1
|
Li Y, Liu J, Wei J, Yuan L, Hu J, Dai S, Li Y, Li J. Porous Hydrogels Prepared by Two-Step Gelation Method for Bone Regeneration. J Funct Biomater 2025; 16:100. [PMID: 40137379 PMCID: PMC11942705 DOI: 10.3390/jfb16030100] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2025] [Revised: 03/06/2025] [Accepted: 03/11/2025] [Indexed: 03/27/2025] Open
Abstract
Hierarchical porous hydrogels possess advantageous characteristics that facilitate cell adhesion, promote tissue growth, and enhance angiogenesis and osteogenesis. In this study, porous composite hydrogels were successfully prepared by a two-step gelation method with sodium alginate (SA), gelatin (GEL), and calcium hydrogen phosphate (DCP) as the main components. The fabricated porous hydrogels initially featured small pores (approximately 60 μm), and gradually evolved to large pores (exceeding 250 μm) during the gradual degradation in the cellular microenvironment. In vitro cell culture experiments indicated that these hydrogels could enhance the proliferation and osteogenic differentiation of bone marrow mesenchymal stem cells due to the hierarchical porous structure and the incorporation of DCP. Subcutaneous implantation and cranial defect repair experiments in Sprague-Dawley rats further confirmed that the small initial pore size of hydrogel scaffolds can provide more sites for cell adhesion. Additionally, the gradual degradation to form large pores was conducive to cell/tissue growth and blood vessel formation, ultimately being beneficial for vascularized bone regeneration. In summary, this study proposes an innovative strategy for developing porous hydrogels with gradual degradation for functional bone regeneration.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Jidong Li
- Research Center for Nano-Biomaterials Analytical and Testing Center, Sichuan University, Chengdu 610065, China (S.D.)
| |
Collapse
|
2
|
Zhu H, Kuang H, Huang X, Li X, Zhao R, Shang G, Wang Z, Liao Y, He J, Li D. 3D printing of drug delivery systems enhanced with micro/nano-technology. Adv Drug Deliv Rev 2025; 216:115479. [PMID: 39603388 DOI: 10.1016/j.addr.2024.115479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2024] [Revised: 11/15/2024] [Accepted: 11/22/2024] [Indexed: 11/29/2024]
Abstract
Drug delivery systems (DDSs) are increasingly important in ensuring drug safety and enhancing therapeutic efficacy. Micro/nano-technology has been utilized to develop DDSs for achieving high stability, bioavailability, and drug efficiency, as well as targeted delivery; meanwhile, 3D printing technology has made it possible to tailor DDSs with diverse components and intricate structures. This review presents the latest research progress integrating 3D printing technology and micro/nano-technology for developing novel DDSs. The technological fundamentals of 3D printing technology supporting the development of DDSs are presented, mainly from the perspective of different 3D printing mechanisms. Distinct types of DDSs leveraging 3D printing and micro/nano-technology are analyzed deeply, featuring micro/nanoscale materials and structures to enrich functionalities and improve effectiveness. Finally, we will discuss the future directions of 3D-printed DDSs integrated with micro/nano-technology, focusing on technological innovation and clinical application. This review will support interdisciplinary research efforts to advance drug delivery technology.
Collapse
Affiliation(s)
- Hui Zhu
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huijuan Kuang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China; Department of Orthopaedics, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, PR China
| | - Xinxin Huang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Xiao Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ruosen Zhao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Guojin Shang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Ziyu Wang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Yucheng Liao
- Department of Pharmacy, Institute of Metabolic Diseases and Pharmacotherapy, National Clinical Research Center for Geriatrics, West China Hospital, Sichuan University, Chengdu, Sichuan Province, PR China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China.
