1
|
Zhao H, Zhao S, Wang S, Liu Y. Human β-defensins: The multi-functional natural peptide. Biochem Pharmacol 2024; 227:116451. [PMID: 39059771 DOI: 10.1016/j.bcp.2024.116451] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/22/2024] [Revised: 07/21/2024] [Accepted: 07/23/2024] [Indexed: 07/28/2024]
Abstract
The increasing threat of antibiotic resistance among pathogenic microorganisms and the urgent demand for new antibiotics require immediate attention. Antimicrobial peptides exhibit effectiveness against microorganisms, fungi, viruses, and protozoa. The discovery of human β-defensins represents a major milestone in biomedical research, opening new avenues for scientific investigation into the innate immune system and its resistance mechanisms against pathogenic microorganisms. Multiple defensins present a promising alternative in the context of antibiotic abuse. However, obstacles to the practical application of defensins as anti-infective therapies persist due to the unique properties of human β-defensins themselves and serious pharmacological and technical challenges. To overcome these challenges, diverse delivery vehicles have been developed and progressively improved for the conjugation or encapsulation of human β-defensins. This review briefly introduces the biology of human β-defensins, focusing on their multistage structure and diverse functions. It also discusses several heterologous systems for producing human β-defensins, various delivery systems created for these peptides, and patent applications related to their utilization, concluding with a summary of current challenges and potential solutions.
Collapse
Affiliation(s)
- Haile Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Shuli Zhao
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Simeng Wang
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China
| | - Ying Liu
- State Key Laboratory of Reproductive Regulation and Breeding of Grassland Livestock Jointly Constructed by Ministry and Province, School of Life Sciences, Inner Mongolia University, 24 Zhaojun Road, Hohhot, Inner Mongolia 010020, China.
| |
Collapse
|
2
|
Kordi M, Talkhounche PG, Vahedi H, Farrokhi N, Tabarzad M. Heterologous Production of Antimicrobial Peptides: Notes to Consider. Protein J 2024; 43:129-158. [PMID: 38180586 DOI: 10.1007/s10930-023-10174-w] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/28/2023] [Indexed: 01/06/2024]
Abstract
Heavy and irresponsible use of antibiotics in the last century has put selection pressure on the microbes to evolve even faster and develop more resilient strains. In the confrontation with such sometimes called "superbugs", the search for new sources of biochemical antibiotics seems to have reached the limit. In the last two decades, bioactive antimicrobial peptides (AMPs), which are polypeptide chains with less than 100 amino acids, have attracted the attention of many in the control of microbial pathogens, more than the other types of antibiotics. AMPs are groups of components involved in the immune response of many living organisms, and have come to light as new frontiers in fighting with microbes. AMPs are generally produced in minute amounts within organisms; therefore, to address the market, they have to be either produced on a large scale through recombinant DNA technology or to be synthesized via chemical methods. Here, heterologous expression of AMPs within bacterial, fungal, yeast, plants, and insect cells, and points that need to be considered towards their industrialization will be reviewed.
Collapse
Affiliation(s)
- Masoumeh Kordi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Parnian Ghaedi Talkhounche
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Helia Vahedi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran
| | - Naser Farrokhi
- Department of Cell & Molecular Biology, Faculty of Life Sciences & Biotechnology, Shahid Beheshti University, Tehran, Iran.
| | - Maryam Tabarzad
- Protein Technology Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
3
|
Jeyarajan S, Peter AS, Sathyan A, Ranjith S, Kandasamy I, Duraisamy S, Chidambaram P, Kumarasamy A. Expression and purification of epinecidin-1 variant (Ac-Var-1) by acid cleavage. Appl Microbiol Biotechnol 2024; 108:176. [PMID: 38277014 PMCID: PMC10817847 DOI: 10.1007/s00253-024-13017-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 12/19/2023] [Accepted: 01/11/2024] [Indexed: 01/27/2024]
Abstract
The demand for massive quantities of therapeutic active antimicrobial peptides (AMPs) is high due to their potential as alternatives to antibiotics. However, each antimicrobial peptide has unique properties, necessitating distinct synthesis and purification strategies for their large-scale production. In this study, we bio-synthesized and purified a functional enhanced variant of the AMP epinecidin-1, known as Ac-Var-1 (acid-cleavable variant-1). To generate the active peptide, we cloned the gene for Ac-Var-1 with acid-cleavable site (aspartic acid-proline) into the pET-32a expression vector, purified the fusion protein by His tag enrichment chromatography, and performed acid cleavage to release the active Ac-Var-1 peptide. After acid cleavage, the active Ac-Var-1 was purified and characterized by SDS-PAGE and mass spectrometry. The results from both techniques provided confirmation of the intactness of the purified Ac-Var-1. The Ac-Var-1 inhibited the growth of pathogenic Escherichia coli and Staphylococcus aureus. KEY POINTS : • Epinecidin-1 is a well-known antimicrobial peptide having multipotential bioactivities. • Epinecidin-1 variant is developed via the site-directed mutagenesis method to improve its structural stability and bioactivity. • AC-Var-1 development is an economical and easy method to remove peptide from tag protein.
