1
|
Ji XX, Zhang Q, Yang BX, Song QR, Sun ZY, Xie CY, Tang YQ. Response mechanism of ethanol-tolerant Saccharomyces cerevisiae strain ES-42 to increased ethanol during continuous ethanol fermentation. Microb Cell Fact 2025; 24:33. [PMID: 39885572 PMCID: PMC11780993 DOI: 10.1186/s12934-025-02663-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2024] [Accepted: 01/24/2025] [Indexed: 02/01/2025] Open
Abstract
BACKGROUND Continuous fermentation offers advantages in improving production efficiency and reducing costs, making it highly competitive for industrial ethanol production. A key requirement for Saccharomyces cerevisiae strains used in this process is their tolerance to high ethanol concentrations, which enables them to adapt to continuous fermentation conditions. To explore how yeast cells respond to varying levels of ethanol stress during fermentation, a two-month continuous fermentation was conducted. Cells were collected at different ethanol concentrations (from 60 g/L to 100 g/L) for comparative transcriptomic analysis. RESULTS During continuous fermentation, as ethanol concentration increased, the expression of genes associated with cytoplasmic ribosomes, translation, and fatty acid biosynthesis progressively declined, while the expression of genes related to heat shock proteins (HSPs) and ubiquitin-mediated protein degradation gradually increased. Besides, cells exhibited distinct responses to varying ethanol concentrations. At lower ethanol concentrations (nearly 70 g/L), genes involved in mitochondrial ribosomes, oxidative phosphorylation, the tricarboxylic acid (TCA) cycle, antioxidant enzymes, ergosterol synthesis, and glycerol biosynthesis were specifically upregulated compared to those at 60 g/L. This suggests that cells enhanced respiratory energy production, ROS scavenging capacity, and the synthesis of ergosterol and glycerol to counteract stress. At relatively higher ethanol concentrations (nearly 80 g/L), genes involved in respiration and ergosterol synthesis were inhibited, while those associated with glycolysis and glycerol biosynthesis were notably upregulated. This suggests a metabolic shift from respiration towards enhanced glycerol synthesis. Interestingly, the longevity-regulating pathway seemed to play a pivotal role in mediating the cellular adaptations to different ethanol concentrations. Upon reaching an ethanol concentration of 100 g/L, the aforementioned metabolic activities were largely inhibited. Cells primarily focused on enhancing the clearance of denatured proteins to preserve cellular viability. CONCLUSIONS This study elucidated the mechanisms by which an ethanol-tolerant S. cerevisiae strain adapts to increasing ethanol concentrations during continuous fermentation. The findings suggest that the longevity-regulating pathway may play a critical role in adapting to varying ethanol stress by regulating mitochondrial respiration, glycerol synthesis, ergosterol synthesis, antioxidant enzyme, and HSPs. This work provides a novel and valuable understanding of the mechanisms that govern ethanol tolerance during continuous fermentation.
Collapse
Affiliation(s)
- Xue-Xue Ji
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Quan Zhang
- Sinopec (Dalian) Research Institute of Petroleum and Petrochemicals Co. Ltd, Dalian, Liaoning, 115045, China
| | - Bai-Xue Yang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| | - Qing-Ran Song
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Zhao-Yong Sun
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
| | - Cai-Yun Xie
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China.
- Engineering Research Center of Alternative Energy Materials & Devices, Ministry of Education, Chengdu, 610065, Sichuan, China.
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu, 610065, Sichuan, China
- Sichuan Environmental Protection Key Laboratory of Organic Wastes Valorization, Chengdu, 610065, Sichuan, China
| |
Collapse
|
2
|
Xu Z, Sha Y, Li M, Chen S, Li J, Ding B, Zhang Y, Li P, Yan K, Jin M. Adaptive evolution and mechanism elucidation for ethanol tolerant Saccharomyces cerevisiae used in starch based biorefinery. Int J Biol Macromol 2025; 284:138155. [PMID: 39613065 DOI: 10.1016/j.ijbiomac.2024.138155] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 09/02/2024] [Accepted: 11/26/2024] [Indexed: 12/01/2024]
Abstract
Ethanol tolerant Saccharomyces cerevisiae is compulsory for ethanol production in starch based biorefinery, especially during high-gravity fermentation. In this study, adaptive evolution with increased initial ethanol concentrations as a driving force was harnessed for achieving ethanol tolerant S. cerevisiae. After evolution, an outstanding ethanol tolerant strain was screened, which contributed to significant improvements in glucose consumption and ethanol production in scenarios of 300 g/L initial glucose, high solid loadings (30 wt%, 33 wt%, 35 wt% and 40 wt%) of corn, and high solid loadings (30 wt% and 33 wt%) of cassava, compared with the original strain. Genome re-sequencing was applied for the evolved strain, and 504 sense mutations in 205 genes were detected, among which PAM1 gene was demonstrated related to the elevated ethanol tolerance. In sum, this study provided a practical approach for obtaining ethanol tolerant strain and the identified PAM1 gene enhanced our understanding on ethanol tolerant mechanism, as well as provided a target basis for rational metabolic engineering.
Collapse
Affiliation(s)
- Zhaoxian Xu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuanyuan Sha
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Muzi Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Sitong Chen
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Jie Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Boning Ding
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Yuwei Zhang
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Pingping Li
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Kang Yan
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China
| | - Mingjie Jin
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, Nanjing 210094, China; Biorefinery Research Institution, Nanjing University of Science and Technology, Nanjing 210094, China.
| |
Collapse
|
3
|
Bains W, Petkowski JJ, Seager S. Alternative Solvents for Life: Framework for Evaluation, Current Status, and Future Research. ASTROBIOLOGY 2024; 24:1231-1256. [PMID: 39623882 DOI: 10.1089/ast.2024.0004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Life is a complex, dynamic chemical system that requires a dense fluid solvent in which to take place. A common assumption is that the most likely solvent for life is liquid water, and some researchers argue that water is the only plausible solvent. However, a persistent theme in astrobiological research postulates that other liquids might be cosmically common and could be solvents for the chemistry of life. In this article, we present a new framework for the analysis of candidate solvents for life, and we deploy this framework to review substances that have been suggested as solvent candidates. We categorize each solvent candidate through the following four criteria: occurrence, solvation, solute stability, and solvent chemical functionality. Our semiquantitative approach addresses all the requirements for a solvent not only from the point of view of its chemical properties but also from the standpoint of its biochemical function. Only the protonating solvents fulfill all the chemical requirements to be a solvent for life, and of those only water and concentrated sulfuric acid are also likely to be abundant in a rocky planetary context. Among the nonprotonating solvents, liquid CO2 stands out as a planetary solvent, and its potential as a solvent for life should be explored. We conclude with a discussion of whether it is possible for a biochemistry to change solvents as an adaptation to radical changes in a planet's environment. Our analysis provides the basis for prioritizing future experimental work to explore potential complex chemistry on other planets. Key Words: Habitability-Alternative solvents for life-Alternative biochemistry. Astrobiology 24, 1231-1256.
Collapse
Affiliation(s)
- William Bains
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- School of Physics & Astronomy, Cardiff University, Cardiff, UK
| | - Janusz J Petkowski
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Faculty of Environmental Engineering, Wroclaw University of Science and Technology, Wroclaw, Poland
- JJ Scientific, Warsaw, Poland
| | - Sara Seager
- Department of Earth, Atmospheric and Planetary Sciences, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
- Department of Aeronautics and Astronautics, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| |
Collapse
|
4
|
Grechko VM, Cheshchevik VT, Dzeikala A, Sykuła A, Łodyga-Chruścińska E. Effects of flavonoids on yeast ABC transporters activity. Fungal Biol 2024; 128:2231-2241. [PMID: 39643390 DOI: 10.1016/j.funbio.2024.09.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/12/2024] [Accepted: 09/20/2024] [Indexed: 12/09/2024]
Abstract
Flavonoids are known to be effective biomodulators of various processes in eukaryotic cells. As these compounds are present in wine and beer raw materials, they can influence the qualitative characteristics of the ethanol content in wine-making and brewing products, including directly through the mechanisms of regulation of gene expression and the activity of ATP-binding cassette (ABC) proteins. The main function of ABC transporters in yeast cells is to transport various substrates, including ethanol. This process ensures the survival of yeast cells under conditions of ethanol stress. It has been found that flavonoids, as well as their Schiff base derivatives, are effective stimulators and inhibitors of mRNA expression and activity of ABC proteins both in logarithmic and stationary phases of growth, which has a direct impact on bioethanol production by yeast.
Collapse
Affiliation(s)
- V M Grechko
- Polessky State University, Pinsk, 225710, Belarus.
| | | | - A Dzeikala
- Lodz University of Technology, Łуdź, 90-530, Poland
| | - A Sykuła
- Lodz University of Technology, Łуdź, 90-530, Poland
| | | |
Collapse
|
5
|
Ghiaci P, Jouhten P, Martyushenko N, Roca-Mesa H, Vázquez J, Konstantinidis D, Stenberg S, Andrejev S, Grkovska K, Mas A, Beltran G, Almaas E, Patil KR, Warringer J. Highly parallelized laboratory evolution of wine yeasts for enhanced metabolic phenotypes. Mol Syst Biol 2024; 20:1109-1133. [PMID: 39174863 PMCID: PMC11450223 DOI: 10.1038/s44320-024-00059-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 07/17/2024] [Accepted: 07/30/2024] [Indexed: 08/24/2024] Open
Abstract
Adaptive Laboratory Evolution (ALE) of microorganisms can improve the efficiency of sustainable industrial processes important to the global economy. However, stochasticity and genetic background effects often lead to suboptimal outcomes during laboratory evolution. Here we report an ALE platform to circumvent these shortcomings through parallelized clonal evolution at an unprecedented scale. Using this platform, we evolved 104 yeast populations in parallel from many strains for eight desired wine fermentation-related traits. Expansions of both ALE replicates and lineage numbers broadened the evolutionary search spectrum leading to improved wine yeasts unencumbered by unwanted side effects. At the genomic level, evolutionary gains in metabolic characteristics often coincided with distinct chromosome amplifications and the emergence of side-effect syndromes that were characteristic of each selection niche. Several high-performing ALE strains exhibited desired wine fermentation kinetics when tested in larger liquid cultures, supporting their suitability for application. More broadly, our high-throughput ALE platform opens opportunities for rapid optimization of microbes which otherwise could take many years to accomplish.
Collapse
Affiliation(s)
- Payam Ghiaci
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
- Department of Biorefinery and Energy, High-throughput Centre, Research Institutes of Sweden, Örnsköldsvik, 89250, Sweden
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | - Paula Jouhten
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
- VTT Technical Research Centre of Finland Ltd, Espoo, 02044 VTT, Finland
- Aalto University, Department of Bioproducts and Biosystems, Espoo, 02150, Finland
| | - Nikolay Martyushenko
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway
| | - Helena Roca-Mesa
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Jennifer Vázquez
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
- Centro Tecnológico del Vino-VITEC, Carretera de Porrera Km. 1, Falset, 43730, Spain
| | | | - Simon Stenberg
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden
| | - Sergej Andrejev
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany
| | | | - Albert Mas
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Gemma Beltran
- Universitat Rovira i Virgili, Dept. Bioquímica i Biotecnologia, Facultat d'Enologia, Tarragona, 43007, Spain
| | - Eivind Almaas
- Department of Biotechnology and Food Science, NTNU - Norwegian University of Science and Technology, Trondheim, Norway.
| | - Kiran R Patil
- European Molecular Biology Laboratory, Heidelberg, 69117, Germany.
- Medical Research Council (MRC) Toxicology Unit, University of Cambridge, Cambridge, CB2 1QR, UK.
| | - Jonas Warringer
- Department of Chemistry and Molecular Biology, University of Gothenburg, PO Box 462, Gothenburg, 40530, Sweden.
| |
Collapse
|
6
|
Qiao C, Yang S, Ma Y, Wen L, Chu C, Luo H, Luo X, Hou C, Huo D. Histidine modified Fe 3O 4 nanoparticles improving the ethanol yield and tolerance of Saccharomyces cerevisiae. World J Microbiol Biotechnol 2024; 40:246. [PMID: 38902402 DOI: 10.1007/s11274-024-04056-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Accepted: 06/17/2024] [Indexed: 06/22/2024]
Abstract
Saccharomyces cerevisiae, the primary microorganism involved in ethanol production, is hindered by the accumulation of ethanol, leading to reduced ethanol production. In this study, we employed histidine-modified Fe3O4 nanoparticles (His-Fe3O4) for the first time, to the best of our knowledge, as a method to enhance ethanol yield during the S. cerevisiae fermentation process. The results demonstrated that exposing S. cerevisiae cells to Fe3O4 nanoparticles (Fe3O4 NPs) led to increased cell proliferation and glucose consumption. Moreover, the introduction of His-Fe3O4 significantly boosted ethanol content by 17.3% (p < 0.05) during fermentation. Subsequent findings indicated that the increase in ethanol content was associated with enhanced ethanol tolerance and improved electron transport efficiency. This study provided evidence for the positive effects of His-Fe3O4 on S. cerevisiae cells and proposed a straightforward approach to enhance ethanol production in S. cerevisiae fermentation. The mediation of improved ethanol tolerance offers significant potential in the fermentation and bioenergy sectors.
