1
|
Singh K, Gupta R, Shokat S, Iqbal N, Kocsy G, Pérez-Pérez JM, Riyazuddin R. Ascorbate, plant hormones and their interactions during plant responses to biotic stress. PHYSIOLOGIA PLANTARUM 2024; 176:e14388. [PMID: 38946634 DOI: 10.1111/ppl.14388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/29/2024] [Revised: 05/18/2024] [Accepted: 05/22/2024] [Indexed: 07/02/2024]
Abstract
Plants can experience a variety of environmental stresses that significantly impact their fitness and survival. Additionally, biotic stress can harm agriculture, leading to reduced crop yields and economic losses worldwide. As a result, plants have developed defense strategies to combat potential invaders. These strategies involve regulating redox homeostasis. Several studies have documented the positive role of plant antioxidants, including Ascorbate (Asc), under biotic stress conditions. Asc is a multifaceted antioxidant that scavenges ROS, acts as a co-factor for different enzymes, regulates gene expression, and facilitates iron transport. However, little attention has been given to Asc and its transport, regulatory effects, interplay with phytohormones, and involvement in defense processes under biotic stress. Asc interacts with other components of the redox system and phytohormones to activate various defense responses that reduce the growth of plant pathogens and promote plant growth and development under biotic stress conditions. Scientific reports indicate that Asc can significantly contribute to plant resistance against biotic stress through mutual interactions with components of the redox and hormonal systems. This review focuses on the role of Asc in enhancing plant resistance against pathogens. Further research is necessary to gain a more comprehensive understanding of the molecular and cellular regulatory processes involved.
Collapse
Affiliation(s)
- Kalpita Singh
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network (HUN-REN), Martonvásár, Hungary
- Doctoral School of Plant Sciences, Hungarian University of Agriculture and Life Sciences, Gödöllő, Hungary
| | - Ravi Gupta
- College of General Education, Kookmin University, Seoul, Republic of South Korea
| | - Sajid Shokat
- Section for Crop Science, Department of Plant and Environmental Sciences, University of Copenhagen, Taastrup, Denmark
- Plant Breeding and Genetics Laboratory, IAEA Laboratories, Seibersdorf, Austria
| | - Nadeem Iqbal
- Department of Plant Biology, Faculty of Science and Informatics, University of Szeged, Szeged, Hungary
- Doctoral School of Environmental Sciences, University of Szeged, Szeged, Hungary
| | - Gábor Kocsy
- Department of Biological Resources, Agricultural Institute, Centre for Agricultural Research, Hungarian Research Network (HUN-REN), Martonvásár, Hungary
| | | | | |
Collapse
|
2
|
Spanic V, Vukovic A, Cseplo M, Vukovic R, Buchvaldt Amby D, Cairo Westergaard J, Puskas K, Roitsch T. Early leaf responses of cell physiological and sensor-based signatures reflect susceptibility of wheat seedlings to infection by leaf rust. PHYSIOLOGIA PLANTARUM 2023; 175:e13990. [PMID: 37616017 DOI: 10.1111/ppl.13990] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/11/2023] [Revised: 07/12/2023] [Accepted: 07/24/2023] [Indexed: 08/25/2023]
Abstract
Leaf rust caused by Puccinia triticina Erikss. can have devastating effects on wheat (Triticum aestivum L.), causing severe economic losses. This comprehensive study serves to facilitate our understanding of the impact of carbohydrate and antioxidant metabolism in association with sensor-based phenotyping and leaf rust stress responses in wheat seedlings. After 24 h of inoculation (hai) very susceptible variety to leaf rust (Ficko) increased cell-wall invertase (cwInv; EC 3.2.1.26), compared to other varieties that significantly increased cwInv later. This could mean that the Ficko variety cannot defend itself from leaf rust infections once symptoms have started to develop. Also, Ficko had significantly decreased amounts of cytoplasmic invertase (cytInv; EC 3.2.1.26) at 8 hai. The downregulation of cytInv in susceptible plants may facilitate the maintenance of elevated apoplastic sucrose availability favoring the pathogen. The significant role of vacuolar invertase (vacInv; EC 3.2.1.26) in moderately resistant varieties was recorded. Also, a significant decrease of glucose-6-phosphate dehydrogenase (G6PDH; EC 1.1.1.49) and UDP-glucose pyrophosphorylase (UGPase; EC 2.7.7.9) in moderately resistant varieties might restrict normal development of leaf rust due to reduced sugar. During plant-pathogen interaction, when the invader spreads systemically throughout the plant, the main role of ascorbate peroxidase (APX; EC 1.11.1.11) activity in one moderately resistant variety (Olimpija) and catalase (CAT; EC 1.11.1.6) activity in another moderately resistant variety (Alka) is to protect the plant against oxidative damage in the early stages of infection. Non-invasive phenotyping with a sensor-based technique could be used as a rapid method for pre-symptomatic determination of wheat leaf rust resistance or susceptibility.