Collapse
Affiliation(s)
- Sivakumar Jeyarajan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Pharmacology, University of Michigan, Ann Arbor, MI, USA
| | - Ansu Susan Peter
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Aswathy Sathyan
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Sukumar Ranjith
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Indira Kandasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
| | - Senbagam Duraisamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India
- Department of Biotechnology, SRM University, Chennai, India
| | | | - Anbarasu Kumarasamy
- Microbial Biotechnology Laboratory, Department of Marine Biotechnology, Bharathidasan University, Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
4
|
Wei DX, Zhang XW. Biosynthesis, Bioactivity, Biosafety and Applications of Antimicrobial Peptides for Human Health. BIOSAFETY AND HEALTH 2022. [DOI: 10.1016/j.bsheal.2022.02.003] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022] Open
|
5
|
Mochnáčová E, Petroušková P, Danišová O, Hudecová P, Bhide K, Kulkarni A, Bhide M. Simple and rapid pipeline for the production of cyclic and linear small-sized peptides in E. coli. Protein Expr Purif 2021; 191:106026. [PMID: 34838724 DOI: 10.1016/j.pep.2021.106026] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2021] [Revised: 11/19/2021] [Accepted: 11/22/2021] [Indexed: 10/19/2022]
Abstract
Small and medium-sized peptides are gaining popularity in biomedical applications, including therapeutic target development. As an alternative to chemical synthesis, we describe a complete pipeline for the production of linear as well as structurally constrained cyclic peptides in an E. coli expression system in this study. A plasmid vector containing a novel N terminal HOE tag (28 amino acids in length) that fuses with the peptide was created. The HOE tag contains sites for both chemical (CNBr) and enzymatic (enterokinase) cleavage, making it easy to isolate the peptide after production. A total of 21 peptides (17 cyclic and 4 linear) were synthesized, and the HOE tag was successfully removed using either CNBr (9 peptides) or enterokinase (12 peptides). The presence of a disulfide bond was confirmed in six representative cyclic peptides. In this study we have provided detailed instructions on primers design strategy, overexpression and purification of HOE tagged peptides, chemical and enzymatic cleavage, and confirmation of the cyclic form of peptides. We are confident that this pipeline will assist researchers in producing multiple recombinant peptides in a cost-effective and time-efficient manner.
Collapse
Affiliation(s)
- Evelína Mochnáčová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Petroušková
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Oľga Danišová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Patrícia Hudecová
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Katarína Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia
| | - Amod Kulkarni
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia
| | - Mangesh Bhide
- Laboratory of Biomedical Microbiology and Immunology, The University of Veterinary Medicine and Pharmacy in Kosice, Kosice, Slovakia; Institute of Neuroimmunology of Slovak Academy of Sciences, Bratislava, Slovakia.
| |
Collapse
|
6
|
Carratalá JV, Brouillette E, Serna N, Sánchez-Chardi A, Sánchez JM, Villaverde A, Arís A, Garcia-Fruitós E, Ferrer-Miralles N, Malouin F. In Vivo Bactericidal Efficacy of GWH1 Antimicrobial Peptide Displayed on Protein Nanoparticles, a Potential Alternative to Antibiotics. Pharmaceutics 2020; 12:pharmaceutics12121217. [PMID: 33348529 PMCID: PMC7766456 DOI: 10.3390/pharmaceutics12121217] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2020] [Revised: 12/11/2020] [Accepted: 12/14/2020] [Indexed: 12/16/2022] Open
Abstract
Oligomerization of antimicrobial peptides into nanosized supramolecular complexes produced in biological systems (inclusion bodies and self-assembling nanoparticles) seems an appealing alternative to conventional antibiotics. In this work, the antimicrobial peptide, GWH1, was N-terminally fused to two different scaffold proteins, namely, GFP and IFN-γ for its bacterial production in the form of such recombinant protein complexes. Protein self-assembling as regular soluble protein nanoparticles was achieved in the case of GWH1-GFP, while oligomerization into bacterial inclusion bodies was reached in both constructions. Among all these types of therapeutic proteins, protein nanoparticles of GWH1-GFP showed the highest bactericidal effect in an in vitro assay against Escherichia coli, whereas non-oligomerized GWH1-GFP and GWH1-IFN-γ only displayed a moderate bactericidal activity. These results indicate that the biological activity of GWH1 is specifically enhanced in the form of regular multi-display configurations. Those in vitro observations were fully validated against a bacterial infection using a mouse mastitis model, in which the GWH1-GFP soluble nanoparticles were able to effectively reduce bacterial loads.
Collapse
Affiliation(s)
- Jose V. Carratalá
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Eric Brouillette
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
| | - Naroa Serna
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Alejandro Sánchez-Chardi
- Microscopy Service, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain;
- Departament of Evolutionary Biology, Ecology and Environmental Sciences, University of Barcelona, Avda Diagonal 643, 08028 Barcelona, Spain
| | - Julieta M. Sánchez
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Antonio Villaverde
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
| | - Anna Arís
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Elena Garcia-Fruitós
- Department of Ruminant Production, Institute of Agriculture and Agrifood Research and Technology (IRTA), Caldes de Montbui, 08140 Barcelona, Spain; (A.A.); (E.G.-F.)
| | - Neus Ferrer-Miralles
- Institute for Biotechnology and Biomedicine, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain; (J.V.C.); (N.S.); (J.M.S.); (A.V.)
- Department of Genetics and Microbiology, Autonomous University of Barcelona, Bellaterra, 08193 Barcelona, Spain
- Bioengineering, Biomaterials and Nanomedicine Networking Biomedical Research Centre (CIBER-BBN), C/Monforte de Lemos 3-5, 28029 Madrid, Spain
- Correspondence: (N.F.-M.); (F.M.)
| | - François Malouin
- Centre d’Étude et de Valorisation de la Diversité Microbienne (CEVDM), Département de Biologie, Université de Sherbrooke, 2500 Boul. Université, Sherbrooke, QC J1K 2R1, Canada;
- Mastitis Network and Regroupement de Recherche Pour un Lait de Qualité Optimale (Op+Lait), Université de Montréal, 2900 Edouard Montpetit Blvd, Montréal, QC H3T 1J4, Canada
- Correspondence: (N.F.-M.); (F.M.)