Collapse
Affiliation(s)
- Cailin Qiao
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Suping Yang
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Yi Ma
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, Yibin, 644000, PR China
| | - Li Wen
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Chengxiang Chu
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Huibo Luo
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, Yibin, 644000, PR China
| | - Xiaogang Luo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China
| | - Changjun Hou
- Liquor Making Biology Technology and Application of Key Laboratory of Sichuan Province, College of Bioengineering, Sichuan University of Science and Engineering, 188 University Town, Yi bin, Yibin, 644000, PR China.
| | - Danqun Huo
- Key Laboratory for Biorheological Science and Technology of Ministry of Education, Bioengineering College of Chongqing University, Chongqing, 400044, PR China.
- Chongqing Key Laboratory of Bio-perception & Intelligent Information Processing, School of Microelectronics and Communication Engineering, Chongqing University, Chongqing, 400044, PR China.
| |
Collapse
|
7
|
Jacobus AP, Cavassana SD, de Oliveira II, Barreto JA, Rohwedder E, Frazzon J, Basso TP, Basso LC, Gross J. Optimal trade-off between boosted tolerance and growth fitness during adaptive evolution of yeast to ethanol shocks. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2024; 17:63. [PMID: 38730312 PMCID: PMC11088041 DOI: 10.1186/s13068-024-02503-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 04/05/2024] [Indexed: 05/12/2024]
Abstract
BACKGROUND The selection of Saccharomyces cerevisiae strains with higher alcohol tolerance can potentially increase the industrial production of ethanol fuel. However, the design of selection protocols to obtain bioethanol yeasts with higher alcohol tolerance poses the challenge of improving industrial strains that are already robust to high ethanol levels. Furthermore, yeasts subjected to mutagenesis and selection, or laboratory evolution, often present adaptation trade-offs wherein higher stress tolerance is attained at the expense of growth and fermentation performance. Although these undesirable side effects are often associated with acute selection regimes, the utility of using harsh ethanol treatments to obtain robust ethanologenic yeasts still has not been fully investigated. RESULTS We conducted an adaptive laboratory evolution by challenging four populations (P1-P4) of the Brazilian bioethanol yeast, Saccharomyces cerevisiae PE-2_H4, through 68-82 cycles of 2-h ethanol shocks (19-30% v/v) and outgrowths. Colonies isolated from the final evolved populations (P1c-P4c) were subjected to whole-genome sequencing, revealing mutations in genes enriched for the cAMP/PKA and trehalose degradation pathways. Fitness analyses of the isolated clones P1c-P3c and reverse-engineered strains demonstrated that mutations were primarily selected for cell viability under ethanol stress, at the cost of decreased growth rates in cultures with or without ethanol. Under this selection regime for stress survival, the population P4 evolved a protective snowflake phenotype resulting from BUD3 disruption. Despite marked adaptation trade-offs, the combination of reverse-engineered mutations cyr1A1474T/usv1Δ conferred 5.46% higher fitness than the parental PE-2_H4 for propagation in 8% (v/v) ethanol, with only a 1.07% fitness cost in a culture medium without alcohol. The cyr1A1474T/usv1Δ strain and evolved P1c displayed robust fermentations of sugarcane molasses using cell recycling and sulfuric acid treatments, mimicking Brazilian bioethanol production. CONCLUSIONS Our study combined genomic, mutational, and fitness analyses to understand the genetic underpinnings of yeast evolution to ethanol shocks. Although fitness analyses revealed that most evolved mutations impose a cost for cell propagation, combination of key mutations cyr1A1474T/usv1Δ endowed yeasts with higher tolerance for growth in the presence of ethanol. Moreover, alleles selected for acute stress survival comprising the P1c genotype conferred stress tolerance and optimal performance under conditions simulating the Brazilian industrial ethanol production.
Collapse
Affiliation(s)
- Ana Paula Jacobus
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil
- SENAI Innovation Institute for Biotechnology, São Paulo, Brazil
| | | | | | | | - Ewerton Rohwedder
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeverson Frazzon
- Institute of Food Science and Technology, Federal University of Rio Grande do Sul, Porto Alegre, Brazil
| | - Thalita Peixoto Basso
- Department of Agri-Food Industry, Food and Nutrition, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Luiz Carlos Basso
- Biological Science Department, "Luiz de Queiroz" College of Agriculture, University of Sao Paulo, Piracicaba, Brazil
| | - Jeferson Gross
- Bioenergy Research Institute, São Paulo State University, Rio Claro, Brazil.
| |
Collapse
|
8
|
Saengphing T, Sattayawat P, Kalawil T, Suwannarach N, Kumla J, Yamada M, Panbangred W, Rodrussamee N. Improving furfural tolerance in a xylose-fermenting yeast Spathaspora passalidarum CMUWF1-2 via adaptive laboratory evolution. Microb Cell Fact 2024; 23:80. [PMID: 38481222 PMCID: PMC10936021 DOI: 10.1186/s12934-024-02352-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 03/01/2024] [Indexed: 03/17/2024] Open
Abstract
BACKGROUND Spathaspora passalidarum is a yeast with the highly effective capability of fermenting several monosaccharides in lignocellulosic hydrolysates, especially xylose. However, this yeast was shown to be sensitive to furfural released during pretreatment and hydrolysis processes of lignocellulose biomass. We aimed to improve furfural tolerance in a previously isolated S. passalidarum CMUWF1-2, which presented thermotolerance and no detectable glucose repression, via adaptive laboratory evolution (ALE). RESULTS An adapted strain, AF2.5, was obtained from 17 sequential transfers of CMUWF1-2 in YPD broth with gradually increasing furfural concentration. Strain AF2.5 could tolerate higher concentrations of furfural, ethanol and 5-hydroxymethyl furfuraldehyde (HMF) compared with CMUWF1-2 while maintaining the ability to utilize glucose and other sugars simultaneously. Notably, the lag phase of AF2.5 was 2 times shorter than that of CMUWF1-2 in the presence of 2.0 g/l furfural, which allowed the highest ethanol titers to be reached in a shorter period. To investigate more in-depth effects of furfural, intracellular reactive oxygen species (ROS) accumulation was observed and, in the presence of 2.0 g/l furfural, AF2.5 exhibited 3.41 times less ROS accumulation than CMUWF1-2 consistent with the result from nuclear chromatins diffusion, which the cells number of AF2.5 with diffuse chromatins was also 1.41 and 1.24 times less than CMUWF1-2 at 24 and 36 h, respectively. CONCLUSIONS An enhanced furfural tolerant strain of S. passalidarum was achieved via ALE techniques, which shows faster and higher ethanol productivity than that of the wild type. Not only furfural tolerance but also ethanol and HMF tolerances were improved.
Collapse
Affiliation(s)
- Thanyalak Saengphing
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Pachara Sattayawat
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Thitisuda Kalawil
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Nakarin Suwannarach
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Jaturong Kumla
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand
| | - Mamoru Yamada
- Department of Biological Chemistry, Faculty of Agriculture, Yamaguchi University, Yamaguchi, 753-8515, Japan
- Life Science, Graduate School of Science and Technology for Innovation, Yamaguchi University, Ube, 755-8611, Japan
- Research Center for Thermotolerant Microbial Resources, Yamaguchi University, Yamaguchi, 753-8515, Japan
| | | | - Nadchanok Rodrussamee
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai, 50200, Thailand.
- Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai, 50200, Thailand.
| |
Collapse
|
9
|
Day AW, Kumamoto CA. Selection of ethanol tolerant strains of Candida albicans by repeated ethanol exposure results in strains with reduced susceptibility to fluconazole. PLoS One 2024; 19:e0298724. [PMID: 38377103 PMCID: PMC10878505 DOI: 10.1371/journal.pone.0298724] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Accepted: 01/23/2024] [Indexed: 02/22/2024] Open
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, United States of America
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, United States of America
| |
Collapse
|
10
|
Yang T, Zhang S, Pan Y, Li X, Liu G, Sun H, Zhang R, Zhang C. Breeding of high-tolerance yeast by adaptive evolution and high-gravity brewing of mutant. JOURNAL OF THE SCIENCE OF FOOD AND AGRICULTURE 2024; 104:686-697. [PMID: 37654243 DOI: 10.1002/jsfa.12959] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 08/13/2023] [Accepted: 09/01/2023] [Indexed: 09/02/2023]
Abstract
BACKGROUND Ethanol and osmotic stresses are the major limiting factors for brewing strong beer with high-gravity wort. Breeding of yeast strains with high osmotic and ethanol tolerance and studying very-high-gravity (VHG) brewing technology is of great significance for brewing strong beer. RESULTS This study used an optimized microbial microdroplet culture (MMC) system for adaptive laboratory evolution (ALE) of Saccharomyces cerevisiae YN81 to improve its tolerance to osmotic and ethanol stress. Meanwhile, we investigated the VHG and VHG with added ethanol (VHGAE) brewing processes for the evolved mutants in brewing strong beer. The results showed that three evolved mutants were obtained; among them, the growth performance of YN81mc-8.3 under 300, 340, 380, 420 and 460 g L-1 sucrose stresses was greater than that of the other strains. The ethanol tolerance of YN81mc-8.3 was 12%, which was 20% higher than that of YN81. During strong-beer brewing in a 100 L cylindrical cone-bottom tank, the sugar utilization and ethanol yield of YN81mc-8.3 outperformed those of YN81 in both the VHG and VHGAE brewing processes. Measurement of the diacetyl concentration showed that YN81mc-8.3 had a stronger diacetyl reduction ability; in particular, the real degree of fermentation of beers brewed by YN81mc-8.3 in VHG and VHGAE brewing processes was 75.35% and 66.71%, respectively - higher than those of the two samples brewed by YN81. Meanwhile, the visual, olfactive and gustative properties of the strong beer produced by YN81mc-8.3 were better than those of the other beers. CONCLUSION In this study, the mutant YN81mc-8.3 and the VHGAE brewing process were optimal and represented a better alternative strong-beer brewing process. © 2023 Society of Chemical Industry.
Collapse
Affiliation(s)
- Tianyou Yang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Shishuang Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
- College of Geology and Environment, Xi'an University of Science and Technology, Xi'an, China
| | - Yuru Pan
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Xu Li
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Gaifeng Liu
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Haiyan Sun
- Hainan Key Laboratory of Tropical Microbe Resources, Institute of Tropical Bioscience and Biotechnology, Chinese Academy of Tropical Agricultural Sciences, Haikou, China
| | - Rongxian Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| | - Chaohui Zhang
- School of Life Science and Technology, Henan Institute of Science and Technology, Xinxiang, China
| |
Collapse
|
11
|
Day AW, Kumamoto CA. Selection of Ethanol Tolerant Strains of Candida albicans by Repeated Ethanol Exposure Results in Strains with Reduced Susceptibility to Fluconazole. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.13.557677. [PMID: 37745460 PMCID: PMC10515905 DOI: 10.1101/2023.09.13.557677] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Candida albicans is a commensal yeast that has important impacts on host metabolism and immune function, and can establish life-threatening infections in immunocompromised individuals. Previously, C. albicans colonization has been shown to contribute to the progression and severity of alcoholic liver disease. However, relatively little is known about how C. albicans responds to changing environmental conditions in the GI tract of individuals with alcohol use disorder, namely repeated exposure to ethanol. In this study, we repeatedly exposed C. albicans to high concentrations (10% vol/vol) of ethanol-a concentration that can be observed in the upper GI tract of humans following consumption of alcohol. Following this repeated exposure protocol, ethanol small colony (Esc) variants of C. albicans isolated from these populations exhibited increased ethanol tolerance, altered transcriptional responses to ethanol, and cross-resistance/tolerance to the frontline antifungal fluconazole. These Esc strains exhibited chromosomal copy number variations and carried polymorphisms in genes previously associated with the acquisition of fluconazole resistance during human infection. This study identifies a selective pressure that can result in evolution of fluconazole tolerance and resistance without previous exposure to the drug.