Collapse
Affiliation(s)
- Valentina Spanic
- Department of Small Cereal Crops Breeding and Genetics, Agricultural Institute Osijek, Osijek, Osijek, Croatia
| | - Ana Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Monika Cseplo
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Rosemary Vukovic
- Department of Biology, Josip Juraj Strossmayer University of Osijek, Osijek, Croatia
| | - Daniel Buchvaldt Amby
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Jesper Cairo Westergaard
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| | - Katalin Puskas
- Agricultural Institute, Centre for Agricultural Research, Martonvásár, Hungary
| | - Thomas Roitsch
- Department of Plant and Environmental Sciences, University of Copenhagen, Section for Crop Sciences, Taastrup, Denmark
| |
Collapse
|
3
|
Han S, Smith JM, Du Y, Bent AF. Soybean transporter AAT Rhg1 abundance increases along the nematode migration path and impacts vesiculation and ROS. PLANT PHYSIOLOGY 2023; 192:133-153. [PMID: 36805759 PMCID: PMC10152651 DOI: 10.1093/plphys/kiad098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2022] [Revised: 01/17/2023] [Accepted: 01/18/2023] [Indexed: 05/03/2023]
Abstract
Rhg1 (Resistance to Heterodera glycines 1) mediates soybean (Glycine max) resistance to soybean cyst nematode (SCN; H. glycines). Rhg1 is a 4-gene, ∼30-kb block that exhibits copy number variation, and the common PI 88788-type rhg1-b haplotype carries 9 to 10 tandem Rhg1 repeats. Glyma.18G022400 (Rhg1-GmAAT), 1 of 3 resistance-conferring genes at the complex Rhg1 locus, encodes the putative amino acid transporter AATRhg1 whose mode of action is largely unknown. We discovered that AATRhg1 protein abundance increases 7- to 15-fold throughout root cells along the migration path of SCN. These root cells develop an increased abundance of vesicles and large vesicle-like bodies (VLB) as well as multivesicular and paramural bodies. AATRhg1 protein is often present in these structures. AATRhg1 abundance remained low in syncytia (plant cells reprogrammed by SCN for feeding), unlike the Rhg1 α-SNAP protein, whose abundance has previously been shown to increase in syncytia. In Nicotiana benthamiana, if soybean AATRhg1 was present, oxidative stress promoted the formation of large VLB, many of which contained AATRhg1. AATRhg1 interacted with the soybean NADPH oxidase GmRBOHG, the ortholog of Arabidopsis thaliana RBOHD previously found to exhibit upregulated expression upon SCN infection. AATRhg1 stimulated reactive oxygen species (ROS) generation when AATRhg1 and GmRBOHG were co-expressed. These findings suggest that AATRhg1 contributes to SCN resistance along the migration path as SCN invades the plant and does so, at least in part, by increasing ROS production. In light of previous findings about α-SNAPRhg1, this study also shows that different Rhg1 resistance proteins function via at least 2 spatially and temporally separate modes of action.
Collapse
Affiliation(s)
- Shaojie Han
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
- Ministry of Agriculture Key Laboratory of Molecular Biology of Crop Pathogens and Insect Pests, Institute of Biotechnology, College of Agriculture and Biotechnology, Zhejiang University, Hangzhou 310058, China
- Zhejiang Lab, Hangzhou 311121, China
| | - John M Smith
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Yulin Du
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| | - Andrew F Bent
- Department of Plant Pathology, University of Wisconsin—Madison, Madison, WI 53705, USA
| |
Collapse
|
4
|
Asadi-sardari A, Mahdikhani-Moghadam E, Zaki-Aghl M. The biochemical changes in two moderately resistant and highly susceptible tomato cultivars at the later stages of Meloidogyne javanica infection. NEMATOLOGY 2022. [DOI: 10.1163/15685411-bja10193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
The most effective method of managing root-knot nematodes is employing resistant and tolerant cultivars. Investigating biochemical changes can help determine the cause of resistance or susceptibility of plants to nematodes. In this study, resistance levels of some tomato cultivars, ‘ALYSTE F-1’, ‘ARYZA F-1’, ‘Early Urbana’, ‘Rutgers’, ‘Dutch Mobil’ and ‘Hungarian Mobil’, were evaluated based on nematode reproduction indices under glasshouse conditions. After selecting the most susceptible and resistant cultivar, comparisons of activity of defence enzymes (guaiacol peroxidase, catalase, ascorbate peroxidase, superoxide dismutase, polyphenol oxidase and phenylalanine ammonia-lyase), and phenolic and lignin contents in leaves and roots were investigated. Analysis of nematode reproductive traits revealed that ‘ALYSTE F-1’ had the lowest number of galls per root system, egg masses per root system, eggs per root system, and second-stage juveniles per 1.5 kg of soil and, consequently, the lowest number of nematode populations. Finally, ‘ALYSTE F-1’ and ‘Dutch Mobil’ (based on reproduction factor, gall index and resistance index) were selected as moderately resistant and highly susceptible cultivars, respectively, for biochemical analysis. Biochemical analysis of leaves and roots showed that most of the defence compounds in ‘ALYSTE F-1’ were higher than ‘Dutch Mobil’. These results also showed that ‘ALYSTE F-1’ reacted to nematode attack more rapidly than ‘Dutch Mobil’.