| |
Collapse
|
7
|
Gaglione R, Pane K, Dell’Olmo E, Cafaro V, Pizzo E, Olivieri G, Notomista E, Arciello A. Cost-effective production of recombinant peptides in Escherichia coli. N Biotechnol 2019; 51:39-48. [DOI: 10.1016/j.nbt.2019.02.004] [Citation(s) in RCA: 38] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2017] [Revised: 02/12/2019] [Accepted: 02/16/2019] [Indexed: 01/08/2023]
|
8
|
Sun B, Wibowo D, Sainsbury F, Zhao CX. Design and production of a novel antimicrobial fusion protein in Escherichia coli. Appl Microbiol Biotechnol 2018; 102:8763-8772. [PMID: 30120526 DOI: 10.1007/s00253-018-9319-4] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2018] [Revised: 07/24/2018] [Accepted: 08/08/2018] [Indexed: 11/25/2022]
Abstract
In recent years, antimicrobial peptides (AMPs) have attracted increasing attention. The microbial cells provide a simple, cost-effective platform to produce AMPs in industrial quantities. While AMP production as fusion proteins in microorganisms is commonly used, the recovery of AMPs necessitates the use of expensive proteases and extra purification steps. Here, we develop a novel fusion protein DAMP4-F-pexiganan comprising a carrier protein DAMP4 linked to the AMP, pexiganan, through a long, flexible linker. We show that this fusion protein can be purified using a non-chromatography approach and exhibits the same antimicrobial activity as the chemically synthesized pexiganan peptide without any cleavage step. Activity of the fusion protein is dependent on a long, flexible linker between the AMP and carrier domains, as well as on the expression conditions of the fusion protein, with low-temperature expression promoting better folding of the AMP domain. The production of DAMP4-F-pexiganan circumvents the time-consuming and costly steps of chromatography-based purification and enzymatic cleavages, therefore shows considerable advantages over traditional microbial production of AMPs. We expect this novel fusion protein, and the studies on the effect of linker and expression conditions on its antimicrobial activity, will broaden the rational design and production of antimicrobial products based on AMPs.
Collapse
Affiliation(s)
- Baode Sun
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - David Wibowo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, St Lucia, 4072, Australia.
- Griffith Institute for Drug Discovery, Griffith University, QLD, Nathan, 4111, Australia.
| | - Frank Sainsbury
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, St Lucia, 4072, Australia
| | - Chun-Xia Zhao
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, QLD, St Lucia, 4072, Australia.
| |
Collapse
|
9
|
Expression in Escherichia coli of novel recombinant hybrid antimicrobial peptide AL32-P113 with enhanced antimicrobial activity in vitro. Gene 2018; 671:1-9. [PMID: 29859288 DOI: 10.1016/j.gene.2018.05.106] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/25/2018] [Accepted: 05/29/2018] [Indexed: 01/22/2023]
Abstract
Antibiotic-resistant pathogens have become a major public health problem worldwide. New discoveries and strategies as regards antibiotic drug development are urgently in need for curing infected patients. Antimicrobial peptides (AMPs) are short cationic peptides that play important roles in innate immune system with a broad spectrum of antimicrobial activity. Recently, hybrid AMPs have been reported to increase antimicrobial activity, stability, and in vivo half-life. In the present study, a gene encoding for AL32-P113 hybrid peptide consisting of two truncated active forms of human LL-37 and histatin-5 (Hst-5) was commercially constructed, cloned into pTXB-1 commercial plasmid, and expressed in E. coli BL21 (DE3). To increase the yield of target protein expression, IPTG concentration, time and temperature were optimized. The results indicate that AL32-P113-intein fusion protein with 33.7 kDa was expressed mostly in inclusion form and estimated to be 20% of the total protein. After chitin affinity purification, 5.7-kDa of AL32-P113 peptide was separated with an average concentration of 12.1 mg per litre of bacterial culture and over 86% purity. The minimum inhibitory concentration (MIC) was evaluated for antimicrobial activity determination of recombinant AL32-P113 compared to synthetic peptides, LL-37, Hst-5, and L31-P113. The results implied that both hybrid peptides exhibited potent antimicrobial activity against gram-negative bacteria and yeast cells whereas the L31-P113 peptide possessed approximately four times greater antimicrobial activity in gram-positive bacteria than parent LL-37. An increasing of undesired hemolysis of these hybrid peptides toward human red cells was also observed when red blood cell hemolytic assay was performed. Several factors including charge and secondary structure predicted by public software were utilized for explanation of the antimicrobial potency of both hybrid peptides. This study proved that hybrid peptides show broader and more potent antimicrobial ability against pathogens and they could be applied as a therapeutic approach for topical treatment of microbial infection in the future.