Collapse
Affiliation(s)
- Andrew W. Day
- Graduate School of Biomedical Sciences, Tufts University, Boston, Massachusetts, 02111, USA
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| | - Carol A. Kumamoto
- Department of Molecular Biology and Microbiology, Tufts University, Boston, Massachusetts, 02111, USA
| |
Collapse
|
12
|
Chen Y, Yang Y, Cai W, Zeng J, Liu N, Wan Y, Fu G. Research progress of anti-environmental factor stress mechanism and anti-stress tolerance way of Saccharomyces cerevisiae during the brewing process. Crit Rev Food Sci Nutr 2023; 63:12308-12323. [PMID: 35848108 DOI: 10.1080/10408398.2022.2101090] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Saccharomyces cerevisiae plays a decisive role in the brewing of alcohol products, and the ideal growth and fermentation characteristics can give the pure flavor of alcohol products. However, S. cerevisiae can be affected profoundly by environmental factors during the brewing process, which have negative effects on the growth and fermentation characteristics of S. cerevisiae, and seriously hindered the development of brewing industry. Therefore, we summarized the environmental stress factors (ethanol, organic acids, temperature and osmotic pressure) that affect S. cerevisiae during the brewing process. Their impact mechanisms and the metabolic adaption of S. cerevisiae in response to these stress factors. Of note, S. cerevisiae can increase the ability to resist stress factors by changing the cell membrane components, expressing transcriptional regulatory factors, activating the anti-stress metabolic pathway and enhancing ROS scavenging ability. Meantime, the strategies and methods to improve the stress- tolerant ability of S. cerevisiae during the brewing process were also introduced. Compared with the addition of exogenous anti-stress substances, mutation breeding and protoplast fusion, it appears that adaptive evolution and genetic engineering are able to generate ideal environmental stress tolerance strains of S. cerevisiae and are more in line with the needs of the current brewing industry.
Collapse
Affiliation(s)
- Yanru Chen
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yili Yang
- China Regional Research Centre, International Centre of Genetic Engineering & Biotechnology, Taizhou, PR China
| | - Wenqin Cai
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Jiali Zeng
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Na Liu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Yin Wan
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| | - Guiming Fu
- State Key Laboratory of Food Science and Technology & College of Food Science and Technology & International Institute of Food Innovation, Nanchang University, Nanchang, PR China
| |
Collapse
|
13
|
Olson DG, Maloney MI, Lanahan AA, Cervenka ND, Xia Y, Pech-Canul A, Hon S, Tian L, Ziegler SJ, Bomble YJ, Lynd LR. Ethanol tolerance in engineered strains of Clostridium thermocellum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2023; 16:137. [PMID: 37710260 PMCID: PMC10503014 DOI: 10.1186/s13068-023-02379-z] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2023] [Accepted: 08/05/2023] [Indexed: 09/16/2023]
Abstract
Clostridium thermocellum is a natively cellulolytic bacterium that is promising candidate for cellulosic biofuel production, and can produce ethanol at high yields (75-80% of theoretical) but the ethanol titers produced thus far are too low for commercial application. In several strains of C. thermocellum engineered for increased ethanol yield, ethanol titer seems to be limited by ethanol tolerance. Previous work to improve ethanol tolerance has focused on the WT organism. In this work, we focused on understanding ethanol tolerance in several engineered strains of C. thermocellum. We observed a tradeoff between ethanol tolerance and production. Adaptation for increased ethanol tolerance decreases ethanol production. Second, we observed a consistent genetic response to ethanol stress involving mutations at the AdhE locus. These mutations typically reduced NADH-linked ADH activity. About half of the ethanol tolerance phenotype could be attributed to the elimination of NADH-linked activity based on a targeted deletion of adhE. Finally, we observed that rich growth medium increases ethanol tolerance, but this effect is eliminated in an adhE deletion strain. Together, these suggest that ethanol inhibits growth and metabolism via a redox-imbalance mechanism. The improved understanding of mechanisms of ethanol tolerance described here lays a foundation for developing strains of C. thermocellum with improved ethanol production.
Collapse
Affiliation(s)
- Daniel G Olson
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA.
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA.
| | - Marybeth I Maloney
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Anthony A Lanahan
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Nicholas D Cervenka
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Ying Xia
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, China
| | - Angel Pech-Canul
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Shuen Hon
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| | - Liang Tian
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- Youth Olympic Village, #1-1-602, Jianye District, Nanjing, Jiangsu, China
| | - Samantha J Ziegler
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Yannick J Bomble
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
- National Renewable Energy Laboratory, Golden, CO, 80401, USA
| | - Lee R Lynd
- Thayer School of Engineering at Dartmouth College, Hanover, NH, 03755, USA
- Center for Bioenergy Innovation, Oak Ridge National Laboratory, Oak Ridge, TN, 37830, USA
| |
Collapse
|
14
|
Bastos TS, Souza CMM, Kaelle GCB, do Nascimento MQ, de Oliveira SG, Félix AP. Diet supplemented with Saccharomyces cerevisiae from different fermentation media modulates the faecal microbiota and the intestinal fermentative products in dogs. J Anim Physiol Anim Nutr (Berl) 2023. [PMID: 37129233 DOI: 10.1111/jpn.13824] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2022] [Revised: 03/09/2023] [Accepted: 04/12/2023] [Indexed: 05/03/2023]
Abstract
This study aimed at evaluating the coefficients of total tract apparent digestibility (CTTAD) of nutrients, metabolisable energy (ME), diet palatability, faecal fermentative products and microbiota of dogs fed yeasts from different fermentation media and its fractions. Four diets were evaluated: control, without yeast (CO); diet with 10 g/kg brewer's yeast (BY); diet with 10 g/kg brewer's yeast + corn yeast (BCY); and diet with 10 g/kg BCY + cell wall fractions (BCYF). Twelve adult dogs were distributed in a randomized block design (periods). Each of the four diets was fed to a group of three dogs per period of 20 days, totalling two periods and six repetitions per treatment. Sixteen adult dogs were used for the palatability test, which compared the CO diet versus each one of the yeast diets. Data with normal distribution were subjected to analysis of variance (p < 0.05). Means were compared by orthogonal contrasts (p < 0.05): (A) CO diet versus BY, BCY and BCYF diets; (B) BY diet versus BCY and BCYF diets; (C) BCY diet versus BCYF diet. There was no difference in the CTTAD and ME of the diets (p > 0.05). Yeast diets reduced faecal odour and indole peak area (p < 0.05). Faecal short-chain fatty acids concentration was greater in dogs fed yeast diets compared to those fed the CO (p < 0.05). Yeast diets showed a higher intake ratio compared to the CO (p < 0.05). The BCY and BCYF diets resulted in a greater abundance of Bacteroides, Faecalibacterium, Coprococcus, and Phascolarctobacterium in relation to the CO (p < 0.05). Our results suggest that dietary yeast supplementation results in beneficial changes in intestinal functionality indicators, mainly with the combination of yeasts from brewers and corn fermentation media. In addition, yeast supplementation improves diet palatability without compromising nutrient digestibility.
Collapse
Affiliation(s)
- Taís Silvino Bastos
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| | | | | | | | | | - Ananda Portella Félix
- Department of Animal Science, Federal University of Paraná, Curitiba, Paraná, Brazil
| |
Collapse
|
15
|
Valorization of rice straw, sugarcane bagasse and sweet sorghum bagasse for the production of bioethanol and phenylacetylcarbinol. Sci Rep 2023; 13:727. [PMID: 36639688 PMCID: PMC9839728 DOI: 10.1038/s41598-023-27451-4] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2022] [Accepted: 01/02/2023] [Indexed: 01/15/2023] Open
Abstract
Open burning of agricultural residues causes numerous complications including particulate matter pollution in the air, soil degradation, global warming and many more. Since they possess bio-conversion potential, agro-industrial residues including sugarcane bagasse (SCB), rice straw (RS), corncob (CC) and sweet sorghum bagasse (SSB) were chosen for the study. Yeast strains, Candida tropicalis, C. shehatae, Saccharomyces cerevisiae, and Kluyveromyces marxianus var. marxianus were compared for their production potential of bioethanol and phenylacetylcarbinol (PAC), an intermediate in the manufacture of crucial pharmaceuticals, namely, ephedrine, and pseudoephedrine. Among the substrates and yeasts evaluated, RS cultivated with C. tropicalis produced significantly (p ≤ 0.05) higher ethanol concentration at 15.3 g L-1 after 24 h cultivation. The product per substrate yield (Yeth/s) was 0.38 g g-1 with the volumetric productivity (Qp) of 0.64 g L-1 h-1 and fermentation efficiency of 73.6% based on a theoretical yield of 0.51 g ethanol/g glucose. C. tropicalis grown in RS medium produced 0.303 U mL-1 pyruvate decarboxylase (PDC), a key enzyme that catalyzes the production of PAC, with a specific activity of 0.400 U mg-1 protein after 24 h cultivation. This present study also compared the whole cells biomass of C. tropicalis with its partially purified PDC preparation for PAC biotransformation. The whole cells C. tropicalis PDC at 1.29 U mL-1 produced an overall concentration of 62.3 mM PAC, which was 68.4% higher when compared to partially purified enzyme preparation. The results suggest that the valorization of lignocellulosic residues into bioethanol and PAC will not only aid in mitigating the environmental challenge posed by their surroundings but also has the potential to improve the bioeconomy.
Collapse
|
16
|
Li Y, Long H, Jiang G, Gong X, Yu Z, Huang M, Guan T, Guan Y, Liu X. Analysis of the ethanol stress response mechanism in Wickerhamomyces anomalus based on transcriptomics and metabolomics approaches. BMC Microbiol 2022; 22:275. [PMCID: PMC9664796 DOI: 10.1186/s12866-022-02691-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Accepted: 11/02/2022] [Indexed: 11/16/2022] Open
Abstract
Abstract
Background
Wickerhamomyces anomalus (W. anomalus) is a kind of non-Saccharomyces yeast that has a variety of unique physiological characteristics and metabolic features and is widely used in many fields, such as food preservation, biomass energy, and aquaculture feed protein production. However, the mechanism of W. anomalus response to ethanol stress is still unclear, which greatly limits its application in the production of ethanol beverages and ethanol fuels. Therefore, we checked the effects of ethanol stress on the morphology, the growth, and differentially expressed genes (DEGs) and metabolites (DEMs) of W. anomalus.
Results
High concentrations of ethanol (9% ethanol and 12% ethanol) remarkably inhibited the growth of W. anomalus. Energy metabolism, amino acid metabolism, fatty acids metabolism, and nucleic acid metabolism were significantly influenced when exposing to 9% ethanol and 12% ethanolstress, which maybe universal for W. anomalus to response to different concentrations of ethanol stressl Furthermore, extracellular addition of aspartate, glutamate, and arginine significantly abated ethanol damage and improved the survival rate of W. anomalus.
Conclusions
The results obtained in this study provide insights into the mechanisms involved in W. anomalus response to ethanol stress. Therefore, new strategies can be realized to improve the ethanol tolerance of W. anomalus through metabolic engineering.
Collapse
|
17
|
Increasing Ethanol Tolerance and Ethanol Production in an Industrial Fuel Ethanol Saccharomyces cerevisiae Strain. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8100470] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The stress imposed by ethanol to Saccharomyces cerevisiae cells are one of the most challenging limiting factors in industrial fuel ethanol production. Consequently, the toxicity and tolerance to high ethanol concentrations has been the subject of extensive research, allowing the identification of several genes important for increasing the tolerance to this stress factor. However, most studies were performed with well-characterized laboratory strains, and how the results obtained with these strains work in industrial strains remains unknown. In the present work, we have tested three different strategies known to increase ethanol tolerance by laboratory strains in an industrial fuel–ethanol producing strain: the overexpression of the TRP1 or MSN2 genes, or the overexpression of a truncated version of the MSN2 gene. Our results show that the industrial CAT-1 strain tolerates up to 14% ethanol, and indeed the three strategies increased its tolerance to ethanol. When these strains were subjected to fermentations with high sugar content and cell recycle, simulating the industrial conditions used in Brazilian distilleries, only the strain with overexpression of the truncated MSN2 gene showed improved fermentation performance, allowing the production of 16% ethanol from 33% of total reducing sugars present in sugarcane molasses. Our results highlight the importance of testing genetic modifications in industrial yeast strains under industrial conditions in order to improve the production of industrial fuel ethanol by S. cerevisiae.
