collagen in a protease-dependent manner. Anaerobic digestion of collagen by representative Lactobacillaceae species revealed differential substrate utilization and collagen degradation patterns. Nanoliquid chromatography-mass spectrometry analysis of CPs showed that each species exhibited different cleavage patterns and unique peptide profiles. Remarkably, the 1-10 kDa CPs produced by Lacticaseibacillus paracasei showed agonistic activities toward G protein-coupled receptor 35 (GPR35). These CPs could repair intestinal epithelium through the GPR35-mediated extracellular signal-regulated protein kinase (ERK) 1/2 signaling pathway, suggesting that probiotic-aided collagen hydrolysates can serve as postbiotics for host-microbe interactions. Therefore, this study provides an effective strategy for the rapid screening of CPs for gut health in the gastrointestinal tract.
Collapse
Affiliation(s)
- Ji-Young Lee
- Department of Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
| | - Hye Won Hwang
- Department of Bioindustrial Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
| | - Hyeon-Su Jin
- Department of Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
| | - Jae-Eun Lee
- Department of Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
| | - Nam Joo Kang
- School of Food Science and Biotechnology, Kyungpook National University, Daehak-ro 80, Buk-gu, Daegu 41566, South Korea
| | - Dong-Woo Lee
- Department of Biotechnology, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
- Department of Bioindustrial Engineering, Yonsei University, Yonsei-ro 50, Seodaemun-gu, Seoul 03722, South Korea
| |
Collapse
|
11
|
Zhang A, Zhang Z, Zhang K, Liu X, Lin X, Zhang Z, Bao T, Feng Z. Nutrient consumption patterns of Lactobacillus plantarum and their application in suancai. Int J Food Microbiol 2021; 354:109317. [PMID: 34225032 DOI: 10.1016/j.ijfoodmicro.2021.109317] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2021] [Revised: 05/31/2021] [Accepted: 06/20/2021] [Indexed: 11/25/2022]
Abstract
The purpose of the present study was to control the fermentation time and nitrite content of suancai prepared with Lactobacillus plantarum. According to analyses of the consumption amount and rate of nutrients, growth-stimulating nutrients, essential nutrients and nutrients accelerating the fermentation process of suancai, Asp, Thr, Glu, Cys, Tyr, Mg2+, Mn2+ and inosine were selected as additions to suancai prepared with L. plantarum. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 2 days and 5 days and reduced by approximately 0.1-fold and 0.7-fold, respectively, compared with unsupplemented suancai prepared with L. plantarum at 25 °C and 10 °C. The fermentation time and nitrite content of suancai supplemented with nutrients and prepared with L. plantarum were shortened by 6 days and 15 days and reduced by approximately 0.17-fold and 0.8-fold, respectively, compared with suancai undergoing spontaneous fermentation at 25 °C and 10 °C. Furthermore, no significant differences were observed in sensory properties in suancai. The results of this study indicated that certain nutrients accelerated the growth of L. plantarum and reduced the fermentation time and nitrite content of suancai prepared with L. plantarum. These findings help to establish a foundation for the practical use of nutrients to control the fermentation of suancai.
Collapse
Affiliation(s)
- Ao Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zongcai Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Kenan Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Xin Liu
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Xue Lin
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Zhang
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Tianyu Bao
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China
| | - Zhen Feng
- Key Laboratory of Dairy Science, Ministry of Education, College of Food Science, Northeast Agricultural University, 600 Changjiang Road, Harbin 150030, Heilongjiang, China.