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China; National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an 710049, PR China; State Industry-Education Integration Center for Medical Innovations, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
3
|
Mehraji S, Saadatmand M, Eskandari M. Production of letrozole-loaded alginate oxide-gelatin microgels using microfluidic systems for drug delivery applications. Int J Biol Macromol 2024; 263:129685. [PMID: 38394762 DOI: 10.1016/j.ijbiomac.2024.129685] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 11/23/2023] [Accepted: 01/21/2024] [Indexed: 02/25/2024]
Abstract
Microfluidic systems are capable of producing microgels with a monodisperse size distribution and a spherical shape due to their laminar flow and superior flow. A significant challenge in producing these drug-carrying microgels is simultaneous drug loading into microgels. Various factors such as the type of polymer, the type of drug, the volume ratio of the drug to the polymer, and the geometry of the microfluidic system used to generate microgels can effectively address these challenges. The overall goal of this study was to produce mono-disperse drug-carrying microgels capable of controlled drug release. To achieve this goal, this study used a stream-focused microfluidic chip containing a coating current to prevent chip clogging. Alginate oxide was synthesized with a 30 % oxidation percentage. Alginate oxide, gelatin, and compositions of them with volume ratios of 50-50, 70-30, and 30-70, by determining their appropriate weight percentage, were used for the controlled release of letrozole. The properties of the produced microgels were measured through various tests such as drug release test, loading percentage, SEM, FTIR, swelling ratio, and dimensional stability. It was found that microgels made of a combination of alginate oxide-gelatin with volume ratios of 70-30 had a good swelling ratio and structural stability. The drug loading percentages for alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70, respectively, were 56 %, 68 %, and 66 %, 61 % and the alginate oxide-gelatin with a volume ratio of 70-30 compared to other samples had over 70 % drug loading percentages. Furthermore, samples of alginate, alginate oxide, and alginate oxide-gelatin with volume ratios of 50-50 and 30-70 had 94 %, 63 %, 56 %, and 68 % drug release in 13 days, respectively. However, alginate oxide-gelatin with a volume ratio of 70-30 had a release rate of about 50 % in 13 days, which is a more controlled release for letrozole compared to the volume ratios of 50-50 and 30-70. Examining the drug release profile, it was concluded that drug release follows the Higuchi model and therefore follows Fick's first law of diffusion. It can be concluded that the combination of alginate oxide-gelatin produces more suitable microgels than alginate and alginate oxide for the controlled-release of letrozole. A comparison of microgels of alginate oxide and gelatin with volume ratios of 50-50 and 70-30 had better results for the cytotoxicity study compared to other samples.
Collapse
Affiliation(s)
- Sima Mehraji
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran
| | - Maryam Saadatmand
- Department of Chemical and Petroleum Engineering, Sharif University of Technology, Tehran, Iran.
| | - Mahnaz Eskandari
- Biomedical Engineering Department, Amirkabir University of Technology (Tehran Polytechnic University), Tehran, Iran.
| |
Collapse
|
4
|
Paurević M, Šrajer Gajdošik M, Ribić R. Mannose Ligands for Mannose Receptor Targeting. Int J Mol Sci 2024; 25:1370. [PMID: 38338648 PMCID: PMC10855088 DOI: 10.3390/ijms25031370] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2023] [Revised: 01/15/2024] [Accepted: 01/19/2024] [Indexed: 02/12/2024] Open
Abstract
The mannose receptor (MR, CD 206) is an endocytic receptor primarily expressed by macrophages and dendritic cells, which plays a critical role in both endocytosis and antigen processing and presentation. MR carbohydrate recognition domains (CRDs) exhibit a high binding affinity for branched and linear oligosaccharides. Furthermore, multivalent mannose presentation on the various templates like peptides, proteins, polymers, micelles, and dendrimers was proven to be a valuable approach for the selective and efficient delivery of various therapeutically active agents to MR. This review provides a detailed account of the most relevant and recent aspects of the synthesis and application of mannosylated bioactive formulations for MR-mediated delivery in treatments of cancer and other infectious diseases. It further highlights recent findings related to the necessary structural features of the mannose-containing ligands for successful binding to the MR.
Collapse
Affiliation(s)
- Marija Paurević
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Martina Šrajer Gajdošik
- Department of Chemistry, Josip Juraj Strossmayer University of Osijek, Cara Hadrijana 8/A, HR-31000 Osijek, Croatia; (M.P.); (M.Š.G.)