Collapse
|
18
|
Sugarcane Bagasse-Based Ethanol Production and Utilization of Its Vinasse for Xylitol Production as an Approach in Integrated Biorefinery. FERMENTATION 2022. [DOI: 10.3390/fermentation8070340] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
Biorefinery of sugarcane bagasse into ethanol and xylitol was investigated in this study. Ethanol fermentation of sugarcane bagasse hydrolysate was carried out by Saccharomyces cerevisiae. After ethanol distillation, the vinasse containing xylose was used to produce xylitol through fermentation by Candida guilliermondii TISTR 5068. During the ethanol fermentation, it was not necessary to supplement a nitrogen source to the hydrolysate. Approximately 50 g/L of bioethanol was produced after 36 h of fermentation. The vinasse was successfully used to produce xylitol. Supplementing the vinasse with 1 g/L of yeast extract improved xylitol production 1.4-fold. Cultivating the yeast with 10% controlled dissolved oxygen resulted in the best xylitol production and yields of 10.2 ± 1.12 g/L and 0.74 ± 0.04 g/g after 60 h fermentation. Supplementing the vinasse with low fraction of molasses to improve xylitol production did not yield a positive result. The supplementation caused decreases of up to 34% in xylitol production rate, 24% in concentration, and 24% in yield.
Collapse
|
19
|
Gong C, Cao L, Fang D, Zhang J, Kumar Awasthi M, Xue D. Genetic manipulation strategies for ethanol production from bioconversion of lignocellulose waste. BIORESOURCE TECHNOLOGY 2022; 352:127105. [PMID: 35378286 DOI: 10.1016/j.biortech.2022.127105] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/21/2022] [Revised: 03/28/2022] [Accepted: 03/30/2022] [Indexed: 06/14/2023]
Abstract
Lignocellulose waste was served as promising raw material for bioethanol production. Bioethanol was considered to be a potential alternative energy to take the place of fossil fuels. Lignocellulosic biomass synthesized by plants is regenerative, sufficient and cheap source for bioethanol production. The biotransformation of lignocellulose could exhibit dual significance-reduction of pollution and obtaining of energy. Some strategies are being developing and increasing the utilization of lignocellulose waste to produce ethanol. New technology of bioethanol production from natural lignocellulosic biomass is required. In this paper, the progress in genetic manipulation strategies including gene editing and synthetic genomics for the transformation from lignocellulose to ethanol was reviewed. At last, the application prospect of bioethanol was introduced.
Collapse
Affiliation(s)
- Chunjie Gong
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Liping Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Donglai Fang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Jiaqi Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling, Shaanxi 712100, PR China
| | - Dongsheng Xue
- Key Laboratory of Fermentation Engineering (Ministry of Education), National "111" Center for Cellular Regulation and Molecular Pharmaceutics, Hubei University of Technology, Wuhan 430068, PR China.
| |
Collapse
|
20
|
Foster B, Tyrawa C, Ozsahin E, Lubberts M, Krogerus K, Preiss R, van der Merwe G. Kveik Brewing Yeasts Demonstrate Wide Flexibility in Beer Fermentation Temperature Tolerance and Exhibit Enhanced Trehalose Accumulation. Front Microbiol 2022; 13:747546. [PMID: 35369501 PMCID: PMC8966892 DOI: 10.3389/fmicb.2022.747546] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 02/11/2022] [Indexed: 11/25/2022] Open
Abstract
Traditional Norwegian Farmhouse ale yeasts, also known as kveik, have captured the attention of the brewing community in recent years. Kveik were recently reported as fast fermenting thermo- and ethanol tolerant yeasts with the capacity to produce a variety of interesting flavor metabolites. They are a genetically distinct group of domesticated beer yeasts of admixed origin with one parent from the “Beer 1” clade and the other unknown. While kveik are known to ferment wort efficiently at warmer temperatures, their range of fermentation temperatures and corresponding fermentation efficiencies, remain uncharacterized. In addition, the characteristics responsible for their increased thermotolerance remain largely unknown. Here we demonstrate variation in kveik strains at a wide range of fermentation temperatures and show not all kveik strains are equal in fermentation performance and stress tolerance. Furthermore, we uncovered an increased capacity of kveik strains to accumulate intracellular trehalose, which likely contributes to their increased thermo- and ethanol tolerances. Taken together our results present a clearer picture of the future opportunities presented by Norwegian kveik yeasts and offer further insight into their applications in brewing.
Collapse
Affiliation(s)
- Barret Foster
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Emine Ozsahin
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Mark Lubberts
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | | | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
21
|
Abstract
The utilization of native yeast strains associated with a distinct terroir for autochthonous grape types represents a novel trend in winemaking, contributing to the production of unique wines with regional character. Hence, this study aimed to isolate native strains of the yeast H. uvarum from the surface of various fruits and to characterize its fermentation capability in Prokupac grape must. Out of 31 yeasts, 8 isolates were identified as H. uvarum. The isolates were able to grow at low (4 °C) temperatures, SO2 concentrations up to 300 ppm and ethanol concentrations up to 5%. Additionally, they provided a good profile of organic acids during the microvinification of sterile grape must. Although the content of acetic acid (0.54–0.63 g/L) was relatively high, the sniffing test proved that the yeast isolates developed a pleasant aroma characterized as fruity. All H. uvarum isolates produced twice the concentration of glycerol compared to commercial wine yeast Saccharomyces cerevisiae, contributing to the fullness and sweetness of the wine. The results for pure and sequential fermentation protocols confirmed that the selected S-2 isolate has good oenological characteristics, the capability to reduce the ethanol content (up to 1% v/v) and a potential to give a distinctive note to Prokupac-grape wines.
Collapse
|
22
|
Sunyer-Figueres M, Mas A, Beltran G, Torija MJ. Protective Effects of Melatonin on Saccharomyces cerevisiae under Ethanol Stress. Antioxidants (Basel) 2021; 10:antiox10111735. [PMID: 34829606 PMCID: PMC8615028 DOI: 10.3390/antiox10111735] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2021] [Revised: 10/21/2021] [Accepted: 10/28/2021] [Indexed: 01/15/2023] Open
Abstract
During alcoholic fermentation, Saccharomyces cerevisiae is subjected to several stresses, among which ethanol is of capital importance. Melatonin, a bioactive molecule synthesized by yeast during alcoholic fermentation, has an antioxidant role and is proposed to contribute to counteracting fermentation-associated stresses. The aim of this study was to unravel the protective effect of melatonin on yeast cells subjected to ethanol stress. For that purpose, the effect of ethanol concentrations (6 to 12%) on a wine strain and a lab strain of S. cerevisiae was evaluated, monitoring the viability, growth capacity, mortality, and several indicators of oxidative stress over time, such as reactive oxygen species (ROS) accumulation, lipid peroxidation, and the activity of catalase and superoxide dismutase enzymes. In general, ethanol exposure reduced the cell growth of S. cerevisiae and increased mortality, ROS accumulation, lipid peroxidation and antioxidant enzyme activity. Melatonin supplementation softened the effect of ethanol, enhancing cell growth and decreasing oxidative damage by lowering ROS accumulation, lipid peroxidation, and antioxidant enzyme activities. However, the effects of melatonin were dependent on strain, melatonin concentration, and growth phase. The results of this study indicate that melatonin has a protective role against mild ethanol stress, mainly by reducing the oxidative stress triggered by this alcohol.
Collapse
|
23
|
Díaz-Muñoz C, De Vuyst L. Functional yeast starter cultures for cocoa fermentation. J Appl Microbiol 2021; 133:39-66. [PMID: 34599633 PMCID: PMC9542016 DOI: 10.1111/jam.15312] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/02/2021] [Accepted: 09/17/2021] [Indexed: 01/04/2023]
Abstract
The quest to develop a performant starter culture mixture to be applied in cocoa fermentation processes started in the 20th century, aiming at achieving high‐quality, reproducible chocolates with improved organoleptic properties. Since then, different yeasts have been proposed as candidate starter cultures, as this microbial group plays a key role during fermentation of the cocoa pulp‐bean mass. Yeast starter culture‐initiated fermentation trials have been performed worldwide through the equatorial zone and the effects of yeast inoculation have been analysed as a function of the cocoa variety (Forastero, Trinitario and hybrids) and fermentation method (farm‐, small‐ and micro‐scale) through the application of physicochemical, microbiological and chemical techniques. A thorough screening of candidate yeast starter culture strains is sometimes done to obtain the best performing strains to steer the cocoa fermentation process and/or to enhance specific features, such as pectinolysis, ethanol production, citrate assimilation and flavour production. Besides their effects during cocoa fermentation, a significant influence of the starter culture mixture applied is often found on the cocoa liquors and/or chocolates produced thereof. Thus, starter culture‐initiated cocoa fermentation processes constitute a suitable strategy to elaborate improved flavourful chocolate products.
Collapse
Affiliation(s)
- Cristian Díaz-Muñoz
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| | - Luc De Vuyst
- Research Group of Industrial Microbiology and Food Biotechnology, Faculty of Sciences and Bioengineering Sciences, Vrije Universiteit Brussel, Brussels, Belgium
| |
Collapse
|
24
|
Merchel Piovesan Pereira B, Wang X, Tagkopoulos I. Biocide-Induced Emergence of Antibiotic Resistance in Escherichia coli. Front Microbiol 2021; 12:640923. [PMID: 33717036 PMCID: PMC7952520 DOI: 10.3389/fmicb.2021.640923] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/03/2021] [Indexed: 12/26/2022] Open
Abstract
Biocide use is essential and ubiquitous, exposing microbes to sub-inhibitory concentrations of antiseptics, disinfectants, and preservatives. This can lead to the emergence of biocide resistance, and more importantly, potential cross-resistance to antibiotics, although the degree, frequency, and mechanisms that give rise to this phenomenon are still unclear. Here, we systematically performed adaptive laboratory evolution of the gut bacteria Escherichia coli in the presence of sub-inhibitory, constant concentrations of ten widespread biocides. Our results show that 17 out of 40 evolved strains (43%) also decreased the susceptibility to medically relevant antibiotics. Through whole-genome sequencing, we identified mutations related to multidrug efflux proteins (mdfA and acrR), porins (envZ and ompR), and RNA polymerase (rpoA and rpoBC), as mechanisms behind the resulting (cross)resistance. We also report an association of several genes (yeaW, pyrE, yqhC, aes, pgpA, and yeeP-isrC) and specific mutations that induce cross-resistance, verified through mutation repairs. A greater capacity for biofilm formation with respect to the parent strain was also a common feature in 11 out of 17 (65%) cross-resistant strains. Evolution in the biocides chlorophene, benzalkonium chloride, glutaraldehyde, and chlorhexidine had the most impact in antibiotic susceptibility, while hydrogen peroxide and povidone-iodine the least. No cross-resistance to antibiotics was observed for isopropanol, ethanol, sodium hypochlorite, and peracetic acid. This work reinforces the link between exposure to biocides and the potential for cross-resistance to antibiotics, presents evidence on the underlying mechanisms of action, and provides a prioritized list of biocides that are of greater concern for public safety from the perspective of antibiotic resistance. SIGNIFICANCE STATEMENT Bacterial resistance and decreased susceptibility to antimicrobials is of utmost concern. There is evidence that improper biocide (antiseptic and disinfectant) use and discard may select for bacteria cross-resistant to antibiotics. Understanding the cross-resistance emergence and the risks associated with each of those chemicals is relevant for proper applications and recommendations. Our work establishes that not all biocides are equal when it comes to their risk of inducing antibiotic resistance; it provides evidence on the mechanisms of cross-resistance and a risk assessment of the biocides concerning antibiotic resistance under residual sub-inhibitory concentrations.