Collapse
Affiliation(s)
- Ameneh Asadi-sardari
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Esmat Mahdikhani-Moghadam
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| | - Mohammad Zaki-Aghl
- Department of Plant Protection, Faculty of Agriculture, Ferdowsi University of Mashhad, P.O. Box 91775-1163, Mashhad, Iran
| |
Collapse
|
5
|
RNA-Seq of Cyst Nematode Infestation of Potato (Solanum tuberosum L.): A Comparative Transcriptome Analysis of Resistant and Susceptible Cultivars. PLANTS 2022; 11:plants11081008. [PMID: 35448735 PMCID: PMC9025382 DOI: 10.3390/plants11081008] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2022] [Revised: 03/31/2022] [Accepted: 04/05/2022] [Indexed: 12/02/2022]
Abstract
Potato (Solanum tuberosum L.) is an important food crop worldwide, and potato cyst nematodes (PCNs) are among the most serious pests. The identification of disease resistance genes and molecular markers for PCN infestation can aid in crop improvement research programs against PCN infestation. In the present study, we used high-throughput RNA sequencing to investigate the comprehensive resistance mechanisms induced by PCN infestation in the resistant cultivar Kufri Swarna and the susceptible cultivar Kufri Jyoti. PCN infestation induced 791 differentially expressed genes in resistant cultivar Kufri Swarna, comprising 438 upregulated and 353 downregulated genes. In susceptible cultivar Kufri Jyoti, 2225 differentially expressed genes were induced, comprising 1247 upregulated and 978 downregulated genes. We identified several disease resistance genes (KIN) and transcription factors (WRKY, HMG, and MYB) that were upregulated in resistant Kufri Swarna. The differentially expressed genes from several enriched KEGG pathways, including MAPK signaling, contributed to the disease resistance in Kufri Swarna. Functional network analysis showed that several cell wall biogenesis genes were induced in Kufri Swarna in response to infestation. This is the first study to identify underlying resistance mechanisms against PCN and host interaction in Indian potato varieties.
Collapse
|
6
|
Oosterbeek M, Lozano-Torres JL, Bakker J, Goverse A. Sedentary Plant-Parasitic Nematodes Alter Auxin Homeostasis via Multiple Strategies. FRONTIERS IN PLANT SCIENCE 2021; 12:668548. [PMID: 34122488 PMCID: PMC8193132 DOI: 10.3389/fpls.2021.668548] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/16/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Sedentary endoparasites such as cyst and root-knot nematodes infect many important food crops and are major agro-economical pests worldwide. These plant-parasitic nematodes exploit endogenous molecular and physiological pathways in the roots of their host to establish unique feeding structures. These structures function as highly active transfer cells and metabolic sinks and are essential for the parasites' growth and reproduction. Plant hormones like indole-3-acetic acid (IAA) are a fundamental component in the formation of these feeding complexes. However, their underlying molecular and biochemical mechanisms are still elusive despite recent advances in the field. This review presents a comprehensive overview of known functions of various auxins in plant-parasitic nematode infection sites, based on a systematic analysis of current literature. We evaluate multiple aspects involved in auxin homeostasis in plants, including anabolism, catabolism, transport, and signalling. From these analyses, a picture emerges that plant-parasitic nematodes have evolved multiple strategies to manipulate auxin homeostasis to establish a successful parasitic relationship with their host. Additionally, there appears to be a potential role for auxins other than IAA in plant-parasitic nematode infections that might be of interest to be further elucidated.
Collapse
|
7
|
Karelov AV, Pylypenko LA, Kozub NA, Sozinov IA, Blume YB. Genetic Background of the Resistance against Parasitic Nematodes in Wheat. CYTOL GENET+ 2019. [DOI: 10.3103/s0095452719040066] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
|
8
|
Cereal Root Interactions with Soilborne Pathogens—From Trait to Gene and Back. AGRONOMY-BASEL 2019. [DOI: 10.3390/agronomy9040188] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Realizing the yield potential of crop plants in the presence of shifting pathogen populations, soil quality, rainfall, and other agro-environmental variables remains a challenge for growers and breeders worldwide. In this review, we discuss current approaches for combatting the soilborne phytopathogenic nematodes, Pratylenchus and Heterodera of wheat and barley, and Meloidogyne graminicola Golden and Birchfield, 1965 of rice. The necrotrophic fungal pathogens, Rhizoctonia solani Kühn 1858 AG-8 and Fusarium spp. of wheat and barley, also are discussed. These pathogens constitute major causes of yield loss in small-grain cereals of the Pacific Northwest, USA and throughout the world. Current topics include new sources of genetic resistance, molecular leads from whole genome sequencing and genome-wide patterns of hosts, nematode or fungal gene expression during root-pathogen interactions, host-induced gene silencing, and building a molecular toolbox of genes and regulatory sequences for deployment of resistance genes. In conclusion, improvement of wheat, barley, and rice will require multiple approaches.
