1
|
Wu Z, Hu J, Li Y, Yao X, Ouyang S, Ren K. Assessment of renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury in type 1 diabetic mice using diffusion tensor imaging. Redox Rep 2024; 29:2398380. [PMID: 39284588 PMCID: PMC11407404 DOI: 10.1080/13510002.2024.2398380] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/19/2024] Open
Abstract
Purpose: To investigate the renal pathophysiological processes and protective effect of quercetin on contrast-induced acute kidney injury (CI-AKI) in mice with type 1 diabetic mellitus(DM) using diffusion tensor imaging(DTI).Methods: Mice with DM were divided into two groups. In the diabetic + contrast medium(DCA) group, the changes of the mice kidneys were monitored at 1, 24, 48, and 72 h after the injection of iodixanol(4gI/kg). The mice in the diabetic + contrast medium + quercetin(DCA + QE) group were orally given different concentrations of quercetin for seven days before injection of iodixanol. In vitro experiments, renal tubular epithelial (HK-2) cells exposed to high glucose conditions were treated with various quercetin concentrations before treatment with iodixanol(250 mgI/mL).Results: DTI-derived mean diffusivity(MD) and fractional anisotropy(FA) values can be used to evaluate CI-AKI effectively. Quercetin significantly increased the expression of Sirt 1 and reduced oxidative stress by increasing Nrf 2/HO-1/SOD1. The antiapoptotic effect of quercetin on CI-AKI was revealed by decreasing proteins level and by reducing the number of apoptosis-positive cells. In addition, flow cytometry indicated quercetin-mediated inhibition of M1 macrophage polarization in the CI-AKI.Conclusions: DTI will be an effective noninvasive tool in diagnosing CI-AKI. Quercetin attenuates CI-AKI on the basis of DM through anti-oxidative stress, apoptosis, and inflammation.
Collapse
Affiliation(s)
- Ziqian Wu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Jingyi Hu
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| | - Yanfei Li
- Cell Therapy Research Center, Xiamen Humanity Hospital, Xiamen, People's Republic of China
| | - Xiang Yao
- Department of Neurosurgery, Zhongshan Hospital of Xiamen University, Xiamen, People's Republic of China
| | - Siyu Ouyang
- Department of Radiology, The Third Affiliated Hospital of Sun Yat-Sen University, Guangzhou, People's Republic of China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, School of Medicine, Xiamen University, Xiamen Radiological Control Center, Xiamen, People's Republic of China
| |
Collapse
|
2
|
Wang Y, Wang B, Qin J, Yan H, Chen H, Guo J, Wu PY, Wang X. Use of multiparametric MRI to noninvasively assess iodinated contrast-induced acute kidney injury. Magn Reson Imaging 2024; 114:110248. [PMID: 39357626 DOI: 10.1016/j.mri.2024.110248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2024] [Revised: 09/06/2024] [Accepted: 09/29/2024] [Indexed: 10/04/2024]
Abstract
PURPOSE To gauge the utility of multiparametric MRI in characterizing pathologic changes after iodinated contrast-induced acute kidney injury (CI-AKI) in rats. METHODS We randomly grouped 24 rats injected with 8 g iodine/kg of body weight (n = 6 each) and 6 rats injected with saline as controls. All rats underwent T1, T2 mapping and diffusion kurtosis imaging (DKI) after contrast injection at 0 (control), 1, 3, 7, 13 days. T1, T2, and mean kurtosis (MK) values were performed in renal outer/inner stripes of outer medulla (OSOM and ISOM) and cortex (CO), and their diagnosis performance for CI-AKI also been evaluated. Serum creatinine (SCr), insulin-like growth factor-binding protein 7 (IGFBP7), tissue inhibitor metalloproteinase 2 (TIMP-2), aquaporin-1 (AQP1), α-smooth muscle actin (α-SMA), and histologic indices were examined. RESULTS Compared with controls, urinary concentrations of both TIMP-2 and IGFBP7 were obviously elevated from Day 1 to Day 13 (all p < 0.05). T2 values were significantly higher than control group for Days 1 and 3, and T1 and MK increased were more remarkable at all time points (Days 1-13) in CI-AKI (all p < 0.05) than control group. Changes in T1 and MK strongly correlated with renal injury scores of all anatomical compartments and with expression levels of AQP1 and moderately correlated with α-SMA. Changes in T2 values correlating moderately with renal scores of CO, ISOM and OSOM and AQP1. The MK obtained the highest area under the receiver operating characteristic (ROC) curve of 0.846 with a sensitivity of 70.8 % and specificity of 88.9 %. CONCLUSIONS Combined use of multiparametric MRI could be a valid noninvasive method for comprehensive monitoring of CI-AKI. Among these parameters, MK may achieve the best diagnostic performance for CI-AKI.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jiangbo Qin
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haili Yan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Haoyuan Chen
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing 100000, China.
| | - Pu-Yeh Wu
- GE Healthcare, MR Research China, Beijing 100000, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan 030000, Shanxi, China; Shanxi Key Laboratory of Intelligent Imaging, The First Hospital of Shanxi Medical University, Taiyuan, Shanxi Province, China, 030001; Department of Medical Imaging, Shanxi Medical University, Taiyuan 030000, Shanxi, China.
| |
Collapse
|
3
|
Chen X, Ge C, Zhang Y, Ma Y, Zhang Y, Li B, Chu Z, Ji Q. Evaluation of Early Renal Changes in Type 2 Diabetes Mellitus Using Multiparametric MR Imaging. Magn Reson Med Sci 2024:mp.2023-0148. [PMID: 39370295 DOI: 10.2463/mrms.mp.2023-0148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024] Open
Abstract
PURPOSE To evaluate the clinical value of early renal changes in type 2 diabetes mellitus (T2DM) using multiparameter MRI. METHODS The study included 41 diabetics (normoalbuminuria: n = 23; microalbuminuria: n = 18) and 30 healthy controls. All subjects underwent intravoxel incoherent motion diffusion-weighted imaging (IVIM), blood oxygen level dependent (BOLD) and arterial spin labeling (ASL) examinations. One-way analysis of variance was used to compare MRI parameters among the three groups. Pearson correlation analysis was used to evaluate the relationship between MRI parameters and estimated glomerular filtration rate (eGFR) and albumin-creatinine ratio (ACR). Receiver operating characteristic analysis was performed to assess the diagnostic performance. RESULTS There were statistical differences in cortical D, D*, f, renal blood flow (RBF) and medulla D, D*, f, R2* among the three groups (P < 0.05). The cortical or medullary D, cortical f, and RBF were significantly positively correlated with eGFR (all P < 0.01). The cortical or medullary D, D*, f, cortical RBF were negatively correlated with ACR (all P < 0.05).To evaluate early kidney changes and degree of diabetes, cortical combined D and RBF (AUC [area under the curve] = 0.796 and 0.947, respectively) was better than single D or RBF (all P > 0.05); medullary combined D and R2* (AUC = 0.899 and 0.923, respectively) was better than single D or R2* (all P > 0.05), except single D (P = 0.005) in differentiating normoalbuminuria group from control group. CONCLUSION The early changes of renal diffusion and perfusion, oxygenation level, and blood flow in T2DM could be evaluated noninvasively and quantitatively using IVIM, BOLD and ASL. Renal medullary combined IVIM-derived D and BOLD-derived R2* and cortical combined IVIM-derived D and ASL-derived RBF were better for evaluating early renal changes in T2DM.
Collapse
Affiliation(s)
- Xinyi Chen
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Chao Ge
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
| | - Yuling Zhang
- Department of Radiology, Traditional Chinese Medicine Hospital of Gaoling District, Xi'an, Shaanxi, China
| | - Yajie Ma
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Yuling Zhang
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Bei Li
- The First Central Clinical School, Tianjin Medical University, Tianjin, China
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| | - Zhiqiang Chu
- Department of Nephrology, Tianjin Fourth Central Hospital, Tianjin, China
| | - Qian Ji
- Department of Radiology, Tianjin First Central Hospital, Tianjin, China
| |
Collapse
|
4
|
Zhou H, Si Y, Yang L, Wang Y, Xiao Y, Tang Y, Qin W. The clinical and pathological evaluation of patients with immunoglobulin A nephropathy by diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging. Br J Radiol 2024; 97:1577-1587. [PMID: 39073891 PMCID: PMC11332673 DOI: 10.1093/bjr/tqae132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024] Open
Abstract
OBJECTIVES To explore the efficacy of diffuse magnetic resonance imaging (MRI) for identifying clinicopathological changes in immunoglobulin A nephropathy (IgAN) patients. METHODS The study enrolled IgAN patients and healthy volunteers. IgAN patients were divided into Group 1 [estimated glomerular filtration rate (eGFR) ≥ 90 mL/min/1.73 m2], Group 2 (60 ≤ eGFR < 90 mL/min/1.73 m2), and Group 3 (eGFR < 60 mL/min/1.73 m2). Intravoxel incoherent motion diffusion-weighted imaging (IVIM-DWI) and diffusion tensor imaging (DTI) were performed via 3.0 T magnetic resonance. Diffuse MRI, clinical, and pathological indicators were collected and analysed. P < .05 was considered statistically significant. RESULTS Forty-six IgAN patients and twenty-seven volunteers were enrolled. The apparent diffusion coefficient, diffusion coefficient (D), perfusion fraction (f), and fractional anisotropy (FA) were significantly different among IgAN subgroups and controls. These parameters were positively correlated with eGFR and negatively with creatinine, and inversely correlated with glomerular sclerosis, interstitial fibrosis, and tubular atrophy (all P < .05). They had significantly high area under the curve (AUC) for distinguishing IgAN patients from controls, while FA had the highest AUC in identifying Group 1 IgAN patients from volunteers. CONCLUSIONS DTI and IVIM-DWI had the advantage of evaluating clinical and pathological changes in IgAN patients. DTI was superior at distinguishing early IgAN patients and might be a noninvasive marker for screening early IgAN patients from healthy individuals. ADVANCES IN KNOWLEDGE DTI and IVIM-DWI could evaluate clinical and pathological changes and correlated with Oxford classification in IgAN patients. They could also identify IgAN patients from healthy populations, while DTI had superiority in differentiating early IgAN patients.
