1
|
Lindström Battle AL, Sweetlove LJ. Bryophytes as metabolic engineering platforms. CURRENT OPINION IN PLANT BIOLOGY 2025; 85:102702. [PMID: 40118004 DOI: 10.1016/j.pbi.2025.102702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2024] [Revised: 02/21/2025] [Accepted: 02/24/2025] [Indexed: 03/23/2025]
Abstract
Metabolic engineering of plants offers significant advantages over many microbial systems such as cost-effective scalability and carbon autotrophy. Bryophytes have emerged as promising testbeds for plant metabolic engineering due to their rapid transformation and haploid-dominant lifecycle. The liverwort Marchantia polymorpha and the moss Physcomitrium patens are the best studied bryophytes and an expanding toolkit of genetic resources for both species allows for efficient pathway engineering. Bryophyte metabolism, while broadly conserved with seed plants, exhibits distinct features such as high diversity and amounts of terpenoids and very long-chain polyunsaturated fatty acids (vlcPFAs). In this review, we summarise the relatively limited understanding of bryophyte metabolism and how it diverges from seed plants. We argue that the success of bryophytes as testbed species will require new quantitative knowledge of fluxes in central metabolism and especially those that facilitate high rates of terpenoid and vlcPFA biosynthesis.
Collapse
Affiliation(s)
| | - Lee James Sweetlove
- Department of Biology, University of Oxford, South Parks Road, Oxford OX1 3RB, United Kingdom.
| |
Collapse
|
2
|
Otani M, Kitamura H, Kudoh S, Imura S, Nakano M. Transcriptome analysis of the common moss Bryum pseudotriquetrum grown under Antarctic field condition. AOB PLANTS 2024; 16:plae043. [PMID: 39347487 PMCID: PMC11430918 DOI: 10.1093/aobpla/plae043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 08/09/2024] [Indexed: 10/01/2024]
Abstract
Mosses are distributed all over the world including Antarctica. Although Antarctic mosses show active growth in a short summer season under harsh environments such as low temperature, drought and high levels of UV radiation, survival mechanisms for such multiple environmental stresses of Antarctic mosses have not yet been clarified. In the present study, transcriptome analyses were performed using one of the common mosses Bryum pseudotriquetrum grown under an Antarctic field and artificial cultivation conditions. Totally 88 205 contigs were generated by de novo assembly, among which 1377 and 435 genes were significantly up and downregulated, respectively, under Antarctic field conditions compared with artificial cultivation conditions at 15°C. Among the upregulated genes, a number of lipid metabolism-related and oil body formation-related genes were identified. Expression levels of these genes were increased by artificial environmental stress treatments such as low temperature, salt and osmic stress treatments. Consistent with these results, B. pseudotriquetrum grown under Antarctic field conditions contained large amounts of fatty acids, especially α-linolenic acid, linolenic acid and arachidonic acid. In addition, proportion of unsaturated fatty acids, which enhance membrane fluidity, to the total fatty acids was also higher in B. pseudotriquetrum grown under Antarctic field conditions. Since lipid accumulation and unsaturation of fatty acids are generally important factors for the acquisition of various environmental stress tolerance in plants, these intracellular physiological and metabolic changes may be responsible for the survival of B. pseudotriquetrum under Antarctic harsh environments.
Collapse
Affiliation(s)
- Masahiro Otani
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Haruki Kitamura
- Graduate School of Science and Technology, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| | - Sakae Kudoh
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Satoshi Imura
- National Institute of Polar Research, Research Organization of Information and Systems, 10-3 Midori-cho, Tachikawa-shi, Tokyo 190-8518, Japan
- Polar Science, SOKENDAI (The Graduate University for Advanced Studies), Hayama, Kanagawa 240-0193, Japan
| | - Masaru Nakano
- Faculty of Agriculture, Niigata University, 2-8050 Ikarashi, Nishi-ku, Niigata 950-2181, Japan
| |
Collapse
|
3
|
Gautam D, Behera JR, Shinde S, Pattada SD, Roth M, Yao L, Welti R, Kilaru A. Dynamic Membrane Lipid Changes in Physcomitrium patens Reveal Developmental and Environmental Adaptations. BIOLOGY 2024; 13:726. [PMID: 39336153 PMCID: PMC11429132 DOI: 10.3390/biology13090726] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2024] [Revised: 09/01/2024] [Accepted: 09/03/2024] [Indexed: 09/30/2024]
Abstract
Membrane lipid composition is critical for an organism's growth, adaptation, and functionality. Mosses, as early non-vascular land colonizers, show significant adaptations and changes, but their dynamic membrane lipid alterations remain unexplored. Here, we investigated the temporal changes in membrane lipid composition of the moss Physcomitrium patens during five developmental stages and analyzed the acyl content and composition of the lipids. We observed a gradual decrease in total lipid content from the filamentous protonema stage to the reproductive sporophytes. Notably, we found significant levels of very long-chain polyunsaturated fatty acids, particularly arachidonic acid (C20:4), which are not reported in vascular plants and may aid mosses in cold and abiotic stress adaptation. During vegetative stages, we noted high levels of galactolipids, especially monogalactosyldiacylglycerol, associated with chloroplast biogenesis. In contrast, sporophytes displayed reduced galactolipids and elevated phosphatidylcholine and phosphatidic acid, which are linked to membrane integrity and environmental stress protection. Additionally, we observed a gradual decline in the average double bond index across all lipid classes from the protonema stage to the gametophyte stage. Overall, our findings highlight the dynamic nature of membrane lipid composition during moss development, which might contribute to its adaptation to diverse growth conditions, reproductive processes, and environmental challenges.
Collapse
Affiliation(s)
- Deepshila Gautam
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Jyoti R. Behera
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| | - Suhas Shinde
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- The Donald Danforth Plant Science Center, St. Louis, MO 63132, USA
| | - Shivakumar D. Pattada
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
- BioStrategies LC, 504 University Loop, Jonesboro, AR 72401, USA
| | - Mary Roth
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Libin Yao
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Ruth Welti
- Kansas Lipidomics Research Center, Division of Biology, Kansas State University, 1717 Claflin Rd., Manhattan, KS 66506, USA; (M.R.); (L.Y.); (R.W.)
| | - Aruna Kilaru
- Department of Biological Sciences, East Tennessee State University, Johnson City, TN 37614, USA; (D.G.); (J.R.B.); (S.S.); (S.D.P.)
| |
Collapse
|
4
|
Rigaud C, Kahilainen KK, Calderini ML, Pilecky M, Kainz MJ, Tiirola M, Taipale SJ. Preparing for the future offspring: European perch (Perca fluviatilis) biosynthesis of physiologically required fatty acids for the gonads happens already in the autumn. Oecologia 2023; 203:477-489. [PMID: 37975885 PMCID: PMC10684423 DOI: 10.1007/s00442-023-05480-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Accepted: 11/06/2023] [Indexed: 11/19/2023]
Abstract
Long-chain polyunsaturated fatty acids (PUFA) are critical for reproduction and thermal adaptation. Year-round variability in the expression of fads2 (fatty acid desaturase 2) in the liver of European perch (Perca fluviatilis) in a boreal lake was tested in relation to individual variation in size, sex, and maturity, together with stable isotopes values as well as fatty acids (FA) content in different tissues and prey items. ARA and DHA primary production was restricted to the summer months, however, perch required larger amounts of these PUFA during winter, as their ARA and DHA muscle content was higher compared to summer. The expression of fads2 in perch liver increased during winter and was higher in mature females. Mature females stored DHA in their gonads already in late summer and autumn, long before the upcoming spring spawning period in May. Lower δ13CDHA values in the gonads in September suggest that these females actively synthesized DHA as part of this reproductive investment. Lower δ13CARA values in the liver of all individuals during winter suggest that perch were synthesizing essential FA to help cope with over-wintering conditions. Perch seem able to modulate its biosynthesis of physiologically required PUFA in situations of stress (fasting or cold temperatures) or in situations of high energetic demand (gonadal development). Biosynthesis of physiologically required PUFA may be an important part of survival and reproduction in aquatic food webs with long cold periods.
Collapse
Affiliation(s)
- Cyril Rigaud
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland.
| | | | - Marco L Calderini
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Matthias Pilecky
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystem Studies, Lunz am See, Austria
- Danube University Krems, Research Lab of Aquatic Ecosystem Research and Health, Krems, Austria
| | - Martin J Kainz
- WasserCluster Lunz-Inter-university Center for Aquatic Ecosystem Studies, Lunz am See, Austria
- Danube University Krems, Research Lab of Aquatic Ecosystem Research and Health, Krems, Austria
| | - Marja Tiirola
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| | - Sami J Taipale
- Department of Biological and Environmental Sciences, University of Jyväskylä, Jyväskylä, Finland
| |
Collapse
|
5
|
Bu M, Fan W, Li R, He B, Cui P. Lipid Metabolism and Improvement in Oilseed Crops: Recent Advances in Multi-Omics Studies. Metabolites 2023; 13:1170. [PMID: 38132852 PMCID: PMC10744971 DOI: 10.3390/metabo13121170] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 11/09/2023] [Accepted: 11/15/2023] [Indexed: 12/23/2023] Open
Abstract
Oilseed crops are rich in plant lipids that not only provide essential fatty acids for the human diet but also play important roles as major sources of biofuels and indispensable raw materials for the chemical industry. The regulation of lipid metabolism genes is a major factor affecting oil production. In this review, we systematically summarize the metabolic pathways related to lipid production and storage in plants and highlight key research advances in characterizing the genes and regulatory factors influencing lipid anabolic metabolism. In addition, we integrate the latest results from multi-omics studies on lipid metabolism to provide a reference to better understand the molecular mechanisms underlying oil anabolism in oilseed crops.