Collapse
|
9
|
Ali MA, Shahzadi M, Zahoor A, Dababat AA, Toktay H, Bakhsh A, Nawaz MA, Li H. Resistance to Cereal Cyst Nematodes in Wheat and Barley: An Emphasis on Classical and Modern Approaches. Int J Mol Sci 2019; 20:E432. [PMID: 30669499 PMCID: PMC6359373 DOI: 10.3390/ijms20020432] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2018] [Revised: 01/08/2019] [Accepted: 01/15/2019] [Indexed: 11/21/2022] Open
Abstract
Cereal cyst nematodes (CCNs) are among the most important nematode pests that limit production of small grain cereals like wheat and barley. These nematodes alone are estimated to reduce production of crops by 10% globally. This necessitates a huge enhancement of nematode resistance in cereal crops against CCNs. Nematode resistance in wheat and barley in combination with higher grain yields has been a preferential research area for cereal nematologists. This usually involved the targeted genetic exploitations through natural means of classical selection breeding of resistant genotypes and finding quantitative trait luci (QTLs) associated with resistance genes. These improvements were based on available genetic diversity among the crop plants. Recently, genome-wide association studies have widely been exploited to associate nematode resistance or susceptibility with particular regions of the genome. Use of biotechnological tools through the application of various transgenic strategies for enhancement of nematode resistance in various crop plants including wheat and barley had also been an important area of research. These modern approaches primarily include the use of gene silencing, exploitation of nematode effector genes, proteinase inhibitors, chemodisruptive peptides and a combination of one or more of these approaches. Furthermore, the perspective genome editing technologies including CRISPR-Cas9 could also be helpful for improving CCN resistance in wheat and barley. The information provided in this review will be helpful to enhance resistance against CCNs and will attract the attention of the scientific community towards this neglected area.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Mahpara Shahzadi
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Adil Zahoor
- Department of Plant Pathology, Faculty of Agriculture, University of Agriculture, Faisalabad 38040, Pakistan.
| | | | - Halil Toktay
- Department of Plant Production and Technologies, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | - Allah Bakhsh
- Department of Agricultural Genetic Engineering, Faculty of Agricultural Sciences and Technologies, Nigde Omer Halisdemir University, Nigde 51240, Turkey.
| | | | - Hongjie Li
- National Engineering Laboratory for Crop Molecular Breeding, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
10
|
Ali MA, Anjam MS, Nawaz MA, Lam HM, Chung G. Signal Transduction in Plant⁻Nematode Interactions. Int J Mol Sci 2018; 19:ijms19061648. [PMID: 29865232 PMCID: PMC6032140 DOI: 10.3390/ijms19061648] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2018] [Revised: 05/26/2018] [Accepted: 05/29/2018] [Indexed: 12/26/2022] Open
Abstract
To successfully invade and infect their host plants, plant parasitic nematodes (PPNs) need to evolve molecular mechanisms to overcome the defense responses from the plants. Nematode-associated molecular patterns (NAMPs), including ascarosides and certain proteins, while instrumental in enabling the infection, can be perceived by the host plants, which then initiate a signaling cascade leading to the induction of basal defense responses. To combat host resistance, some nematodes can inject effectors into the cells of susceptible hosts to reprogram the basal resistance signaling and also modulate the hosts’ gene expression patterns to facilitate the establishment of nematode feeding sites (NFSs). In this review, we summarized all the known signaling pathways involved in plant–nematode interactions. Specifically, we placed particular focus on the effector proteins from PPNs that mimic the signaling of the defense responses in host plants. Furthermore, we gave an updated overview of the regulation by PPNs of different host defense pathways such as salicylic acid (SA)/jasmonic acid (JA), auxin, and cytokinin and reactive oxygen species (ROS) signaling to facilitate their parasitic successes in plants. This review will enhance the understanding of the molecular signaling pathways involved in both compatible and incompatible plant–nematode interactions.
Collapse
Affiliation(s)
- Muhammad Amjad Ali
- Department of Plant Pathology, University of Agriculture, Faisalabad 38040, Pakistan.
- Centre of Agricultural Biochemistry and Biotechnology, University of Agriculture, Faisalabad 38040, Pakistan.
| | - Muhammad Shahzad Anjam
- Institute of Molecular Biology & Biotechnology, Bahauddin Zakariya University, Multan 66000, Pakistan.
| | | | - Hon-Ming Lam
- School of Life Sciences and Centre for Soybean Research of the Partner State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Shatin, Hong Kong SAR, China.
| | - Gyuhwa Chung
- Department of Biotechnology, Chonnam National University, Yeosu 59626, Korea.
| |
Collapse
|
11
|
Pariyar SR, Nakarmi J, Anwer MA, Siddique S, Ilyas M, Elashry A, Dababat AA, Leon J, Grundler FM. Amino acid permease 6 modulates host response to cyst nematodes in wheat and Arabidopsis. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003172] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Summary
Cyst nematodes are plant parasites that cause significant crop loss in wheat and other crops. Infective juveniles invade roots and induce syncytial feeding structures as the only source of nutrients throughout their life. A previous genome-wide association study in wheat identified amino acid permease 6 (TaAAP6) to be linked to susceptibility to the cereal cyst nematode Heterodera filipjevi. To characterise the role of AAP6 during nematode parasitism, we analysed the expression of TaAAP6 and the Arabidopsis orthologue AtAAP6. TaAAP6 was found to be highly expressed in nematode-infected roots of susceptible wheat, whereas it was not upregulated in nematode-infected roots of resistant accessions. AtAAP6 was also found to be highly upregulated in nematode-induced syncytia compared with non-infected roots. Infection assays with an AtAAP6 knock-out mutant revealed reduction in developing females, female size, and size of female-associated syncytia, thus indicating the importance of AAP6 in cyst nematode parasitism.