Collapse
Affiliation(s)
- Huan Zhou
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Si
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Ling Yang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yitian Xiao
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Yi Tang
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| | - Wei Qin
- Division of Nephrology, Department of Medicine, West China Hospital, Sichuan University, Chengdu, Sichuan, 610041, China
- Department of Medicine, West China School of Medicine, Sichuan University, Chengdu, Sichuan, 610041, China
| |
Collapse
|
5
|
Chen L, Ren Y, Yuan Y, Xu J, Wen B, Xie S, Zhu J, Li W, Gong X, Shen W. Multi-parametric MRI-based machine learning model for prediction of pathological grade of renal injury in a rat kidney cold ischemia-reperfusion injury model. BMC Med Imaging 2024; 24:188. [PMID: 39060984 PMCID: PMC11282691 DOI: 10.1186/s12880-024-01320-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/11/2024] [Accepted: 06/04/2024] [Indexed: 07/28/2024] Open
Abstract
BACKGROUND Renal cold ischemia-reperfusion injury (CIRI), a pathological process during kidney transplantation, may result in delayed graft function and negatively impact graft survival and function. There is a lack of an accurate and non-invasive tool for evaluating the degree of CIRI. Multi-parametric MRI has been widely used to detect and evaluate kidney injury. The machine learning algorithms introduced the opportunity to combine biomarkers from different MRI metrics into a single classifier. OBJECTIVE To evaluate the performance of multi-parametric magnetic resonance imaging for grading renal injury in a rat model of renal cold ischemia-reperfusion injury using a machine learning approach. METHODS Eighty male SD rats were selected to establish a renal cold ischemia -reperfusion model, and all performed multiparametric MRI scans (DWI, IVIM, DKI, BOLD, T1mapping and ASL), followed by pathological analysis. A total of 25 parameters of renal cortex and medulla were analyzed as features. The pathology scores were divided into 3 groups using K-means clustering method. Lasso regression was applied for the initial selecting of features. The optimal features and the best techniques for pathological grading were obtained. Multiple classifiers were used to construct models to evaluate the predictive value for pathology grading. RESULTS All rats were categorized into mild, moderate, and severe injury group according the pathologic scores. The 8 features that correlated better with the pathologic classification were medullary and cortical Dp, cortical T2*, cortical Fp, medullary T2*, ∆T1, cortical RBF, medullary T1. The accuracy(0.83, 0.850, 0.81, respectively) and AUC (0.95, 0.93, 0.90, respectively) for pathologic classification of the logistic regression, SVM, and RF are significantly higher than other classifiers. For the logistic model and combining logistic, RF and SVM model of different techniques for pathology grading, the stable and perform are both well. Based on logistic regression, IVIM has the highest AUC (0.93) for pathological grading, followed by BOLD(0.90). CONCLUSION The multi-parametric MRI-based machine learning model could be valuable for noninvasive assessment of the degree of renal injury.
Collapse
Affiliation(s)
- Lihua Chen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yan Ren
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Yizhong Yuan
- Department of Radiology, Tianjin Medical University General Hospital, Tianjin, 300052, China
| | - Jipan Xu
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Baole Wen
- College of Medicine, Nankai University, Tianjin, 300350, China
| | - Shuangshuang Xie
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China
| | - Jinxia Zhu
- MR Collaborations, Siemens Healthcare China, Beijing, 100102, China
| | - Wenshuo Li
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Xiaoli Gong
- College of Computer Science, Nankai University, Tianjin, 300350, China
| | - Wen Shen
- Department of Radiology, Tianjin First Central Hospital, Tianjin Institute of Imaging Medicine, No. 24 Fu Kang Road, Nan Kai District, Tianjin, 300192, China.
| |
Collapse
|
6
|
Liu J, Wang R, Qiu J, Su T. Investigation of renal perfusion and pathological changes in patients with acute kidney disease and tubulointerstitial nephritis using intravoxel incoherent motion and arterial spin labelling MRI: a prospective, observational study protocol. BMJ Open 2024; 14:e076488. [PMID: 38531564 PMCID: PMC10966823 DOI: 10.1136/bmjopen-2023-076488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/08/2023] [Accepted: 03/16/2024] [Indexed: 03/28/2024] Open
Abstract
INTRODUCTION Acute kidney injury (AKI) is a critical condition with a complex aetiology and different outcomes, where haemodynamic dysfunction, renal hypoperfusion and inflammation serve as key contributors to its development and progression. Early and accurate diagnosis is vital for initiating targeted treatments like fluid resuscitation, vasoactive agents or steroid therapy, which are essential for improving patient outcomes. Intravoxel incoherent motion (IVIM) MRI assesses both capillary perfusion and tissue water diffusion, while arterial spin labelling (ASL) MRI measures renal blood flow without the need for contrast. Research on combined use of IVIM and ASL MRI in patients with AKI is rare. This study aims to investigate the MRI characteristics of IVIM and ASL in patients with tubulointerstitial nephritis (TIN) and to explore their relationship with pathological findings and renal recovery. METHODS AND ANALYSIS Single-centre, prospective, observational cohort study of 30 patients with biopsy-proven TIN. Participants will undergo renal IVIM and ASL MRI within 7 days post-biopsy. The pathological assessments of active and chronic tubulointerstitial injuries will be semiscored using modified Banff criteria. The estimated glomerular filtration rate (eGFR) during follow-up and prevalence of chronic kidney disease at 3 and 6 months will be reported. An eGFR below 45 mL/min is considered a poor renal outcome. ETHICS AND DISSEMINATION The study has been reviewed and approved by the Ethics Committee of Peking University First Hospital and written informed consent will be obtained from all participants (2022Y503). The study results will be disseminated through publication in a relevant peer-reviewed journal and presentation at academic meetings to increase awareness and share findings with the scientific community.
Collapse
Affiliation(s)
- Jiajia Liu
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Jianxing Qiu
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Tao Su
- Peking University First Hospital, Beijing, China
- Department of Nephrology, Peking University First Hospital, Beijing, China
| |
Collapse
|
7
|
Wang B, Wang Y, Wang J, Jin C, Zhou R, Guo J, Zhang H, Wang M. Multiparametric Magnetic Resonance Investigations on Acute and Long-Term Kidney Injury. J Magn Reson Imaging 2024; 59:43-57. [PMID: 37246343 DOI: 10.1002/jmri.28784] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 04/29/2023] [Accepted: 05/01/2023] [Indexed: 05/30/2023] Open
Abstract
Acute kidney injury (AKI) is a frequent complication of critical illness and carries a significant risk of short- and long-term mortality. The prediction of the progression of AKI to long-term injury has been difficult for renal disease treatment. Radiologists are keen for the early detection of transition from AKI to long-term kidney injury, which would help in the preventive measures. The lack of established methods for early detection of long-term kidney injury underscores the pressing needs of advanced imaging technology that reveals microscopic tissue alterations during the progression of AKI. Fueled by recent advances in data acquisition and post-processing methods of magnetic resonance imaging (MRI), multiparametric MRI is showing great potential as a diagnostic tool for many kidney diseases. Multiparametric MRI studies offer a precious opportunity for real-time noninvasive monitoring of pathological development and progression of AKI to long-term injury. It provides insight into renal vasculature and function (arterial spin labeling, intravoxel incoherent motion), tissue oxygenation (blood oxygen level-dependent), tissue injury and fibrosis (diffusion tensor imaging, diffusion kurtosis imaging, T1 and T2 mapping, quantitative susceptibility mapping). The multiparametric MRI approach is highly promising but the longitudinal investigation on the transition of AKI to irreversible long-term impairment is largely ignored. Further optimization and implementation of renal MR methods in clinical practice will enhance our comprehension of not only AKI but chronic kidney diseases. Novel imaging biomarkers for microscopic renal tissue alterations could be discovered and benefit the preventative interventions. This review explores recent MRI applications on acute and long-term kidney injury while addressing lingering challenges, with emphasis on the potential value of the development of multiparametric MRI for renal imaging on clinical systems. EVIDENCE LEVEL: 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China
| | - Jing Wang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Chentao Jin
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Rui Zhou
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
| | - Jinxia Guo
- GE Healthcare, MR Research China, Beijing, China
| | - Hong Zhang
- Department of Nuclear Medicine and PET Center, The Second Hospital of Zhejiang University School of Medicine, Hangzhou, China
- Key Laboratory of Medical Molecular Imaging of Zhejiang Province, Hangzhou, China
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| | - Min Wang
- Key Laboratory for Biomedical Engineering of Ministry of Education, Zhejiang University, Hangzhou, China
- College of Biomedical Engineering & Instrument Science, Zhejiang University, Hangzhou, China
| |
Collapse
|
8
|
Dai H, Zhao C, Xiong Y, He Q, Su W, Li J, Yang Y, Lin R, Xiang S, Shao J. Evaluation of contrast-induced acute kidney injury using IVIM and DKI MRI in a rat model of diabetic nephropathy. Insights Imaging 2022; 13:110. [PMID: 35767196 PMCID: PMC9243200 DOI: 10.1186/s13244-022-01249-w] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2022] [Accepted: 06/07/2022] [Indexed: 11/17/2022] Open
Abstract
OBJECTIVE To assess the potential of intravoxel incoherent motion (IVIM) and diffusion kurtosis imaging (DKI) in monitoring renal changes in a diabetic nephropathy (DN) rat model with acute kidney injury (CI-AKI) induced by iso-osmotic contrast media (IOCM) and low-osmotic contrast media (LOCM). METHODS A diabetic nephropathy rat model was established, and the animals were randomly split into the LOCM group and IOCM group (n = 13 per group), with iopamidol and iodixanol injection, respectively (4 g iodine/kg). MRI including IVIM and DKI was performed 24 h before contrast medium injections (baseline) and 1, 24, 48, and 72 h after injections. Changes in pure molecular diffusion (D), pseudo-diffusion coefficient (D*), perfusion fraction (f), mean diffusion (MD), mean kurtosis (MK), serum creatinine (SCr) and urea nitrogen (BUN), histopathology alterations, and α-smooth muscle actin (α-SMA) expression were assessed. Inter-observer agreement was evaluated using the intraclass correlation coefficient (ICC). RESULTS Compared against baseline levels, significant decreases in D, D*, and f were observed in all anatomical kidney compartments after contrast injection (p < 0.05). MD in the cortex (CO) and outer medullary (OM) gradually decreased, and MK in OM gradually increased 24-72 h after injection. D, D*, f, and MD were negatively correlated with the histopathologic findings and α-smooth muscle actin (α-SMA) expression in all anatomical kidney compartments. Inter-observer reproducibility was generally good (ICCs ranging from 0.776 to 0.979). CONCLUSIONS IVIM and DKI provided noninvasive imaging parameters, which might offer effective detection of CI-AKI in DN.