Collapse
Affiliation(s)
- Mengjia Bu
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
- College of Informatics, Huazhong Agricultural University, Wuhan 430070, China
| | - Wei Fan
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Ruonan Li
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Bing He
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| | - Peng Cui
- Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen 518124, China
| |
Collapse
|
6
|
Khalid Z, Singh B. Looking at moss through the bioeconomy lens: biomonitoring, bioaccumulation, and bioenergy potential. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:114722-114738. [PMID: 37897571 DOI: 10.1007/s11356-023-30633-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/16/2023] [Accepted: 10/19/2023] [Indexed: 10/30/2023]
Abstract
The field of bioeconomy has been experiencing a surge in interest in recent years as society increasingly recognizes the potential of utilizing renewable biological resources to create sustainable solutions for economic growth, resource management, and environmental protection. Despite its potential, there is a notable lack of studies exploring the utilization of moss as a viable resource within the bioeconomy framework. Aligned with this objective, this paper conducts a keyword analysis using the VOSviewer application to explore the applicability of mosses as a bioeconomy resource. While biomonitoring using mosses has been studied extensively, this paper shifts its focus to discuss advancements in this area. Moreover, it evaluates the viability of moss utilization for bioenergy production and concisely summarizes their application in microbial fuel cells. The review also highlights challenges pertinent to moss utilization and presents future prospects. The overarching goal of this review paper is to assess the potential and utilization prospects of mosses within the realms of bioaccumulation, air purification, and bioenergy. By offering a comprehensive summary of moss applications, performance, and viability across diverse sectors, this paper endeavors to promote the versatile application of mosses in various contexts. It repositions the discussion on mosses, accentuating their utilization potential prior to exploring conclusions and future prospects.
Collapse
Affiliation(s)
- Zaira Khalid
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India
| | - Bhaskar Singh
- Department of Environmental Sciences, Central University of Jharkhand, Ranchi, Jharkhand, 835205, India.
| |
Collapse
|
7
|
Yang H, Rothenberger E, Zhao T, Fan W, Kelly A, Attaya A, Fan D, Panigrahy D, Deng J. Regulation of inflammation in cancer by dietary eicosanoids. Pharmacol Ther 2023:108455. [PMID: 37257760 DOI: 10.1016/j.pharmthera.2023.108455] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/16/2023] [Accepted: 05/22/2023] [Indexed: 06/02/2023]
Abstract
BACKGROUND Cancer is a major burden of disease worldwide and increasing evidence shows that inflammation contributes to cancer development and progression. Eicosanoids are derived from dietary polyunsaturated fatty acids, such as arachidonic acid (AA), and are mainly produced by a series of enzymatic pathways that include cyclooxygenase (COX), lipoxygenase (LOX), and cytochrome P-450 epoxygenase (CYP). Eicosanoids consist of at least several hundred individual molecules and play important roles in the inflammatory response and inflammation-related cancers. SCOPE AND APPROACH Dietary sources of AA and biosynthesis of eicosanoids from AA through different metabolic pathways are summarized. The bioactivities of eicosanoids and their potential molecular mechanisms on inflammation and cancer are revealed. Additionally, current challenges and limitations in eicosanoid research on inflammation-related cancer are discussed. KEY FINDINGS AND CONCLUSIONS Dietary AA generates a large variety of eicosanoids, including prostaglandins, thromboxane A2, leukotrienes, cysteinyl leukotrienes, lipoxins, hydroxyeicosatetraenoic acids (HETEs), and epoxyeicosatrienoic acids (EETs). Eicosanoids exert different bioactivities and mechanisms involved in the inflammation and related cancer developments. A deeper understanding of eicosanoid biology may be advantageous in cancer treatment and help to define cellular targets for further therapeutic development.
Collapse
Affiliation(s)
- Haixia Yang
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China.
| | - Eva Rothenberger
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Tong Zhao
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Wendong Fan
- College of Food Science and Nutritional Engineering, China Agricultural University, Beijing 100083, China
| | - Abigail Kelly
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Ahmed Attaya
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA
| | - Daidi Fan
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China
| | - Dipak Panigrahy
- Center for Vascular Biology Research, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA; Department of Pathology, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, MA 02215, USA.
| | - Jianjun Deng
- Shaanxi Key Laboratory of Degradable Biomedical Materials, School of Chemical Engineering, Northwest University, Xi'an 710069, China; State Key Laboratory of Vegetable Biobreeding, Institute of Vegetables and Flowers, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
| |
Collapse
|
8
|
Bokhorst S, Bjerke JW, Phoenix GK, Jaakola L, Maehre HK, Tømmervik H. Sub-arctic mosses and lichens show idiosyncratic responses to combinations of winter heatwaves, freezing and nitrogen deposition. PHYSIOLOGIA PLANTARUM 2023; 175:e13882. [PMID: 36840682 DOI: 10.1111/ppl.13882] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Arctic ecosystems are increasingly exposed to extreme climatic events throughout the year, which can affect species performance. Cryptogams (bryophytes and lichens) provide important ecosystem services in polar ecosystems but may be physiologically affected or killed by extreme events. Through field and laboratory manipulations, we compared physiological responses of seven dominant sub-Arctic cryptogams (three bryophytes, four lichens) to single events and factorial combinations of mid-winter heatwave (6°C for 7 days), re-freezing, snow removal and summer nitrogen addition. We aimed to identify which mosses and lichens are vulnerable to these abiotic extremes and if combinations would exacerbate physiological responses. Combinations of extremes resulted in stronger species responses but included idiosyncratic species-specific responses. Species that remained dormant during winter (March), irrespective of extremes, showed little physiological response during summer (August). However, winter physiological activity, and response to winter extremes, was not consistently associated with summer physiological impacts. Winter extremes affect cryptogam physiology, but summer responses appear mild, and lichens affect the photobiont more than the mycobiont. Accounting for Arctic cryptogam response to multiple climatic extremes in ecosystem functioning and modelling will require a better understanding of their winter eco-physiology and repair capabilities.
Collapse
Affiliation(s)
- Stef Bokhorst
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
- Department of Ecological Science, VU University Amsterdam, Amsterdam, The Netherlands
| | - Jarle W Bjerke
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
| | - Gareth K Phoenix
- Plants Photosynthesis and Soil, School of Biosciences, The University of Sheffield, Sheffield, UK
| | - Laura Jaakola
- Climate Laboratory Holt, Department of Arctic and Marine Biology, UIT The Arctic University of Norway, Tromsø, Norway
- Norwegian Institute of Bioeconomy Research (NIBIO), Ås, Norway
| | - Hanne K Maehre
- Norwegian College of Fishery Science, Faculty of Biosciences, Fisheries and Economics, UIT The Arctic University of Norway, Tromsø, Norway
| | - Hans Tømmervik
- Norwegian Institute for Nature Research (NINA), FRAM - High North Research Centre for Climate and the Environment, Tromsø, Norway
| |
Collapse
|
9
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Cronberg N, Simonsen HT. Lipidomes of Icelandic bryophytes and screening of high contents of polyunsaturated fatty acids by using lipidomics approach. PHYTOCHEMISTRY 2023; 206:113560. [PMID: 36528120 DOI: 10.1016/j.phytochem.2022.113560] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/15/2022] [Revised: 12/08/2022] [Accepted: 12/10/2022] [Indexed: 06/17/2023]
Abstract
Bryophytes (mosses, liverworts, and hornworts) have interested researchers because of their high chemical diversity and their potential uses in pharmaceutical, food, and cosmetic industries. Specifically, long-chain polyunsaturated fatty acids (l-PUFA) such as arachidonic acid (AA) and eicosapentaenoic acid (EPA) are commonly found in bryophytes, but not in vascular plants. Bryophytes accumulate PUFAs in cold or even freezing temperature to keep the cell fluidity. Iceland has a long history of bryophyte vegetation. These bryophytes are highly adapted to the harsh environment in Iceland and therefore are expected to produce high amounts of PUFAs. However, despite the fact that hundreds of mosses and liverworts have been found in Iceland, their lipid profiles largely remain unknown. In this study, we performed untargeted lipidomics by using UPLC-ESI-QTOF-MS as a rapid screening strategy to examine the lipid compositions of 39 local bryophyte species in Iceland and aimed to find high AA and EPA producers. A total of 280 lipid molecular species from 15 lipid classes were quantified with isotope-labeled internal standards. AA and EPA were abundantly distributed in the phospholipids (mainly PC and PE) and glycerolipids (MGDG and DGDG) in six moss species, namely Racomotrium lanuginosum, R. ericoides, Bryum psedotriquetrium, Plagiomnium ellipticum, Hylocomium splendens, and Rhytidiadelphus triquetrus. Two of the six species (B. psedotriquetrium and H. splendens) also accumulated high concentrations of PUFA-containing-triacylglycerols.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; ArcticMass, Reykjavik, Iceland.
| | - Finnur Freyr Eiriksson
- ArcticMass, Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Reykjavik, Iceland; Faculty of Pharmaceutical Sciences, University of Iceland, Reykjavik, Iceland
| | - Nils Cronberg
- Department of Biology, Lund University, Lund, Sweden
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Kongens Lyngby, Denmark; Université Jean Monnet Saint-Etienne, CNRS, LBVpam UMR 5079, Saint-Étienne, France.