Collapse
|
10
|
Aghaei S, Saffar B, Ghaedi K, Mobini Dehkordi M. Functional analysis of recombinant codon-optimized bovine neutrophil β-defensin. J Adv Res 2016. [DOI: 10.1016/j.jare.2015.12.003] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023] Open
|
11
|
Mahamad P, Boonchird C, Panbangred W. High level accumulation of soluble diphtheria toxin mutant (CRM197) with co-expression of chaperones in recombinant Escherichia coli. Appl Microbiol Biotechnol 2016; 100:6319-6330. [PMID: 27020286 DOI: 10.1007/s00253-016-7453-4] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2016] [Revised: 03/01/2016] [Accepted: 03/05/2016] [Indexed: 01/28/2023]
Abstract
CRM197 is the diphtheria toxin mutant used in many conjugate vaccines. A fusion CRM197 (fCRM197) containing all the tags conferred by the pET32a vector was produced as a soluble protein in Escherichia coli co-expressing several chaperone proteins in conjunction with low temperature cultivation. Trigger factor (Tf) enhanced formation of soluble fCRM197 (150.69 ± 8.95 μg/mL) to a greater degree than other chaperones when fCRM197 expression was induced at 25 °C for 12 h. However, prolonged cultivation resulted in a progressive reduction of fCRM197 accumulation. In contrast, at 15 °C cells, with or without Tf, fCRM197 accumulated to the highest level at 48 h (153.70 ± 13.14 μg/mL and 150.07 ± 8.13 μg/mL, respectively). Transmission electron microscopy (TEM) demonstrated that the formation of inclusion protein as well as cell lysis was reduced in cultures grown at 15 °C. Cell viability was substantially reduced in cells expressing Tf, compared to cultures without Tf, when fCRM197 was induced at 25 °C. The viability of Tf-expressing cells was enhanced when cultured at 15 °C. Both purified fCRM197 and CRM197 efficiently digested lambda DNA (λDNA) at 37 °C (92.78 and 97.45 %, respectively). Digestion efficiency of fCRM197 and CRM197 was reduced at 25 °C (80.80 and 62.73 %, respectively) and at 15 °C (7.34 and 24.79 %, respectively). These results demonstrating nuclease activity, enhanced cell lysis, and reduced cell viability are consistent with the finding of lower fCRM197 yield when cultivation and induction times were prolonged at 25 °C. The present work provides a procedure for the high-level production of soluble fCRM197 using E. coli as a heterologous host.
Collapse
Affiliation(s)
- Pornpimol Mahamad
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.,Mahidol University - Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Chuenchit Boonchird
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand
| | - Watanalai Panbangred
- Department of Biotechnology, Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand. .,Mahidol University - Osaka University Collaborative Research Center for Bioscience and Biotechnology (MU-OU: CRC), Faculty of Science, Mahidol University, 272 Rama VI Road, Ratchathewi, Bangkok, 10400, Thailand.
| |
Collapse
|
12
|
Pane K, Durante L, Pizzo E, Varcamonti M, Zanfardino A, Sgambati V, Di Maro A, Carpentieri A, Izzo V, Di Donato A, Cafaro V, Notomista E. Rational Design of a Carrier Protein for the Production of Recombinant Toxic Peptides in Escherichia coli. PLoS One 2016; 11:e0146552. [PMID: 26808536 PMCID: PMC4726619 DOI: 10.1371/journal.pone.0146552] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2015] [Accepted: 12/19/2015] [Indexed: 11/18/2022] Open
Abstract
Commercial uses of bioactive peptides require low cost, effective methods for their production. We developed a new carrier protein for high yield production of recombinant peptides in Escherichia coli very well suited for the production of toxic peptides like antimicrobial peptides. GKY20, a short antimicrobial peptide derived from the C-terminus of human thrombin, was fused to the C-terminus of Onconase, a small ribonuclease (104 amino acids), which efficiently drove the peptide into inclusion bodies with very high expression levels (about 200-250 mg/L). After purification of the fusion protein by immobilized metal ion affinity chromatography, peptide was obtained by chemical cleavage in diluted acetic acid of an acid labile Asp-Pro sequence with more than 95% efficiency. To improve peptide purification, Onconase was mutated to eliminate all acid labile sequences thus reducing the release of unwanted peptides during the acid cleavage. Mutations were chosen to preserve the differential solubility of Onconase as function of pH, which allows its selective precipitation at neutral pH after the cleavage. The improved carrier allowed the production of 15-18 mg of recombinant peptide per liter of culture with 96-98% purity without the need of further chromatographic steps after the acid cleavage. The antimicrobial activity of the recombinant peptide, with an additional proline at the N-terminus, was tested on Gram-negative and Gram-positive strains and was found to be identical to that measured for synthetic GKY20. This finding suggests that N-terminal proline residue does not change the antimicrobial properties of recombinant (P)GKY20. The improved carrier, which does not contain cysteine and methionine residues, Asp-Pro and Asn-Gly sequences, is well suited for the production of peptides using any of the most popular chemical cleavage methods.
Collapse
Affiliation(s)
- Katia Pane
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Lorenzo Durante
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Elio Pizzo
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Mario Varcamonti
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Anna Zanfardino
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Sgambati
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Antimo Di Maro
- Department of Environmental, Biological and Pharmaceutical Sciences and Technologies, Seconda Università di Napoli, Caserta, Italy
| | - Andrea Carpentieri
- Department of Chemical Sciences, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Viviana Izzo
- Department of Medicine and Surgery, Università degli Studi di Salerno, Baronissi, Italy
| | - Alberto Di Donato
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Valeria Cafaro
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| | - Eugenio Notomista
- Department of Biology, Università degli Studi di Napoli Federico II, Napoli, Italy
| |
Collapse
|
13
|
Kosicka I, Kristensen T, Bjerring M, Thomsen K, Scavenius C, Enghild JJ, Nielsen NC. Preparation of uniformly 13C,15N-labeled recombinant human amylin for solid-state NMR investigation. Protein Expr Purif 2014; 99:119-30. [DOI: 10.1016/j.pep.2014.04.002] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2013] [Revised: 04/01/2014] [Accepted: 04/02/2014] [Indexed: 11/29/2022]
|
14
|
Cloning, Sequencing, and In Silico Analysis of β-Propeller Phytase Bacillus licheniformis Strain PB-13. BIOTECHNOLOGY RESEARCH INTERNATIONAL 2014; 2014:841353. [PMID: 24864215 PMCID: PMC4017775 DOI: 10.1155/2014/841353] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2013] [Revised: 01/03/2014] [Accepted: 03/31/2014] [Indexed: 12/04/2022]
Abstract
β-Propeller phytases (BPPhy) are widely distributed in nature and play a major role in phytate-phosphorus cycling. In the present study, a BPPhy gene from Bacillus licheniformis strain was expressed in E. coli with a phytase activity of 1.15 U/mL and specific activity of 0.92 U/mg proteins. The expressed enzyme represented a full length ORF “PhyPB13” of 381 amino acid residues and differs by 3 residues from the closest similar existing BPPhy sequences. The PhyPB13 sequence was characterized in silico using various bioinformatic tools to better understand structural, functional, and evolutionary aspects of BPPhy class by multiple sequence alignment and homology search, phylogenetic tree construction, variation in biochemical features, and distribution of motifs and superfamilies. In all sequences, conserved sites were observed toward their N-terminus and C-terminus. Cysteine was not present in the sequence. Overall, three major clusters were observed in phylogenetic tree with variation in biophysical characteristics. A total of 10 motifs were reported with motif “1” observed in all 44 protein sequences and might be used for diversity and expression analysis of BPPhy enzymes. This study revealed important sequence features of BPPhy and pave a way for determining catalytic mechanism and selection of phytase with desirable characteristics.