Collapse
Affiliation(s)
- Hongyan Dai
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Chun Zhao
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Yuxin Xiong
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Qian He
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Wei Su
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Jianbo Li
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China
| | - Ying Yang
- Department of Endocrinology and Metabolism, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Ruyun Lin
- Department of Hospital Quality Control, The Affiliated Hospital of Yunnan University, Kunming, Yunnan, China
| | - Shutian Xiang
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China.
| | - Juwei Shao
- Department of Radiology, The Affiliated Hospital of Yunnan University, NO.176 Qingnian Road, Kunming, 650021, Yunnan, China.
| |
Collapse
|
9
|
Wang B, Wang Y, Tan Y, Guo J, Chen H, Wu PY, Wang X, Zhang H. Assessment of Fasudil on Contrast-Associated Acute Kidney Injury Using Multiparametric Renal MRI. Front Pharmacol 2022; 13:905547. [PMID: 35784704 PMCID: PMC9242620 DOI: 10.3389/fphar.2022.905547] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/27/2022] [Accepted: 05/31/2022] [Indexed: 11/25/2022] Open
Abstract
Aims: To evaluate the utility of fasudil in a rat model of contrast-associated acute kidney injury (CA-AKI) and explore its underlying mechanism through multiparametric renal magnetic resonance imaging (mpMRI). Methods: Experimental rats (n = 72) were grouped as follows: controls (n = 24), CA-AKI (n = 24), or CA-AKI + Fasudil (n = 24). All animals underwent two mpMRI studies (arterial spin labeling, T1 and T2 mapping) at baseline and post iopromide/fasudil injection (Days 1, 3, 7, and 13 respectively). Relative change in renal blood flow (ΔRBF), T1 (ΔT1) and T2 (ΔT2) values were assessed at specified time points. Serum levels of cystatin C (CysC) and interleukin-1β (IL-1β), and urinary neutrophil gelatinase-associated lipocalin (NGAL) concentrations were tested as laboratory biomarkers, in addition to examining renal histology and expression levels of various proteins (Rho-kinase [ROCK], α-smooth muscle actin [α-SMA]), hypoxia-inducible factor-1α (HIF-1α), and transforming growth factor-β1 (TGF-β1) that regulate renal fibrosis and hypoxia. Results: Compared with the control group, serum levels of CysC and IL-1β, and urinary NGAL concentrations were clearly increased from Day 1 to Day 13 in the CA-AKI group (all p < 0.05). There were significant reductions in ΔT2 values on Days 1 and 3, and ΔT1 reductions were significantly more pronounced at all time points (Days 1–13) in the CA-AKI + Fasudil group (vs. CA-AKI) (all p < 0.05). Fasudil treatment lowered expression levels of ROCK-1, and p-MYPT1/MYPT1 proteins induced by iopromide, decreasing TGF-β1 expression and suppressing both extracellular matrix accumulation and α-SMA expression relative to untreated status (all p < 0.05). Fasudil also enhanced PHD2 transcription and inhibition of HIF-1α expression after CA-AKI. Conclusions: In the context of CA-AKI, fasudil appears to reduce renal hypoxia, fibrosis, and dysfunction by activating (Rho/ROCK) or inhibiting (TGF-β1, HIF-1α) certain signaling pathways and reducing α-SMA expression. Multiparametric MRI may be a viable noninvasive tool for monitoring CA-AKI pathophysiology during fasudil therapy.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Yongfang Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yan Tan
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Jinxia Guo
- GE Healthcare MR Research China, Beijing, China
| | - Haoyuan Chen
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, China
| | - Pu-Yeh Wu
- GE Healthcare MR Research China, Beijing, China
| | - Xiaochun Wang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| | - Hui Zhang
- Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, China
- *Correspondence: Xiaochun Wang, ; Hui Zhang,
| |
Collapse
|
10
|
Han Q, Lu Y, Wang D, Zhao Y, Li X, Mei N, Zhu Y, Xiao A, Yin B. Assessment of dynamic hepatic and renal imaging changes in COVID-19 survivors using T1 mapping and IVIM-DWI. Abdom Radiol (NY) 2022; 47:1817-1827. [PMID: 35279759 PMCID: PMC8918012 DOI: 10.1007/s00261-022-03471-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Revised: 02/20/2022] [Accepted: 02/21/2022] [Indexed: 11/11/2022]
Abstract
Purpose To explore the imaging changes of the liver and kidneys in COVID-19 survivors using variable flip angle (VFA) T1 mapping and intravoxel incoherent motion-diffusion weighted imaging (IVIM-DWI). Methods This prospective study included 37 discharged COVID-19 participants and 24 age-matched non-COVID-19 volunteers who underwent abdominal MRI with VFA T1 mapping and IVIM-DWI sequencing as a COVID-19 group and control group, respectively. Among those discharged COVID-19 participants, 23 patients underwent two follow-up MRI scans, and were enrolled as the 3-month follow-up group and 1-year follow-up group, respectively. The demographics, clinical characteristics, and laboratory tests were collected. Imaging parameters of the liver and kidneys were measured. All collected values were compared among different groups. Results The 3-month follow-up group had the lowest hepatic T1 value, which was significantly lower than the value in the control group (P < 0.001). Additionally, the 3-month follow-up group had the highest hepatic ADC and D values, cortical ADC and f values, which were significantly higher than those in the control group (for all, P < 0.05). The hepatic D value in the 1-year follow-up group decreased significantly in comparison with that in the 3-month follow-up group (P = 0.001). Compared to non-severe patients, severe cases had significantly higher hepatic D* and f*D* values (P = 0.031, P = 0.015, respectively). Conclusion The dynamic alterations of hepatic and renal imaging parameters detected with T1 mapping and IVIM-DWI suggested that COVID-19 survivors might develop mild, non-symptomatic liver and kidney impairments, of which liver impairment could probably relieve over time and kidney impairment might be long-existing. Graphical abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1007/s00261-022-03471-y.
Collapse
|
11
|
Zhu Q, Ye J, Zhu W, Wu J, Chen W, Ling J. Functional magnetic resonance imaging for distinguishing type of papillary renal cell carcinoma: a preliminary study. Br J Radiol 2021; 94:20201315. [PMID: 34491821 DOI: 10.1259/bjr.20201315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022] Open
Abstract
OBJECTIVE To investigate the feasibility of magnetic resonance diffusion kurtosis imaging (DKI) and intravoxel incoherent motion (IVIM) for distinguishing Type 1 and 2 of papillary renal cell carcinoma (PRCC). METHODS A total of Type 1 (n = 20) and Type 2 (n = 16) of PRCC were examined by pathology. For DKI and IVIM, mean diffusivity (MD), fractional anisotropy (FA), mean kurtosis (MK), kurtosis anisotropy (KA), radial kurtosis (RK), diffusivity (D), pseudodiffusivity (D*) and perfusion fraction (f) were performed in assessment of type of PRCC. RESULTS The mean SNRs of IVIM and DKI images at b = 1500 and 2000 s/mm2 were 8.6 ± 0.8 and 7.8 ± 0.6. Statistically significant differences were observed in MD and D values (1.11 ± 0.23 vs 0.73 ± 0.13, 0.91 ± 0.24 vs 0.49 ± 0.13, p < 0.05) between Type 1 and Type 2 of PRCC, while comparable FA, RK, D* and f values were found between Type 1 and Type 2 of PRCC (p > 0.05). Statistically significant differences were observed in MK and KA values (1.23 ± 0.16 vs 1.91 ± 0.26, 1.49 ± 0.19 vs 2.36 ± 0.39, p < 0.05) between Type 1 and Type 2 of PRCC. Areas of MD, MK, KA and D values under ROC curves for differentiating Type 1 and Type 2 of PRCC were 0.836, 0.818, 0.881 and 0.766, respectively. Using MD, MK, KA and D values of 0.93, 1.64, 1.94, 0.68 as the threshold value for differentiating Type 1 from Type 2 of PRCC, the best result obtained had a sensitivity of 85.0%, 80.0%, 90.0%, 85.0%, a specificity 75.0%, 68.7%, 87.5%, 81.2%, and an accuracy of 83.3%, 80.5%, 88.9%, 86.1%, respectively. CONCLUSION DKI and IVIM are feasible techniques for distinguishing type of PRCC, given an adequate SNR of IVIM and DKI images. ADVANCES IN KNOWLEDGE 1. MD and D values are higher for Type 1 of PRCC and lower for Type 2 of PRCC.2. MK and KA values are higher for Type 2 of PRCC and lower for Type 1 of PRCC.3. DKI and IVIM can be used as clinical biomarker for PRCC type's differential diagnosis, given an adequate SNR.
Collapse
Affiliation(s)
- Qingqiang Zhu
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, Yangzhou, China
| | | | | | | | | | - Jun Ling
- Department of Medical Imaging, Clinical Medical College, Yangzhou University, Yangzhou, China
| |
Collapse
|
12
|
Lee SK, Lee J, Jang S, Lee E, Jeon CY, Lim KS, Jin YB, Choi J. Renal Diffusion-Weighted Imaging in Healthy Dogs: Reproducibility, Test-Retest Repeatability, and Selection of the Optimal b-value Combination. Front Vet Sci 2021; 8:641971. [PMID: 34277748 PMCID: PMC8282824 DOI: 10.3389/fvets.2021.641971] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Accepted: 06/08/2021] [Indexed: 11/13/2022] Open
Abstract
Diffusion-weighted imaging (DWI) magnetic resonance imaging can evaluate alterations in the microstructure of the kidney. The purpose of this study was to assess the apparent diffusion coefficient (ADC) and the intravoxel incoherent motion model (IVIM) parameters of a normal kidney in healthy dogs, to evaluate the effect of b-value combinations on the ADC value, and the reproducibility and test-retest repeatability in monoexponential and IVIM analysis. In this experimental study, the ADC, pure diffusion coefficient (D), pseudodiffusion coefficient (D*), and perfusion fraction (f p) were measured from both kidneys in nine healthy beagles using nine b-values (b = 0, 50, 70, 100, 150, 200, 500, 800, and 1,000 s/mm2) twice with a 1-week interval between measurements. Interobserver and intraobserver reproducibility, and test-retest repeatability of the measurements were calculated. ADC values were measured using 10 different b-value combinations consisting of three b-values each, and were compared to the ADC obtained from nine b-values. All the ADC, D, D*, and f p values measured from the renal cortex, medulla, and the entire kidney had excellent interobserver and intraobserver reproducibility, and test-retest repeatability. The ADC obtained from a b-value combination of 0, 100, and 800 s/mm2 had the highest intraclass correlation coefficient with the ADC from nine b-values. The results of this study indicated that DWI MRI using multiple b-values is feasible for the measurement of ADC and IVIM parameters with high reproducibility and repeatability in the kidneys of healthy dogs. A combination of b = 0, 100, and 800 s/mm2 can be used for ADC measurements when multiple b-values are not available in dogs.