| |
Collapse
|
12
|
Catalytic specificity of the Lactobacillus plantarum cystathionine γ-lyase presumed by the crystallographic analysis. Sci Rep 2020; 10:14886. [PMID: 32913258 PMCID: PMC7483736 DOI: 10.1038/s41598-020-71756-7] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Accepted: 08/05/2020] [Indexed: 11/17/2022] Open
Abstract
The reverse transsulfuration pathway, which is composed of cystathionine β-synthase (CBS) and cystathionine γ-lyase (CGL), plays a role to synthesize l-cysteine using l-serine and the sulfur atom in l-methionine. A plant-derived lactic acid bacterium Lactobacillus plantarum SN35N has been previously found to harbor the gene cluster encoding the CBS- and CGL-like enzymes. In addition, it has been demonstrated that the L. plantarum CBS can synthesize cystathionine from O-acetyl-l-serine and l-homocysteine. The aim of this study is to characterize the enzymatic functions of the L. plantarum CGL. We have found that the enzyme has the high γ-lyase activity toward cystathionine to generate l-cysteine, together with the β-lyase activity toward l-cystine to generate l-cysteine persulfide. By the crystallographic analysis of the inactive CGL K194A mutant complexed with cystathionine, we have found the residues which recognize the distal amino and carboxyl groups of cystathionine or l-cystine. The PLP-bound substrates at the active site may take either the binding pose for the γ- or β-elimination reaction, with the former being the major reaction in the case of cystathionine.
Collapse
|
13
|
Henriques SF, Dhakan DB, Serra L, Francisco AP, Carvalho-Santos Z, Baltazar C, Elias AP, Anjos M, Zhang T, Maddocks ODK, Ribeiro C. Metabolic cross-feeding in imbalanced diets allows gut microbes to improve reproduction and alter host behaviour. Nat Commun 2020; 11:4236. [PMID: 32843654 PMCID: PMC7447780 DOI: 10.1038/s41467-020-18049-9] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2019] [Accepted: 07/30/2020] [Indexed: 12/15/2022] Open
Abstract
The impact of commensal bacteria on the host arises from complex microbial-diet-host interactions. Mapping metabolic interactions in gut microbial communities is therefore key to understand how the microbiome influences the host. Here we use an interdisciplinary approach including isotope-resolved metabolomics to show that in Drosophila melanogaster, Acetobacter pomorum (Ap) and Lactobacillus plantarum (Lp) a syntrophic relationship is established to overcome detrimental host diets and identify Ap as the bacterium altering the host's feeding decisions. Specifically, we show that Ap uses the lactate produced by Lp to supply amino acids that are essential to Lp, allowing it to grow in imbalanced diets. Lactate is also necessary and sufficient for Ap to alter the fly's protein appetite. Our data show that gut bacterial communities use metabolic interactions to become resilient to detrimental host diets. These interactions also ensure the constant flow of metabolites used by the microbiome to alter reproduction and host behaviour.
Collapse
Affiliation(s)
- Sílvia F Henriques
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Darshan B Dhakan
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Lúcia Serra
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Ana Patrícia Francisco
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Zita Carvalho-Santos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Célia Baltazar
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Ana Paula Elias
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Margarida Anjos
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal
| | - Tong Zhang
- University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow, G61 1QH, UK
| | - Oliver D K Maddocks
- University of Glasgow Institute of Cancer Sciences, Switchback Road, Glasgow, G61 1QH, UK
| | - Carlos Ribeiro
- Behavior and Metabolism Laboratory, Champalimaud Research, Champalimaud Centre for the Unknown, Lisbon, 1400-038, Portugal.