Collapse
|
15
|
Kumar V, Sangwan P, Verma AK, Agrawal S. Molecular and biochemical characteristics of recombinant β-propeller phytase from Bacillus licheniformis strain PB-13 with potential application in aquafeed. Appl Biochem Biotechnol 2014; 173:646-59. [PMID: 24687556 DOI: 10.1007/s12010-014-0871-9] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2014] [Accepted: 03/23/2014] [Indexed: 10/25/2022]
Abstract
Phytic acid is the major storage form of organic phosphorus in nature- and plant-based animal feed. It forms insoluble complexes with nutritionally important metals and proteins that are unavailable for monogastric or agastric animals. Phytases initiate the stepwise hydrolysis of phytic acid and release inorganic orthophosphate. In the present investigation, the phytase gene from a phytase producing Bacillus licheniformis strain PB-13 was successfully expressed in Escherichia coli BL21. Recombinant phytase 'rPhyPB13' was found to be catalytically active, with an activity of 0.97 U/mL and specific activity of 0.77 U/mg. The rPhyPB13 was purified to 14.10-fold using affinity chromatography. Similar to other β-propeller phytases, purified rPhyPB13 exhibited maximal activity at pH 6.0-6.5 and 60 °C in the presence of 1 mM Ca(2+) and was highly active over a wider pH range (pH 4.0-8.0) and high temperature (80 °C). It has shown maximum activity towards Na-phytate as substrate. The observed K m , V max and k cat of purified rPhyPB13 were 1.064 mM, 1.32 μmol/min/mg and 27.46 s(-1), respectively. PhyPB13 was resistant to trypsin inactivation, activated in presence of Ca(2+) and inhibited in presence of EDTA. Crude rPhyPB13 has good digestion efficiency for commercial feed and soybean meal. These results indicate that PhyPB13 is a β-propeller phytase that has application potential in aquaculture feed.
Collapse
Affiliation(s)
- Vinod Kumar
- Department of Biochemistry, College of Basic Sciences and Humanities, G. B. Pant University of Agriculture and Technology, Pantnagar, India, 263145
| | | | | | | |
Collapse
|
16
|
Lu M, Xia ZY, Bao L. Enhancement of antimycobacterial Th1-cell responses by a Mycobacterium bovis BCG prime-protein boost vaccination strategy. Cell Immunol 2013; 285:111-7. [PMID: 24177251 DOI: 10.1016/j.cellimm.2013.10.001] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2013] [Revised: 09/07/2013] [Accepted: 10/01/2013] [Indexed: 02/04/2023]
Abstract
Tuberculosis is a major global health problem, and the only available vaccine Bacille Calmette-Guérin (BCG) is not sufficiently effective against the disease. It is extremely urgent to develop novel vaccine approaches. Previous research demonstrated that there were several Regions of Difference (RD1-16) between the substrains of BCG and Mycobacterium tuberculosis or Mycobacterium bovis. The ORFs Rv1769 and Rv1772 are located in the RD14 deletions and have not been major targets of study. However, some studies have demonstrated that the two genes (Rv1769 and Rv1772) are excellent T cell antigens, which might induce an immune response. What kind of role these ORFs might play in anti-mycobacterial immunity, however, is still unknown. In our research we used the BCG prime-protein boost strategy to immunize BALB/c mice and evaluated its immunogenicity. Our data suggest that our novel BCG-P+PRO69 vaccine could elicit the most long-lasting and strongest Th1 type cellular immune responses. This response is characterized by a strong antibody response, the proliferation rate of splenocytes, a high percentage of CD4+ and CD8+ T cells and high levels of IFN-γ in antigen-stimulated splenocyte cultures. These results indicate that prime-boost is a potent strategy and the protein of gene Rv1769 is a potential antigen or subunit vaccine to TB for further study.