Collapse
Affiliation(s)
- Sang-Kwon Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Juryeoung Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Seolyn Jang
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Eunji Lee
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| | - Chang-Yeop Jeon
- National Primate Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Kyung-Seoub Lim
- Futuristic Animal Resource and Research Center, Korea Research Institute of Bioscience and Biotechnology, Cheongju, South Korea
| | - Yeung Bae Jin
- College of Veterinary Medicine, Gyeongsang National University, Jinju, South Korea
| | - Jihye Choi
- College of Veterinary Medicine and BK21 Plus Project Team, Chonnam National University, Gwangju, South Korea
| |
Collapse
|
13
|
Katagiri D, Wang F, Gore JC, Harris RC, Takahashi T. Clinical and experimental approaches for imaging of acute kidney injury. Clin Exp Nephrol 2021; 25:685-699. [PMID: 33835326 PMCID: PMC8154759 DOI: 10.1007/s10157-021-02055-2] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2020] [Accepted: 03/17/2021] [Indexed: 12/23/2022]
Abstract
Complex molecular cell dynamics in acute kidney injury and its heterogeneous etiologies in patient populations in clinical settings have revealed the potential advantages and disadvantages of emerging novel damage biomarkers. Imaging techniques have been developed over the past decade to further our understanding about diseased organs, including the kidneys. Understanding the compositional, structural, and functional changes in damaged kidneys via several imaging modalities would enable a more comprehensive analysis of acute kidney injury, including its risks, diagnosis, and prognosis. This review summarizes recent imaging studies for acute kidney injury and discusses their potential utility in clinical settings.
Collapse
Affiliation(s)
- Daisuke Katagiri
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Department of Nephrology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan.
| | - Feng Wang
- Vanderbilt University Institute of Imaging Science, Vanderbilt University Medical Center, Nashville, TN, USA
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - John C Gore
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA
| | - Raymond C Harris
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA
| | - Takamune Takahashi
- Division of Nephrology and Hypertension, Vanderbilt University Medical Center, S-3223 MCN, Nashville, TN, 37232, USA.
- Vanderbilt In Vivo Mouse Kidney Imaging Core, Vanderbilt University Medical Center, Nashville, TN, USA.
| |
Collapse
|
14
|
Su T, Yang X, Wang R, Yang L, Wang X. Characteristics of diffusion-weighted and blood oxygen level-dependent magnetic resonance imaging in Tubulointerstitial nephritis: an initial experience. BMC Nephrol 2021; 22:237. [PMID: 34187388 PMCID: PMC8243503 DOI: 10.1186/s12882-021-02435-6] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2020] [Accepted: 06/09/2021] [Indexed: 11/28/2022] Open
Abstract
BACKGROUND Diffusion-weighted (DW) and blood oxygen level-dependent (BOLD) magnetic resonance imaging are classical sequences of functional MR, but the exploration in non-transplanted kidney disease is limited. OBJECTS To analyze the characteristics of apparent diffusion coefficient (ADC) and R2* value using DW and BOLD imaging in tubulointerstitial nephritis (TIN). METHODS Four acute TIN, thirteen chronic TIN patients, and four controls were enrolled. We used multiple gradient-echo sequences to acquire 12 T2*-weighted images to calculate the R2* map. DW imaging acquired ADC values by combining a single-shot spin-echo echo-planar imaging pulse sequence and the additional motion probing gradient pulses along the x,y, z-axes with two b values:0 and 200, as well as 0 and 800 s/mm2. ATIN patients performed DW and BOLD magnetic resonance at renal biopsy(T0) and the third month(T3). We assessed the pathological changes semiquantitatively, and conducted correlation analyses within functional MR, pathological and clinical indexes. RESULTS In ATIN, ADCs were significantly lower(b was 0,200 s/mm2, 2.86 ± 0.19 vs. 3.39 ± 0.11, b was 0,800 s/mm2, 1.76 ± 0.12 vs. 2.16 ± 0.08, P < 0.05) than controls, showing an obvious remission at T3. Cortical and medullary R2* values (CR2*,MR2*) were decreased, significant difference was only observed in MR2*(T0 24.3 ± 2.1vs.T3 33.1 ± 4.1,P < 0.05). No relationship was found between functional MR and histopathological indexes.MR2* had a close relationship with eGFR (R = 0.682,P = 0.001) and serum creatinine(R = -0.502,P = 0.012). Patients with lower ADC when b was 0,200 s/mm2 showed more increase of ADC(R = -0.956,P = 0.044) and MR2*(R = -0.949,P = 0.05) after therapy. In CTIN group, lowered MR2* and MR2*/CR2* provided evidence of intrarenal ischemia. CTIN with advanced CKD (eGFR< 45) had significantly lower ADCb200 value. CONCLUSIONS We observed the reduction and remission of ADC and R2* values in ATIN case series. ATIN patients had concurrently decreased ADCb800 and MR2*. The pseudo normalization of CR2* with persistently low MR2* in CTIN suggested intrarenal hypoxia.
Collapse
Affiliation(s)
- Tao Su
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
| | - Xuedong Yang
- Department of Radiology, Peking University First Hospital, Beijing, China
- Department of Radiology, Guang'anmen Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Rui Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| | - Li Yang
- Renal Division, Department of Medicine, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
- Renal Pathology Center, Peking University First Hospital, Peking University Institute of Nephrology, Beijing, China.
| | - Xiaoying Wang
- Department of Radiology, Peking University First Hospital, Beijing, China
| |
Collapse
|
15
|
Li Y, Shi D, Zhang H, Yao X, Wang S, Wang R, Ren K. The Application of Functional Magnetic Resonance Imaging in Type 2 Diabetes Rats With Contrast-Induced Acute Kidney Injury and the Associated Innate Immune Response. Front Physiol 2021; 12:669581. [PMID: 34267672 PMCID: PMC8276794 DOI: 10.3389/fphys.2021.669581] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 04/27/2021] [Indexed: 12/14/2022] Open
Abstract
AIMS Contrast-induced acute kidney injury (CI-AKI) is the third most common in-hospital acquired AKI, and its mechanism is not fully clear. Its morbidity increases among populations with chronic kidney disease (CKD), older age, diabetes mellitus (DM), and so on. Immediate and effective noninvasive diagnostic methods are lacking, so CI-AKI often prolongs hospital stays and increases extra medical costs. This study aims to explore the possibility of diagnosing CI-AKI with functional magnetic resonance imaging (fMRI) based on type 2 DM rats. Moreover, we attempt to reveal the immune response in CI-AKI and to clarify why DM is a predisposing factor for CI-AKI. METHODS A type 2 DM rat model was established by feeding a high-fat and high-sugar diet combined with streptozotocin (STZ) injection. Iodixanol-320 was the contrast medium (CM) administered to rats. Images were obtained with a SIEMENS Skyra 3.0-T magnetic resonance imager. Renal histopathology was evaluated using H&E staining and immunohistochemistry (IHC). The innate immune response was revealed through western blotting and flow cytometry. RESULTS Blood oxygenation level-dependent (BOLD) imaging and intravoxel incoherent motion (IVIM) imaging can be used to predict and diagnose CI-AKI effectively. The R 2 ∗ value (r > 0.6, P < 0.0001) and D value (| r| > 0.5, P < 0.0001) are strongly correlated with histopathological scores. The NOD-like receptor pyrin 3 (NLRP3) inflammasome participates in CI-AKI and exacerbates CI-AKI in DM rats. Moreover, the percentages of neutrophils and M1 macrophages increase dramatically in rat kidneys after CM injection (neutrophils range from 56.3 to 56.6% and M1 macrophages from 48 to 54.1% in normal rats, whereas neutrophils range from 85.5 to 92.4% and M1 macrophages from 82.1 to 89.8% in DM rats). CONCLUSIONS/INTERPRETATION BOLD and IVIM-D can be effective noninvasive tools in predicting CI-AKI. The innate immune response is activated during the progression of CI-AKI and DM will exacerbate this progression.