| | - Rosana Ribić
- Department of Nursing, University Center Varaždin, University North, Jurja Križanića 31b, HR-42000 Varaždin, Croatia
| |
Collapse
|
5
|
Zaer M, Moeinzadeh A, Abolhassani H, Rostami N, Tavakkoli Yaraki M, Seyedi SA, Nabipoorashrafi SA, Bashiri Z, Moeinabadi-Bidgoli K, Moradbeygi F, Farmani AR, Hossein-Khannazer N. Doxorubicin-loaded Niosomes functionalized with gelatine and alginate as pH-responsive drug delivery system: A 3D printing approach. Int J Biol Macromol 2023; 253:126808. [PMID: 37689301 DOI: 10.1016/j.ijbiomac.2023.126808] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 08/27/2023] [Accepted: 09/06/2023] [Indexed: 09/11/2023]
Abstract
Despite many efforts, breast cancer remains one of the deadliest cancers and its treatment faces challenges related to cancer drug side effects and metastasis. Combining 3D printing and nanocarriers has created new opportunities in cancer treatment. In this work, 3D-printed gelatin-alginate nanocomposites containing doxorubicin-loaded niosomes (Nio-DOX@GT-AL) were recruited as an advanced potential pH-sensitive drug delivery system. Morphology, degradation, drug release, flow cytometry, cell cytotoxicity, cell migration, caspase activity, and gene expression of nanocomposites and controls (Nio-DOX and Free-DOX) were evaluated. Results show that the obtained niosome has a spherical shape and size of 60-80 nm. Sustained drug release and biodegradability were presented by Nio-DOX@GT-AL and Nio-DOX. Cytotoxicity analysis revealed that the engineered Nio-DOX@GT-AL scaffold had 90 % cytotoxicity against breast cancer cells (MCF-7), whereas exhibited <5 % cytotoxicity against the non-tumor breast cell line (MCF-10A), which was significantly more than the antitumor effect of the control samples. Scratch-assay as an indicator cell migration demonstrated a reduction of almost 60 % of the covered surface. Gene expression could provide an explanation for the antitumor effect of engineered nanocarriers, which significantly reduced metastasis-promoting genes (Bcl2, MMP-2, and MMP-9), and significantly enhanced the expression and activity of genes that promote apoptosis (CASP-3, CASP-8, and CASP-9). Also, considerable inhibition of metastasis-associated genes (Bax and p53) was observed. Moreover, flow-cytometry data demonstrated that Nio-DOX@GT-AL decreased necrosis and enhanced apoptosis drastically. The findings of this research can confirm that employing 3D-printing and niosomal formulation can be an effective strategy in designing novel nanocarriers for efficient drug delivery applications.
Collapse
Affiliation(s)
- Mohammad Zaer
- Biomedical Engineering Department, Faculty of Chemical Engineering, Tarbiat Modares University, Tehran, Iran
| | - Alaa Moeinzadeh
- Department of Tissue Engineering and Regenerative Medicine, Faculty of Advanced Technologies in Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Hossein Abolhassani
- Department of Biomedical Engineering, University of Rochester, Rochester, NY 14627, USA
| | - Neda Rostami
- Department of Chemistry, Amirkabir University of Technology, Tehran, Iran
| | - Mohammad Tavakkoli Yaraki
- School of Natural Sciences, Faculty of Science and Engineering, Macquarie University, Sydney, NSW 2109, Australia.
| | - Seyed Arsalan Seyedi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Seyed Ali Nabipoorashrafi
- Endocrinology and Metabolism Research Center (EMRC), Vali-Asr Hospital, School of Medicine, Tehran, Iran
| | - Zahra Bashiri
- Department of Anatomy, School of Medicine, Iran University of Medical Sciences, Tehran, Iran
| | - Kasra Moeinabadi-Bidgoli
- Basic and Molecular Epidemiology of Gastroenterology Disorders Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran
| | - Fatemeh Moradbeygi
- Department of Pharmaceutical Biotechnology, School of Pharmacy, Shiraz University of Medical Sciences, Shiraz, Iran
| | - Ahmad Reza Farmani
- Department of Tissue Engineering, School of Advanced Technologies in Medicine, Fasa University of Medical Sciences, Fasa, Iran
| | - Nikoo Hossein-Khannazer
- Gastroenterology and Liver Diseases Research Center, Research, Institute for Gastroenterology and Liver Diseases, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
6
|