| |
Collapse
|
10
|
Poddar Sarkar M, Biswas Raha A, Datta J, Mitra S. Chemotaxonomic and evolutionary perspectives of Bryophyta based on multivariate analysis of fatty acid fingerprints of Eastern Himalayan mosses. PROTOPLASMA 2022; 259:1125-1137. [PMID: 34787717 DOI: 10.1007/s00709-021-01723-0] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
Bryophyta comprises one of the earliest lineages of land plants that had implemented remarkable innovations to their lipid metabolic systems for successful adaptation to terrestrial habitat. This study presents a comprehensive investigation of fatty acid profiles of mosses from Eastern Himalayas with an aim to trace their chemotaxonomic and evolutionary implications. Fatty acid compositions of 40 random mosses belonging to major families of Bryophyta were explored by gas chromatographic analysis. A diverse array of saturated, monounsaturated and polyunsaturated fatty acids including rare acetylenic fatty acids were detected. Hexadecanoic acid (C16:0), 9,12 (Z,Z)-octadecadienoic acid (C18:2n6) and 9,12,15 (Z,Z,Z)-octadecatrienoic acid (C18:3n3) were the predominant fatty acids in all the mosses. However, quantitative variation of C20 polyunsaturated fatty acids (PUFAs), specifically 5,8,11,14 (Z,Z,Z,Z)-eicosatetraenoic acid (C20:4n6), among the investigated mosses was the most prominent outcome. The diplolepidous members of Bryidae, especially the mosses of Hypnales, Bryales and Bartramiales contained higher amount of C20 PUFAs compared with the haplolepidous orders. Principal component analyses based on individual fatty acids and other related parameters validated C20:4n6 content and the ratio of C20:4n6/C18:2n6 as the apparent chemotaxonomic discriminants. The prevalent notion of considering 9,12,15-octadecatrien-6-ynoic acid (C18:4a) as the chemomarker of Dicranaceae has also been challenged, since the compound was detected not only in different families of Dicranales, but also in a Pottiales member, Leptodontium viticulosoides. Therefore, an ensemble of fatty acids instead of a single one can be considered as the chemical signature for taxonomic interpretation which may also be vital from an evolutionary standpoint.
Collapse
Affiliation(s)
- Mousumi Poddar Sarkar
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Anashuya Biswas Raha
- Department of Botany, Diamond Harbour Women's University, Diamond Harbour Road, Sarisha, South 24 Parganas, Sarisha, 743368, West Bengal, India
| | - Jayashree Datta
- Department of Life Sciences, Presidency University, 86/1 College Street, Kolkata, 700073, West Bengal, India
| | - Souvik Mitra
- Department of Botany, Darjeeling Government College, 19, Lebong Cart Road, Darjeeling, 734101, West Bengal, India.
- Department of Botany, Taki Government College, North 24 Parganas, Taki, 743429, West Bengal, India.
| |
Collapse
|
11
|
Voronkov A, Ivanova T. Significance of Lipid Fatty Acid Composition for Resistance to Winter Conditions in Asplenium scolopendrium. BIOLOGY 2022; 11:507. [PMID: 35453707 PMCID: PMC9024544 DOI: 10.3390/biology11040507] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Revised: 03/11/2022] [Accepted: 03/22/2022] [Indexed: 11/16/2022]
Abstract
Ferns are one of the oldest land plants. Among them, there are species that, during the course of evolution, have adapted to living in temperate climates and under winter conditions. Asplenium scolopendrium is one such species whose fronds are able to tolerate low subzero temperatures in winter. It is known that the resistance of ferns to freezing is associated with their prevention of desiccation via unique properties of the xylem and effective photoprotective mechanisms. In this work, the composition of A. scolopendrium lipid fatty acids (FAs) at different times of the year was studied by gas-liquid chromatography with mass spectrometry to determine their role in the resistance of this species to low temperatures. During the growing season, the polyunsaturated FA content increased significantly. This led to increases in the unsaturation and double-bond indices by winter. In addition, after emergence from snow, medium-chain FAs were found in the fronds. Thus, it can be speculated that the FA composition plays an important role in the adaptation of A. scolopendrium to growing conditions and preparation for successful wintering.
Collapse
Affiliation(s)
- Alexander Voronkov
- K. A. Timiryazev Institute of Plant Physiology, Russian Academy of Sciences, IPP RAS, 35 Botanicheskaya St., 127276 Moscow, Russia;
| | | |
Collapse
|
12
|
Wang Y, Zhai J, Qi Z, Liu W, Cui J, Zhang X, Bai S, Li L, Shui G, Cui S. The specific glycerolipid composition is responsible for maintaining the membrane stability of Physcomitrella patens under dehydration stress. JOURNAL OF PLANT PHYSIOLOGY 2022; 268:153590. [PMID: 34911032 DOI: 10.1016/j.jplph.2021.153590] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 12/07/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Land colonization is a major event in plant evolution. Little is known about the evolutionary characteristics of lipids during this process. Here, we proved that Physcomitrella patens, a bryophyte that appeared in the early evolution of terrestrial plants, has short-term desiccation resistance. The maintenance of membrane integrity is related to its specific glycerolipid composition and key genes for lipid metabolism. We analyzed 414 types of lipid molecules, and found that phospholipids accounted for 61.7%, mainly PC and PI; glycolipids accounted for only 26.5%, with a special MGDG molecular map. The most abundant MDGD, that is, MGDG34:6, contained rare 15- and 19-carbon acyl chains; the level of neutral lipids was higher. This was consistent with the results observed by TEM, with fewer lamellae and obvious lipid droplets. Slight dehydration accumulated a large number of TAG molecules, and severe dehydration degraded phospholipids and caused membrane leakage, but PA and MGDG fluctuated less. The key genes of lipid metabolism, DGAT and PAP, were actively transcribed, suggesting that PA was one of the main DAG sources for TAG synthesis. This work proves that Physcomitrella patens adopts high-constitutive PC and PI similar to plant seeds, abundant TAG, and its own specific MGDG to resist extreme dehydration. This result provides a new insight into the lipid evolution of early terrestrial plants against unfavorable terrestrial environments.
Collapse
Affiliation(s)
- Yingchun Wang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jianan Zhai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Zhenyu Qi
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Wanping Liu
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Jipeng Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Xi Zhang
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Sulan Bai
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Li Li
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China
| | - Guanghou Shui
- State Key Laboratory of Molecular Developmental Biology, Institute of Genetics and Developmental Biology, Chinese Academy of Sciences, Beijing, 100101, China
| | - Suxia Cui
- College of Life Sciences, Capital Normal University, Beijing, 100048, China; Beijing Key Laboratory of Plant Gene Resources and Biotechnology for Carbon Reduction and Environmental Improvement, Beijing, 100048, China.
| |
Collapse
|
13
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Effects of extraction parameters on lipid profiling of mosses using UPLC-ESI-QTOF-MS and multivariate data analysis. Metabolomics 2021; 17:96. [PMID: 34669052 DOI: 10.1007/s11306-021-01847-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/26/2021] [Accepted: 10/05/2021] [Indexed: 11/30/2022]
Abstract
INTRODUCTION Non-target lipid profiling by using ultra-performance liquid chromatography coupled to electrospray ionization quadrupole time-of-flight mass spectrometry (UPLC-ESI-QTOF-MS) has been used extensively in the past decades in plant studies. However, the lipidomes of bryophytes have only been scarcely studied, although they are the second largest group in plant kingdom. OBJECTIVES We evaluated the effects of different cell disruption methods (no disruption, shake, ultrasound, and bead beating), and storage conditions (air-dried, freeze-dried, and fresh frozen) of five moss species (including Racomitrium lanuginosum B and D, Philonotis fontana, Sphagnum teres, and Hylocomium splendens). METHODS The lipid profiling results of each extraction parameter were analyzed by using multivariate data analysis including unsupervised principal component analysis and supervised orthogonal projections to latent structures discriminant analysis. RESULTS The results showed that extraction with bead beating resulted in the highest lipid content and the most detected features, but these were caused by the contamination from plastic tubes. Minor lipid metabolite changes were found in shaking and ultrasonication methods when compared with no disruption method. Significant amounts of phosphatidylcholine, diacylglyceryltrimethylhomoserine and their lyso lipids were observed in air-dried moss tissues, whereas diacylglycerol, triacylglycerol and ceramide were mostly exclusively detected when fresh frozen tissues were used for extraction. CONCLUSION We concluded that lipid extraction using fresh frozen samples with ultrasound assistance provide the most original lipid composition and gave a relatively high lipid content.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
| | - Finnur Freyr Eiriksson
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Margrét Thorsteinsdóttir
- ArcticMass, Sturlugata 8, 101, Reykjavik, Iceland
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107, Reykjavik, Iceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800, Kongens Lyngby, Denmark.
| |
Collapse
|
14
|
Resemann HC, Herrfurth C, Feussner K, Hornung E, Ostendorf AK, Gömann J, Mittag J, van Gessel N, Vries JD, Ludwig-Müller J, Markham J, Reski R, Feussner I. Convergence of sphingolipid desaturation across over 500 million years of plant evolution. NATURE PLANTS 2021; 7:219-232. [PMID: 33495556 DOI: 10.1038/s41477-020-00844-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 12/18/2020] [Indexed: 05/16/2023]
Abstract
For plants, acclimation to low temperatures is fundamental to survival. This process involves the modification of lipids to maintain membrane fluidity. We previously identified a new cold-induced putative desaturase in Physcomitrium (Physcomitrella) patens. Lipid profiles of null mutants of this gene lack sphingolipids containing monounsaturated C24 fatty acids, classifying the new protein as sphingolipid fatty acid denaturase (PpSFD). PpSFD mutants showed a cold-sensitive phenotype as well as higher susceptibility to the oomycete Pythium, assigning functions in stress tolerance for PpSFD. Ectopic expression of PpSFD in the Atads2.1 (acyl coenzyme A desaturase-like 2) Arabidopsis thaliana mutant functionally complemented its cold-sensitive phenotype. While these two enzymes catalyse a similar reaction, their evolutionary origin is clearly different since AtADS2 is a methyl-end desaturase whereas PpSFD is a cytochrome b5 fusion desaturase. Altogether, we suggest that adjustment of membrane fluidity evolved independently in mosses and seed plants, which diverged more than 500 million years ago.