Collapse
Affiliation(s)
- Beatriz Merchel Piovesan Pereira
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
| | - Xiaokang Wang
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| | - Ilias Tagkopoulos
- Microbiology Graduate Group, University of California, Davis, Davis, CA, United States
- Genome Center, University of California, Davis, Davis, CA, United States
- Department of Computer Science, University of California, Davis, Davis, CA, United States
| |
Collapse
|
25
|
Catrileo D, Acuña-Fontecilla A, Godoy L. Adaptive Laboratory Evolution of Native Torulaspora delbrueckii YCPUC10 With Enhanced Ethanol Resistance and Evaluation in Co-inoculated Fermentation. Front Microbiol 2021; 11:595023. [PMID: 33408704 PMCID: PMC7779481 DOI: 10.3389/fmicb.2020.595023] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2020] [Accepted: 12/02/2020] [Indexed: 11/13/2022] Open
Abstract
Torulaspora delbrueckii is a yeast species typically present in the early stages of the fermentation process. T. delbrueckii positively modifies the aromatic properties of wines. However, its contribution to the final quality of the wine is restricted by its low tolerance to ethanol. T. delbrueckii is capable of fermenting and tolerating an ethanol concentration ranging from 7.4% (v/v) to slightly higher than 9% (v/v). For this reason, it cannot complete fermentation, when alcohol reach levels higher than 12% (v/v), limiting their use in the industry. The objective of this work was to obtain new variants of T. delbrueckii with improved resistance to ethanol through adaptive laboratory evolution. Variants capable of tolerating ethanol levels of 11.5% (v/v) were obtained. These presented improved kinetic parameters, and additionally showed an increase in resistance to SO2 in ethanol compared to the original strain. Co-inoculated fermentations were performed with the original strain (FTd/Sc) and with the evolved strain (FTdF/Sc), in addition to a control fermentation using only Saccharomyces cerevisiae EC1118 (FSc). The results obtained show that FTdF/Sc present higher levels of 2-Ethylhexanol, compared to FTd/Sc and FSc. Furthermore, FTdF/Sc presents higher levels of total alcohols, total aldehydes, total phenolic derivatives, and total sulfur compounds with significant differences with FSc. These results provide a T. delbrueckii YCPUC10-F yeast with higher resistance to ethanol, which can be present throughout the fermentation process and be used in co-inoculated fermentations. This would positively impact the performance of T. delbrueckii by allowing it to be present not only in the early stages of fermentation but to remain until the end of fermentation.
Collapse
Affiliation(s)
- Daniela Catrileo
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Andrea Acuña-Fontecilla
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| | - Liliana Godoy
- Departamento de Fruticultura y Enología, Facultad de Agronomía e Ingeniería Forestal, Pontificia Universidad Católica de Chile, Santiago, Chile
| |
Collapse
|
26
|
Yang Y, Hu W, Xia Y, Mu Z, Tao L, Song X, Zhang H, Ni B, Ai L. Flavor Formation in Chinese Rice Wine (Huangjiu): Impacts of the Flavor-Active Microorganisms, Raw Materials, and Fermentation Technology. Front Microbiol 2020; 11:580247. [PMID: 33281774 PMCID: PMC7691429 DOI: 10.3389/fmicb.2020.580247] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2020] [Accepted: 09/22/2020] [Indexed: 11/13/2022] Open
Abstract
Huangjiu (Chinese rice wine) has been consumed for centuries in Asian countries and is known for its unique flavor and subtle taste. The flavor compounds of Huangjiu are derived from a wide range of sources, such as raw materials, microbial metabolic activities during fermentation, and chemical reactions that occur during aging. Of these sources, microorganisms have the greatest effect on the flavor quality of Huangjiu. To enrich the microbial diversity, Huangjiu is generally fermented under an open environment, as this increases the complexity of its microbial community and flavor compounds. Thus, understanding the formation of flavor compounds in Huangjiu will be beneficial for producing a superior flavored product. In this paper, a critical review of aspects that may affect the formation of Huangjiu flavor compounds is presented. The selection of appropriate raw materials and the improvement of fermentation technologies to promote the flavor quality of Huangjiu are discussed. In addition, the effects of microbial community composition, metabolic function of predominant microorganisms, and dynamics of microbial community on the flavor quality of Huangjiu are examined. This review thus provides a theoretical basis for manipulating the fermentation process by using selected microorganisms to improve the overall flavor quality of Huangjiu.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China.,School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Wuyao Hu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Zhiyong Mu
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Leren Tao
- School of Energy and Power Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Xin Song
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| | - Hui Zhang
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Bin Ni
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, China
| |
Collapse
|
27
|
Transcriptional Rewiring, Adaptation, and the Role of Gene Duplication in the Metabolism of Ethanol of Saccharomyces cerevisiae. mSystems 2020; 5:5/4/e00416-20. [PMID: 32788405 PMCID: PMC7426151 DOI: 10.1128/msystems.00416-20] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Ethanol is the main by-product of yeast sugar fermentation that affects microbial growth parameters, being considered a dual molecule, a nutrient and a stressor. Previous works demonstrated that the budding yeast arose after an ancient hybridization process resulted in a tier of duplicated genes within its genome, many of them with implications in this ethanol "produce-accumulate-consume" strategy. The evolutionary link between ethanol production, consumption, and tolerance versus ploidy and stability of the hybrids is an ongoing debatable issue. The implication of ancestral duplicates in this metabolic rewiring, and how these duplicates differ transcriptionally, remains unsolved. Here, we study the transcriptomic adaptive signatures to ethanol as a nonfermentative carbon source to sustain clonal yeast growth by experimental evolution, emphasizing the role of duplicated genes in the adaptive process. As expected, ethanol was able to sustain growth but at a lower rate than glucose. Our results demonstrate that in asexual populations a complete transcriptomic rewiring was produced, strikingly by downregulation of duplicated genes, mainly whole-genome duplicates, whereas small-scale duplicates exhibited significant transcriptional divergence between copies. Overall, this study contributes to the understanding of evolution after gene duplication, linking transcriptional divergence with duplicates' fate in a multigene trait as ethanol tolerance.IMPORTANCE Gene duplication events have been related with increasing biological complexity through the tree of life, but also with illnesses, including cancer. Early evolutionary theories indicated that duplicated genes could explore alternative functions due to relaxation of selective constraints in one of the copies, as the other remains as ancestral-function backup. In unicellular eukaryotes like yeasts, it has been demonstrated that the fate and persistence of duplicates depend on duplication mechanism (whole-genome or small-scale events), shaping their actual genomes. Although it has been shown that small-scale duplicates tend to innovate and whole-genome duplicates specialize in ancestral functions, the implication of duplicates' transcriptional plasticity and transcriptional divergence on environmental and metabolic responses remains largely obscure. Here, by experimental adaptive evolution, we show that Saccharomyces cerevisiae is able to respond to metabolic stress (ethanol as nonfermentative carbon source) due to the persistence of duplicated genes. These duplicates respond by transcriptional rewiring, depending on their transcriptional background. Our results shed light on the mechanisms that determine the role of duplicates, and on their evolvability.
Collapse
|
28
|
da Silveira FA, de Oliveira Soares DL, Bang KW, Balbino TR, de Moura Ferreira MA, Diniz RHS, de Lima LA, Brandão MM, Villas-Bôas SG, da Silveira WB. Assessment of ethanol tolerance of Kluyveromyces marxianus CCT 7735 selected by adaptive laboratory evolution. Appl Microbiol Biotechnol 2020; 104:7483-7494. [DOI: 10.1007/s00253-020-10768-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2019] [Revised: 04/21/2020] [Accepted: 07/02/2020] [Indexed: 12/28/2022]
|
29
|
Schmitt RE, Messick MR, Shell BC, Dunbar EK, Fang H, Shelton KL, Venton BJ, Pletcher SD, Grotewiel M. Dietary yeast influences ethanol sedation in Drosophila via serotonergic neuron function. Addict Biol 2020; 25:e12779. [PMID: 31169340 DOI: 10.1111/adb.12779] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2018] [Revised: 03/23/2019] [Accepted: 05/02/2019] [Indexed: 01/10/2023]
Abstract
Abuse of alcohol is a major clinical problem with far-reaching health consequences. Understanding the environmental and genetic factors that contribute to alcohol-related behaviors is a potential gateway for developing novel therapeutic approaches for patients that abuse the drug. To this end, we have used Drosophila melanogaster as a model to investigate the effect of diet, an environmental factor, on ethanol sedation. Providing flies with diets high in yeast, a routinely used component of fly media, increased their resistance to ethanol sedation. The yeast-induced resistance to ethanol sedation occurred in several different genetic backgrounds, was observed in males and females, was elicited by yeast from different sources, was readily reversible, and was associated with increased nutrient intake as well as decreased internal ethanol levels. Inhibition of serotonergic neuron function using multiple independent genetic manipulations blocked the effect of yeast supplementation on ethanol sedation, nutrient intake, and internal ethanol levels. Our results demonstrate that yeast is a critical dietary component that influences ethanol sedation in flies and that serotonergic signaling is required for the effect of dietary yeast on nutrient intake, ethanol uptake/elimination, and ethanol sedation. Our studies establish the fly as a model for diet-induced changes in ethanol sedation and raise the possibility that serotonin might mediate the effect of diet on alcohol-related behavior in other species.
Collapse
Affiliation(s)
- Rebecca E. Schmitt
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Monica R. Messick
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Brandon C. Shell
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Ellyn K. Dunbar
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
| | - Huai‐Fang Fang
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Keith L. Shelton
- Department of Pharmacology and Toxicology Virginia Commonwealth University Richmond VA USA
| | - B. Jill Venton
- Department of Chemistry and Neuroscience Graduate Program University of Virginia Charlottesville VA USA
| | - Scott D. Pletcher
- Department of Molecular and Integrative Physiology and Geriatrics Center University of Michigan Ann Arbor MI USA
| | - Mike Grotewiel
- Department of Human and Molecular Genetics Virginia Commonwealth University Richmond VA USA
- Virginia Commonwealth University Alcohol Research Center Richmond VA USA
| |
Collapse
|
30
|
Cripwell RA, Favaro L, Viljoen-Bloom M, van Zyl WH. Consolidated bioprocessing of raw starch to ethanol by Saccharomyces cerevisiae: Achievements and challenges. Biotechnol Adv 2020; 42:107579. [PMID: 32593775 DOI: 10.1016/j.biotechadv.2020.107579] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2020] [Revised: 06/05/2020] [Accepted: 06/14/2020] [Indexed: 12/30/2022]
Abstract
Recent advances in amylolytic strain engineering for starch-to-ethanol conversion have provided a platform for the development of raw starch consolidated bioprocessing (CBP) technologies. Several proof-of-concept studies identified improved enzyme combinations, alternative feedstocks and novel host strains for evaluation and application under fermentation conditions. However, further research efforts are required before this technology can be scaled up to an industrial level. In this review, different CBP approaches are defined and discussed, also highlighting the role of auxiliary enzymes for a supplemented CBP process. Various achievements in the development of amylolytic Saccharomyces cerevisiae strains for CBP of raw starch and the remaining challenges that need to be tackled/pursued to bring yeast raw starch CBP to industrial realization, are described. Looking towards the future, it provides potential solutions to develop more cost-effective processes that include cheaper substrates, integration of the 1G and 2G economies and implementing a biorefinery concept where high-value products are also derived from starchy substrates.
Collapse
Affiliation(s)
- Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural resources Animals and Environment (DAFNAE), Università di Padova, Agripolis, Viale dell'Università 16, 35020, Legnaro, Padova, Italy
| | - Marinda Viljoen-Bloom
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa.
| |
Collapse
|
31
|
Lairón-Peris M, Pérez-Través L, Muñiz-Calvo S, Guillamón JM, Heras JM, Barrio E, Querol A. Differential Contribution of the Parental Genomes to a S. cerevisiae × S. uvarum Hybrid, Inferred by Phenomic, Genomic, and Transcriptomic Analyses, at Different Industrial Stress Conditions. Front Bioeng Biotechnol 2020; 8:129. [PMID: 32195231 PMCID: PMC7062649 DOI: 10.3389/fbioe.2020.00129] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2019] [Accepted: 02/10/2020] [Indexed: 01/09/2023] Open
Abstract
In European regions of cold climate, S. uvarum can replace S. cerevisiae in wine fermentations performed at low temperatures. S. uvarum is a cryotolerant yeast that produces more glycerol, less acetic acid and exhibits a better aroma profile. However, this species exhibits a poor ethanol tolerance compared with S. cerevisiae. In the present study, we obtained by rare mating (non-GMO strategy), and a subsequent sporulation, an interspecific S. cerevisiae × S. uvarum spore-derivative hybrid that improves or maintains a combination of parental traits of interest for the wine industry, such as good fermentation performance, increased ethanol tolerance, and high glycerol and aroma productions. Genomic sequencing analysis showed that the artificial spore-derivative hybrid is an allotriploid, which is very common among natural hybrids. Its genome contains one genome copy from the S. uvarum parental genome and two heterozygous copies of the S. cerevisiae parental genome, with the exception of a monosomic S. cerevisiae chromosome III, where the sex-determining MAT locus is located. This genome constitution supports that the original hybrid from which the spore was obtained likely originated by a rare-mating event between a mating-competent S. cerevisiae diploid cell and either a diploid or a haploid S. uvarum cell of the opposite mating type. Moreover, a comparative transcriptomic analysis reveals that each spore-derivative hybrid subgenome is regulating different processes during the fermentation, in which each parental species has demonstrated to be more efficient. Therefore, interactions between the two subgenomes in the spore-derivative hybrid improve those differential species-specific adaptations to the wine fermentation environments, already present in the parental species.