Collapse
Affiliation(s)
- Yanfei Li
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Dafa Shi
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Haoran Zhang
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Xiang Yao
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Siyuan Wang
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| | - Rui Wang
- Department of Basic Medical Sciences, School of Medicine, Xiamen University, Xiamen, China
| | - Ke Ren
- Department of Radiology, Xiang’an Hospital of Xiamen University, Xiamen, China
| |
Collapse
|
16
|
Lu F, Yang J, Yang S, Bernd K, Fu C, Yang C, Xu H, Liu M, Zhan S, Wang C, Guo R, Wu Y. Use of Three-Dimensional Arterial Spin Labeling to Evaluate Renal Perfusion in Patients With Chronic Kidney Disease. J Magn Reson Imaging 2021; 54:1152-1163. [PMID: 33769645 DOI: 10.1002/jmri.27609] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 03/06/2021] [Accepted: 03/09/2021] [Indexed: 12/24/2022] Open
Abstract
BACKGROUND A noninvasive method for evaluating renal blood flow (RBF) in patients with chronic kidney disease (CKD) may have clinical value in disease staging, management, and prognostication. PURPOSE To evaluate effectiveness of three-dimensional pseudocontinuous arterial spin labeling (pCASL) and pulsed arterial spin labeling (PASL) in assessment of cortex and outer medulla (cortex/OM) RBF in CKD patients and healthy volunteers (HVs). STUDY TYPE Prospective, in a single institution. SUBJECTS A total of 48 CKD patients (stage 1, 2, 3, and 4-5: N = 11, 12, 13, and 12, respectively) and 18 HVs FIELD STRENGTH/SEQUENCE: 3 T, pCASL, and PASL with a three-dimensional hybrid gradient echo/spin echo sequence. ASSESSMENT Quality of RBF images derived from pCASL and PASL were evaluated and RBF in cortex/OM measured. Clinical and laboratory data were recorded. STATISTICAL TESTS Image quality differences between pCASL and PASL were evaluated with Wilcoxon signed-rank test. For both methods, analysis of variance, followed by Fisher's LSD-t test, was used to determine whether RBF differed between CKD stages and HVs. Pearson correlation coefficients were calculated to assess strength of relationships between cortex/OM RBF and data from clinical and laboratory tests. RESULTS Image quality differences were significantly higher in pCASL than PASL in both patients and HVs (both P < 0.05). For pCASL, cortex/OM RBF of patients were significantly lower than those of HVs (P < 0.05). Cortex/OM RBF were higher in S1 and S2 patients than those in S3 and S4-5 (P < 0.05). For PASL, only RBF in cortex of S1 and S2 patients were significantly higher than those of S4-5 (P < 0.05). Good correlations between pCASL RBF and estimated glomerular filtration (eGFR) were found in cortex/OM of patients (rho = 0.796 and 0.798, respectively, both P < 0.05), higher than those between PASL RBF and eGFR (rho = 0.430 and 0.374, respectively, both P < 0.05). DATA CONCLUSION Three-dimensional pCASL may potentially be a noninvasive technique to assess renal perfusion in CKD patients in different stages. LEVEL OF EVIDENCE 1 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Fang Lu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Jing Yang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Shuohui Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Kuehn Bernd
- MR Applications Development, Siemens Healthcare, Erlangen, Germany
| | - Caixia Fu
- MR Applications Development, Siemens Shenzhen Magnetic Resonance Ltd, Shenzhen, China
| | - Chenyao Yang
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Huihui Xu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Mengxiao Liu
- MR Scientific Marketing, Siemens Healthcare, Shanghai, China
| | - Songhua Zhan
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Chen Wang
- Department of Nephrology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Rongfang Guo
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| | - Yu Wu
- Department of Radiology, Shuguang Hospital Affiliated to Shanghai University of Traditional Chinese Medicine, Shanghai, China
| |
Collapse
|
17
|
Wang B, Li J, Wang Y. Magnetic resonance diffusion tensor imaging applied to rat model of contrast-induced acute kidney injury. PeerJ 2021; 9:e10620. [PMID: 33628631 PMCID: PMC7891085 DOI: 10.7717/peerj.10620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2020] [Accepted: 11/30/2020] [Indexed: 11/20/2022] Open
Abstract
Objectives In this preclinical investigation, the feasibility of using diffusion tensor imaging (DTI) to study contrast-induced acute kidney injury (CIAKI) is explored, comparing radiographic outcomes with histopathologic and immunohistochemical findings after repeated animal exposures to iodinated contrast agent. Materials and Methods Forty-five male wistar rats were allocated to three groups (n = 15 each), each receiving two separate injections 1 day apart: group 1 (iodixanol then saline); group 2 (iodixanol twice); and control group (saline twice). Five rats were then randomly selected from each group at three separate time points (1 h, 24 h, and 120 h) for magnetic resonance imaging (MRI). Upon MRI completion, the animals were sacrificed, examining renal tissue and serum creatinine level. DTI data served to calculate fractional anisotropy (FA) and apparent diffusion coefficient (ADC). Results FA values were significantly lower in group 2 than in the others. Compared with controls, FA assessments at 1 h, 24 h, and 120 h after injections commenced were significantly lower in group 2; and ADC was significantly more pronounced at 24 h. Serum creatinine levels at 24 h were markedly elevated in both groups 1 and 2. Pearson correlation analysis revealed significant negative correlations between FA (r = −0.730; p < 0.05) or ADC (r = −0.827; p < 0.05) and tubular injury and between FA (r = −0.563; p < 0.05) or ADC (r = −0.805; p < 0.05) and hypoxia-inducible factor-1α. Conclusions Analytic approaches to DTI with better reproducibility should aid in monitoring the early pathophysiologic derangements of CIAKI, thus facilitating timely reversal of the detrimental effects.
Collapse
Affiliation(s)
- Bin Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Junjie Li
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China
| | - Yongfang Wang
- Department of Medical Imaging, Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Medical Imaging, First Hospital of Shanxi Medical University, Taiyuan, Shanxi, China.,Department of Radiology, First Hospital of China Medical University, Shenyang, Liaoning, China
| |
Collapse
|
18
|
Seo N, Oh H, Oh HJ, Chung YE. Quantitative Analysis of Microperfusion in Contrast-Induced Nephropathy Using Contrast-Enhanced Ultrasound: An Animal Study. Korean J Radiol 2021; 22:801-810. [PMID: 33660455 PMCID: PMC8076825 DOI: 10.3348/kjr.2020.0577] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/08/2020] [Revised: 08/10/2020] [Accepted: 09/17/2020] [Indexed: 12/13/2022] Open
Abstract
OBJECTIVE To investigate imaging biomarkers of microperfusion in contrast-induced nephropathy (CIN) using contrast-enhanced ultrasound (CEUS). MATERIALS AND METHODS The CIN model was fabricated by administering indomethacin (10 mg/kg), L-NAME (15 mg/kg), and iopamidol (10 mL/kg) to Sprague-Dawley rats. After 24 hours, CEUS was performed on CIN (n = 6) and control (n = 6) rats with sulphur hexafluoride microbubbles (SonoVue). From time-intensity curves obtained from the kidney arriving time (AT), acceleration time (AC), time to peak (TTP), and peak enhancement (PE) were measured and compared between the groups. After CEUS, the rats were sacrificed, and cell apoptosis markers were evaluated to confirm the development of CIN. RESULTS Among CEUS parameters, AT (7.8 ± 1.6 vs. 4.2 ± 0.5 s, p = 0.002), AC (4.7 ± 1.4 vs. 2.0 ± 0.4 s, p = 0.002), and TTP (12.5 ± 2.9 vs. 6.2 ± 0.6 s, p = 0.002) were significantly prolonged in the CIN group compared to controls. PE was significantly higher in the control group than in the CIN group (17.1 ± 1.9 vs. 12.2 ± 2.0 dB, p = 0.004). In kidney tissue, mRNA and protein levels of the apoptotic makers were significantly higher in the CIN group than in the control group (p = 0.003 and p = 0.002). CONCLUSION CEUS parameters can be used as imaging biomarkers for microperfusion in CIN. In rats with CIN, AT, AC, and TTP were significantly prolonged, while PE was significantly lower compared to controls.
Collapse
Affiliation(s)
- Nieun Seo
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyewon Oh
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea
| | - Hyung Jung Oh
- Department of Nephrology, Sheikh Khalifa Specialty Hospital, Ras AlKhaimah, UAE
| | - Yong Eun Chung
- Department of Radiology, Severance Hospital, Yonsei University College of Medicine, Seoul, Korea.
| |
Collapse
|
19
|
Ku MC, Fernández-Seara MA, Kober F, Niendorf T. Noninvasive Renal Perfusion Measurement Using Arterial Spin Labeling (ASL) MRI: Basic Concept. Methods Mol Biol 2021; 2216:229-239. [PMID: 33476003 PMCID: PMC9703206 DOI: 10.1007/978-1-0716-0978-1_13] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
The kidney is a complex organ involved in the excretion of metabolic products as well as the regulation of body fluids, osmolarity, and homeostatic status. These functions are influenced in large part by alterations in the regional distribution of blood flow between the renal cortex and medulla. Renal perfusion is therefore a key determinant of glomerular filtration. Therefore the quantification of regional renal perfusion could provide important insights into renal function and renal (patho)physiology. Arterial spin labeling (ASL) based perfusion MRI techniques, can offer a noninvasive and reproducible way of measuring renal perfusion in animal models. This chapter addresses the basic concept of ASL-MRI.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
Affiliation(s)
- Min-Chi Ku
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
| | | | - Frank Kober
- Aix-Marseille Université, CNRS, Centre de Résonance Magnétique Biologique et Médicale (CRMBM), Marseille, France
| | - Thoralf Niendorf
- Berlin Ultrahigh Field Facility (B.U.F.F.), Max Delbrück Center for Molecular Medicine (MDC) in the Helmholtz Association, Berlin, Germany
| |
Collapse
|
20
|
Renal Diffusion-Weighted Imaging (DWI) for Apparent Diffusion Coefficient (ADC), Intravoxel Incoherent Motion (IVIM), and Diffusion Tensor Imaging (DTI): Basic Concepts. Methods Mol Biol 2021; 2216:187-204. [PMID: 33476001 PMCID: PMC9703200 DOI: 10.1007/978-1-0716-0978-1_11] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/30/2023]
Abstract
The specialized function of the kidney is reflected in its unique structure, characterized by juxtaposition of disorganized and ordered elements, including renal glomerula, capillaries, and tubules. The key role of the kidney in blood filtration, and changes in filtration rate and blood flow associated with pathological conditions, make it possible to investigate kidney function using the motion of water molecules in renal tissue. Diffusion-weighted imaging (DWI) is a versatile modality that sensitizes observable signal to water motion, and can inform on the complexity of the tissue microstructure. Several DWI acquisition strategies are available, as are different analysis strategies, and models that attempt to capture not only simple diffusion effects, but also perfusion, compartmentalization, and anisotropy. This chapter introduces the basic concepts of DWI alongside common acquisition schemes and models, and gives an overview of specific DWI applications for animal models of renal disease.This chapter is based upon work from the COST Action PARENCHIMA, a community-driven network funded by the European Cooperation in Science and Technology (COST) program of the European Union, which aims to improve the reproducibility and standardization of renal MRI biomarkers. This introduction chapter is complemented by two separate chapters describing the experimental procedure and data analysis.