Collapse
Affiliation(s)
- Hanno Christoph Resemann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Cornelia Herrfurth
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Kirstin Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| | - Ellen Hornung
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Anna K Ostendorf
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jasmin Gömann
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany
| | - Jennifer Mittag
- Institute of Botany, Technical University Dresden, Dresden, Germany
| | - Nico van Gessel
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Jan de Vries
- Applied Bioinformatics, Institute for Microbiology and Genetics, University of Goettingen, Goettingen, Germany
- Applied Bioinformatics, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
- Campus Institute Data Science (CIDAS), University of Goettingen, Goettingen, Germany
| | | | - Jennifer Markham
- Center for Plant Science Innovation and Department of Biochemistry, University of Nebraska-Lincoln, Lincoln, NE, USA
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany.
- Signalling Research Centers BIOSS and CIBSS, University of Freiburg, Freiburg, Germany.
| | - Ivo Feussner
- Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Goettingen, Germany.
- Goettingen Metabolomics and Lipidomics Laboratory, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
- Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany.
| |
Collapse
|
15
|
Xu L, Schüler R, Xu C, Seebeck N, Markova M, Murahovschi V, Pfeiffer AFH. Arachidonic acid inhibits the production of angiotensin-converting enzyme in human primary adipocytes via a NF-κB-dependent pathway. ANNALS OF TRANSLATIONAL MEDICINE 2020; 8:1652. [PMID: 33490164 PMCID: PMC7812212 DOI: 10.21037/atm-20-7514] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
Background The modulating mechanism of fatty acids on angiotensin-converting enzyme production (ACE) in human adipocytes is still elusive. Diet-induced regulation of the renin angiotensin system is thought to be involved in obesity and hypertension, and several previous studies have used mouse cell lines such as 3T3-L1 to investigate this. This study was carried out in human subcutaneous adipocytes for better understanding of the mechanism. Methods Human adipose stem cells were isolated from subcutaneous adipose tissue biopsies collected from four patients during bariatric surgery and differentiated into mature adipocytes. The mRNA expression and the activity of ACE were measured under different stimuli in cell cultures. Results Arachidonic acid (AA) decreased ACE mRNA expression and ACE activity in a dose-dependent manner while palmitic acid had no effect. The decrease of ACE by 100 µM AA was reversed by the addition of 5 µM nuclear factor-κB (NF-κB) inhibitor. Furthermore, when the production of 20-hydroxyeicosatetraenoic acid, a metabolite of AA, was stopped by the specific inhibitor HET0016 (10 µM) in the culture media, the effect of AA was blocked. Conclusions This study indicated that AA can decrease the expression and activity of ACE in cultured human adipocytes, via an inflammatory NF-κB-dependent pathway. Blocking 20-hydroxyeicosatetraenoic acid attenuated the ACE-decreasing effects of AA.
Collapse
Affiliation(s)
- Li Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Rita Schüler
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Chenchen Xu
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Nicole Seebeck
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Mariya Markova
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Veronica Murahovschi
- Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany
| | - Andreas F H Pfeiffer
- Department of Endocrinology, Diabetes and Nutrition, Charité University Medicine Berlin, Campus Benjamin Franklin, Berlin, Germany.,Department of Clinical Nutrition, German Institute of Human Nutrition Potsdam-Rehbrücke (DIfE), Nuthetal, Germany.,German Center for Diabetes Research (DZD), München-Neuherberg, Germany
| |
Collapse
|
16
|
Chen Z, Wang W, Pu X, Dong X, Gao B, Li P, Jia Y, Liu A, Liu L. Comprehensive analysis of the Ppatg3 mutant reveals that autophagy plays important roles in gametophore senescence in Physcomitrella patens. BMC PLANT BIOLOGY 2020; 20:440. [PMID: 32967624 PMCID: PMC7513309 DOI: 10.1186/s12870-020-02651-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2020] [Accepted: 09/15/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Autophagy is an evolutionarily conserved system for the degradation of intracellular components in eukaryotic organisms. Autophagy plays essential roles in preventing premature senescence and extending the longevity of vascular plants. However, the mechanisms and physiological roles of autophagy in preventing senescence in basal land plants are still obscure. RESULTS Here, we investigated the functional roles of the autophagy-related gene PpATG3 from Physcomitrella patens and demonstrated that its deletion prevents autophagy. In addition, Ppatg3 mutant showed premature gametophore senescence and reduced protonema formation compared to wild-type (WT) plants under normal growth conditions. The abundance of nitrogen (N) but not carbon (C) differed significantly between Ppatg3 mutant and WT plants, as did relative fatty acid levels. In vivo protein localization indicated that PpATG3 localizes to the cytoplasm, and in vitro Y2H assays confirmed that PpATG3 interacts with PpATG7 and PpATG12. Plastoglobuli (PGs) accumulated in Ppatg3, indicating that the process that degrades damaged chloroplasts in senescent gametophore cells was impaired in this mutant. RNA-Seq uncovered a detailed, comprehensive set of regulatory pathways that were affected by the autophagy mutation. CONCLUSIONS The autophagy-related gene PpATG3 is essential for autophagosome formation in P. patens. Our findings provide evidence that autophagy functions in N utilization, fatty acid metabolism and damaged chloroplast degradation under non-stress conditions. We identified differentially expressed genes in Ppatg3 involved in numerous biosynthetic and metabolic pathways, such as chlorophyll biosynthesis, lipid metabolism, reactive oxygen species removal and the recycling of unnecessary proteins that might have led to the premature senescence of this mutant due to defective autophagy. Our study provides new insights into the role of autophagy in preventing senescence to increase longevity in basal land plants.
Collapse
Affiliation(s)
- Zexi Chen
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
| | - Wenbo Wang
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- University of the Chinese Academy of Sciences, Beijing, 100049, China
- Sino-Danish College, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaojun Pu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Xiumei Dong
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Bei Gao
- State Key Laboratory of Agrobiotechnology, The Chinese University of Hong Kong, Hong Kong, 999077, China
| | - Ping Li
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Yanxia Jia
- Germplasm Bank of Wild Species, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
| | - Aizhong Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China Ministry of Education, Southwest Forestry University, Kunming, 650204, China
| | - Li Liu
- Department of Economic Plants and Biotechnology, Yunnan Key Laboratory for Wild Plant Resources, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, 650204, China.
- State Key Laboratory of Biocatalysis and Enzyme Engineering, Hubei Collaborative Innovation Center for Green Transformation of Bio-Resources, Hubei Key Laboratory of Industrial Biotechnology, School of Life Sciences, Hubei University, Wuhan, 430062, China.
| |
Collapse
|
17
|
Abstract
In plants, lipids function in a variety of ways. Lipids are a major component of biological membranes and are used as a compact energy source for seed germination. Fatty acids, the major lipids in plants, are synthesized in plastid and assembled by glycerolipids or triacylglycerols in endoplasmic reticulum. The metabolism of fatty acids and triacylglycerols is well studied in most Arabidopsis model plants by forward and reverse genetics methods. However, research on the diverse functions of lipids in plants, including various crops, has yet to be completed. The papers of this Special Issue cover the core of the field of plant lipid research on the role of galactolipids in the chloroplast biogenesis from etioplasts and the role of acyltransferases and transcription factors involved in fatty acid and triacylglycerol synthesis. This information will contribute to the expansion of plant lipid research.
Collapse
|
18
|
Campos ML, Prado GS, Dos Santos VO, Nascimento LC, Dohms SM, da Cunha NB, Ramada MHS, Grossi-de-Sa MF, Dias SC. Mosses: Versatile plants for biotechnological applications. Biotechnol Adv 2020; 41:107533. [PMID: 32151692 DOI: 10.1016/j.biotechadv.2020.107533] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2019] [Revised: 02/11/2020] [Accepted: 02/12/2020] [Indexed: 02/03/2023]
Abstract
Mosses have long been recognized as powerful experimental tools for the elucidation of complex processes in plant biology. Recent increases in the availability of sequenced genomes and mutant collections, the establishment of novel technologies for targeted mutagenesis, and the development of viable protocols for large-scale production in bioreactors are now transforming mosses into one of the most versatile tools for biotechnological applications. In the present review, we highlight the astonishing biotechnological potential of mosses and how these plants are being exploited for industrial, pharmaceutical, and environmental applications. We focus on the biological features that support their use as model organisms for basic and applied research, and how these are being leveraged to explore the biotechnological potential in an increasing number of species. Finally, we also provide an overview of the available moss cultivation protocols from an industrial perspective, offering insights into batch operations that are not yet well established or do not even exist in the literature. Our goal is to bolster the use of mosses as factories for the biosynthesis of molecules of interest and to show how these species can be harnessed for the generation of novel and commercially useful bioproducts.