| |
Collapse
|
14
|
Consuegra J, Grenier T, Baa-Puyoulet P, Rahioui I, Akherraz H, Gervais H, Parisot N, da Silva P, Charles H, Calevro F, Leulier F. Drosophila-associated bacteria differentially shape the nutritional requirements of their host during juvenile growth. PLoS Biol 2020; 18:e3000681. [PMID: 32196485 PMCID: PMC7112240 DOI: 10.1371/journal.pbio.3000681] [Citation(s) in RCA: 69] [Impact Index Per Article: 13.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 04/01/2020] [Accepted: 03/04/2020] [Indexed: 01/14/2023] Open
Abstract
The interplay between nutrition and the microbial communities colonizing the gastrointestinal tract (i.e., gut microbiota) determines juvenile growth trajectory. Nutritional deficiencies trigger developmental delays, and an immature gut microbiota is a hallmark of pathologies related to childhood undernutrition. However, how host-associated bacteria modulate the impact of nutrition on juvenile growth remains elusive. Here, using gnotobiotic Drosophila melanogaster larvae independently associated with Acetobacter pomorumWJL (ApWJL) and Lactobacillus plantarumNC8 (LpNC8), 2 model Drosophila-associated bacteria, we performed a large-scale, systematic nutritional screen based on larval growth in 40 different and precisely controlled nutritional environments. We combined these results with genome-based metabolic network reconstruction to define the biosynthetic capacities of Drosophila germ-free (GF) larvae and its 2 bacterial partners. We first established that ApWJL and LpNC8 differentially fulfill the nutritional requirements of the ex-GF larvae and parsed such difference down to individual amino acids, vitamins, other micronutrients, and trace metals. We found that Drosophila-associated bacteria not only fortify the host’s diet with essential nutrients but, in specific instances, functionally compensate for host auxotrophies by either providing a metabolic intermediate or nutrient derivative to the host or by uptaking, concentrating, and delivering contaminant traces of micronutrients. Our systematic work reveals that beyond the molecular dialogue engaged between the host and its bacterial partners, Drosophila and its associated bacteria establish an integrated nutritional network relying on nutrient provision and utilization. A study of gnotobiotic fruit flies shows that the animal is involved in an integrated nutritional network with its facultative commensal bacteria, centered around the utilization and sharing of nutrients.
Collapse
Affiliation(s)
- Jessika Consuegra
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Théodore Grenier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Patrice Baa-Puyoulet
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Isabelle Rahioui
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Houssam Akherraz
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Hugo Gervais
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
| | - Nicolas Parisot
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Pedro da Silva
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Hubert Charles
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - Federica Calevro
- Laboratoire Biologie Fonctionnelle, Insectes et Interactions, Université de Lyon, Institut National des Sciences Appliquées, Institut National de Recherche pour l’Agriculture, l’Alimentation et l’Environnement, UMR0203, Villeurbanne, France
| | - François Leulier
- Institut de Génomique Fonctionnelle de Lyon, Université de Lyon, École Normale Supérieure de Lyon, Centre National de la Recherche Scientifique, Université Claude Bernard Lyon 1, UMR5242, Lyon, France
- * E-mail:
| |
Collapse
|
15
|
Säde E, Johansson P, Heinonen T, Hultman J, Björkroth J. Growth and metabolic characteristics of fastidious meat-derived Lactobacillus algidus strains. Int J Food Microbiol 2020; 313:108379. [PMID: 31675541 DOI: 10.1016/j.ijfoodmicro.2019.108379] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2019] [Revised: 08/25/2019] [Accepted: 09/28/2019] [Indexed: 10/25/2022]
Abstract
Lactobacillus algidus is a meat spoilage bacterium often dominating the bacterial communities on chilled, packaged meat. Yet, L. algidus strains are rarely recovered from meat, and only few studies have focused on this species. The main reason limiting detailed studies on L. algidus is related to its poor growth on the media routinely used for culturing food spoilage bacteria. Thus, our study sought to develop reliable culture media for L. algidus to enable its recovery from meat, and to allow subculturing and phenotypic analyses of the strains. We assessed the growth of meat-derived L. algidus strains on common culture media and their modifications, and explored the suitability of potential media for the recovery of L. algidus from meat. Moreover, we determined whether 12 meat-derived L. algidus strains selected from our culture collection produce biogenic amines that may compromise safety or quality of meat, and finally, sequenced de novo and annotated the genomes of two meat-derived L. algidus strains to uncover genes and metabolic pathways relevant for phenotypic traits observed. MRS agar supplemented with complex substances (peptone, meat and yeast extract, liver digest) supported the growth of L. algidus, and allowed the recovery of new L. algidus isolates from meat. However, most strains grew poorly on standard MRS agar and on general-purpose media. In MRS broth, most strains grew well but a subset of strains required supplementation of MRS broth with additional cysteine. Supplementation of MRS broth with catalase allowed growth in aerated cultures suggesting that the strains produced hydrogen peroxide when grown aerobically. The strains tested (n = 12) produced ornithine from arginine and putrescine from agmatine, and two strains produced tyramine from tyrosine. Our findings reveal that L. algidus populations are underestimated if routine culture protocols are applied, and prompt concerns that L. algidus may generate tyramine or putrescine in meat or fermented meat products.