Collapse
|
21
|
Early detection of subclinical pathology in patients with stable kidney graft function by arterial spin labeling. Eur Radiol 2020; 31:2687-2695. [PMID: 33151395 DOI: 10.1007/s00330-020-07369-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 08/24/2020] [Accepted: 10/02/2020] [Indexed: 12/18/2022]
Abstract
OBJECTIVES To evaluate the utility of arterial spin labeling (ASL) for the identification of kidney allografts with underlying pathologies, particularly those with stable graft function. METHODS A total of 75 patients, including 18 stable grafts with normal histology (normal group), 21 stable grafts with biopsy-proven pathology (subclinical pathology group), and 36 with unstable graft function (unstable graft group), were prospectively examined by ASL magnetic resonance imaging. Receiver operating characteristic curves were generated to calculate the area under the curve (AUC), sensitivity, and specificity. RESULTS Patient demographics among the 3 groups were comparable. Compared with the normal group, kidney allograft cortical ASL values decreased in the subclinical pathology group and the unstable graft group (204.7 ± 44.9 ml/min/100 g vs 152.5 ± 38.9 ml/min/100 g vs 92.3 ± 37.4 ml/min/100 g, p < 0.001). The AUC, sensitivity, and specificity for discriminating allografts with pathologic changes from normal allografts were 0.92 (95% CI, 0.83-0.97), 71.9%, and 100% respectively by cortical ASL and 0.82 (95% CI, 0.72-0.90), 54.4%, and 100% respectively by serum creatinine. The cortical ASL identified allografts with subclinical pathology among patients with stable graft function with an AUC of 0.80 (95% CI, 0.64-0.91), sensitivity of 57.1%, and specificity of 88.9%. Combined use of proteinuria and cortical ASL could improve the sensitivity and specificity to 76.2% and 100% respectively for distinguishing the subclinical pathology group from the normal group. CONCLUSIONS Cortical ASL is useful for the identification of allografts with underlying pathologies. More importantly, ASL showed promise as a non-invasive tool for the clinical translation of identifying kidney allografts with subclinical pathology. KEY POINTS • Cortical ASL values were decreased in kidney allografts with subclinical pathologic changes as compared with normal allografts (152.5 ± 38.9 ml/min/100 g vs 204.7 ± 44.9 ml/min/100 g, p < 0.001). • Cortical ASL differentiated allografts with pathologic changes and subclinical pathology group from normal group with an AUC of 0.92 (95% CI, 0.83-0.97) and 0.80 (95% CI, 0.64-0.91) respectively. • Cortical ASL discriminated allografts with underlying pathologic changes from normal allografts with a specificity of 100%, and combined use of proteinuria and cortical ASL values could also achieve 100% specificity for discriminating allografts with subclinical pathology from normal allografts.
Collapse
|
22
|
Diffusion-weighted Renal MRI at 9.4 Tesla Using RARE to Improve Anatomical Integrity. Sci Rep 2019; 9:19723. [PMID: 31873155 PMCID: PMC6928203 DOI: 10.1038/s41598-019-56184-6] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 10/23/2019] [Indexed: 12/29/2022] Open
Abstract
Diffusion-weighted magnetic resonance imaging (DWI) is a non-invasive imaging technique sensitive to tissue water movement. By enabling a discrimination between tissue properties without the need of contrast agent administration, DWI is invaluable for probing tissue microstructure in kidney diseases. DWI studies commonly make use of single-shot Echo-Planar Imaging (ss-EPI) techniques that are prone to suffering from geometric distortion. The goal of the present study was to develop a robust DWI technique tailored for preclinical magnetic resonance imaging (MRI) studies that is free of distortion and sensitive to detect microstructural changes. Since fast spin-echo imaging techniques are less susceptible to B0 inhomogeneity related image distortions, we introduced a diffusion sensitization to a split-echo Rapid Acquisition with Relaxation Enhancement (RARE) technique for high field preclinical DWI at 9.4 T. Validation studies in standard liquids provided diffusion coefficients consistent with reported values from the literature. Split-echo RARE outperformed conventional ss-EPI, with ss-EPI showing a 3.5-times larger border displacement (2.60 vs. 0.75) and a 60% higher intra-subject variability (cortex = 74%, outer medulla = 62% and inner medulla = 44%). The anatomical integrity provided by the split-echo RARE DWI technique is an essential component of parametric imaging on the way towards robust renal tissue characterization, especially during kidney disease.
Collapse
|
23
|
Zhang Q, Yu Z, Zeng S, Liang L, Xu Y, Zhang Z, Tang H, Jiao W, Xue W, Wang W, Zhang X, Jiang T, Hu X. Use of intravoxel incoherent motion imaging to monitor a rat kidney chronic allograft damage model. BMC Nephrol 2019; 20:364. [PMID: 31601196 PMCID: PMC6785891 DOI: 10.1186/s12882-019-1545-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2018] [Accepted: 08/29/2019] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND Chronic allograft damage (CAD) is the leading cause of long-term graft dysfunction. A noninvasive method that can diagnose CAD early and monitor its development is needed. METHODS Kidneys from Fisher rats were transplanted into Lewis rats to establish a CAD model (n = 20). The control group underwent syngeneic kidney transplantation (n = 20). The serum creatinine of the rats was monitored. At 4, 12, and 20 weeks after modeling, a magnetic resonance imaging (MRI) examination was performed. The apparent diffusion coefficient (ADC), pseudo diffusion coefficient (D*), true diffusion coefficient (D) and perfusion fraction (f) of the two groups were analyzed. Chronic allograft damage index (CADI) scoring was used to evaluate the transplanted kidney specimens. Immunohistochemistry was used to detect the expression of fibrosis markers in the transplanted kidney tissues and to analyze their correlations with all MRI parameters. RESULTS The transplanted kidneys in the experimental group developed CAD changes before the appearance of elevated creatinine. The MRI parameters in the experimental group [ADC (1.460 ± 0.109 VS 2.095 ± 0.319, P < 0.001), D (1.435 ± 0.102 VS 1.969 ± 0.305, P < 0.001), and f (26.532 ± 2.136 VS 32.255 ± 4.013, P < 0.001)] decreased, and D* (20.950 ± 2.273 VS 21.415 ± 1.598, P = 0.131) was not significantly different from those in the control group. ADC, D and f were negatively correlated with the CADI and the α-SMA and vimentin expression levels. CONCLUSION Intravoxel incoherent motion (IVIM) imaging could detect CAD earlier than creatinine and reflect the degree of fibrosis in grafts quantitatively.
Collapse
Affiliation(s)
- Qiang Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Zexing Yu
- Department of Ultrasonography, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Song Zeng
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Lu Liang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Yue Xu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Zijian Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Hao Tang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Wenjiao Jiao
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Wenrui Xue
- Department of Urology, Beijing YouAn Hospital, Capital Medical University, NO.8 Youanmenwai Xitoutiao, Beijing, 100069, China
| | - Wei Wang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Xiaodong Zhang
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China
| | - Tao Jiang
- Department of Radiology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China.
| | - Xiaopeng Hu
- Department of Urology, Beijing Chao-Yang Hospital, Capital Medical University, NO.8 GongTi South Road, Beijing, 100020, China.
| |
Collapse
|
24
|
Chen Y, Yu Q, La Tegola L, Mei Y, Chen J, Huang W, Zhang X, Guglielmi G. Intravoxel incoherent motion MR imaging for differentiating malignant lesions in spine: A pilot study. Eur J Radiol 2019; 120:108672. [PMID: 31550637 DOI: 10.1016/j.ejrad.2019.108672] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Revised: 08/22/2019] [Accepted: 09/14/2019] [Indexed: 10/26/2022]
Abstract
PURPOSE To determine the diagnostic potential of Intravoxel Incoherent Motion (IVIM) MRI for differentiating malignant spinal tumours from acute vertebral compression fractures and tuberculous spondylitis, and to compare IVIM with diffusion-weighted imaging (DWI) and chemical shift imaging (CSI). METHODS The Institutional Review Board approved this prospective study, and informed consent was obtained. IVIM MRI, DWI, and CSI at 1.5 T were performed in 25 patients with 12 acute compression fractures, 14 tuberculous spondylitis, and 18 malignant spinal tumours. The parameters of these techniques were assessed using the Kruskal-Wallis test. The diagnostic performance of the parameters was evaluated using receiver operating characteristic (ROC) analysis. RESULTS ADC, SIR, Dslow, Dfast, and f values of malignant tumours were significantly different from those of acute compression fracture (for all, p < 0.05). The mean Dslow and Dfast values of malignant spinal tumours had significant differences compared with those of tuberculous spondylitis (for all, p < 0.05). However, no significant differences were observed in any quantitative parameters between the acute compression fracture and the tuberculous spondylitis (p > 0.05). Dslow•f showed the highest AUC value of 0.980 (95%CI: 0.942-1.000) in differentiating acute compression fracture and malignant spinal tumours. Dslow showed the highest AUC value of 0.877 (95%CI: 0.713-0.966) in differentiating tuberculous spondylitis and malignant spinal tumours. CONCLUSIONS IVIM MR imaging may be helpful for differentiating malignant spinal tumours from acute vertebral compression fractures and tuberculous spondylitis.