Collapse
Affiliation(s)
- Miao Lu
- Laboratory of Infection and Immunity, School of Basic Medical Science, West China Center of Medical Sciences, Sichuan University, Chengdu, China
| | | | | |
Collapse
|
17
|
Xia L, Zhang F, Liu Z, Ma J, Yang J. Expression and characterization of cecropinXJ, a bioactive antimicrobial peptide from Bombyx mori (Bombycidae, Lepidoptera) in Escherichia coli.. Exp Ther Med 2013; 5:1745-1751. [PMID: 23837066 PMCID: PMC3702707 DOI: 10.3892/etm.2013.1056] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/09/2013] [Accepted: 03/22/2013] [Indexed: 12/31/2022] Open
Abstract
Insect antimicrobial peptides (AMPs) have a broad antimicrobial spectrum. To aid the characterization of the gene function and further applications, we cloned the gene of cecropinXJ into the prokaryotic expression vector pET32a and expressed cecropinXJ in Escherichia coli BL2l (DE3). Following induction by isopropyl-β-D-thiogalactoside (IPTG), a 25 kDa fusion peptide of cecropinXJ with a tagged thioredoxin (Trx) protein was highly expressed in E. coli. The yield was 10 mg/l culture medium following purification on nickel-nitrilotriacetic acid (Ni-NTA) metal affinity chromatography matrices. The purified recombinant antibacterial peptide, cecropinXJ, retained a high stability against Staphylococcus aureus over a temperature range from 4 to 100°C and a pH range from pH 2.0 to 12.0. The minimum inhibitory concentration (MIC) of the fusion protein against S. aureus was 0.4 μM. The recombinant cecropinXJ is also cytotoxic to several types of human cancer cells.
Collapse
Affiliation(s)
- Lijie Xia
- Xinjiang Key Laboratory of Biological Resources and Genetic Engineering, College of Life Science and Technology, Xinjiang University, Urumqi, Xinjiang 830046, P.R. China
| | | | | | | | | |
Collapse
|
18
|
The simultaneous production of single-cell protein and a recombinant antibacterial peptide by expression of an antibacterial peptide gene in Yarrowia lipolytica. Process Biochem 2013. [DOI: 10.1016/j.procbio.2013.01.003] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
19
|
Parachin NS, Mulder KC, Viana AAB, Dias SC, Franco OL. Expression systems for heterologous production of antimicrobial peptides. Peptides 2012; 38:446-56. [PMID: 23022589 DOI: 10.1016/j.peptides.2012.09.020] [Citation(s) in RCA: 133] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/14/2012] [Revised: 09/16/2012] [Accepted: 09/16/2012] [Indexed: 12/21/2022]
Abstract
Antimicrobial peptides (AMPs) consist of molecules that act on the defense systems of numerous organisms toward multiple pathogens such as bacteria, fungi, parasites and viruses. These compounds have become extremely significant due to the increasing resistance of microorganisms to common antibiotics. However, the low quantity of peptides obtained from direct purification is, to date, still a remarkable bottleneck for scientific and industrial research development. Therefore, this review describes the main heterologous systems currently used for AMP production, including bacteria, fungi and plants, and also the related strategies for reaching greater functional peptide production. The main difficulties of each system are also described in order to provide some directions for AMP production. In summary, data revised here indicate that large-scale production of AMPs can be obtained using biotechnological tools, and the products may be applied in the pharmaceutical industry as well as in agribusiness.
Collapse
Affiliation(s)
- Nádia Skorupa Parachin
- Centro de Análises Proteômicas e Bioquímicas, Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | | | | | | | | |
Collapse
|
20
|
Aleinein RA, Hamoud R, Schäfer H, Wink M. Molecular cloning and expression of ranalexin, a bioactive antimicrobial peptide from Rana catesbeiana in Escherichia coli and assessments of its biological activities. Appl Microbiol Biotechnol 2012; 97:3535-43. [PMID: 23053091 DOI: 10.1007/s00253-012-4441-1] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2012] [Revised: 08/22/2012] [Accepted: 09/16/2012] [Indexed: 12/12/2022]
Abstract
The coding sequence, which corresponds to the mature antimicrobial peptide ranalexin from the frog Rana catesbeiana, was chemically synthesized with preferred codons for expression in Escherichia coli. It was cloned into the vector pET32c (+) to express a thioredoxin-ranalexin fusion protein which was produced in soluble form in E. coli BL21 (DE3) induced under optimized conditions. After two purification steps through affinity chromatography, about 1 mg of the recombinant ranalexin was obtained from 1 L of culture. Mass spectrometrical analysis of the purified recombinant ranalexin demonstrated its identity with ranalexin. The purified recombinant ranalexin is biologically active. It showed antibacterial activities similar to those of the native peptide against Staphylococcus aureus, Streptococcus pyogenes, E. coli, and multidrug-resistant strains of S. aureus with minimum inhibitory concentration values between 8 and 128 μg/ml. The recombinant ranalexin is also cytotoxic in HeLa and COS7 human cancer cells (IC50 = 13-15 μg/ml).