Collapse
Affiliation(s)
- María Lairón-Peris
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Laura Pérez-Través
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - Sara Muñiz-Calvo
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | - José Manuel Guillamón
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| | | | - Eladio Barrio
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain.,Departament de Genètica, Universitat de València, Valencia, Spain
| | - Amparo Querol
- Departamento de Biotecnología de Alimentos, Instituto de Agroquímica y Tecnología de Alimentos, CSIC, Valencia, Spain
| |
Collapse
|
32
|
Ethanol Production from Hydrolyzed Kraft Pulp by Mono- and Co-Cultures of Yeasts: The Challenge of C6 and C5 Sugars Consumption. ENERGIES 2020. [DOI: 10.3390/en13030744] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Second-generation bioethanol production’s main bottleneck is the need for a costly and technically difficult pretreatment due to the recalcitrance of lignocellulosic biomass (LCB). Chemical pulping can be considered as a LCB pretreatment since it removes lignin and targets hemicelluloses to some extent. Chemical pulps could be used to produce ethanol. The present study aimed to investigate the batch ethanol production from unbleached Kraft pulp of Eucalyptus globulus by separate hydrolysis and fermentation (SHF). Enzymatic hydrolysis of the pulp resulted in a glucose yield of 96.1 ± 3.6% and a xylose yield of 94.0 ± 7.1%. In an Erlenmeyer flask, fermentation of the hydrolysate using Saccharomyces cerevisiae showed better results than Scheffersomyces stipitis. At both the Erlenmeyer flask and bioreactor scale, co-cultures of S. cerevisiae and S. stipitis did not show significant improvements in the fermentation performance. The best result was provided by S. cerevisiae alone in a bioreactor, which fermented the Kraft pulp hydrolysate with an ethanol yield of 0.433 g·g−1 and a volumetric ethanol productivity of 0.733 g·L−1·h−1, and a maximum ethanol concentration of 19.24 g·L−1 was attained. Bioethanol production using the SHF of unbleached Kraft pulp of E. globulus provides a high yield and productivity.
Collapse
|
33
|
Xin Y, Yang M, Yin H, Yang J. Improvement of Ethanol Tolerance by Inactive Protoplast Fusion in Saccharomyces cerevisiae. BIOMED RESEARCH INTERNATIONAL 2020; 2020:1979318. [PMID: 32420325 PMCID: PMC7201837 DOI: 10.1155/2020/1979318] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/01/2019] [Accepted: 11/11/2019] [Indexed: 12/19/2022]
Abstract
Saccharomyces cerevisiae is a typical fermentation yeast in beer production. Improving ethanol tolerance of S. cerevisiae will increase fermentation efficiency, thereby reducing capital costs. Here, we found that S. cerevisiae strain L exhibited a higher ethanol tolerance (14%, v/v) than the fermentative strain Q (10%, v/v). In order to enhance the strain Q ethanol tolerance but preserve its fermentation property, protoplast fusion was performed with haploids from strain Q and L. The fusant Q/L-f2 with 14% ethanol tolerance was obtained. Meanwhile, the fermentation properties (flocculability, SO2 production, α-N assimilation rate, GSH production, etc.) of Q/L-f2 were similar to those of strain Q. Therefore, our works established a series of high ethanol-tolerant strains in beer production. Moreover, this demonstration of inactivated protoplast fusion in industrial S. cerevisiae strain opens many doors for yeast-based biotechnological applications.
Collapse
Affiliation(s)
- Yi Xin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Technology Center of Tsingtao Brewery Co., Ltd., Qingdao, Shandong 266061, China
- Single-Cell Center, CAS Key Laboratory of Biofuels and Shandong Laboratory of Energy Genetics, Qingdao Institute of BioEnergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266061, China
| | - Mei Yang
- State Key Laboratory of Biological Fermentation Engineering of Beer, Technology Center of Tsingtao Brewery Co., Ltd., Qingdao, Shandong 266061, China
| | - Hua Yin
- State Key Laboratory of Biological Fermentation Engineering of Beer, Technology Center of Tsingtao Brewery Co., Ltd., Qingdao, Shandong 266061, China
| | - Jianming Yang
- Energy-rich Compounds Production by Photosynthetic Carbon Fixation Research Center, College of Life Sciences, Qingdao Agricultural University, Qingdao, Shandong 266109, China
| |
Collapse
|
34
|
Membrane Fluidity of Saccharomyces cerevisiae from Huangjiu (Chinese Rice Wine) Is Variably Regulated by OLE1 To Offset the Disruptive Effect of Ethanol. Appl Environ Microbiol 2019; 85:AEM.01620-19. [PMID: 31540996 DOI: 10.1128/aem.01620-19] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2019] [Accepted: 09/19/2019] [Indexed: 11/20/2022] Open
Abstract
An evolution and resequencing strategy was used to research the genetic basis of Saccharomyces cerevisiae BR20 (with 18 vol% ethanol tolerance) and the evolved strain F23 (with 25 vol% ethanol tolerance). Whole-genome sequencing and RNA sequencing (RNA-seq) indicated that the enhanced ethanol tolerance under 10 vol% ethanol could be attributed to amino acid metabolism, whereas 18 vol% ethanol tolerance was due to fatty acid metabolism. Ultrastructural analysis indicated that F23 exhibited better membrane integrity than did BR20 under ethanol stress. At low concentrations (<5 vol%), the partition of ethanol into the membrane increased the membrane fluidity, which had little effect on cell growth. However, the toxic effects of medium and high ethanol concentrations (5 to 20 vol%) tended to decrease the membrane fluidity. Under high ethanol stress (>10 vol%), the highly tolerant strain was able to maintain a relatively constant fluidity by increasing the content of unsaturated fatty acid (UFA), whereas less-tolerant strains show a continuous decrease in fluidity and UFA content. OLE1, which was identified as the only gene with a differential single-nucleotide polymorphism (SNP) mutation site related to fatty acid metabolism, was significantly changed in response to ethanol. The role of OLE1 in membrane fluidity was positively validated in its overexpressed transformants. Therefore, OLE1 lowered the rate of decline in membrane fluidity and thus enabled the yeast to better fight the deleterious effects of ethanol.IMPORTANCE Yeasts with superior ethanol tolerance are desirable for winemakers and wine industries. In our previous work, strain F23 was evolved with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Therefore, exploring the genomic variations and ethanol tolerance mechanism of strain F23 could contribute to an understanding of its effect on the flavor characteristics in the resulting Chinese rice wine. The cellular membrane plays a vital role in the ethanol tolerance of yeasts; however, how the membrane is regulated to fight the toxic effect of ethanol remains to be elucidated. This study suggests that the membrane fluidity is variably regulated by OLE1 to offset the disruptive effect of ethanol. Current work will help develop more ethanol-tolerant yeast strains for wine industries and contribute to a deep understanding of its high flavor-producing ability.
Collapse
|
35
|
Patiño MA, Ortiz JP, Velásquez M, Stambuk BU. d-Xylose consumption by nonrecombinant Saccharomyces cerevisiae: A review. Yeast 2019; 36:541-556. [PMID: 31254359 DOI: 10.1002/yea.3429] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2019] [Revised: 06/02/2019] [Accepted: 06/21/2019] [Indexed: 01/24/2023] Open
Abstract
Xylose is the second most abundant sugar in nature. Its efficient fermentation has been considered as a critical factor for a feasible conversion of renewable biomass resources into biofuels and other chemicals. The yeast Saccharomyces cerevisiae is of exceptional industrial importance due to its excellent capability to ferment sugars. However, although S. cerevisiae is able to ferment xylulose, it is considered unable to metabolize xylose, and thus, a lot of research has been directed to engineer this yeast with heterologous genes to allow xylose consumption and fermentation. The analysis of the natural genetic diversity of this yeast has also revealed some nonrecombinant S. cerevisiae strains that consume or even grow (modestly) on xylose. The genome of this yeast has all the genes required for xylose transport and metabolism through the xylose reductase, xylitol dehydrogenase, and xylulokinase pathway, but there seems to be problems in their kinetic properties and/or required expression. Self-cloning industrial S. cerevisiae strains overexpressing some of the endogenous genes have shown interesting results, and new strategies and approaches designed to improve these S. cerevisiae strains for ethanol production from xylose will also be presented in this review.
Collapse
Affiliation(s)
- Margareth Andrea Patiño
- Instituto de Biotecnología.,Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Juan Pablo Ortiz
- Facultad de Ciencias e Ingeniería, Universidad de Boyacá, Tunja, Colombia
| | - Mario Velásquez
- Departamento de Ingeniería Química y Ambiental, Universidad Nacional de Colombia, Bogotá, Colombia
| | - Boris U Stambuk
- Departamento de Bioquímica, Universidad Federal de Santa Catarina, Florianópolis, Brazil
| |
Collapse
|
36
|
Peltier E, Friedrich A, Schacherer J, Marullo P. Quantitative Trait Nucleotides Impacting the Technological Performances of Industrial Saccharomyces cerevisiae Strains. Front Genet 2019; 10:683. [PMID: 31396264 PMCID: PMC6664092 DOI: 10.3389/fgene.2019.00683] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2019] [Accepted: 07/01/2019] [Indexed: 11/13/2022] Open
Abstract
The budding yeast Saccharomyces cerevisiae is certainly the prime industrial microorganism and is related to many biotechnological applications including food fermentations, biofuel production, green chemistry, and drug production. A noteworthy characteristic of this species is the existence of subgroups well adapted to specific processes with some individuals showing optimal technological traits. In the last 20 years, many studies have established a link between quantitative traits and single-nucleotide polymorphisms found in hundreds of genes. These natural variations constitute a pool of QTNs (quantitative trait nucleotides) that modulate yeast traits of economic interest for industry. By selecting a subset of genes functionally validated, a total of 284 QTNs were inventoried. Their distribution across pan and core genome and their frequency within the 1,011 Saccharomyces cerevisiae genomes were analyzed. We found that 150 of the 284 QTNs have a frequency lower than 5%, meaning that these variants would be undetectable by genome-wide association studies (GWAS). This analysis also suggests that most of the functional variants are private to a subpopulation, possibly due to their adaptive role to specific industrial environment. In this review, we provide a literature survey of their phenotypic impact and discuss the opportunities and the limits of their use for industrial strain selection.
Collapse
Affiliation(s)
- Emilien Peltier
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| | - Anne Friedrich
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Joseph Schacherer
- Department Micro-organismes, Génomes, Environnement, Université de Strasbourg, CNRS, GMGM UMR 7156, Strasbourg, France
| | - Philippe Marullo
- Department Sciences du vivant et de la sante, Université de Bordeaux, UR Œnologie EA 4577, Bordeaux, France
- Biolaffort, Bordeaux, France
| |
Collapse
|
37
|
Carreón-Rodríguez OE, Gutiérrez-Ríos RM, Acosta JL, Martinez A, Cevallos MA. Phenotypic and genomic analysis of Zymomonas mobilis ZM4 mutants with enhanced ethanol tolerance. ACTA ACUST UNITED AC 2019; 23:e00328. [PMID: 30984572 PMCID: PMC6444122 DOI: 10.1016/j.btre.2019.e00328] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2018] [Revised: 03/10/2019] [Accepted: 03/18/2019] [Indexed: 12/22/2022]
Abstract
Z. mobilis ER79ag and ER79ap ethanol mutants were obtained by adaptive evolution. ER79ap had a better cell viability than the WT and ER79ap under ethanol stress. Mutants shared SNVs in clpP and spoT/relA, in addition ER79ap has a SNP in clpB. Mutant allele spoT/relA of ER79ap seems to be more important to ethanol tolerance. Glucose consumption and ethanol production were not affected in mutant strains.