Collapse
Affiliation(s)
- Elina Säde
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland.
| | - Per Johansson
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Tytti Heinonen
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Jenni Hultman
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| | - Johanna Björkroth
- Department of Food Hygiene and Environmental Health, University of Helsinki, Finland
| |
Collapse
|
16
|
Fenster K, Freeburg B, Hollard C, Wong C, Rønhave Laursen R, Ouwehand AC. The Production and Delivery of Probiotics: A Review of a Practical Approach. Microorganisms 2019; 7:E83. [PMID: 30884906 PMCID: PMC6463069 DOI: 10.3390/microorganisms7030083] [Citation(s) in RCA: 165] [Impact Index Per Article: 27.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2019] [Revised: 03/12/2019] [Accepted: 03/14/2019] [Indexed: 01/13/2023] Open
Abstract
To successfully deliver probiotic benefits to the consumer, several criteria must be met. Here, we discuss the often-forgotten challenges in manufacturing the strains and incorporating them in consumer products that provide the required dose at the end of shelf life. For manufacturing, an intricate production process is required that ensures both high yield and stability and must also be able to meet requirements such as the absence of specific allergens, which precludes some obvious culture media ingredients. Reproducibility is important to ensure constant high performance and quality. To ensure this, quality control throughout the whole production process, from raw materials to the final product, is essential, as is the documentation of this quality control. Consumer product formulation requires extensive skill and experience. Traditionally, probiotic lactic acid bacteria and bifidobacteria have been incorporated in fermented dairy products, with limited shelf life and refrigerated storage. Currently, probiotics may be incorporated in dietary supplements and other "dry" food matrices which are expected to have up to 24 months of stability at ambient temperature and humidity. With the right choice of production process, product formulation, and strains, high-quality probiotics can be successfully included in a wide variety of delivery formats to suit consumer requirements.
Collapse
Affiliation(s)
- Kurt Fenster
- DuPont Nutrition and Health, Madison, WI 53716, USA.
| | | | - Chris Hollard
- DuPont Nutrition and Health, Madison, WI 53716, USA.
| | - Connie Wong
- DuPont Nutrition and Health, Madison, WI 53716, USA.
| | | | | |
Collapse
|
17
|
Liu R, Kim AH, Kwak MK, Kang SO. Proline-Based Cyclic Dipeptides from Korean Fermented Vegetable Kimchi and from Leuconostoc mesenteroides LBP-K06 Have Activities against Multidrug-Resistant Bacteria. Front Microbiol 2017; 8:761. [PMID: 28512456 PMCID: PMC5411444 DOI: 10.3389/fmicb.2017.00761] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2016] [Accepted: 04/12/2017] [Indexed: 11/13/2022] Open
Abstract
Lactobacillus plantarum and Leuconostoc mesenteroides play a prominent role as functional starters and predominant isolates in the production of various types of antimicrobial compound-containing fermented foods, especially including kimchi. In the case of the bioactive cyclic dipeptides, their racemic diastereomers inhibitory to bacteria and fungi have been suggested to come solely from Lactobacillus spp. of these strains. We previously demonstrated the antifungal and antiviral activities of proline-based cyclic dipeptides, which were fractionated from culture filtrates of Lb. plantarum LBP-K10 originated from kimchi. However, cyclic dipeptides have not been identified in the filtrates, either from cultures or fermented subject matter, driven by Ln. mesenteroides, which have been widely used as starter cultures for kimchi fermentation. Most importantly, the experimental verification of cyclic dipeptide-content changes during kimchi fermentation have also not been elucidated. Herein, the antibacterial fractions, including cyclo(Leu-Pro) and cyclo(Phe-Pro), from Ln. mesenteroides LBP-K06 culture filtrates, which exhibited a typical chromatographic retention behavior (tR), were identified by using semi-preparative high-performance liquid chromatography and gas chromatography-mass spectrometry. Based on this finding, the proline-based cyclic dipeptides, including cyclo(Ser-Pro), cyclo(Tyr-Pro), and cyclo(Leu-Pro), were additionally identified in the filtrates only when fermenting Chinese cabbage produced with Ln. mesenteroides LBP-K06 starter cultures. The detection and isolation of cyclic dipeptides solely in controlled fermented cabbage were conducted under the control of fermentation-process parameters concomitantly with strong CDP selectivity by using a two-consecutive-purification strategy. Interestingly, cyclic dipeptides in the filtrates, when using this strain as a starter, increased with fermentation time. However, no cyclic dipeptides were observed in the filtrates of other fermented products, including other types of kimchi and fermented materials of plant and animal origin. This is the first report to conclusively demonstrate evidence for the existence of antimicrobial cyclic dipeptides produced by Ln. mesenteroides in kimchi. Through filtrates from lactic acid bacterial cultures and from fermented foods, we have also proved a method of combining chromatographic fractionation and mass spectrometry-based analysis for screening cyclic dipeptide profiling, which may allow evaluation of the fermented dairy foods from a new perspective.