Collapse
Affiliation(s)
- Rasha Abou Aleinein
- Institute of Pharmacy and Molecular Biotechnology, Heidelberg University, Im Neuenheimer Feld 364, 69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
21
|
Li Y. A novel protocol for the production of recombinant LL-37 expressed as a thioredoxin fusion protein. Protein Expr Purif 2012; 81:201-10. [DOI: 10.1016/j.pep.2011.10.011] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2011] [Revised: 10/25/2011] [Accepted: 10/28/2011] [Indexed: 10/15/2022]
|
22
|
Recombinant production of antimicrobial peptides in Escherichia coli: A review. Protein Expr Purif 2011; 80:260-7. [DOI: 10.1016/j.pep.2011.08.001] [Citation(s) in RCA: 203] [Impact Index Per Article: 14.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/10/2011] [Revised: 07/27/2011] [Accepted: 08/01/2011] [Indexed: 11/20/2022]
|
23
|
Bommarius B, Jenssen H, Elliott M, Kindrachuk J, Pasupuleti M, Gieren H, Jaeger KE, Hancock REW, Kalman D. Cost-effective expression and purification of antimicrobial and host defense peptides in Escherichia coli. Peptides 2010; 31:1957-65. [PMID: 20713107 PMCID: PMC2992949 DOI: 10.1016/j.peptides.2010.08.008] [Citation(s) in RCA: 99] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/25/2010] [Revised: 08/02/2010] [Accepted: 08/03/2010] [Indexed: 10/19/2022]
Abstract
Cationic antimicrobial host defense peptides (HDPs) combat infection by directly killing a wide variety of microbes, and/or modulating host immunity. HDPs have great therapeutic potential against antibiotic-resistant bacteria, viruses and even parasites, but there are substantial roadblocks to their therapeutic application. High manufacturing costs associated with amino acid precursors have limited the delivery of inexpensive therapeutics through industrial-scale chemical synthesis. Conversely, the production of peptides in bacteria by recombinant DNA technology has been impeded by the antimicrobial activity of these peptides and their susceptibility to proteolytic degradation, while subsequent purification of recombinant peptides often requires multiple steps and has not been cost-effective. Here we have developed methodologies appropriate for large-scale industrial production of HDPs; in particular, we describe (i) a method, using fusions to SUMO, for producing high yields of intact recombinant HDPs in bacteria without significant toxicity and (ii) a simplified 2-step purification method appropriate for industrial use. We have used this method to produce seven HDPs to date (IDR1, MX226, LL37, CRAMP, HHC-10, E5 and E6). Using this technology, pilot-scale fermentation (10L) was performed to produce large quantities of biologically active cationic peptides. Together, these data indicate that this new method represents a cost-effective means to enable commercial enterprises to produce HDPs in large-scale under Good Laboratory Manufacturing Practice (GMP) conditions for therapeutic application in humans.
Collapse
Affiliation(s)
- B Bommarius
- Department of Pathology and Laboratory Medicine, Emory University, Atlanta, GA 30322, USA
| | | | | | | | | | | | | | | | | |
Collapse
|
24
|
Jing XL, Luo XG, Tian WJ, Lv LH, Jiang Y, Wang N, Zhang TC. High-level expression of the antimicrobial peptide plectasin in Escherichia coli. Curr Microbiol 2010; 61:197-202. [PMID: 20165851 DOI: 10.1007/s00284-010-9596-3] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2009] [Accepted: 01/20/2010] [Indexed: 10/19/2022]
Abstract
Plectasin is a defensin-like antimicrobial peptide isolated from a fungus, the saprophytic ascomycete Pseudoplectania nigrella. Plectasin showed marked antibacterial activity in vitro against Gram-positive bacteria, especially Streptococcus pneumoniae, including strains resistant to conventional antibiotics. Plectasin could kill the sensitive strain as efficaciously as vancomycin and penicillin and without cytotoxic effects on mammalian cell viability. In order to establish a bacterium-based plectasin production system, in the present study, the coding sequence of plectasin was optimized, and then cloned into pET32a (+) vector and expressed as a thioredoxin (Trx) fusion protein in Escherichia coli. The soluble fusion protein collected from the supernatant of the cell lysate was separated by Ni(2+)-chelating affinity chromatography. The purified protein was then cleaved by Factor Xa protease to release mature plectasin. Final purification was achieved by Ni(2+)-chelating chromatography again. The recombinant plectasin exhibited the same antimicrobial activity as reported previously. This is the first study to describe the expression of plectasin in E. coli expression system, and these works might provide a significant foundation for the following production or study of plectasin, and contribute to the development and evolution of novel antimicrobial drugs in clinical applications.
Collapse
Affiliation(s)
- Xiao-Lan Jing
- Key Laboratory of Industrial Microbiology, Ministry of Education, Tianjin, People's Republic of China
| | | | | | | | | | | | | |
Collapse
|
25
|
Expression of recombinant hybrid peptide hinnavin II/α-melanocyte-stimulating hormone in Escherichia coli: Purification and characterization. J Microbiol 2010; 48:24-9. [DOI: 10.1007/s12275-009-0317-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2009] [Accepted: 02/01/2010] [Indexed: 11/27/2022]
|
26
|
Yanga Y, Tiana Z, Teng D, Zhang J, Wang J, Wang J. High-level production of a candidacidal peptide lactoferrampin in Escherichia coli by fusion expression. J Biotechnol 2009; 139:326-31. [PMID: 19297728 DOI: 10.1016/j.jbiotec.2009.01.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/21/2022]
Abstract
Expression of lactoferrampin 265-284 (Lfampin20), a potential candidacidal agent with 20 amino acid segment from lactoferrin, in Escherichia coli was explored. The DNA fragment encoding Lfampin20 was synthesized in light of the E. coli preferred codons by "partially overlapping primer-based PCR" method. The Lfampin20 gene was fused with thioredoxin (Trx) gene to construct a recombinant plasmid pETLfa20. The resulting expression level of the fusion protein Trx-Lfampin20 (approximately 20 kDa) accounted for 34-42% of cellular protein, and about 52% of the target proteins were in a soluble form. Soluble Trx-Lfampin20 accounted for 66% of the total soluble proteins. The soluble fusion protein was easily purified to near homogeneity by affinity chromatography using hexahistidine tag. Recombinant Lfampin20 was effectively obtained by on-column cleavage of the fusion protein with factor Xa. An unknown site in the Trx-tag fusion protein, which can be cleaved by factor Xa to produce approximately 10 kDa protein, was found. Compared with the unknown site, the specific site of IEGR[downwards arrow]X was easier to be recognized and cleaved by factor Xa. The molecular mass of recombinant Lfampin20 determined by MALDI-TOF (matrix assisted laser desorption ionization-time-of-flight) is equal to its theoretical molecular weight. Antimicrobial activity assays demonstrated that the recombinant Lfampin20 had candidacidal activity. Integration of the key strategies for the expression of antimicrobial peptides (AMPs) such as codon usage bias, fusion partner and on-column cleavage, would provide an efficient and facile platform for the production or study of AMPs.