Collapse
Affiliation(s)
- Shree R. Pariyar
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Jenish Nakarmi
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Muhammad Arslan Anwer
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Shahid Siddique
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Muhammad Ilyas
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Abdelnaser Elashry
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| | - Abdelfattah A. Dababat
- 2International Maize and Wheat Improvement Centre (CIMMYT), P.K. 39 06511, Emek, Ankara, Turkey
| | - Jens Leon
- 3Institute of Crop Science and Resource Conservation, Plant Breeding, Katzenburgweg 5, D-53115 Bonn, Germany
| | - Florian M.W. Grundler
- 1Institute of Crop Science and Resource Conservation, Molecular Phytomedicine, Karlrobert-Kreiten Strasse 13, D-53115 Bonn, Germany
| |
Collapse
|
12
|
Moatamedi M, Bazgir E, Esfahani MN, Darvishnia M. Genetic variation of bread wheat accessions in response to the cereal cyst nematode, Heterodera filipjevi. NEMATOLOGY 2018. [DOI: 10.1163/15685411-00003181] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Summary
Bread wheat, Triticum aestivum, produces large edible grains and is consumed by 75% of the world’s populations. Cereal cyst nematodes have a global distribution and cause significant economic yield losses in many countries. Therefore, there is an urgent need to identify new resistance sources. In this study, the genetic diversity of 43 wheat accessions in response to cereal cyst nematode, Heterodera filipjevi Isfahan pathotype, was assessed using a simple sequence repeat (SSR) marker. Seven primers were used, out of which five primers showed polymorphisms. Alleles per primer varied from one to three per locus (mean 2.85). The highest and lowest polymorphic information content of 0.81 and 0.44 (mean 0.66) were related to Xgwm 3012DL and Xgwm147, respectively. Genetic similarity was 29-88% between accessions. SSR analysis divided the accessions into five main groups. Resistant cultivars ‘Bam’ and ‘Behrang’ possessed both Cre1 and Cre8 resistant genes. The Cre3 and Cat genes were partially sequenced in five cultivars of different responses to H. filipjevi. The nucleotide sequences were compared to Cre3 and Cat homologues, indicating 93-100% and 86-92% homology, respectively. The MEGA program showed highest similarity of Cre3 and Cat genes amplified with the resistance gene analogues (RGA14) in the wheat and Cat3-A1 gene in ‘Carnamah’. This research showed that SRR markers could efficiently verify genetic diversity between wheat accessions, and the known resistance genes (Cre genes) against the cereal cyst nematodes could not control the H. filipjevi Isfahan pathotype populations, except the Cre1 gene.
Collapse
Affiliation(s)
- Marzieh Moatamedi
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Eidi Bazgir
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| | - Mehdi Nasr Esfahani
- 2Plant Protection Research Department, Isfahan Agricultural and Natural Resources Research and Education Center (AREEO), Isfahan, Iran
| | - Mostafa Darvishnia
- 1Plant Pathology Department, Faculty of Agriculture, Lorestan University, Lorestan, Iran
| |
Collapse
|
13
|
Ali MA, Azeem F, Abbas A, Joyia FA, Li H, Dababat AA. Transgenic Strategies for Enhancement of Nematode Resistance in Plants. FRONTIERS IN PLANT SCIENCE 2017; 8:750. [PMID: 28536595 PMCID: PMC5422515 DOI: 10.3389/fpls.2017.00750] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2017] [Accepted: 04/21/2017] [Indexed: 05/19/2023]
Abstract
Plant parasitic nematodes (PPNs) are obligate biotrophic parasites causing serious damage and reduction in crop yields. Several economically important genera parasitize various crop plants. The root-knot, root lesion, and cyst nematodes are the three most economically damaging genera of PPNs on crops within the family Heteroderidae. It is very important to devise various management strategies against PPNs in economically important crop plants. Genetic engineering has proven a promising tool for the development of biotic and abiotic stress tolerance in crop plants. Additionally, the genetic engineering leading to transgenic plants harboring nematode resistance genes has demonstrated its significance in the field of plant nematology. Here, we have discussed the use of genetic engineering for the development of nematode resistance in plants. This review article also provides a detailed account of transgenic strategies for the resistance against PPNs. The strategies include natural resistance genes, cloning of proteinase inhibitor coding genes, anti-nematodal proteins and use of RNA interference to suppress nematode effectors. Furthermore, the manipulation of expression levels of genes induced and suppressed by nematodes has also been suggested as an innovative approach for inducing nematode resistance in plants. The information in this article will provide an array of possibilities to engineer resistance against PPNs in different crop plants.