Collapse
Affiliation(s)
- Rui Liu
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Andrew H Kim
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Min-Kyu Kwak
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| | - Sa-Ouk Kang
- Laboratory of Biophysics, School of Biological Sciences, and Institute of Microbiology, Seoul National UniversitySeoul, South Korea
| |
Collapse
|
18
|
Kasmi M, Hamdi M, Trabelsi I. Processed milk waste recycling via thermal pretreatment and lactic acid bacteria fermentation. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2017; 24:13604-13613. [PMID: 28391464 DOI: 10.1007/s11356-017-8932-6] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Accepted: 03/23/2017] [Indexed: 06/07/2023]
Abstract
Processed milk waste (MW) presents a serious problem within the dairy industries due to its high polluting load. Its chemical oxygen demand (COD) can reach values as high as 80,000 mg O2 L-1. This study proposes to reduce the organic load of those wastes using thermal coagulation and recover residual valuable components via fermentation. Thermal process results showed that the COD removal rates exceeded 40% when samples were treated at temperature above 60 °C to reach 72% at 100 °C. Clarified supernatants resulting from thermal treatment of the samples at the temperatures of 60 (MW60), 80 (MW80), and 100 °C (MW100) were fermented using lactic acid bacteria strains without pH control. Lactic strains recorded important final cell yields (5-7 g L-1). Growth mediums prepared using the thermally treated MW produced 73% of the bacterial biomass recorded with a conventional culture medium. At the end of fermentation, mediums were found exhausted from several valuable components. Industrial scale implementation of the proposed process for the recycling of industrial MWs is described and discussed.
Collapse
Affiliation(s)
- Mariam Kasmi
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Tourist route Soliman, BP 273-8020, Nabeul, Tunisia.