Afshar A, Gultekinoglu M, Edirisinghe M. Binary polymer systems for biomedical applications. INTERNATIONAL MATERIALS REVIEWS 2023; 68:184-224. [DOI: 10.1080/09506608.2022.2069451] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/20/2021] [Accepted: 04/08/2022] [Indexed: 01/06/2025]
Affiliation(s)
- Ayda Afshar
- Department of Mechanical Engineering, University College London, London, UK
| | - Merve Gultekinoglu
- Department of Basic Pharmaceutical Sciences, Faculty of Pharmacy, Hacettepe University, Ankara, Turkey
| | - Mohan Edirisinghe
- Department of Mechanical Engineering, University College London, London, UK
| |
Collapse
|
7
|
Jiang X, Du Z, Zhang X, Zaman F, Song Z, Guan Y, Yu T, Huang Y. Gelatin-based anticancer drug delivery nanosystems: A mini review. Front Bioeng Biotechnol 2023; 11:1158749. [PMID: 37025360 PMCID: PMC10070861 DOI: 10.3389/fbioe.2023.1158749] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2023] [Accepted: 02/27/2023] [Indexed: 04/08/2023] Open
Abstract
Drug delivery nanosystems (DDnS) is widely developed recently. Gelatin is a high-potential biomaterial originated from natural resources for anticancer DDnS, which can effectively improve the utilization of anticancer drugs and reduce side effects. The hydrophilic, amphoteric behavior and sol-gel transition of gelatin can be used to fulfill various requirements of anticancer DDnS. Additionally, the high number of multifunctional groups on the surface of gelatin provides the possibility of crosslinking and further modifications. In this review, we focus on the properties of gelatin and briefly elaborate the correlation between the properties and anticancer DDnS. Furthermore, we discuss the applications of gelatin-based DDnS in various cancer treatments. Overall, we have summarized the excellent properties of gelatin and correlated with DDnS to provide a manual for the design of gelatin-based materials for DDnS.
Collapse
Affiliation(s)
- Xianchao Jiang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zhen Du
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Xinran Zhang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Fakhar Zaman
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Zihao Song
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
| | - Yuepeng Guan
- Beijing Key Laboratory of Clothing Materials R&D and Assessment, Beijing Engineering Research Center of Textile Nano Fiber, Beijing Institute of Fashion Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Tengfei Yu
- Department of Ultrasound, Beijing Tian Tan Hospital, Capital Medical University, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| | - Yaqin Huang
- Beijing Laboratory of Biomedical Materials, Beijing Key Laboratory of Electrochemical Process and Technology for Materials, Beijing University of Chemical Technology, Beijing, China
- *Correspondence: Yuepeng Guan, ; Tengfei Yu, ; Yaqin Huang,
| |
Collapse
|
8
|
Jin X, Wei C, Wu C, Zhang W. Gastroretentive core–shell hydrogel assembly for sustained release of metformin hydrochloride. Eur Polym J 2022. [DOI: 10.1016/j.eurpolymj.2022.111155] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
|
9
|
Jin X, Wei CX, Wu CW, Zhang W. Customized Hydrogel for Sustained Release of Highly Water-Soluble Drugs. ACS OMEGA 2022; 7:8493-8497. [PMID: 35309415 PMCID: PMC8928546 DOI: 10.1021/acsomega.1c06106] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Accepted: 01/27/2022] [Indexed: 05/03/2023]
Abstract
Highly water-soluble drugs, due to the rapid diffusion in water, are difficult to be released sustainably. To address the issue, a hydrogel with a core-shell structure is designed for the release of highly water-soluble drugs. The core is used to load the drug and the shell is devoted to isolating the drug from the release medium, which can decrease the drug concentration gradient and the driving force of drug release. The core-shell structure prolongs the drug release time by extending the drug release pathway. Moreover, the core-shell hydrogel possesses high swelling properties to reside in the stomach. The results demonstrate that the customized hydrogel can prolong the release of the highly water-soluble drug (metformin hydrochloride) for more than 50 h and alleviate the burst release of the drug.