Collapse
Affiliation(s)
- Muhammad A. Ali
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Farrukh Azeem
- Department of Bioinformatics and Biotechnology, Government College UniversityFaisalabad, Pakistan
| | - Amjad Abbas
- Department of Plant Pathology, University of AgricultureFaisalabad, Pakistan
| | - Faiz A. Joyia
- Centre of Agricultural Biochemistry and Biotechnology, University of AgricultureFaisalabad, Pakistan
| | - Hongjie Li
- National Key Facility for Crop Gene Resources and Genetic Improvement, Institute of Crop Science, Chinese Academy of Agricultural SciencesBeijing, China
| | | |
Collapse
|
14
|
Veronico P, Paciolla C, Sasanelli N, De Leonardis S, Melillo MT. Ozonated water reduces susceptibility in tomato plants to Meloidogyne incognita by the modulation of the antioxidant system. MOLECULAR PLANT PATHOLOGY 2017; 18:529-539. [PMID: 27071373 PMCID: PMC6638312 DOI: 10.1111/mpp.12413] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Few studies have been carried out on the effect of ozonated water (O3 wat) on the oxidative stress of root systems and, in particular, in combination with biotic stress. The aim of this study was to determine whether aqueous ozone is effective in the control of root-knot nematode (RKN) infection and to investigate the concomitant changes in the basal defence system. A tomato cultivar susceptible to Meloidogyne incognita was treated with O3 wat as a soil drench. No negative effects were seen following ozone application in comparison with the control under the exposure conditions used. The treatment reduced significantly the nematode infection rate and induced changes in the morphology of nematode feeding sites, some of which were characterized by visible symptoms of senescence. The antioxidant response, as well as parameters of oxidative damage, were examined in untreated and O3 wat-treated galls at 2, 4 and 7 days after inoculation and compared with uninfected roots. High levels of reactive oxygen species (ROS), H2 O2 and malondialdehyde were generated in galls in response to combined abiotic and biotic stresses. Throughout the experimental period, the activities and relative transcript levels of the antioxidant enzymes catalase, superoxide dismutase and ascorbate peroxidase produced different responses when exposed to ozone treatment and/or infection. The results demonstrate how O3 wat protects tomato against the RKN M. incognita through the modulation of basal defence mechanisms.
Collapse
Affiliation(s)
- Pasqua Veronico
- CNR, Istituto per la Protezione Sostenibile delle PianteBari70126Italy
| | - Costantino Paciolla
- Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’Bari70126Italy
| | - Nicola Sasanelli
- CNR, Istituto per la Protezione Sostenibile delle PianteBari70126Italy
| | - Silvana De Leonardis
- Dipartimento di Biologia, Università degli Studi di Bari ‘Aldo Moro’Bari70126Italy
| | | |
Collapse
|
15
|
Li R, Rashotte AM, Singh NK, Lawrence KS, Weaver DB, Locy RD. Transcriptome Analysis of Cotton (Gossypium hirsutum L.) Genotypes That Are Susceptible, Resistant, and Hypersensitive to Reniform Nematode (Rotylenchulus reniformis). PLoS One 2015; 10:e0143261. [PMID: 26571375 PMCID: PMC4646469 DOI: 10.1371/journal.pone.0143261] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2015] [Accepted: 11/02/2015] [Indexed: 11/18/2022] Open
Abstract
Reniform nematode is a semi-endoparasitic nematode species causing significant yield loss in numerous crops, including cotton (Gossypium hirsutum L.). An RNA-sequencing analysis was conducted to measure transcript abundance in reniform nematode susceptible (DP90 & SG747), resistant (BARBREN-713), and hypersensitive (LONREN-1) genotypes of cotton (Gossypium hirsutum L.) with and without reniform nematode infestation. Over 90 million trimmed high quality reads were assembled into 84,711 and 80, 353 transcripts using the G. arboreum and the G. raimondii genomes as references. Many transcripts were significantly differentially expressed between the three different genotypes both prior to and during nematode pathogenesis, including transcripts corresponding to the gene ontology categories of cell wall, hormone metabolism and signaling, redox reactions, secondary metabolism, transcriptional regulation, stress responses, and signaling. Further analysis revealed that a number of these differentially expressed transcripts mapped to the G. raimondii and/or the G. arboreum genomes within 1 megabase of quantitative trait loci that had previously been linked to reniform nematode resistance. Several resistance genes encoding proteins known to be strongly linked to pathogen perception and resistance, including LRR-like and NBS-LRR domain-containing proteins, were among the differentially expressed transcripts mapping near these quantitative trait loci. Further investigation is required to confirm a role for these transcripts in reniform nematode susceptibility, hypersensitivity, and/or resistance. This study presents the first systemic investigation of reniform nematode resistance-associated genes using different genotypes of cotton. The candidate reniform nematode resistance-associated genes identified in this study can serve as the basis for further functional analysis and aid in further development of reniform a nematode resistant cotton germplasm.