Collapse
Affiliation(s)
- Yalin Yanga
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, PR China
| | | | | | | | | | | |
Collapse
|
27
|
Li Y. Carrier proteins for fusion expression of antimicrobial peptides in Escherichia coli. Biotechnol Appl Biochem 2009; 54:1-9. [PMID: 19575694 PMCID: PMC7188355 DOI: 10.1042/ba20090087] [Citation(s) in RCA: 92] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2009] [Revised: 04/15/2009] [Accepted: 04/17/2009] [Indexed: 02/08/2023]
Abstract
Antimicrobial peptides are an essential component of innate immunity and play an important role in host defence against microbial pathogens. They have received increasing attention recently as potential novel pharmaceutical agents. To meet the requirement for necessary basic science studies and clinical trials, large quantities of these peptides are needed. In general, isolation from natural sources and chemical synthesis are not cost-effective. The relatively low cost and easy scale-up of the recombinant approach renders it the most attractive means for large-scale production of antimicrobial peptides. Among the many systems available for protein expression, Escherichia coli remains the most widely used host. Antimicrobial peptides produced in E. coli are often expressed as fusion proteins, which effectively masks these peptides' potential lethal effect towards the bacterial host and protects the peptides from proteolytic degradation. Although some carriers confer peptide solubility, others promote the formation of inclusion bodies. The present minireview considers the most commonly used carrier proteins for fusion expression of antimicrobial peptides in E. coli. The favourable properties of SUMO (small ubiquitin-related modifier) as a novel fusion partner are also discussed.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Anesthesiology, University of California, Los Angeles, 90095, USA.
| |
Collapse
|
28
|
Tian ZG, Dong TT, Yang YL, Teng D, Wang JH. Expression of antimicrobial peptide LH multimers in Escherichia coli C43(DE3). Appl Microbiol Biotechnol 2009; 83:143-9. [PMID: 19205689 DOI: 10.1007/s00253-009-1893-z] [Citation(s) in RCA: 36] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2008] [Revised: 01/22/2009] [Accepted: 01/22/2009] [Indexed: 11/26/2022]
Abstract
The tandem repeats of LFB15(W4,10)-HP(4-16) (LH) gene were cloned into vector pET32a(+) for recombinant expression in Escherichia coli. The E. coli C43(DE3) was successfully used as the expression host to avoid the cell death during induction in E. coli BL21(DE3). Fusion LH dimer was expressed as inclusion body at a portion of 35% of total cell protein and could be well purified by Ni(2+)-chelating chromatography. The recombinant LH was released by the cleavage of 50% formic acid, and its yield reached 11.3 mg/l with purity of 95%. The MIC(50) of 3.6 and 1.9 microM of recombinant LH against E. coli CMCC 44102 and Bacillus subtilis ATCC 6633 were determined, respectively. The results demonstrated that expression of tandem LH gene in E. coli C43(DE3) and formic acid cleavage would provide a potent efficient platform for the production of interested peptides.
Collapse
Affiliation(s)
- Zi-gang Tian
- Gene Engineering Laboratory, Feed Research Institute, Chinese Academy of Agricultural Sciences, 12 Zhongguancun Nandajie St., Haidian District, Beijing 100081, People's Republic of China
| | | | | | | | | |
Collapse
|
29
|
Cloning and Expression of a Clamworm Antimicrobial Peptide Perinerin in Pichia pastoris. Curr Microbiol 2009; 58:384-8. [DOI: 10.1007/s00284-009-9372-4] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2008] [Revised: 01/13/2009] [Accepted: 01/15/2009] [Indexed: 10/21/2022]
|
30
|
Abstract
We have developed the Recombinantly-produced Antimicrobial Peptides Database (RAPD) to house relevant information on recombinant approaches to generate antimicrobial peptides. Key information stored in the database, which is extracted from published experiments, includes expression host, fusion strategy, release method and yield for individual peptides. Bibliographic data directly related to each particular case are also available. RAPD allows easy comparison of the relative popularity and efficiency of different strategies, and can thus be used as a guideline for future production of similar peptides. The database is freely available at http://faculty.ist.unomaha.edu/chen/rapd/index.php.
Collapse
Affiliation(s)
- Yifeng Li
- Department of Anesthesiology, David Geffen School of Medicine, University of California, Los Angeles, CA, USA
| | | |
Collapse
|
31
|
Kaar W, Hartmann B, Fan Y, Zeng B, Lua L, Dexter A, Falconer R, Middelberg A. Microbial bio-production of a recombinant stimuli-responsive biosurfactant. Biotechnol Bioeng 2009; 102:176-87. [DOI: 10.1002/bit.22037] [Citation(s) in RCA: 15] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
32
|
Dawson RM, Liu CQ. Properties and applications of antimicrobial peptides in biodefense against biological warfare threat agents. Crit Rev Microbiol 2008; 34:89-107. [PMID: 18568863 DOI: 10.1080/10408410802143808] [Citation(s) in RCA: 40] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
Recent advances in knowledge of the properties of antimicrobial peptides (AMPs) are reviewed. AMPs are typically small, positively charged, amphipathic peptides that interact electrostatically and non-stereospecifically with the bacterial cell membrane, resulting in its permeabilization and cell death. Classes of AMPs, their mechanisms of action, hemolytic activity, and cytotoxicity towards host cells are discussed. A particular focus is AMPs with potential for use in defense against biological warfare agents. Some AMPs cytotoxic to Bacillus anthracis have been described. Synthesis of these peptides in multivalent form leads to a synergistic increase in antibacterial activity. Strategies to enhance the potency, stability, and selectivity of AMPs are discussed.
Collapse
|