Collapse
Affiliation(s)
- Xin Jin
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Cheng-xiong Wei
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Cheng-wei Wu
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| | - Wei Zhang
- State Key Laboratory of Structure Analysis
for Industrial Equipment, Department of Engineering Mechanics, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
10
|
Biswas A, Mondal S, Das SK, Bose A, Thomas S, Ghosal K, Roy S, Provaznik I. Development and Characterization of Natural Product Derived Macromolecules Based Interpenetrating Polymer Network for Therapeutic Drug Targeting. ACS OMEGA 2021; 6:28699-28709. [PMID: 34746564 PMCID: PMC8567264 DOI: 10.1021/acsomega.1c03363] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2021] [Accepted: 09/24/2021] [Indexed: 05/12/2023]
Abstract
Interpenetrating polymer network (IPN)-based bead formulations were exploited by cross-linking different hydrophilic polymers in different combinations and at different ratios. Polyvinyl alcohol, xanthan gum, guar gum, gellan gum, and sodium alginate (Na-alginate) were used in this work as hydrophilic polymers to enhance the solubility of diclofenac sodium and also to target the delivery at preferred locations. IPN beads based on polysaccharides were prepared by the ionic gelation method. Differential scanning calorimetry, powder X-ray diffraction, scanning electron microscopy, and Fourier transform infrared spectroscopy data showed that the IPN microbeads solubilized and encapsulated the drug within the network. We found over 83% encapsulation efficiency of the drug delivery system for the drug, and this efficiency increased with the concentration of the polymer. Ex vivo experiments using the goat intestine revealed that the IPN microbeads were able to adhere to the intestinal epithelium, a mucoadhesive behavior that could be beneficial to the drug pharmacokinetics, while in vitro experiments in phosphate buffer showed that the IPN enabled significant drug release. We believe that these IPN microbeads are an excellent drug delivery system to solubilize drug molecules and ensure adhesion to the intestinal wall, thereby localizing the drug release to enhance bioavailability of poorly soluble drugs.
Collapse
Affiliation(s)
- Avirup Biswas
- Pharmaceutical
Biotechnology, Manipal College of Pharmaceutical
Sciences, Madhav Nagar, Manipal, Manipal, Karnataka 576104, India
| | - Sancharee Mondal
- Dr.
B. C. Roy College of Pharmacy and AHS, Durgapur 713206, India
| | | | - Anindya Bose
- School
of Pharmaceutical Sciences (SPS), Siksha
O Anusandhan University, Kalinganagar, Bhubaneswar, Odisha 751003, India
| | - Sabu Thomas
- IIUCNN, Mahatma Gandhi University, Kottayam, Kerala 686560, India
| | - Kajal Ghosal
- Division
of Pharmaceutics, Department of Pharmaceutical Technology, Jadavpur University, Kolkata 700032, India
| | - Sudeep Roy
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
| | - Ivo Provaznik
- Department
of Biomedical Engineering, Faculty of Electrical Engineering and Communication, Brno University of Technology, Brno 61600, Czech Republic
- Department
of Physiology, Faculty of Medicine, Masaryk
University, Brno 62500, Czech Republic
| |
Collapse
|
11
|
Xing J, Dang W, Li J, Huang J. Photo/thermal response of polypyrrole-modified calcium alginate/gelatin microspheres based on helix-coil structural transition and the controlled release of agrochemicals. Colloids Surf B Biointerfaces 2021; 204:111776. [PMID: 33930732 DOI: 10.1016/j.colsurfb.2021.111776] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2021] [Revised: 04/15/2021] [Accepted: 04/16/2021] [Indexed: 02/04/2023]
Abstract
Responsive controlled-release systems can not only improve the efficiency of agrochemical utilization but also increase crop yield and reduce environmental pollution caused by excessive use of agrochemicals. In this paper, the helix-coil structural transition of gelatin was adopted to construct a novel stimuli-responsive controlled-release system called polypyrrole/Ca-alginate/gelatin (PPy/Ca-alginate/Gel). In PPy/Ca-alginate/Gel, Ca-alginate and gelatin form a semi-interpenetrating network in which uncross-linked gelatin can undergo a free helix-coil structural transition due to the photothermal effect of PPy. The structural transition of gelatin will lead to changes in the functional groups and microstructure of semi-interpenetrating hydrogels and furthermore achieve the release of template agrochemical molecules embedded in hydrogels. By using carbendazim as a template molecule, the photothermal conversion and controlled release of PPy/Ca-alginate/Gel were systematically studied. After 600 s of light irradiation, its temperature could be increased by 17 ℃. The release of carbendazim in microspheres reached 91.8 % after 8 h of light irradiation, while it was only 13.3 % in the dark. The results indicated that PPy/Ca-alginate/Gel have excellent controlled-release and sustained-release properties and broad application potential in agriculture.