Collapse
Affiliation(s)
- Ruijuan Li
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Aaron M. Rashotte
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Narendra K. Singh
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Kathy S. Lawrence
- Department of Entomology and Plant Pathology, Auburn University, Auburn, Alabama, United States of America
| | - David B. Weaver
- Department of Crop, Soil and Environmental Sciences, Auburn University, Auburn, Alabama, United States of America
| | - Robert D. Locy
- Department of Biological Sciences, Auburn University, Auburn, Alabama, United States of America
- * E-mail:
| |
Collapse
|
16
|
Zheng M, Long H, Zhao Y, Li L, Xu D, Zhang H, Liu F, Deng G, Pan Z, Yu M. RNA-Seq Based Identification of Candidate Parasitism Genes of Cereal Cyst Nematode (Heterodera avenae) during Incompatible Infection to Aegilops variabilis. PLoS One 2015; 10:e0141095. [PMID: 26517841 PMCID: PMC4627824 DOI: 10.1371/journal.pone.0141095] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 10/05/2015] [Indexed: 11/19/2022] Open
Abstract
One of the reasons for the progressive yield decline observed in cereals production is the rapid build-up of populations of the cereal cyst nematode (CCN, Heterodera avenae). These nematodes secrete so-call effectors into their host plant to suppress the plant defense responses, alter plant signaling pathways and then induce the formation of syncytium after infection. However, little is known about its molecular mechanism and parasitism during incompatible infection. To gain insight into its repertoire of parasitism genes, we investigated the transcriptome of the early parasitic second-stage (30 hours, 3 days and 9 days post infection) juveniles of the CCN as well as the CCN infected tissue of the host Aegilops variabilis by Illumina sequencing. Among all assembled unigenes, 681 putative genes of parasitic nematode were found, in which 56 putative effectors were identified, including novel pioneer genes and genes corresponding to previously reported effectors. All the 681 CCN unigenes were mapped to 229 GO terms and 200 KEGG pathways, including growth, development and several stimulus-related signaling pathways. Sixteen clusters were involved in the CCN unigene expression atlas at the early stages during infection process, and three of which were significantly gene-enriched. Besides, the protein-protein interaction network analysis revealed 35 node unigenes which may play an important role in the plant-CCN interaction. Moreover, in a comparison of differentially expressed genes between the pre-parasitic juveniles and the early parasitic juveniles, we found that hydrolase activity was up-regulated in pre J2s whereas binding activity was upregulated in infective J2s. RT-qPCR analysis on some selected genes showed detectable expression, indicating possible secretion of the proteins and putative role in infection. This study provided better insights into the incompatible interaction between H. avenae and the host plant Ae. varabilis. Moreover, RNAi targets with potential lethality were screened out and primarily validated, which provide candidates for engineering-based control of cereal cyst nematode in crops breeding.
Collapse
Affiliation(s)
- Minghui Zheng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Yun Zhao
- College of Life Sciences, Sichuan University, Chengdu, China
| | - Lin Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
- University of the Chinese Academy of Sciences, Beijing, China
| | - Delin Xu
- Zunyi Medical University, Zunyi, China
| | - Haili Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Feng Liu
- Plant Protection College, Shandong Agriculture University, Tai’an, China
| | - Guangbing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Zhifen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| | - Maoqun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, China
| |
Collapse
|
17
|
Kong LA, Wu DQ, Huang WK, Peng H, Wang GF, Cui JK, Liu SM, Li ZG, Yang J, Peng DL. Large-scale identification of wheat genes resistant to cereal cyst nematode Heterodera avenae using comparative transcriptomic analysis. BMC Genomics 2015; 16:801. [PMID: 26475271 PMCID: PMC4609135 DOI: 10.1186/s12864-015-2037-8] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2015] [Accepted: 10/08/2015] [Indexed: 11/10/2022] Open
Abstract
Background Cereal cyst nematode Heterodera avenae, an important soil-borne pathogen in wheat, causes numerous annual yield losses worldwide, and use of resistant cultivars is the best strategy for control. However, target genes are not readily available for breeding resistant cultivars. Therefore, comparative transcriptomic analyses were performed to identify more applicable resistance genes for cultivar breeding. Methods The developing nematodes within roots were stained with acid fuchsin solution. Transcriptome assemblies and redundancy filteration were obtained by Trinity, TGI Clustering Tool and BLASTN, respectively. Gene Ontology annotation was yielded by Blast2GO program, and metabolic pathways of transcripts were analyzed by Path_finder. The ROS levels were determined by luminol-chemiluminescence assay. The transcriptional gene expression profiles were obtained by quantitative RT-PCR. Results The RNA-sequencing was performed using an incompatible wheat cultivar VP1620 and a compatible control cultivar WEN19 infected with H. avenae at 24 h, 3 d and 8 d. Infection assays showed that VP1620 failed to block penetration of H. avenae but disturbed the transition of developmental stages, leading to a significant reduction in cyst formation. Two types of expression profiles were established to predict candidate resistance genes after developing a novel strategy to generate clean RNA-seq data by removing the transcripts of H. avenae within the raw data before assembly. Using the uncoordinated expression profiles with transcript abundance as a standard, 424 candidate resistance genes were identified, including 302 overlapping genes and 122 VP1620-specific genes. Genes with similar expression patterns were further classified according to the scales of changed transcript abundances, and 182 genes were rescued as supplementary candidate resistance genes. Functional characterizations revealed that diverse defense-related pathways were responsible for wheat resistance against H. avenae. Moreover, phospholipase was involved in many defense-related pathways and localized in the connection position. Furthermore, strong bursts of reactive oxygen species (ROS) within VP1620 roots infected with H. avenae were induced at 24 h and 3 d, and eight ROS-producing genes were significantly upregulated, including three class III peroxidase and five lipoxygenase genes. Conclusions Large-scale identification of wheat resistance genes were processed by comparative transcriptomic analysis. Functional characterization showed that phospholipases associated with ROS production played vital roles in early defense responses to H. avenae via involvement in diverse defense-related pathways as a hub switch. This study is the first to investigate the early defense responses of wheat against H. avenae, not only provides applicable candidate resistance genes for breeding novel wheat cultivars, but also enables a better understanding of the defense mechanisms of wheat against H. avenae. Electronic supplementary material The online version of this article (doi:10.1186/s12864-015-2037-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ling-An Kong
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Du-Qing Wu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Wen-Kun Huang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Huan Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Gao-Feng Wang
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Jiang-Kuan Cui
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Shi-Ming Liu
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| | - Zhi-Gang Li
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| | - Jun Yang
- State Key Laboratory of Agrobiotechnology and MOA Key Laboratory of Plant Pathology, China Agricultural University, Beijing, 100193, China.