Collapse
Affiliation(s)
- Marcelo Lattarulo Campos
- Integrative Plant Research Laboratory, Departamento de Botânica e Ecologia, Instituto de Biociências, Universidade Federal de Mato Grosso, Cuiabá, MT, Brazil.
| | - Guilherme Souza Prado
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Vanessa Olinto Dos Santos
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil
| | - Lara Camelo Nascimento
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil
| | - Stephan Machado Dohms
- Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Nicolau Brito da Cunha
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil
| | - Marcelo Henrique Soller Ramada
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Maria Fatima Grossi-de-Sa
- Laboratório de Interação Molecular Planta-Praga, Embrapa Recursos Genéticos e Biotecnologia, Brasília, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil.
| | - Simoni Campos Dias
- Centro de Análises Bioquímicas e Proteômicas, Universidade Católica de Brasília, Brasilia, DF, Brazil; Programa de Pós-Graduação em Ciências Genômicas e Biotecnologia, Universidade Católica de Brasília, Brasília, DF, Brazil; Programa de Pós-Graduação em Biologia Animal, Universidade de Brasília, Campus Darcy Ribeiro, Brasília, DF, Brazil.
| |
Collapse
|
19
|
Roell MS, Zurbriggen MD. The impact of synthetic biology for future agriculture and nutrition. Curr Opin Biotechnol 2020; 61:102-109. [DOI: 10.1016/j.copbio.2019.10.004] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2019] [Revised: 09/30/2019] [Accepted: 10/14/2019] [Indexed: 12/25/2022]
|
20
|
Lu Y, Eiriksson FF, Thorsteinsdóttir M, Simonsen HT. Valuable Fatty Acids in Bryophytes-Production, Biosynthesis, Analysis and Applications. PLANTS 2019; 8:plants8110524. [PMID: 31752421 PMCID: PMC6918284 DOI: 10.3390/plants8110524] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 10/31/2019] [Accepted: 11/16/2019] [Indexed: 12/25/2022]
Abstract
Bryophytes (mosses, liverworts and hornworts) often produce high amounts of very long-chain polyunsaturated fatty acids (vl-PUFAs) including arachidonic acid (AA, 20:4 Δ5,8,11,14) and eicosapentaenoic acid (EPA, 20:5 Δ5,8,11,14,17). The presence of vl-PUFAs is common for marine organisms such as algae, but rarely found in higher plants. This could indicate that bryophytes did not lose their marine origin completely when they landed into the non-aqueous environment. Vl-PUFA, especially the omega-3 fatty acid EPA, is essential in human diet for its benefits on healthy brain development and inflammation modulation. Recent studies are committed to finding new sources of vl-PUFAs instead of fish and algae oil. In this review, we summarize the fatty acid compositions and contents in the previous studies, as well as the approaches for qualification and quantification. We also conclude different approaches to enhance AA and EPA productions including biotic and abiotic stresses.
Collapse
Affiliation(s)
- Yi Lu
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark;
- ArcticMass, Sturlugata 8, 101 Reykjavik, Iceland; (F.F.E.); (M.T.)
| | | | - Margrét Thorsteinsdóttir
- ArcticMass, Sturlugata 8, 101 Reykjavik, Iceland; (F.F.E.); (M.T.)
- Faculty of Pharmaceutical Sciences, University of Iceland, Hagi, Hofsvallagata 53, 107 Reykjavik, Iceland
| | - Henrik Toft Simonsen
- Department of Biotechnology and Biomedicine, Technical University of Denmark, Søltofts Plads 223, 2800 Kongens Lyngby, Denmark;
- Correspondence: ; Tel.: +45-26-98-66-84
| |
Collapse
|
21
|
Decker EL, Reski R. Mosses in biotechnology. Curr Opin Biotechnol 2019; 61:21-27. [PMID: 31689614 DOI: 10.1016/j.copbio.2019.09.021] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2019] [Revised: 08/12/2019] [Accepted: 09/25/2019] [Indexed: 11/16/2022]
Abstract
Biotechnological exploitation of mosses has several aspects, for example, the use of moss extracts or the whole plant for diverse industrial applications as well as their employment as production platforms for valuable metabolites or pharmaceutical proteins, especially using the genetically and developmentally best-characterised model moss Physcomitrella patens. Whole moss plants, in particular peat mosses (Sphagnum spec.), are useful for environmental approaches, biomonitoring of environmental pollution and CO2-neutral 'farming' on rewetted bogs to combat climate change. In addition, the lifestyle of mosses suggests the evolution of genes necessary to cope with biotic and abiotic stress situations, which could be applied to crop plants, and their structural features bear an inspiring potential for biomimetics approaches.
Collapse
Affiliation(s)
- Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany.
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104 Freiburg, Germany; Signalling Research Centres BIOSS and CIBSS, Schaenzlestr. 18, 79104 Freiburg, Germany; Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110 Freiburg, Germany
| |
Collapse
|
22
|
MacDonald C, Colombo S, Arts MT. Genetically Engineered Oil Seed Crops and Novel Terrestrial Nutrients: Ethical Considerations. SCIENCE AND ENGINEERING ETHICS 2019; 25:1485-1497. [PMID: 30465298 DOI: 10.1007/s11948-018-0074-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2018] [Accepted: 10/21/2018] [Indexed: 06/09/2023]
Abstract
Genetically engineered (GE) organisms have been at the center of ethical debates among the public and regulators over their potential risks and benefits to the environment and society. Unlike the currently commercial GE crops that express resistance or tolerance to pesticides or herbicides, a new GE crop produces two bioactive nutrients (eicosapentaenoic acid (EPA) and docosahexaenoic acid (DHA)) that heretofore have largely been produced only in aquatic environments. This represents a novel category of risk to ecosystem functioning. The present paper describes why growing oilseed crops engineered to produce EPA and DHA means introducing into a terrestrial ecosystem a pair of highly bioactive nutrients that are novel to terrestrial ecosystems and why that may have ecological and physiological consequences. More importantly perhaps, this paper argues that discussion of this novel risk represents an opportunity to examine the way the debate over genetically modified crops is being conducted.
Collapse
Affiliation(s)
- Chris MacDonald
- Ted Rogers School of Management, Ryerson University, 575 Bay St., Toronto, ON, M5G 2C5, Canada.
| | - Stefanie Colombo
- Department Animal Science and Aquaculture, Faculty of Agriculture, Dalhousie University, 58 Sipu Road, Truro, NS, B2N5E3, Canada
| | - Michael T Arts
- Department of Chemistry and Biology, Ryerson University, 350 Victoria St., Toronto, ON, M5B 2K3, Canada
| |
Collapse
|
23
|
Yang SU, Kim J, Kim H, Suh MC. Functional Characterization of Physcomitrella patens Glycerol-3-Phosphate Acyltransferase 9 and an Increase in Seed Oil Content in Arabidopsis by Its Ectopic Expression. PLANTS (BASEL, SWITZERLAND) 2019; 8:E284. [PMID: 31412690 PMCID: PMC6724121 DOI: 10.3390/plants8080284] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/21/2019] [Revised: 08/12/2019] [Accepted: 08/12/2019] [Indexed: 02/04/2023]
Abstract
Since vegetable oils (usually triacylglycerol [TAG]) are extensively used as food and raw materials, an increase in storage oil content and production of valuable polyunsaturated fatty acids (PUFAs) in transgenic plants is desirable. In this study, a gene encoding glycerol-3-phosphate acyltransferase 9 (GPAT9), which catalyzes the synthesis of lysophosphatidic acid (LPA) from a glycerol-3-phosphate and acyl-CoA, was isolated from Physcomitrella patens, which produces high levels of very-long-chain PUFAs in protonema and gametophores. P. patens GPAT9 shares approximately 50%, 60%, and 70% amino acid similarity with GPAT9 from Chlamydomonas reinhardtii, Klebsormidium nitens, and Arabidopsis thaliana, respectively. PpGPAT9 transcripts were detected in both the protonema and gametophores. Fluorescent signals from the eYFP:PpGPAT9 construct were observed in the ER of Nicotiana benthamiana leaf epidermal cells. Ectopic expression of PpGPAT9 increased the seed oil content by approximately 10% in Arabidopsis. The levels of PUFAs (18:2, 18:3, and 20:2) and saturated FAs (16:0, 18:0, and 20:0) increased by 60% and 43%, respectively, in the storage oil of the transgenic seeds when compared with the wild type. The transgenic embryos with increased oil content contained larger embryonic cells than the wild type. Thus, PpGPAT9 may be a novel genetic resource to enhance storage oil yields from oilseed crops.