| | - Moktar Hamdi
- Laboratoire d'Ecologie et de Technologie Microbienne LETMI, Institut National des Sciences Appliquées et de Technologie (INSAT), Centre Urbain Nord, BP 676 - 1080, Tunis Cedex, Tunisia
| | - Ismail Trabelsi
- Laboratoire de Traitement et de Valorisation des Rejets Hydriques (LTVRH), Water Researches and Technologies Center (CERTE), University of Carthage, Tourist route Soliman, BP 273-8020, Nabeul, Tunisia
| |
Collapse
|
19
|
Zotta T, Tabanelli G, Montanari C, Ianniello R, Parente E, Gardini F, Ricciardi A. Tween 80 and respiratory growth affect metabolite production and membrane fatty acids inLactobacillus caseiN87. J Appl Microbiol 2017; 122:759-769. [DOI: 10.1111/jam.13373] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2016] [Revised: 11/08/2016] [Accepted: 12/05/2016] [Indexed: 12/28/2022]
Affiliation(s)
- T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - G. Tabanelli
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
| | - C. Montanari
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
| | - R.G. Ianniello
- Scuola di Scienze Agrarie; Forestali; Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - E. Parente
- Dipartimento di Scienze; Università degli Studi della Basilicata; Potenza Italy
| | - F. Gardini
- Centro Interdipartimentale di Ricerca Industriale Agroalimentare; Università degli Studi di Bologna; Sede di Cesena Italy
- Dipartimento di Scienze e Tecnologie Agroalimentari; Alma Mater Studiorum; Università degli Studi di Bologna; Cesena Italy
| | - A. Ricciardi
- Scuola di Scienze Agrarie; Forestali; Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| |
Collapse
|
20
|
Development of a Chemically Defined Medium for Better Yield and Purification of Enterocin Y31 fromEnterococcus faeciumY31. J FOOD QUALITY 2017. [DOI: 10.1155/2017/9017452] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023] Open
Abstract
The macro- and micronutrients in traditional medium, such as MRS, used for cultivating lactic acid bacteria, especially for bacteriocin production, have not been defined, preventing the quantitative monitoring of metabolic flux during bacteriocin biosynthesis. To enhance Enterocin Y31 production and simplify steps of separation and purification, we developed a simplified chemically defined medium (SDM) for the growth ofEnterococcus faeciumY31 and production of its bacteriocin, Enterocin Y31. We found that the bacterial growth was unrelated to Enterocin Y31 production in MRS; therefore, both the growth rate and the Enterocin Y31 production were set as the index for investigation. Single omission experiments revealed that 5 g/L NaCl, five vitamins, two nucleic acid bases, MgSO4·7H2O, MnSO4·4H2O, KH2PO4, K2HPO4, CH3COONa, fourteen amino acids, and glucose were essential for the strain’s growth and Enterocin Y31 production. Thus, a novel simplified and defined medium (SDM) was formulated with 30 components in total. Consequently, Enterocin Y31 production yield was higher in SDM as compared to either MRS or CDM. SDM improved the Enterocin Y31 production and simplified the steps of purification (only two steps), which has broad potential applications.
Collapse
|
21
|
Abbasiliasi S, Tan JS, Tengku Ibrahim TA, Bashokouh F, Ramakrishnan NR, Mustafa S, Ariff AB. Fermentation factors influencing the production of bacteriocins by lactic acid bacteria: a review. RSC Adv 2017. [DOI: 10.1039/c6ra24579j] [Citation(s) in RCA: 83] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
Lactic acid bacteria (LAB) are the major interest in food industry primarily by virtue of their biopreservative properties.
Collapse
Affiliation(s)
- Sahar Abbasiliasi
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Joo Shun Tan
- Bioprocess Technology
- School of Industrial Technology
- Universiti Sains Malaysia
- Malaysia
| | | | - Fatemeh Bashokouh
- Pharmacology discipline
- Faculty of medicine
- UiTM
- 47000 Sungai Buloh
- Malaysia
| | | | - Shuhaimi Mustafa
- Department of Microbiology
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| | - Arbakariya B. Ariff
- Bioprocessing and Biomanufacturing Research Centre
- Faculty of Biotechnology and Biomolecular Sciences
- Universiti Putra Malaysia
- 43400 UPM Serdang
- Malaysia
| |
Collapse
|
22
|
Systematic development and optimization of chemically defined medium supporting high cell density growth of Bacillus coagulans. Appl Microbiol Biotechnol 2016; 100:8121-34. [PMID: 27262567 DOI: 10.1007/s00253-016-7644-z] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2016] [Revised: 05/09/2016] [Accepted: 05/12/2016] [Indexed: 10/21/2022]
Abstract
With determined components and experimental reducibility, the chemically defined medium (CDM) and the minimal chemically defined medium (MCDM) are used in many metabolism and regulation studies. This research aimed to develop the chemically defined medium supporting high cell density growth of Bacillus coagulans, which is a promising producer of lactic acid and other bio-chemicals. In this study, a systematic methodology combining the experimental technique with flux balance analysis (FBA) was proposed to design and simplify a CDM. The single omission technique and single addition technique were employed to determine the essential and stimulatory compounds, before the optimization of their concentrations by the statistical method. In addition, to improve the growth rationally, in silico omission and addition were performed by FBA based on the construction of a medium-size metabolic model of B. coagulans 36D1. Thus, CDMs were developed to obtain considerable biomass production of at least five B. coagulans strains, in which two model strains B. coagulans 36D1 and ATCC 7050 were involved.