Collapse
Affiliation(s)
- Yanjun Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China; Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Qinqin Yu
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Luciana La Tegola
- Università degli Studi di Foggia, Scuola di Specializzazione di Area Medica, Department of Radiology, Foggia, Italy
| | | | - Jialing Chen
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China
| | - Wenhua Huang
- Institute of Clinical Anatomy, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Xiaodong Zhang
- Department of Medical Imaging, The Third Affiliated Hospital of Southern Medical University (Academy of Orthopedics. Guangdong Province), Guangzhou, China.
| | - Giuseppe Guglielmi
- Università degli Studi di Foggia, Scuola di Specializzazione di Area Medica, Department of Radiology, Foggia, Italy
| |
Collapse
|
25
|
Yu Z, Zhu H, Wu X, Chen Z, Zhang Z, Li J, Ye Q. Acute renal impairment characterization using diffusion magnetic resonance imaging: Validation by histology. NMR IN BIOMEDICINE 2019; 32:e4126. [PMID: 31290588 DOI: 10.1002/nbm.4126] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/12/2018] [Revised: 05/09/2019] [Accepted: 05/14/2019] [Indexed: 06/09/2023]
Abstract
Diffusion magnetic resonance imaging has been demonstrated to be a simple, noninvasive and accurate method for the detection of renal microstructure and microcirculation, which are closely linked to renal function. Moreover, serum endothelin-1 (ET-1) was also reported as a good indicator of early renal injury. The aim of this study was to evaluate the feasibility and capability of diffusion MRI and ET-1 to detect acute kidney injury by an operation simulating high-pressure renal pelvic perfusion, which is commonly used during ureteroscopic lithotripsy. Histological findings were used as a reference. Fourteen New Zealand rabbits in an experimental group and 14 in a control group were used in this study. Diffusion tensor imaging and intravoxel incoherent motion diffusion-weighted imaging were acquired by a 3.0 T MRI scanner. Significant corticomedullary differences were found in the values of the apparent diffusion coefficient (ADC), pure tissue diffusion, volume fraction of pseudo-diffusion (fp) and fractional anisotropy (FA) (P < 0.05 for all) in both preoperation and postoperation experimental groups. Compared with the control group, the values of cortical fpmean , medullary ADCmean and FAmean decreased significantly (P < 0.05) after the operation in the experimental group. Also, the change rate of medullary ADCmean in the experimental group was more pronounced than that in the control group (P = 0.018). No significant change was found in serum ET-1 concentration after surgery in either the experimental (P = 0.80) or control (P = 0.17) groups. In the experimental group, histological changes were observed in the medulla, while no visible change was found in the cortex. This study demonstrated the feasibility of diffusion MRI to detect the changes of renal microstructure and microcirculation in acute kidney injury, with the potential to evaluate renal function. Moreover, the sensitivity of diffusion MRI to acute kidney injury appears to be superior to that of serum ET-1.
Collapse
Affiliation(s)
- Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Honghui Zhu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Xiuling Wu
- Department of Pathology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhongwei Chen
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Zhao Zhang
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Jiance Li
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| | - Qiong Ye
- Department of Radiology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, Zhejiang Province, China
| |
Collapse
|
26
|
Zhang JL, Lee VS. Renal perfusion imaging by MRI. J Magn Reson Imaging 2019; 52:369-379. [PMID: 31452303 DOI: 10.1002/jmri.26911] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2019] [Accepted: 08/14/2019] [Indexed: 12/13/2022] Open
Abstract
Renal perfusion can be quantitatively assessed by multiple magnetic resonance imaging (MRI) methods, including dynamic contrast enhanced (DCE), arterial spin labeling (ASL), and diffusion-weighted imaging with intravoxel incoherent motion (IVIM) analysis. In this review we summarize the advances in the field of renal-perfusion MRI over the past 5 years. The review starts with a brief introduction of relevant MRI methods, followed by a discussion of recent technical developments. In the main section of the review, we examine the clinical and preclinical applications for three disease populations: chronic kidney disease, renal transplant, and renal tumors. The DCE method has been routinely used for assessing renal tumors but not other renal diseases. As a noncontrast alternative, ASL was extensively explored in both preclinical and clinical applications and showed much promise. Protocol standardization for the methods is desperately needed, and then large-scale clinical trials for the methods can be initiated prior to their broad clinical use. Level of Evidence: 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2019. J. Magn. Reson. Imaging 2020;52:369-379.
Collapse
Affiliation(s)
- Jeff L Zhang
- Athinoula A. Martinos Center for Biomedical Imaging, Massachusetts General Hospital, Harvard Medical School, Boston, Massachusetts, USA
| | - Vivian S Lee
- Verily Life Sciences, Cambridge, Massachusetts, USA
| |
Collapse
|
27
|
Wang Y, Zhang X, Hua Z, Xie L, Jiang X, Wang R, Gao P, Ren K. Blood Oxygen Level-Dependent Imaging and Intravoxel Incoherent Motion MRI of Early Contrast-Induced Acute Kidney Injury in a Rabbit Model. Kidney Blood Press Res 2019; 44:496-512. [PMID: 31256149 DOI: 10.1159/000500052] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2019] [Accepted: 04/01/2019] [Indexed: 11/19/2022] Open
Abstract
BACKGROUND To evaluate the application of blood oxygenation level-dependent (BOLD)imaging and intravoxel incoherent motion (IVIM) magnetic resonance imaging (MRI) on assessing early contrast-induced acute kidney injury (CIAKI). MATERIALS Sixty rabbits were randomly chosen to undergo iohexol (1.0, 2.5, and 5.0 [gI/kg], respectively; n = 15 for each group) or saline injection (n = 15). In each group, 6 rabbits underwent MRI at 24 h before injection and after injection of iohexol or saline (1 h and 1, 2, 3, and 4 days); meanwhile, out of the remaining 9 rabbits, 3 were chosen for MRI acquisition, and then they were killed at specific time points (1 h, 1 day, and 3 days, respectively). RESULTS The strong attenuation of pure molecular diffusion (D), apparent diffusion coefficient (ADC), and perfusion fraction (f) was observed at 1 day, while pseudodiffusion coefficient (D*) showed a significant decrease at 1 h after iohexol injection. A distinct elevation of apparent transverse relaxation rate (R2*) reached the maximum levels on day 1, which was consistent with the expression of hypoxia-inducible factor-1α and vascular endothelial growth factor. ADC, D, and R2* correlated well with histopathological parameters and biochemical parameters. CONCLUSION BOLD combined with IVIM is effective to monitor renal pathophysiology associated with CIAKI.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Zhengxu Hua
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Lizhi Xie
- GE Healthcare, MR Research China, Beijing, China
| | - Xuan Jiang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Rongjia Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Peirong Gao
- Department of Ultrasound, First Hospital of China Medical University, Shenyang, China
| | - Ke Ren
- Department of Radiology, Xiang'an Hospital of Xiamen University, Xiamen, China,
| |
Collapse
|
28
|
Application of Blood Oxygenation Level-Dependent Magnetic Resonance Imaging and Intravoxel Incoherent Motion to Assess Bilateral Renal Pathophysiological Processes Induced by Iodixanol Renal Artery First-Pass in Rabbit Model. J Comput Assist Tomogr 2019; 43:634-640. [PMID: 31162241 DOI: 10.1097/rct.0000000000000870] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
Abstract
BACKGROUND Noninvasive blood oxygen level-dependent imaging and intravoxel incoherent motion sequences were used to assess bilateral renal oxygenation, hemodynamics, and proton diffusion in iodixanol renal artery first-pass in rabbit model. METHODS Forty-two rabbits were divided into 2 groups. Saline and iodixanol (1 g iodine/kg, left renal artery) were administered. Magnetic resonance imaging scans were acquired longitudinally at 24 hours prior to and 1, 24, 48, and 72 hours after administration to assess apparent diffusion coefficient, pure molecular diffusion (D), perfusion-related diffusion (D*), volume fraction (f), and relative spin-spin relaxation rate (R2*) values, respectively. The experiment evaluated serum creatinine, histological, and hypoxia-inducible factor 1α immunoexpression. RESULTS During 1 to 48 hours, the values of D, f, and D* significantly decreased (P < 0.05), but R2* values significantly increased (P < 0.05) in cortex, outer medulla, and inner medulla after administration of iodixanol through left renal artery, which showed in the 72 hours. The change of the left kidney is noteworthy. Significant negative correlations were observed between apparent diffusion coefficient, D, f, and R2* in cortex, outer medulla, and inner medulla (all P < 0.001, r = -0.635-0.697). CONCLUSIONS The first-pass effect of the contrast agent significantly reduces ipsilateral renal perfusion and renal oxygenation, and noninvasive monitoring can be performed by using blood oxygen level-dependent magnetic resonance imaging and intravoxel incoherent motion.
Collapse
|
29
|
Wang Y, Zhang X, Wang B, Xie Y, Wang Y, Jiang X, Wang R, Ren K. Evaluation of Renal Pathophysiological Processes Induced by an Iodinated Contrast Agent in a Diabetic Rabbit Model Using Intravoxel Incoherent Motion and Blood Oxygenation Level-Dependent Magnetic Resonance Imaging. Korean J Radiol 2019; 20:830-843. [PMID: 30993934 PMCID: PMC6470079 DOI: 10.3348/kjr.2018.0757] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2018] [Accepted: 01/03/2019] [Indexed: 02/06/2023] Open
Abstract
OBJECTIVE To examine the potential of intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) magnetic resonance imaging for detecting renal changes after iodinated contrast-induced acute kidney injury (CI-AKI) development in a diabetic rabbit model. MATERIALS AND METHODS Sixty-two rabbits were randomized into 2 groups: diabetic rabbits with the contrast agent (DCA) and healthy rabbits with the contrast agent (NCA). In each group, 6 rabbits underwent IVIM and BOLD imaging at 1 hour, 1 day, 2 days, 3 days, and 4 days after an iohexol injection while 5 rabbits were selected to undergo blood and histological examinations at these specific time points. Iohexol was administrated at a dose of 2.5 g I/kg of body weight. Further, the apparent transverse relaxation rate (R2*), average pure molecular diffusion coefficient (D), pseudo-diffusion coefficient (D*), and perfusion fraction (f) were calculated. RESULTS The D and f values of the renal cortex (CO) and outer medulla (OM) were significantly decreased compared to baseline values in the 2 groups 1 day after the iohexol injection (p < 0.05). A marked reduction in the D* values for both the CO and OM was also observed after 1 hour in each group (p < 0.05). In the OM, a persistent elevation of the R2* was detected for 4 days in the DCA group (p < 0.05). Histopathological changes were prominent, and the pathological features of CI-AKI aggravated in the DCA group until day 4. The D, f, and R2* values significantly correlated with the histological damage scores, hypoxia-inducible transcription factor-1α expression scores, and serum creatinine levels. CONCLUSION A combination of IVIM and BOLD imaging may serve as a noninvasive method for detecting and monitoring CI-AKI in the early stages in the diabetic kidney.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Xin Zhang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Bin Wang
- Department of Radiology, First Hospital of Shanxi Medical University, Taiyuan, China
| | - Yang Xie
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Yi Wang
- Department of Radiology, The Qianfoshan Hospital of Shandong Province, Jinan, China
| | - Xuan Jiang
- Cardiac Surgery, First Hospital of China Medical University, Shenyang, China
| | - Rongjia Wang
- Department of Radiology, First Hospital of China Medical University, Shenyang, China
| | - Ke Ren
- Department of Radiology, First Hospital of China Medical University, Shenyang, China.