Collapse
Affiliation(s)
- Sun Ui Yang
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Juyoung Kim
- Department of Bioenergy Science and Technology, Chonnam National University, Gwangju 61186, Korea
| | - Hyojin Kim
- Department of Life Science, Sogang University, Seoul 04107, Korea
| | - Mi Chung Suh
- Department of Life Science, Sogang University, Seoul 04107, Korea.
| |
Collapse
|
24
|
Resemann HC, Lewandowska M, G�mann J, Feussner I. Membrane Lipids, Waxes and Oxylipins in the Moss Model Organism Physcomitrella patens. PLANT & CELL PHYSIOLOGY 2019; 60:1166-1175. [PMID: 30698763 PMCID: PMC6553664 DOI: 10.1093/pcp/pcz006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/14/2018] [Accepted: 12/24/2018] [Indexed: 05/26/2023]
Abstract
The moss Physcomitrella patens receives increased scientific interest since its genome was sequenced a decade ago. As a bryophyte, it represents the first group of plants that evolved in a terrestrial habitat still without a vascular system that developed later in tracheophytes. It is easily transformable via homologous recombination, which enables the formation of targeted loss-of-function mutants. Even though genetics, development and life cycle in Physcomitrella are well studied nowadays, research on lipids in Physcomitrella is still underdeveloped. This review aims on presenting an overview on the state of the art of lipid research with a focus on membrane lipids, surface lipids and oxylipins. We discuss in this review that Physcomitrella possesses very interesting features regarding its membrane lipids. Here, the presence of very-long-chain polyunsaturated fatty acids (VLC-PUFA) still shows a closer similarity to marine microalgae than to vascular plants. Unlike algae, Physcomitrella has a cuticle comparable to vascular plants composed of cutin and waxes. The presence of VLC-PUFA in Physcomitrella also leads to a greater variability of signaling lipids even though the phytohormone jasmonic acid is not present in this organism, which is different to vascular plants. In summary, the research on lipids in Physcomitrella is still in its infancy, especially considering membrane lipids. We hope that this review will help to promote the further advancement of lipid research in this important model organism in the future, so we can better understand how lipids are involved in the evolution of land plants.
Collapse
Affiliation(s)
- Hanno C Resemann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Milena Lewandowska
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Jasmin G�mann
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
| | - Ivo Feussner
- Department of Plant Biochemistry, Albrecht-von-Haller-Institute for Plant Sciences, University of Goettingen, Justus-von-Liebig-Weg 11, Goettingen, Germany
- Department of Plant Biochemistry, Goettingen Center for Molecular Biosciences (GZMB), University of Goettingen, Goettingen, Germany
| |
Collapse
|
25
|
Reski R, Bae H, Simonsen HT. Physcomitrella patens, a versatile synthetic biology chassis. PLANT CELL REPORTS 2018; 37:1409-1417. [PMID: 29797047 DOI: 10.1007/s00299-018-2293-6] [Citation(s) in RCA: 47] [Impact Index Per Article: 6.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Accepted: 05/11/2018] [Indexed: 05/21/2023]
Abstract
During three decades the moss Physcomitrella patens has been developed to a superb green cell factory with the first commercial products on the market. In the past three decades the moss P. patens has been developed from an obscure bryophyte to a model organism in basic biology, biotechnology, and synthetic biology. Some of the key features of this system include a wide range of Omics technologies, precise genome-engineering via homologous recombination with yeast-like efficiency, a certified good-manufacturing-practice production in bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein products, superb product stability from batch-to-batch, and a reliable procedure for cryopreservation of cell lines in a master cell bank. About a dozen human proteins are being produced in P. patens as potential biopharmaceuticals, some of them are not only similar to their animal-produced counterparts, but are real biobetters with superior performance. A moss-made pharmaceutical successfully passed phase 1 clinical trials, a fragrant moss, and a cosmetic moss-product is already on the market, highlighting the economic potential of this synthetic biology chassis. Here, we focus on the features of mosses as versatile cell factories for synthetic biology and their impact on metabolic engineering.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, 79104, Freiburg, Germany.
- BIOSS, Centre for Biological Signalling Studies, 79104, Freiburg, Germany.
| | - Hansol Bae
- Mosspiration Biotech IVS, 2970, Hørsholm, Denmark
| | - Henrik Toft Simonsen
- Mosspiration Biotech IVS, 2970, Hørsholm, Denmark
- Department of Biotechnology and Biomedicine, Technical University of Denmark, 2800 Kgs, Lyngby, Denmark
| |
Collapse
|
26
|
Roy Chowdhuri S, Biswas Raha A, Mitra S, Datta J, Poddar Sarkar M. "Dicranin" in the Membrane Phospholipids of a Dicranaceae and Pottiaceae Moss Member of the Eastern Himalayan Biodiversity Hotspot. Lipids 2018; 53:539-545. [PMID: 30070366 DOI: 10.1002/lipd.12054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/12/2018] [Revised: 05/19/2018] [Accepted: 06/05/2018] [Indexed: 11/06/2022]
Abstract
The phospholipids of two moss samples Oreoweisia laxifolia (Hookf.) Kindb. (family-Dicranaceae Schimp.) and Leptodontium viticulosoides (P. Beauv.) Wijk & Margad (family-Pottiaceae Schimp.) of the Eastern Himalayan Biodiversity Hotspot were investigated to find out any peculiarity in their fatty acid profiles. Detailed analysis of phospholipid classes and the respective fatty acids was performed using high-performance thin-layer chromatography and gas chromatography-mass spectrometry. An array of different saturated and unsaturated fatty acids were detected in both the samples. Although it has been proposed previously that acetylenic fatty acids are associated only with triacylglycerol of storage lipids, the most striking observation of the present investigation is the abundance of an acetylenic fatty acid, octadeca-6-yn-9,12,15-trienoic acid (18:4a), or Dicranin, in the phospholipids of both the mosses. The position of the triple bond in the hydrocarbon chain of the fatty acids was confirmed by dimethyloxazoline derivatization of fatty acids and their characteristic mass fragmentation pattern. The occurrence of Dicranin in phospholipids and in the Pottiaceae family is reported for the first time, with substantial explanations of the observed results. This may raise the issue of rethinking "Dicranin" as a chemotaxonomic marker of Dicranaceae.
Collapse
Affiliation(s)
- Sumedha Roy Chowdhuri
- Chemical Signal and Lipidomics Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Anashuya Biswas Raha
- Chemical Signal and Lipidomics Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Souvik Mitra
- Department of Botany, Darjeeling Government College, Lebong Cart Rd, Richmond Hill, Darjeeling, 734101, India
| | - Jayashree Datta
- Chemical Signal and Lipidomics Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| | - Mousumi Poddar Sarkar
- Chemical Signal and Lipidomics Laboratory, Department of Botany, Centre of Advanced Study, University of Calcutta, 35, Ballygunge Circular Road, Kolkata, 700019, India
| |
Collapse
|
27
|
Shanab SM, Hafez RM, Fouad AS. A review on algae and plants as potential source of arachidonic acid. J Adv Res 2018; 11:3-13. [PMID: 30034871 PMCID: PMC6052662 DOI: 10.1016/j.jare.2018.03.004] [Citation(s) in RCA: 73] [Impact Index Per Article: 10.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2018] [Revised: 03/09/2018] [Accepted: 03/11/2018] [Indexed: 01/22/2023] Open
Abstract
Some of the essential polyunsaturated fatty acids (PUFAs) as ARA (arachidonic acid, n-6), EPA (eicosapentaenoic acid, n-3) and DHA (Docosahexaenoic acid, n-3) cannot be synthesized by mammals and it must be provided as food supplement. ARA and DHA are the major PUFAs that constitute the brain membrane phospholipid. n-3 PUFAs are contained in fish oil and animal sources, while the n-6 PUFAs are mostly provided by vegetable oils. Inappropriate fatty acids consumption from the n-6 and n-3 families is the major cause of chronic diseases as cancer, cardiovascular diseases and diabetes. The n-6: n-3 ratio (lower than 10) recommended by the WHO can be achieved by consuming certain edible sources rich in n-3 and n-6 in daily food meal. Many researches have been screened for alternative sources of n-3 and n-6 PUFAs of plant origin, microbes, algae, lower and higher plants, which biosynthesize these valuable PUFAs needed for our body health. Biosynthesis of C18 PUFAs, in entire plant kingdom, takes place through certain pathways using elongases and desaturases to synthesize their needs of ARA (C20-PUFAs). This review is an attempt to highlight the importance and function of PUFAs mainly ARA, its occurrence throughout the plant kingdom (and others), its biosynthetic pathways and the enzymes involved. The methods used to enhance ARA productions through environmental factors and metabolic engineering are also presented. It also deals with advising people that healthy life is affected by their dietary intake of both n-3 and n-6 FAs. The review also addresses the scientist to carry on their work to enrich organisms with ARA.
Collapse
Affiliation(s)
| | - Rehab M. Hafez
- Botany and Microbiology Department, Faculty of Science, Cairo University, Giza 12613, Egypt
| | | |
Collapse
|
28
|
Profiling Abscisic Acid-Induced Changes in Fatty Acid Composition in Mosses. Methods Mol Biol 2017. [PMID: 28735405 DOI: 10.1007/978-1-4939-7136-7_18] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register]
Abstract
In plants, change in lipid composition is a common response to various abiotic stresses. Lipid constituents of bryophytes are of particular interest as they differ from that of flowering plants. Unlike higher plants, mosses have high content of very long-chain polyunsaturated fatty acids. Such lipids are considered to be important for survival of nonvascular plants. Here, using abscisic acid (ABA )-induced changes in lipid composition in Physcomitrella patens as an example, a protocol for total lipid extraction and quantification by gas chromatography (GC) coupled with flame ionization detector (FID) is described.