| | - De-Liang Peng
- State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing, 100193, China.
| |
Collapse
|
18
|
Xu DL, Long H, Liang JJ, Zhang J, Chen X, Li JL, Pan ZF, Deng GB, Yu MQ. De novo assembly and characterization of the root transcriptome of Aegilops variabilis during an interaction with the cereal cyst nematode. BMC Genomics 2012; 13:133. [PMID: 22494814 PMCID: PMC3439707 DOI: 10.1186/1471-2164-13-133] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2011] [Accepted: 04/11/2012] [Indexed: 01/18/2023] Open
Abstract
BACKGROUND Aegilops variabilis No.1 is highly resistant to cereal cyst nematode (CCN). However, a lack of genomic information has restricted studies on CCN resistance genes in Ae. variabilis and has limited genetic applications in wheat breeding. RESULTS Using RNA-Seq technology, we generated a root transcriptome at a sequencing depth of 4.69 gigabases of Ae. variabilis No. 1 from a pooled RNA sample. The sample contained equal amounts of RNA extracted from CCN-infected and untreated control plants at three time-points. Using the Trinity method, nearly 52,081,238 high-quality trimmed reads were assembled into a non-redundant set of 118,064 unigenes with an average length of 500 bp and an N50 of 599 bp. The total assembly was 59.09 Mb of unique transcriptome sequences with average read-depth coverage of 33.25×. In BLAST searches of our database against public databases, 66.46% (78,467) of the unigenes were annotated with gene descriptions, conserved protein domains, or gene ontology terms. Functional categorization further revealed 7,408 individual unigenes and three pathways related to plant stress resistance. CONCLUSIONS We conducted high-resolution transcriptome profiling related to root development and the response to CCN infection in Ae. variabilis No.1. This research facilitates further studies on gene discovery and on the molecular mechanisms related to CCN resistance.
Collapse
Affiliation(s)
- De-Lin Xu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Hai Long
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Jun-Jun Liang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jie Zhang
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Xin Chen
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Jing-Liang Li
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
- Graduate University of the Chinese Academy of Sciences, Beijing, China
| | - Zhi-Fen Pan
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Guang-Bing Deng
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| | - Mao-Qun Yu
- Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu, Sichuan, China
| |
Collapse
|
19
|
Priya DB, Somasekhar N, Prasad J, Kirti P. Transgenic tobacco plants constitutively expressing Arabidopsis NPR1 show enhanced resistance to root-knot nematode, Meloidogyne incognita. BMC Res Notes 2011; 4:231. [PMID: 21722410 PMCID: PMC3160388 DOI: 10.1186/1756-0500-4-231] [Citation(s) in RCA: 26] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/10/2011] [Accepted: 07/04/2011] [Indexed: 11/24/2022] Open
Abstract
In Arabidopsis, non-expressor of pathogenesis related genes-1, NPR1 has been shown to be a positive regulator of the salicylic acid controlled systemic acquired resistance pathway and modulates the cross talk between SA and JA signaling. Transgenic plants expressing AtNPR1 constitutively exhibited resistance against pathogens as well as herbivory. In the present study, tobacco transgenic plants expressing AtNPR1 were studied further for their response to infection by the sedentary endoparasitic root knot nematode, Meloidogyne incognita. Transgenic plants showed enhanced resistance against the root-knot nematode infection. Prominent differences in the shoot and root weights of wild type and transgenic plants were observed post-inoculation with M. incognita. This was associated with a decrease in the number of root galls and egg masses in transgenic plants compared to WT. The transgenic plants also showed constitutive and induced expression of some PR protein genes, when challenged with M. incognita.
Collapse
Affiliation(s)
- D Bhanu Priya
- Department of Plant Sciences, University of Hyderabad, Hyderabad 500046, India.
| | | | | | | |
Collapse
|