Collapse
|
23
|
Ma C, Cheng G, Liu Z, Gong G, Chen Z. Determination of the essential nutrients required for milk fermentation by Lactobacillus plantarum. Lebensm Wiss Technol 2016. [DOI: 10.1016/j.lwt.2015.09.003] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
24
|
Ricciardi A, Ianniello R, Parente E, Zotta T. Modified chemically defined medium for enhanced respiratory growth ofLactobacillus caseiandLactobacillus plantarumgroups. J Appl Microbiol 2015; 119:776-85. [DOI: 10.1111/jam.12894] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2015] [Revised: 05/27/2015] [Accepted: 06/20/2015] [Indexed: 11/29/2022]
Affiliation(s)
- A. Ricciardi
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - R.G. Ianniello
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
| | - E. Parente
- Scuola di Scienze Agrarie, Forestali, Alimentari e Ambientali; Università degli Studi della Basilicata; Potenza Italy
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| | - T. Zotta
- Istituto di Scienze dell'Alimentazione-CNR; Avellino Italy
| |
Collapse
|
25
|
Aunsbjerg S, Honoré A, Vogensen F, Knøchel S. Development of a chemically defined medium for studying foodborne bacterial–fungal interactions. Int Dairy J 2015. [DOI: 10.1016/j.idairyj.2015.01.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
26
|
Aunsbjerg S, Honoré A, Marcussen J, Ebrahimi P, Vogensen F, Benfeldt C, Skov T, Knøchel S. Contribution of volatiles to the antifungal effect of Lactobacillus paracasei in defined medium and yogurt. Int J Food Microbiol 2015; 194:46-53. [DOI: 10.1016/j.ijfoodmicro.2014.11.007] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2014] [Revised: 10/17/2014] [Accepted: 11/05/2014] [Indexed: 02/08/2023]
|
27
|
Stingley RL, Liu H, Mullis LB, Elkins CA, Hart ME. Staphylococcus aureus toxic shock syndrome toxin-1 (TSST-1) production and Lactobacillus species growth in a defined medium simulating vaginal secretions. J Microbiol Methods 2014; 106:57-66. [PMID: 25135489 DOI: 10.1016/j.mimet.2014.08.002] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2014] [Revised: 08/05/2014] [Accepted: 08/06/2014] [Indexed: 11/18/2022]
Abstract
Lactobacillus species are commensal with the healthy vaginal environment and inhibit the growth of many pathogenic bacteria in the vaginal tract by a variety of mechanisms, such as the production of hydrogen peroxide, organic acids, and antimicrobial substances. Simulation of the vaginal environment is crucial for proper investigation of the effects of Lactobacillus species on pathogenic bacteria. In this study, we modified a medium used to simulate vaginal secretions to improve the growth of toxic shock syndrome toxin-1 (TSST-1)-producing Staphylococcus aureus clinical strains and Lactobacillus species so that interactions between these bacteria may be examined. A medium consisting of basal salts, vitamins, albumin, glycogen, mucin, urea, sodium bicarbonate, polyoxyethylene sorbitan monolaurate, and amino acids supported the growth of S. aureus and the production of TSST-1 as determined by Western analysis. Improved growth of the Lactobacillus species was seen when this same medium was supplemented with manganese chloride, sodium acetate, and an increase in glucose concentration. However, growth of S. aureus in the supplemented medium resulted in reduced levels of TSST-1. Production of TSST-1 was not detected in a medium routinely used for the growth of Lactobacillus species although S. aureus growth was not inhibited. The development of an improved genital tract secretion medium provides a more authentic environment in which to study the interactions of Lactobacillus species and vaginal pathogens, such as S. aureus.