Collapse
|
29
|
Mitra S, Burger BV, Poddar-Sarkar M. Comparison of headspace-oxylipin-volatilomes of some Eastern Himalayan mosses extracted by sample enrichment probe and analysed by gas chromatography-mass spectrometry. PROTOPLASMA 2017; 254:1115-1126. [PMID: 27704278 DOI: 10.1007/s00709-016-1018-3] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 08/17/2016] [Indexed: 06/06/2023]
Abstract
Mosses have an inherent adaptability against different biotic and abiotic stresses. Oxylipins, the volatile metabolites derived from polyunsaturated fatty acids (PUFAs), play a key role in the chemical defence strategy of mosses. In the present study, a comparative survey of these compounds, including an investigation into their precursor fatty acids (FAs), was carried out for the first time on the mosses Brachymenium capitulatum (Mitt.) Paris, Hydrogonium consanguineum (Thwaites & Mitt.) Hilp., Barbula hastata Mitt., and Octoblepharum albidum Hedw. collected from the Eastern Himalayan Biodiversity hotspot. Their headspace volatiles were sampled using a high-efficiency sample enrichment probe (SEP) and were characterized by gas chromatography-mass spectrometric analysis. FAs from neutral lipid (NL) and phospholipid (PL) fractions were also evaluated. Analysis of the oxylipin volatilome revealed the generation of diverse metabolites from C5 to C18, dominated by alkanes, alkenes, saturated and unsaturated alcohols, aldehydes, ketones and cyclic compounds, with pronounced structural variations. The C6 and C8 compounds dominated the total volatilome of all the samples. Analyses of FAs from membrane PL and storage NL highlighted the involvement of C18 and C20 PUFAs in oxylipin generation. The volatilome of each moss is characterized by a 'signature oxylipin mixture'. Quantitative differences in the C6 and C8 metabolites indicate their phylogenetic significance.
Collapse
Affiliation(s)
- Souvik Mitra
- Post Graduate Department of Botany, Darjeeling Government College, Darjeeling, 734101, India
| | - Barend V Burger
- Department of Chemistry and Polymer Science, University of Stellenbosch, Private Bag X1, Matieland, 7602, South Africa
| | - Mousumi Poddar-Sarkar
- Department of Botany (Centre of Advanced Study), Chemical Signal and Lipidomics Laboratory, University of Calcutta, 35-Ballygunge Circular Road, Kolkata, 700019, India.
| |
Collapse
|
30
|
Gachet MS, Schubert A, Calarco S, Boccard J, Gertsch J. Targeted metabolomics shows plasticity in the evolution of signaling lipids and uncovers old and new endocannabinoids in the plant kingdom. Sci Rep 2017; 7:41177. [PMID: 28120902 PMCID: PMC5264637 DOI: 10.1038/srep41177] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Accepted: 12/16/2016] [Indexed: 12/28/2022] Open
Abstract
The remarkable absence of arachidonic acid (AA) in seed plants prompted us to systematically study the presence of C20 polyunsaturated fatty acids, stearic acid, oleic acid, jasmonic acid (JA), N-acylethanolamines (NAEs) and endocannabinoids (ECs) in 71 plant species representative of major phylogenetic clades. Given the difficulty of extrapolating information about lipid metabolites from genetic data we employed targeted metabolomics using LC-MS/MS and GC-MS to study these signaling lipids in plant evolution. Intriguingly, the distribution of AA among the clades showed an inverse correlation with JA which was less present in algae, bryophytes and monilophytes. Conversely, ECs co-occurred with AA in algae and in the lower plants (bryophytes and monilophytes), thus prior to the evolution of cannabinoid receptors in Animalia. We identified two novel EC-like molecules derived from the eicosatetraenoic acid juniperonic acid, an omega-3 structural isomer of AA, namely juniperoyl ethanolamide and 2-juniperoyl glycerol in gymnosperms, lycophytes and few monilophytes. Principal component analysis of the targeted metabolic profiles suggested that distinct NAEs may occur in different monophyletic taxa. This is the first report on the molecular phylogenetic distribution of apparently ancient lipids in the plant kingdom, indicating biosynthetic plasticity and potential physiological roles of EC-like lipids in plants.
Collapse
Affiliation(s)
- María Salomé Gachet
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Alexandra Schubert
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Serafina Calarco
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| | - Julien Boccard
- School of Pharmaceutical Science, University of Geneva, University of Lausanne, 1 rue Michel Servet, 1211 Geneva 4, Switzerland
| | - Jürg Gertsch
- Institute of Biochemistry and Molecular Medicine, NCCR TransCure, University of Bern, Bühlstrasse 28, 3012 Bern, Switzerland
| |
Collapse
|
31
|
High Content of Dicranin in Anisothecium spirale
(Mitt.) Broth., a Moss from Eastern Himalayas and Its Chemotaxonomic Significance. Lipids 2017; 52:173-178. [DOI: 10.1007/s11745-017-4231-8] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2016] [Accepted: 01/04/2017] [Indexed: 11/27/2022]
|
32
|
Schuessele C, Hoernstein SNW, Mueller SJ, Rodriguez-Franco M, Lorenz T, Lang D, Igloi GL, Reski R. Spatio-temporal patterning of arginyl-tRNA protein transferase (ATE) contributes to gametophytic development in a moss. THE NEW PHYTOLOGIST 2016; 209:1014-1027. [PMID: 26428055 DOI: 10.1111/nph.13656] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2015] [Accepted: 08/14/2015] [Indexed: 06/05/2023]
Abstract
The importance of the arginyl-tRNA protein transferase (ATE), the enzyme mediating post-translation arginylation of proteins in the N-end rule degradation (NERD) pathway of protein stability, was analysed in Physcomitrella patens and compared to its known functions in other eukaryotes. We characterize ATE:GUS reporter lines as well as ATE mutants in P. patens to study the impact and function of arginylation on moss development and physiology. ATE protein abundance is spatially and temporally regulated in P. patens by hormones and light and is highly abundant in meristematic cells. Further, the amount of ATE transcript is regulated during abscisic acid signalling and downstream of auxin signalling. Loss-of-function mutants exhibit defects at various levels, most severely in developing gametophores, in chloroplast starch accumulation and senescence. Thus, arginylation is necessary for moss gametophyte development, in contrast to the situation in flowering plants. Our analysis further substantiates the conservation of the N-end rule pathway components in land plants and highlights lineage-specific features. We introduce moss as a model system to characterize the role of the NERD pathway as an additional layer of complexity in eukaryotic development.
Collapse
Affiliation(s)
- Christian Schuessele
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Sebastian N W Hoernstein
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Stefanie J Mueller
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Marta Rodriguez-Franco
- Cell Biology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Timo Lorenz
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Gabor L Igloi
- Institute of Biology 3, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schaenzlestr. 1, 79104, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, University of Freiburg, 79104, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, University of Freiburg, 79104, Freiburg, Germany
- TIP - Trinational Institute for Plant Research, Upper Rhine Valley, 79104, Freiburg, Germany
| |
Collapse
|
33
|
Reski R, Parsons J, Decker EL. Moss-made pharmaceuticals: from bench to bedside. PLANT BIOTECHNOLOGY JOURNAL 2015; 13:1191-8. [PMID: 26011014 PMCID: PMC4736463 DOI: 10.1111/pbi.12401] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 05/10/2023]
Abstract
Over the past two decades, the moss Physcomitrella patens has been developed from scratch to a model species in basic research and in biotechnology. A fully sequenced genome, outstanding possibilities for precise genome-engineering via homologous recombination (knockout moss), a certified GMP production in moss bioreactors, successful upscaling to 500 L wave reactors, excellent homogeneity of protein glycosylation, remarkable batch-to-batch stability and a safe cryopreservation for master cell banking are some of the key features of the moss system. Several human proteins are being produced in this system as potential biopharmaceuticals. Among the products are tumour-directed monoclonal antibodies with enhanced antibody-dependent cytotoxicity (ADCC), vascular endothelial growth factor (VEGF), complement factor H (FH), keratinocyte growth factor (FGF7/KGF), epidermal growth factor (EGF), hepatocyte growth factor (HGF), asialo-erythropoietin (asialo-EPO, AEPO), alpha-galactosidase (aGal) and beta-glucocerebrosidase (GBA). Further, an Env-derived multi-epitope HIV protein as a candidate vaccine was produced, and first steps for a metabolic engineering of P. patens have been made. Some of the recombinant biopharmaceuticals from moss bioreactors are not only similar to those produced in mammalian systems such as CHO cells, but are of superior quality (biobetters). The first moss-made pharmaceutical, aGal to treat Morbus Fabry, is in clinical trials.
Collapse
Affiliation(s)
- Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
| | - Juliana Parsons
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Freiburg, Germany
| |
Collapse
|
34
|
Guil-Guerrero JL, Rodríguez-García I, Kirillova I, Shidlovskiy F, Ramos-Bueno RP, Savvinov G, Tikhonov A. The PUFA-enriched fatty acid profiles of some frozen bison from the early Holocene found in the Siberian permafrost. Sci Rep 2015; 5:7926. [PMID: 25604079 PMCID: PMC4300509 DOI: 10.1038/srep07926] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2014] [Accepted: 12/15/2014] [Indexed: 11/09/2022] Open
Abstract
Knowledge concerning the availability of n-3 fatty acids for humans in prehistoric times is highly relevant in order to draw useful conclusions on the healthy dietary habits for present-day humans. To this end, we have analysed fat from several frozen bison found in the permafrost of Siberia (Russia). A total of 3 bison were included in this study, all them very close to the early Holocene (8,000; 8,200; and 9,300 years BP). All samples were analysed by gas-liquid chromatography-mass spectrometry (GLC-MS) and GLC flame-ionization detection (GLC-FID). Fat samples from two bison showed two well-differenced areas, i.e. brown and white, the latter being saturated fatty acid enriched, corresponding to an intermediate stage of adipocere formation, while the brown ones yielded α-linolenic acid in higher percentages than found in present-day bison. As demonstrated in this work, the subcutaneous fat of bison consumed by Mesolithic hunters contained amounts of n-3 fatty acids in higher quantities than those found in current bison; thus, the subcutaneous fat of bison could have contributed to meet today's recommended daily intake of essential fatty acids for good health in the Mesolithic to a greater extent than previously thought.