Collapse
Affiliation(s)
- Jianyu Xing
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China.
| | - Wenwen Dang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| | - Jingchang Li
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| | - Jumei Huang
- School of Water and Environment, Chang'an University, Xi'an, Shaanxi, 710054, PR China; Key Laboratory of Subsurface Hydrology and Ecological Effects in Arid Region, Ministry of Education, Xi'an, 710054, PR China
| |
Collapse
|
12
|
Baudequin T, Agnes C, Tabrizian M. A core-shell guanosine diphosphate crosslinked chitosan scaffold as a potential co-encapsulation platform. Carbohydr Polym 2020; 256:117499. [PMID: 33483026 DOI: 10.1016/j.carbpol.2020.117499] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 12/14/2022]
Abstract
Recent engineering strategies to better mimic native tissue architecture involve co-encapsulation of cell lineages and/or growth factors in multi-compartmental scaffolds. This study introduces a core-shell platform based on a rapidly gelling guanosine diphosphate cross-linked chitosan scaffold for co-culture. The core-shell sponge is fabricated through combination of chitosan and guanosine diphosphate in 3 steps with each shell layer deposited around the previous layer. Co-encapsulation of pre-osteoblastic MC-3T3 cells and growth factors in the core-shell sponge showed similar microstructure to the standard sponge with high pore connectivity and low closed porosity (<0.4 %). A viable cell population was maintained over time with enhanced cellular functionality when ascorbic acid was added in the same compartment. Co-culture was explored with a proof-of-concept study shown for MC-3T3 and endothelial cells showing homogeneous distribution of cells in their intended compartment. Overall, this core-shell scaffold shows potential as a platform for the regeneration of multiple tissues.
Collapse
Affiliation(s)
- Timothée Baudequin
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada.
| | - Celine Agnes
- Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| | - Maryam Tabrizian
- Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, Canada; Faculty of Dentistry, McGill University, Montreal, Quebec, Canada.
| |
Collapse
|
13
|
Essifi K, Lakrat M, Berraaouan D, Fauconnier ML, El Bachiri A, Tahani A. Optimization of gallic acid encapsulation in calcium alginate microbeads using Box-Behnken Experimental Design. Polym Bull (Berl) 2020. [DOI: 10.1007/s00289-020-03397-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
14
|
Dobrinčić A, Balbino S, Zorić Z, Pedisić S, Bursać Kovačević D, Elez Garofulić I, Dragović-Uzelac V. Advanced Technologies for the Extraction of Marine Brown Algal Polysaccharides. Mar Drugs 2020; 18:E168. [PMID: 32197494 PMCID: PMC7143672 DOI: 10.3390/md18030168] [Citation(s) in RCA: 123] [Impact Index Per Article: 24.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/13/2020] [Revised: 03/11/2020] [Accepted: 03/15/2020] [Indexed: 12/22/2022] Open
Abstract
Over the years, brown algae bioactive polysaccharides laminarin, alginate and fucoidan have been isolated and used in functional foods, cosmeceutical and pharmaceutical industries. The extraction process of these polysaccharides includes several complex and time-consuming steps and the correct adjustment of extraction parameters (e.g., time, temperature, power, pressure, solvent and sample to solvent ratio) greatly influences the yield, physical, chemical and biochemical properties as well as their biological activities. This review includes the most recent conventional procedures for brown algae polysaccharides extraction along with advanced extraction techniques (microwave-assisted extraction, ultrasound assisted extraction, pressurized liquid extraction and enzymes assisted extraction) which can effectively improve extraction process. The influence of these extraction techniques and their individual parameters on yield, chemical structure and biological activities from the most current literature is discussed, along with their potential for commercial applications as bioactive compounds and drug delivery systems.
Collapse
Affiliation(s)
- Ana Dobrinčić
- Faculty of Food Technology & Biotechnology, University of Zagreb, Pierottijeva 6, 10 000 Zagreb, Croatia; (S.B.); (Z.Z.); (S.P.); (D.B.K.); (I.E.G.); (V.D.-U.)
| | | | | | | | | | | | | |
Collapse
|
15
|
Işıklan N, Altınışık Z. Development and characterization of dual sensitive poly(N,N-diethyl acrylamide) grafted alginate microparticles. Colloids Surf A Physicochem Eng Asp 2019. [DOI: 10.1016/j.colsurfa.2019.05.013] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
|