Collapse
Affiliation(s)
- Robin L Stingley
- Office of Scientific Coordination, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Huanli Liu
- Office of Regulatory Affairs, Arkansas Regional Laboratories, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Lisa B Mullis
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA
| | - Christopher A Elkins
- Office of Applied Research and Safety Assessment, Center for Food Safety and Applied Nutrition, U.S. Food and Drug Administration, Laurel, MD, USA
| | - Mark E Hart
- Division of Microbiology, National Center for Toxicological Research, U.S. Food and Drug Administration, Jefferson, AR, USA; Department of Microbiology and Immunology, University of Arkansas for Medical Sciences, Little Rock, AR, USA.
| |
Collapse
|
28
|
Khan H, Flint S, Yu PL. Development of a chemically defined medium for the production of enterolysin A from Enterococcus faecalis
B9510. J Appl Microbiol 2013; 114:1092-102. [DOI: 10.1111/jam.12115] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2012] [Revised: 12/02/2012] [Accepted: 12/15/2012] [Indexed: 11/29/2022]
Affiliation(s)
- H. Khan
- School of Engineering and Advanced Technology; Massey University; Palmerston North New Zealand
| | - S.H. Flint
- Institute of Food; Nutrition and Human Health; Massey University; Palmerston North New Zealand
| | - P.-L. Yu
- School of Engineering and Advanced Technology; Massey University; Palmerston North New Zealand
| |
Collapse
|
29
|
Savino MJ, Sánchez LA, Saguir FM, de Nadra MCM. Lactic acid bacteria isolated from apples are able to catabolise arginine. World J Microbiol Biotechnol 2011; 28:1003-12. [DOI: 10.1007/s11274-011-0898-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2011] [Accepted: 09/16/2011] [Indexed: 10/17/2022]
|
30
|
Wegkamp A, Teusink B, de Vos WM, Smid EJ. Development of a minimal growth medium for Lactobacillus plantarum. Lett Appl Microbiol 2010; 50:57-64. [PMID: 19874488 DOI: 10.1111/j.1472-765x.2009.02752.x] [Citation(s) in RCA: 72] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
AIM A medium with minimal requirements for the growth of Lactobacillus plantarum WCFS was developed. The composition of the minimal medium was compared to a genome-scale metabolic model of L. plantarum. METHODS AND RESULTS By repetitive single omission experiments, two minimal media were developed: PMM5 (true minimal medium) and PMM7 [a pseudominimal medium, supporting proper biomass formation of 350 mg l(-1) dry weight (DW)]. The specific growth rate of L. plantarum on PMM7 was found to be 50% and 63% lower when compared to growth on established growth media (chemically defined medium and MRS, respectively). Using a genome-scale metabolic model of L. plantarum, it was predicted that PMM5 and PMM7 would not support the growth of L. plantarum. This is because the biosynthesis of para-aminobenzoic acid (pABA) was predicted to be essential for growth. The discrepancy in simulated growth and experimental growth on PMM7 was further investigated for pABA; a molecule which plays an important role in folate production. The growth performance and folate production were determined on PMM7 in the presence and absence of pABA. It was found that a 12,000-fold reduction in folate pools exerted no influence on formation of biomass or growth rate of L. plantarum cultures when grown in the absence of pABA. CONCLUSION Largely reduced folate production pools do not have an effect on the growth of L. plantarum, showing that L. plantarum makes folate in a large excess. SIGNIFICANCE AND IMPACT OF THE STUDY These experiments illustrate the importance of combining genome-scale metabolic models with growth experiments on minimal media.
Collapse
Affiliation(s)
- A Wegkamp
- TI Food and Nutrition, Nieuwe Kanaal, Wageningen, The Netherlands
| | | | | | | |
Collapse
|
31
|
Saguir F, Loto Campos I, Manca de Nadra M. Utilization of amino acids and dipeptides by Lactobacillus plantarum from orange in nutritionally stressed conditions. J Appl Microbiol 2008; 104:1597-604. [DOI: 10.1111/j.1365-2672.2007.03708.x] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|