Collapse
Affiliation(s)
| | | | - Irina Kirillova
- Ice Age Museum, All Russia Exhibition Centre 71, 129223 Moscow, Russia
| | - Fedor Shidlovskiy
- Ice Age Museum, All Russia Exhibition Centre 71, 129223 Moscow, Russia
| | | | - Grigoryi Savvinov
- Institute of applied ecology of the North, North-eastern federal University, Yakutsk, Russia
| | - Alexei Tikhonov
- Zoological Institute, Russian Academy of Sciences, Saint-Petersburg, Russian Federation
| |
Collapse
|
35
|
Beike AK, Lang D, Zimmer AD, Wüst F, Trautmann D, Wiedemann G, Beyer P, Decker EL, Reski R. Insights from the cold transcriptome of Physcomitrella patens: global specialization pattern of conserved transcriptional regulators and identification of orphan genes involved in cold acclimation. THE NEW PHYTOLOGIST 2015; 205:869-81. [PMID: 25209349 PMCID: PMC4301180 DOI: 10.1111/nph.13004] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2014] [Accepted: 07/17/2014] [Indexed: 05/21/2023]
Abstract
The whole-genome transcriptomic cold stress response of the moss Physcomitrella patens was analyzed and correlated with phenotypic and metabolic changes. Based on time-series microarray experiments and quantitative real-time polymerase chain reaction, we characterized the transcriptomic changes related to early stress signaling and the initiation of cold acclimation. Transcription-associated protein (TAP)-encoding genes of P. patens and Arabidopsis thaliana were classified using generalized linear models. Physiological responses were monitored with pulse-amplitude-modulated fluorometry, high-performance liquid chromatography and targeted high-performance mass spectrometry. The transcript levels of 3220 genes were significantly affected by cold. Comparative classification revealed a global specialization of TAP families, a transcript accumulation of transcriptional regulators of the stimulus/stress response and a transcript decline of developmental regulators. Although transcripts of the intermediate to later response are from evolutionarily conserved genes, the early response is dominated by species-specific genes. These orphan genes may encode as yet unknown acclimation processes.
Collapse
Affiliation(s)
- Anna K Beike
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Daniel Lang
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Andreas D Zimmer
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- Institut für Humangenetik, Universitätsklinikum FreiburgBreisacherstr. 33, D-79106, Freiburg, Germany
| | - Florian Wüst
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Danika Trautmann
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- Institut National de la Recherche Agronomique28 rue de Herrlisheim, F-68021, Colmar, France
| | - Gertrud Wiedemann
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Peter Beyer
- Cell Biology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Eva L Decker
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of FreiburgSchänzlestraße 1, D-79104, Freiburg, Germany
- FRISYS - Freiburg Initiative for Systems Biology79104, Freiburg, Germany
- BIOSS–Centre for Biological Signaling Studies79104, Freiburg, Germany
- FRIAS– Freiburg Institute for Advanced Studies79104, Freiburg, Germany
- TIP–Trinational Institute for Plant Research79104, Freiburg, Germany
| |
Collapse
|
36
|
de León IP, Hamberg M, Castresana C. Oxylipins in moss development and defense. FRONTIERS IN PLANT SCIENCE 2015; 6:483. [PMID: 26191067 PMCID: PMC4490225 DOI: 10.3389/fpls.2015.00483] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Accepted: 06/15/2015] [Indexed: 05/08/2023]
Abstract
Oxylipins are oxygenated fatty acids that participate in plant development and defense against pathogen infection, insects, and wounding. Initial oxygenation of substrate fatty acids is mainly catalyzed by lipoxygenases (LOXs) and α-dioxygenases but can also take place non-enzymatically by autoxidation or singlet oxygen-dependent reactions. The resulting hydroperoxides are further metabolized by secondary enzymes to produce a large variety of compounds, including the hormone jasmonic acid (JA) and short-chain green leaf volatiles. In flowering plants, which lack arachidonic acid, oxylipins are produced mainly from oxidation of polyunsaturated C18 fatty acids, notably linolenic and linoleic acids. Algae and mosses in addition possess polyunsaturated C20 fatty acids including arachidonic and eicosapentaenoic acids, which can also be oxidized by LOXs and transformed into bioactive compounds. Mosses are phylogenetically placed between unicellular green algae and flowering plants, allowing evolutionary studies of the different oxylipin pathways. During the last years the moss Physcomitrella patens has become an attractive model plant for understanding oxylipin biosynthesis and diversity. In addition to the advantageous evolutionary position, functional studies of the different oxylipin-forming enzymes can be performed in this moss by targeted gene disruption or single point mutations by means of homologous recombination. Biochemical characterization of several oxylipin-producing enzymes and oxylipin profiling in P. patens reveal the presence of a wider range of oxylipins compared to flowering plants, including C18 as well as C20-derived oxylipins. Surprisingly, one of the most active oxylipins in plants, JA, is not synthesized in this moss. In this review, we present an overview of oxylipins produced in mosses and discuss the current knowledge related to the involvement of oxylipin-producing enzymes and their products in moss development and defense.
Collapse
Affiliation(s)
- Inés Ponce de León
- Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Montevideo, Uruguay
- *Correspondence: Inés Ponce de León, Departamento de Biología Molecular, Instituto de Investigaciones Biológicas Clemente Estable, Avenida Italia 3318, Montevideo 11600, Uruguay,
| | - Mats Hamberg
- Division of Physiological Chemistry II, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Carmen Castresana
- Departamento de Genética Molecular de Plantas, Centro Nacional de Biotecnología, Consejo Superior de Investigaciones Científicas, Madrid, Spain
| |
Collapse
|
37
|
Beike AK, Spagnuolo V, Lüth V, Steinhart F, Ramos-Gómez J, Krebs M, Adamo P, Rey-Asensio AI, Angel Fernández J, Giordano S, Decker EL, Reski R. Clonal in vitro propagation of peat mosses ( Sphagnum L.) as novel green resources for basic and applied research. PLANT CELL, TISSUE AND ORGAN CULTURE 2014; 120:1037-1049. [PMID: 26321779 PMCID: PMC4551280 DOI: 10.1007/s11240-014-0658-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 11/01/2014] [Indexed: 05/06/2023]
Abstract
As builders and major components of peatlands, Sphagnopsida (peat mosses) are very important organisms for ecosystems and world's climate. Nowadays many Sphagnum species as well as their habitats are largely protected, while their scientific and economic relevance remains considerable. Advanced methods of in vitro cultivation provide the potential to work in a sustainable way with peat mosses and address aspects of basic research as well as biotechnological and economical topics like biomonitoring or the production of renewable substrates for horticulture (Sphagnum farming). Here, we describe the establishment of axenic in vitro cultures of the five peat moss species Sphagnum fimbriatum Wils. and Hook., Sphagnum magellanicum Brid., Sphagnum palustre L., Sphagnum rubellum Wils. and Sphagnum subnitens Russ. and Warnst. with specific focus on large-scale cultivation of S. palustre in bioreactors. Axenic, clonal cultures were established to produce high quantities of biomass under standardized laboratory conditions. For advanced production of S.palustre we tested different cultivation techniques, growth media and inocula, and analyzed the effects of tissue disruption. While cultivation on solid medium is suitable for long term storage, submerse cultivation in liquid medium yielded highest amounts of biomass. By addition of sucrose and ammonium nitrate we were able to increase the biomass by around 10- to 30-fold within 4 weeks. The morphology of in vitro-cultivated gametophores showed similar phenotypic characteristics compared to material from the field. Thus the tested culture techniques are suitable to produce S. palustre material for basic and applied research.
Collapse
Affiliation(s)
- Anna K. Beike
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Valeria Spagnuolo
- Dipartimento di Biologia, Università di Napoli Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
| | - Volker Lüth
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Feray Steinhart
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Julia Ramos-Gómez
- BIOVIA Consultor Ambiental, Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela, Spain
| | - Matthias Krebs
- Institute of Botany and Landscape Ecology, Ernst-Moritz-Arndt University of Greifswald, 17487 Greifswald, Germany
| | - Paola Adamo
- Dipartimento di Agraria, Università di Napoli Federico II, Via Università 100, 80055 Naples, Italy
| | - Ana Isabel Rey-Asensio
- BIOVIA Consultor Ambiental, Edificio Emprendia, Campus Vida, 15782 Santiago de Compostela, Spain
| | - J. Angel Fernández
- Department of Cellular Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, 15782 Santiago de Compostela, Spain
| | - Simonetta Giordano
- Dipartimento di Biologia, Università di Napoli Federico II, Campus Monte S. Angelo, Via Cinthia 4, 80126 Naples, Italy
- AMRA S.c.a r.l., Via Nuova Agnano 11, 80125 Naples, Italy
| | - Eva L. Decker
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
| | - Ralf Reski
- Plant Biotechnology, Faculty of Biology, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany
- BIOSS - Centre for Biological Signalling Studies, Freiburg, Germany
- FRIAS - Freiburg Institute for Advanced Studies, Freiburg, Germany
| |
Collapse
|