Zymomonas mobilis ZM4 is an ethanol-producing microbe that is constitutively tolerant to this solvent. For a better understanding of the ethanol tolerance phenomenon we obtained and characterized two ZM4 mutants (ER79ap and ER79ag) with higher ethanol tolerance than the wild-type. Mutants were evaluated in different ethanol concentrations and this analysis showed that mutant ER79ap was more tolerant and had a better performance in terms of cell viability, than the wild-type strain and ER79ag mutant. Genotyping of the mutant strains showed that both carry non-synonymous mutations in clpP and spoT/relA genes. A third non-synonymous mutation was found only in strain ER79ap, in the clpB gene. Considering that ER79ap has the best tolerance to added ethanol, the mutant alleles of this strain were evaluated in ZM4 and here we show that while all of them contribute to ethanol tolerance, mutation within spoT/relA gene seems to be the most important.
Collapse
Affiliation(s)
- Ofelia E Carreón-Rodríguez
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| | - Rosa María Gutiérrez-Ríos
- Departamento de Microbiología Molecular, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - José L Acosta
- Instituto Politécnico Nacional, Centro Interdisciplinario de Investigación para el Desarrollo Integral Regional (CIIDIR)-Unidad, Blvd., Juan de Dios Bátiz Paredes #250, 81101, Sinaloa, Mexico
| | - Alfredo Martinez
- Departamento de Ingeniería Celular y Biocatálisis, Instituto de Biotecnología, Universidad Nacional Autónoma de México, Av. Universidad 2001, Col. Chamilpa, Cuernavaca, Morelos, 62210, Mexico
| | - Miguel A Cevallos
- Programa de Genómica Evolutiva, Centro de Ciencias Genómicas, Universidad Nacional Autónoma de México, Apartado Postal 565-A, Cuernavaca, Morelos, Mexico
| |
Collapse
|
38
|
Xu K, Lee YS, Li J, Li C. Resistance mechanisms and reprogramming of microorganisms for efficient biorefinery under multiple environmental stresses. Synth Syst Biotechnol 2019; 4:92-98. [PMID: 30899819 PMCID: PMC6407310 DOI: 10.1016/j.synbio.2019.02.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2018] [Revised: 02/01/2019] [Accepted: 02/20/2019] [Indexed: 01/14/2023] Open
Abstract
In the fermentation process of biorefinery, industrial strains are normally subjected to adverse environmental stresses, which leads to their slow growth, yield decline, a substantial increase in energy consumption, and other negative consequences, which ultimately seriously hamper the development of biorefinery. How to minimize the impact of stress on microorganisms is of great significance. This review not only reveals the damaging effects of different environmental stresses on microbial strains but also introduces commonly used strategies to improve microbial tolerance, including adaptive evolution, reprogramming of the industrial host based on genetic circuits, global transcription machinery engineering (gTME) and bioprocess integration. Furthermore, by integrating the advantages of these strategies and reducing the cost of system operation, the tolerance of industrial strains, combined with production efficiency and process stability, will be greatly improved, and the development prospects of biorefinery will be more widespread.
Collapse
Affiliation(s)
- Ke Xu
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China.,Key Lab for Industrial Biocatalysis, Ministry of Education, Department of Chemical Engineering, Tsinghua University, Beijing 100084, PR China
| | - Yun Seo Lee
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Jun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| | - Chun Li
- Institute for Synthetic Biosystem/Department of Biochemical Engineering, School of Chemistry and Chemical Engineering, Beijing Institute of Technology, Beijing 100081, PR China
| |
Collapse
|
39
|
Morard M, Macías LG, Adam AC, Lairón-Peris M, Pérez-Torrado R, Toft C, Barrio E. Aneuploidy and Ethanol Tolerance in Saccharomyces cerevisiae. Front Genet 2019; 10:82. [PMID: 30809248 PMCID: PMC6379819 DOI: 10.3389/fgene.2019.00082] [Citation(s) in RCA: 50] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2018] [Accepted: 01/28/2019] [Indexed: 12/31/2022] Open
Abstract
Response to environmental stresses is a key factor for microbial organism growth. One of the major stresses for yeasts in fermentative environments is ethanol. Saccharomyces cerevisiae is the most tolerant species in its genus, but intraspecific ethanol-tolerance variation exists. Although, much effort has been done in the last years to discover evolutionary paths to improve ethanol tolerance, this phenotype is still hardly understood. Here, we selected five strains with different ethanol tolerances, and used comparative genomics to determine the main factors that can explain these phenotypic differences. Surprisingly, the main genomic feature, shared only by the highest ethanol-tolerant strains, was a polysomic chromosome III. Transcriptomic data point out that chromosome III is important for the ethanol stress response, and this aneuploidy can be an advantage to respond rapidly to ethanol stress. We found that chromosome III copy numbers also explain differences in other strains. We show that removing the extra chromosome III copy in an ethanol-tolerant strain, returning to euploidy, strongly compromises its tolerance. Chromosome III aneuploidy appears frequently in ethanol-tolerance evolution experiments, and here, we show that aneuploidy is also used by natural strains to enhance their ethanol tolerance.
Collapse
Affiliation(s)
- Miguel Morard
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Laura G Macías
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Ana C Adam
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - María Lairón-Peris
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Roberto Pérez-Torrado
- Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Christina Toft
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| | - Eladio Barrio
- Departament de Genètica, Universitat de València, Valencia, Spain.,Departamento de Biotecnología, Instituto de Agroquímica y Tecnología de los Alimentos (IATA), CSIC, Valencia, Spain
| |
Collapse
|
40
|
Mo W, Wang M, Zhan R, Yu Y, He Y, Lu H. Kluyveromyces marxianus developing ethanol tolerance during adaptive evolution with significant improvements of multiple pathways. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:63. [PMID: 30949239 PMCID: PMC6429784 DOI: 10.1186/s13068-019-1393-z] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Accepted: 03/06/2019] [Indexed: 05/12/2023]
Abstract
BACKGROUND Kluyveromyces marxianus, the known fastest-growing eukaryote on the earth, has remarkable thermotolerance and capacity to utilize various agricultural residues to produce low-cost bioethanol, and hence is industrially important to resolve the imminent energy shortage crisis. Currently, the poor ethanol tolerance hinders its operable application in the industry, and it is necessary to improve K. marxianus' ethanol resistance and unravel the underlying systematical mechanisms. However, this has been seldom reported to date. RESULTS We carried out a wild-type haploid K. marxianus FIM1 in adaptive evolution in 6% (v/v) ethanol. After 100-day evolution, the KM-100d population was obtained; its ethanol tolerance increased up to 10% (v/v). Interestingly, DNA analysis and RNA-seq analysis showed that KM-100d yeasts' ethanol tolerance improvement was not due to ploidy change or meaningful mutations, but founded on transcriptional reprogramming in a genome-wide range. Even growth in an ethanol-free medium, many genes in KM-100d maintained their up-regulation. Especially, pathways of ethanol consumption, membrane lipid biosynthesis, anti-osmotic pressure, anti-oxidative stress, and protein folding were generally up-regulated in KM-100d to resist ethanol. Notably, enhancement of the secretory pathway may be the new strategy KM-100d developed to anti-osmotic pressure, instead of the traditional glycerol production way in S. cerevisiae. Inferred from the transcriptome data, besides ethanol tolerance, KM-100d may also develop the ability to resist osmotic, oxidative, and thermic stresses, and this was further confirmed by the cell viability test. Furthermore, under such environmental stresses, KM-100d greatly improved ethanol production than the original strain. In addition, we found that K. marxianus may adopt distinct routes to resist different ethanol concentrations. Trehalose biosynthesis was required for low ethanol, while sterol biosynthesis and the whole secretory pathway were activated for high ethanol. CONCLUSIONS This study reveals that ethanol-driven laboratory evolution could improve K. marxianus' ethanol tolerance via significant up-regulation of multiple pathways including anti-osmotic, anti-oxidative, and anti-thermic processes, and indeed consequently raised ethanol yield in industrial high-temperature and high-ethanol circumstance. Our findings give genetic clues for further rational optimization of K. marxianus' ethanol production, and also partly confirm the positively correlated relationship between yeast's ethanol tolerance and production.
Collapse
Affiliation(s)
- Wenjuan Mo
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Mengzhu Wang
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Rongrong Zhan
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yao Yu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| | - Yungang He
- Key Laboratory of Medical Epigenetics and Metabolism, Institutes of Biomedical Sciences, Fudan University, Shanghai, 200032 China
| | - Hong Lu
- State Key Laboratory of Genetic Engineering, School of Life Science, Fudan University, Shanghai, 200438 China
- Shanghai Engineering Research Center of Industrial Microorganisms, Shanghai, 200438 China
| |
Collapse
|
41
|
Yi S, Zhang X, Li HX, Du XX, Liang SW, Zhao XH. Screening and Mutation of Saccharomyces cerevisiae UV-20 with a High Yield of Second Generation Bioethanol and High Tolerance of Temperature, Glucose and Ethanol. Indian J Microbiol 2018; 58:440-447. [PMID: 30262954 DOI: 10.1007/s12088-018-0741-1] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2018] [Accepted: 05/10/2018] [Indexed: 11/27/2022] Open
Abstract
A wild-type strain was isolated from slightly rotted pears after three rounds of enrichment culture, identified as Saccharomyces cerevisiae 3308, and evaluated for its fermentation capability of second generation bioethanol and tolerance of temperature, glucose and ethanol. S. cerevisiae 3308 was mutated by using the physical and chemical mutagenesis methods, ultraviolet (UV) and diethyl sulfate (DES), respectively. Positive mutated strains were mainly generated by the treatment of UV, but numerous negative mutations emerged under the treatment of DES. A positive mutated strain, UV-20, produced ethanol from 62.33 ± 1.34 to 122.22 ± 2.80 g/L at 30-45 °C, and had a maximum yield of ethanol at 37 °C. Furthermore, UV-20 produced 121.18 ± 2.51 g/L of second generation bioethanol at 37 °C. Simultaneously, UV-20 exhibited superior tolerance to 50% of glucose and 21% of ethanol. In a conclusion, all of these results indicated that UV-20 has a potential industrial application value.
Collapse
Affiliation(s)
- Shi Yi
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao Zhang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Han-Xin Li
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xiao-Xia Du
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Shao-Wei Liang
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| | - Xi-Hua Zhao
- College of Life Science, Jiangxi Normal University, Nanchang, 330022 China
| |
Collapse
|
42
|
Preiss R, Tyrawa C, Krogerus K, Garshol LM, van der Merwe G. Traditional Norwegian Kveik Are a Genetically Distinct Group of Domesticated Saccharomyces cerevisiae Brewing Yeasts. Front Microbiol 2018; 9:2137. [PMID: 30258422 PMCID: PMC6145013 DOI: 10.3389/fmicb.2018.02137] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Accepted: 08/21/2018] [Indexed: 01/19/2023] Open
Abstract
The widespread production of fermented food and beverages has resulted in the domestication of Saccharomyces cerevisiae yeasts specifically adapted to beer production. While there is evidence beer yeast domestication was accelerated by industrialization of beer, there also exists a farmhouse brewing culture in western Norway which has passed down yeasts referred to as kveik for generations. This practice has resulted in ale yeasts which are typically highly flocculant, phenolic off flavor negative (POF-), and exhibit a high rate of fermentation, similar to previously characterized lineages of domesticated yeast. Additionally, kveik yeasts are reportedly high-temperature tolerant, likely due to the traditional practice of pitching yeast into warm (>28°C) wort. Here, we characterize kveik yeasts from 9 different Norwegian sources via PCR fingerprinting, whole genome sequencing of selected strains, phenotypic screens, and lab-scale fermentations. Phylogenetic analysis suggests that kveik yeasts form a distinct group among beer yeasts. Additionally, we identify a novel POF- loss-of-function mutation, as well as SNPs and CNVs potentially relevant to the thermotolerance, high ethanol tolerance, and high fermentation rate phenotypes of kveik strains. We also identify domestication markers related to flocculation in kveik. Taken together, the results suggest that Norwegian kveik yeasts are a genetically distinct group of domesticated beer yeasts with properties highly relevant to the brewing sector.
Collapse
Affiliation(s)
- Richard Preiss
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
- Escarpment Laboratories, Guelph, ON, Canada
| | - Caroline Tyrawa
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| | - Kristoffer Krogerus
- VTT Technical Research Centre of Finland, Espoo, Finland
- Department of Biotechnology and Chemical Technology, School of Chemical Technology, Aalto University, Espoo, Finland
| | | | - George van der Merwe
- Department of Molecular and Cellular Biology, University of Guelph, Guelph, ON, Canada
| |
Collapse
|
43
|
Saini P, Beniwal A, Kokkiligadda A, Vij S. Response and tolerance of yeast to changing environmental stress during ethanol fermentation. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.07.001] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
44
|
Sardi M, Gasch AP. Genetic background effects in quantitative genetics: gene-by-system interactions. Curr Genet 2018; 64:1173-1176. [PMID: 29644456 DOI: 10.1007/s00294-018-0835-7] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 04/04/2018] [Accepted: 04/06/2018] [Indexed: 01/18/2023]
Abstract
Proper cell function depends on networks of proteins that interact physically and functionally to carry out physiological processes. Thus, it seems logical that the impact of sequence variation in one protein could be significantly influenced by genetic variants at other loci in a genome. Nonetheless, the importance of such genetic interactions, known as epistasis, in explaining phenotypic variation remains a matter of debate in genetics. Recent work from our lab revealed that genes implicated from an association study of toxin tolerance in Saccharomyces cerevisiae show extensive interactions with the genetic background: most implicated genes, regardless of allele, are important for toxin tolerance in only one of two tested strains. The prevalence of background effects in our study adds to other reports of widespread genetic-background interactions in model organisms. We suggest that these effects represent many-way interactions with myriad features of the cellular system that vary across classes of individuals. Such gene-by-system interactions may influence diverse traits and require new modeling approaches to accurately represent genotype-phenotype relationships across individuals.
Collapse
Affiliation(s)
- Maria Sardi
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA
- Cargill, Incorporated, Minneapolis, MN, 55440, USA
| | - Audrey P Gasch
- Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI, 53706, USA.
- Laboratory of Genetics, University of Wisconsin-Madison, Madison, WI, 53706, USA.
| |
Collapse
|
45
|
Kuo J, Stirling F, Lau YH, Shulgina Y, Way JC, Silver PA. Synthetic genome recoding: new genetic codes for new features. Curr Genet 2018; 64:327-333. [PMID: 28983660 PMCID: PMC5849531 DOI: 10.1007/s00294-017-0754-z] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2017] [Revised: 09/12/2017] [Accepted: 09/13/2017] [Indexed: 12/20/2022]
Abstract
Full genome recoding, or rewriting codon meaning, through chemical synthesis of entire bacterial chromosomes has become feasible in the past several years. Recoding an organism can impart new properties including non-natural amino acid incorporation, virus resistance, and biocontainment. The estimated cost of construction that includes DNA synthesis, assembly by recombination, and troubleshooting, is now comparable to costs of early stage development of drugs or other high-tech products. Here, we discuss several recently published assembly methods and provide some thoughts on the future, including how synthetic efforts might benefit from the analysis of natural recoding processes and organisms that use alternative genetic codes.
Collapse
Affiliation(s)
- James Kuo
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Finn Stirling
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yu Heng Lau
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Yekaterina Shulgina
- Department of Molecular and Cellular Biology, Harvard University, Cambridge, MA, 02138, USA
| | - Jeffrey C Way
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA
| | - Pamela A Silver
- Department of Systems Biology, Harvard Medical School, Boston, MA, 02115, USA.
- Wyss Institute for Biologically Inspired Engineering, Harvard University, Boston, MA, 02115, USA.
| |
Collapse
|
46
|
Yang Y, Xia Y, Lin X, Wang G, Zhang H, Xiong Z, Yu H, Yu J, Ai L. Improvement of flavor profiles in Chinese rice wine by creating fermenting yeast with superior ethanol tolerance and fermentation activity. Food Res Int 2018; 108:83-92. [PMID: 29735105 DOI: 10.1016/j.foodres.2018.03.036] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2017] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/18/2023]
Abstract
Producing alcoholic beverages with novel flavor are desirable for winemakers. We created fermenting yeast with superior ethanol tolerance and fermentation activity to improve the flavor profiles of Chinese rice wine. Strategies of ethanol domestication, ultraviolet mutagenesis (UV) and protoplast fusion were conducted to create yeast hybrids with excellent oenological characteristic. The obtained diploid hybrid F23 showed a cell viability of 6.2% under 25% ethanol, whereas its diploid parental strains could not survive under 20% ethanol. During Chinese rice wine-making, compared to diploid parents, F23 produced 7.07%-12.44% higher yield of ethanol. Flavor analysis indicated that the total content of flavor compounds in F23 wine was 19.99-26.55% higher than that of parent wines. Specifically, F23 exhibited higher capacity in producing 2-phenylethanol, short-chain and long-chain fatty-acid ethyl-ester than diploid parents. Compared to diploid parents, F23 introduced more flavor contributors with odor activity values (OAVs) above one to Chinese rice wine, and those contributors were found with higher OAVs. Based on principal component analysis (PCA), the flavor characteristic of F23 wine was similar to each of parent wine. Additionally, sensory evaluation showed that F23 wine was highly assessed for its intensive levels in fruit-aroma, alcohol-aroma and mouthfeel. Hybrid F23 not only displayed superior flavor production and oenological performance in making Chinese rice wine, but also could act as potential "mixed-like" starter to enrich wine style and differentiation.
Collapse
Affiliation(s)
- Yijin Yang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Yongjun Xia
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Xiangna Lin
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Guangqiang Wang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Hui Zhang
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Zhiqiang Xiong
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China
| | - Haiyan Yu
- School of Perfume and Aroma Technology, Shanghai Institute of Technology, Shanghai, 200235, PR China
| | - Jianshen Yu
- Shanghai Jinfeng Wine Co., Ltd., Shanghai, 200120, PR China
| | - Lianzhong Ai
- Shanghai Engineering Research Center of Food Microbiology, School of Medical Instrument and Food Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, PR China.
| |
Collapse
|
47
|
Abstract
Ploidy is considered a very stable cellular characteristic. Although rare, changes in ploidy play important roles in the acquisition of long-term adaptations. Since these duplications allow the subsequent loss of individual chromosomes and accumulation of mutations, changes in ploidy can also cause genomic instability, and have been found to promote cancer. Despite the importance of the subject, measuring the rate of whole-genome duplications has proven extremely challenging. We have recently measured the rate of diploidization in yeast using long-term, in-lab experiments. We found that spontaneous diploidization occurs frequently, by two different mechanisms: endoreduplication and mating type switching. Despite its common occurrence, spontaneous diploidization is usually selected against, although it can be advantageous under some stressful conditions. Our results have implications for the understanding of evolutionary processes, as well as for the use of yeast cells in biotechnological applications.
Collapse
|
48
|
Spontaneous Changes in Ploidy Are Common in Yeast. Curr Biol 2018; 28:825-835.e4. [PMID: 29502947 DOI: 10.1016/j.cub.2018.01.062] [Citation(s) in RCA: 53] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2017] [Revised: 12/11/2017] [Accepted: 01/22/2018] [Indexed: 12/19/2022]
Abstract
Changes in ploidy are relatively rare, but play important roles in the development of cancer and the acquisition of long-term adaptations. Genome duplications occur across the tree of life, and can alter the rate of adaptive evolution. Moreover, by allowing the subsequent loss of individual chromosomes and the accumulation of mutations, changes in ploidy can promote genomic instability and/or adaptation. Although many studies have been published in the last years about changes in chromosome number and their evolutionary consequences, tracking and measuring the rate of whole-genome duplications have been extremely challenging. We have systematically studied the appearance of diploid cells among haploid yeast cultures evolving for over 100 generations in different media. We find that spontaneous diploidization is a relatively common event, which is usually selected against, but under certain stressful conditions may become advantageous. Furthermore, we were able to detect and distinguish between two different mechanisms of diploidization, one that requires whole-genome duplication (endoreduplication) and a second that involves mating-type switching despite the use of heterothallic strains. Our results have important implications for our understanding of evolution and adaptation in fungal pathogens and the development of cancer, and for the use of yeast cells in biotechnological applications.
Collapse
|
49
|
Aldrete-Tapia JA, Miranda-Castilleja DE, Arvizu-Medrano SM, Hernández-Iturriaga M. Selection of Yeast Strains for Tequila Fermentation Based on Growth Dynamics in Combined Fructose and Ethanol Media. J Food Sci 2018; 83:419-423. [PMID: 29337351 DOI: 10.1111/1750-3841.14031] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 12/08/2017] [Accepted: 12/08/2017] [Indexed: 01/13/2023]
Abstract
The high concentration of fructose in agave juice has been associated with reduced ethanol tolerance of commercial yeasts used for tequila production and low fermentation yields. The selection of autochthonous strains, which are better adapted to agave juice, could improve the process. In this study, a 2-step selection process of yeasts isolated from spontaneous fermentations for tequila production was carried out based on analysis of the growth dynamics in combined conditions of high fructose and ethanol. First, yeast isolates (605) were screened to identify strains tolerant to high fructose (20%) and to ethanol (10%), yielding 89 isolates able to grow in both conditions. From the 89 isolates, the growth curves under 8 treatments of combined fructose (from 20% to 5%) and ethanol (from 0% to 10%) were obtained, and the kinetic parameters were analyzed with principal component analysis and k-means clustering. The resulting yeast strain groups corresponded to the fast, medium and slow growers. A second clustering of only the fast growers led to the selection of 3 Saccharomyces strains (199, 230, 231) that were able to grow rapidly in 4 out of the 8 conditions evaluated. This methodology differentiated strains phenotypically and could be further used for strain selection in other processes. PRACTICAL APPLICATION A method to select yeast strains for fermentation taking into account the natural differences of yeast isolates. This methodology is based on the cell exposition to combinations of sugar and ethanol, which are the most important stress factors in fermentation. This strategy will help to identify the most tolerant strain that could improve ethanol yield and reduce fermentation time.
Collapse
Affiliation(s)
- J A Aldrete-Tapia
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas. C.P. 76010, Querétaro, Querétaro, México
| | - D E Miranda-Castilleja
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas. C.P. 76010, Querétaro, Querétaro, México
| | - S M Arvizu-Medrano
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas. C.P. 76010, Querétaro, Querétaro, México
| | - M Hernández-Iturriaga
- Programa de Posgrado de Alimentos del Centro de la República (PROPAC), Facultad de Química, Universidad Autónoma de Querétaro, Cerro de las Campanas s/n, Col. Las Campanas. C.P. 76010, Querétaro, Querétaro, México
| |
Collapse
|
50
|
Dzialo MC, Park R, Steensels J, Lievens B, Verstrepen KJ. Physiology, ecology and industrial applications of aroma formation in yeast. FEMS Microbiol Rev 2017; 41:S95-S128. [PMID: 28830094 PMCID: PMC5916228 DOI: 10.1093/femsre/fux031] [Citation(s) in RCA: 233] [Impact Index Per Article: 29.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2017] [Accepted: 06/06/2017] [Indexed: 01/05/2023] Open
Abstract
Yeast cells are often employed in industrial fermentation processes for their ability to efficiently convert relatively high concentrations of sugars into ethanol and carbon dioxide. Additionally, fermenting yeast cells produce a wide range of other compounds, including various higher alcohols, carbonyl compounds, phenolic compounds, fatty acid derivatives and sulfur compounds. Interestingly, many of these secondary metabolites are volatile and have pungent aromas that are often vital for product quality. In this review, we summarize the different biochemical pathways underlying aroma production in yeast as well as the relevance of these compounds for industrial applications and the factors that influence their production during fermentation. Additionally, we discuss the different physiological and ecological roles of aroma-active metabolites, including recent findings that point at their role as signaling molecules and attractants for insect vectors.
Collapse
Affiliation(s)
- Maria C Dzialo
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Rahel Park
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Jan Steensels
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| | - Bart Lievens
- Laboratory for Process Microbial Ecology and Bioinspirational Management (PME&BIM), Department of Microbial and Molecular Systems, KU Leuven, Campus De Nayer, Fortsesteenweg 30A B-2860 Sint-Katelijne Waver, Belgium
| | - Kevin J Verstrepen
- Laboratory for Genetics and Genomics, Centre of Microbial and Plant Genetics (CMPG), KU Leuven, Gaston Geenslaan 1, B-3001 Leuven, Belgium
- Laboratory for Systems Biology, VIB Center for Microbiology, Bio-Incubator, Gaston Geenslaan 1, 3001 Leuven, Belgium
| |
Collapse
|