| |
Collapse
|
30
|
Wei Y, Gao F, Wang M, Huang Z, Tang H, Li J, Wang Y, Zhang T, Wei X, Zheng D, Song B. Intravoxel incoherent motion diffusion-weighted imaging for assessment of histologic grade of hepatocellular carcinoma: comparison of three methods for positioning region of interest. Eur Radiol 2019; 29:535-544. [PMID: 30027411 DOI: 10.1007/s00330-018-5638-1] [Citation(s) in RCA: 33] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 06/13/2018] [Accepted: 06/28/2018] [Indexed: 02/08/2023]
Abstract
OBJECTIVES To prospectively compare the diagnostic performances of three methods of region of interest (ROI) placement for the measurements of intravoxel incoherent motion (IVIM) diffusion-weighted MR imaging in differentiating the histologic grade of hepatocellular carcinoma (HCC). METHODS Eighty-seven patients with 91 newly diagnosed HCCs were studied using IVIM imaging. Two attending radiologists separately identified the selection of tumour tissue for ROI positioning. Three different ROI positioning methods, namely the whole tumour volume (WTV) method, three-ROI method and one-section method, were used for the measurement. Kruskal-Wallis rank test or one-way ANOVA was used to compare the difference in IVIM parameters and ADC across the three different ROI positioning methods. Spearman correlation analysis was used to determine the correlation between each parameter and Edmondson-Steiner (E-S) grade. Receiver operating characteristics (ROC) curve analyses were performed to evaluate the diagnostic performance. RESULTS For the ADC and ADCslow, the mean value measured by using the WTV method was significant higher than the one-section and three-ROI methods (all p < 0.01). For the ADCslow, the highest area under curve (AUC) with a value of 0.969 was obtained by using the WTV method, followed by the one-section method (AUC = 0.938) and three-ROI method (AUC = 0.873). Additionally, for the ADC, AUC values were 0.861 for WTV method, 0.840 for one-section method and 0.806 for three-ROI method. CONCLUSIONS Different ROI positioning methods used significantly affect the IVIM parameters and ADC measurements. Measurements of ADCslow value derived from WTV method entailed the highest diagnostic performance in grading HCC. KEY POINTS • Diffusion MRI is useful for non-invasively differentiating the histologic grade of hepatocellular carcinoma. • Different ROI positioning methods used significantly affect the IVIM parameters and ADC measurements. • IVIM model is advantageous over mono-exponential model for assessing the histologic grade of hepatocellular carcinoma.
Collapse
Affiliation(s)
- Yi Wei
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Feifei Gao
- Department of Radiology, Henan Provincial People's Hospital, Zhengzhou, China
| | - Min Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zixing Huang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hehan Tang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Jiaxing Li
- Department of Liver surgery, West China Hospital, Sichuan University, Chengdu, China
| | - Yi Wang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Tong Zhang
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China
| | | | | | - Bin Song
- Department of Radiology, West China Hospital, Sichuan University, Chengdu, 610041, China.
| |
Collapse
|
31
|
Using functional magnetic resonance imaging to evaluate an acute allograft rejection model in rats. Magn Reson Imaging 2019; 58:24-31. [PMID: 30630071 DOI: 10.1016/j.mri.2019.01.006] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2018] [Revised: 12/03/2018] [Accepted: 01/06/2019] [Indexed: 12/30/2022]
Abstract
PURPOSE To assess the longitudinal changes of allograft pathophysiology by intravoxel incoherent motion (IVIM) and blood oxygen level-dependent (BOLD) MRI in a rat model of acute renal allograft rejection. MATERIALS AND METHODS Acute rejection (AR) was induced by transplantation of Dark Agouti donor kidneys into Lewis recipients (n = 18). A Lewis-Lewis rat syngeneically transplanted (sTX) model served as the control (n = 6). Acute tubular necrosis (n = 6) and acute calcineurin inhibitor toxicity (n = 6) groups were established using Lewis rats. MRI was performed on postoperative day (POD) 1, 4 and 7 in the allogeneically transplanted (aTX) group and on POD4 in the other groups. Histological evaluation and PCR were performed. RESULTS After the allogenic transplantation, all MRI parameters of allograft further decreased until POD7, and the D and ADC values in the cortex were significantly lower than that in the sTX group (1.03 ± 0.09 vs 1.52 ± 0.09 × 10-3 mm2/s, Padj < 0.05; 1.21 ± 0.03 vs 1.78 ± 0.07 × 10-3 mm2/s, Padj < 0.05). The D*, f and R2* values of the aTX group in the cortex and medulla were significantly lower than those in the sTX group on POD7 (cortex, D*: 25.60 ± 4.78 vs 69.32 ± 9.79 × 10-3 mm2/s, Padj < 0.05; f: 7.84 ± 1.83 vs 20.34 ± 3.08%, Padj < 0.05; R2*: 16.61 ± 4.18 vs 31.48 ± 6.43 1/s, Padj < 0.05; medulla, D*: 13.59 ± 6.08 vs 62.75 ± 9.20 × 10-3 mm2/s, Padj < 0.05; f: 7.46 ± 1.62 vs 14.68 ± 2.05%, Padj < 0.05; R2*: 21.59 ± 3.45 vs 39.53 ± 4.34 1/s, Padj < 0.05). AR grafts presented serve interstitial inflammation, tubulitis and infiltration of T-lymphocytes and macrophages. The MRI parameters, including D, ADC, D*, f and R2*, were significantly correlated with the histological changes, cell infiltration and inflammatory cytokine mRNA levels. CONCLUSIONS IVIM coupled with BOLD MRI allows longitudinal assessment of allograft diffusion, perfusion and oxygen consumption impairment caused by acute renal allograft rejection in rat model.
Collapse
|
32
|
Intravoxel incoherent motion (IVIM) at 3.0 T: evaluation of early renal function changes in type 2 diabetic patients. Abdom Radiol (NY) 2018. [PMID: 29525883 DOI: 10.1007/s00261-018-1555-7] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
PURPOSE The purpose of this study was to evaluate the utility of intravoxel incoherent motion diffusion-weighted imaging (IVIM DWI) parameters in identifying early renal function changes in diabetics. METHODS A total of 40 patients with type 2 diabetes mellitus and 20 healthy control subjects underwent multiple b value DWI. The diabetic patients were stratified into two groups based on albuminuria category: NAU (normal to mildly increased albuminuria; ACR < 30 mg/g) and MAU (moderately increased albuminuria; 30 ≤ ACR < 300 mg/g). The mean cortical and medullary IVIM parameters (D, D*, f, and ADC) were calculated and compared among the different groups, and the correlation of ACR and eGFR was also calculated. RESULTS The present study revealed the limited water molecule diffusion and hyperperfusion of renal cortex and medulla in diabetic patients before proteinuria detection. Mean cortical and medullary D values negatively correlated with the ACR values in diabetics with 30 ≤ ACR < 300 mg/g, whereas no correlation was found between ACR values and other IVIM parameters. CONCLUSION IVIM DWI might be helpful in noninvasively identifying early-stage DN. The IVIM parametric values are more sensitive than the ACR in detecting early-stage kidney changes.
Collapse
|
33
|
Paschoal AM, Leoni RF, Dos Santos AC, Paiva FF. Intravoxel incoherent motion MRI in neurological and cerebrovascular diseases. Neuroimage Clin 2018; 20:705-714. [PMID: 30221622 PMCID: PMC6141267 DOI: 10.1016/j.nicl.2018.08.030] [Citation(s) in RCA: 50] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2018] [Revised: 08/27/2018] [Accepted: 08/30/2018] [Indexed: 12/20/2022]
Abstract
Intravoxel Incoherent Motion (IVIM) is a recently rediscovered noninvasive magnetic resonance imaging (MRI) method based on diffusion-weighted imaging. It enables the separation of the intravoxel signal into diffusion due to Brownian motion and perfusion-related contributions and provides important information on microperfusion in the tissue and therefore it is a promising tool for applications in neurological and neurovascular diseases. This review focuses on the basic principles and outputs of IVIM and details it major applications in the brain, such as stroke, tumor, and cerebral small vessel disease. A bi-exponential model that considers two different compartments, namely capillaries, and medium-sized vessels, has been frequently used for the description of the IVIM signal and may be important in those clinical applications cited before. Moreover, the combination of IVIM and arterial spin labeling MRI enables the estimation of water permeability across the blood-brain barrier (BBB), suggesting a potential imaging biomarker for disrupted-BBB diseases.
Collapse
Affiliation(s)
- André M Paschoal
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Renata F Leoni
- Inbrain Lab, Department de Física, FFCLRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Antonio C Dos Santos
- Departamento de Clínica Médica, FMRP, Universidade de São Paulo, São Carlos, SP, Brazil
| | - Fernando F Paiva
- Instituto de Física de São Carlos, Universidade de São Paulo, São Carlos, SP, Brazil.
| |
Collapse
|
34
|
Zhou JY, Wang YC, Zeng CH, Ju SH. Renal Functional MRI and Its Application. J Magn Reson Imaging 2018; 48:863-881. [PMID: 30102436 DOI: 10.1002/jmri.26180] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/10/2018] [Indexed: 12/11/2022] Open
Abstract
Renal function varies according to the nature and stage of diseases. Renal functional magnetic resonance imaging (fMRI), a technique considered superior to the most common method used to estimate the glomerular filtration rate, allows for noninvasive, accurate measurements of renal structures and functions in both animals and humans. It has become increasingly prevalent in research and clinical applications. In recent years, renal fMRI has developed rapidly with progress in MRI hardware and emerging postprocessing algorithms. Function-related imaging markers can be acquired via renal fMRI, encompassing water molecular diffusion, perfusion, and oxygenation. This review focuses on the progression and challenges of the main renal fMRI methods, including dynamic contrast-enhanced MRI, blood oxygen level-dependent MRI, diffusion-weighted imaging, diffusion tensor imaging, arterial spin labeling, fat fraction imaging, and their recent clinical applications. LEVEL OF EVIDENCE 5 Technical Efficacy: Stage 2 J. Magn. Reson. Imaging 2018;48:863-881.
Collapse
Affiliation(s)
- Jia-Ying Zhou
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Yuan-Cheng Wang
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Chu-Hui Zeng
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| | - Sheng-Hong Ju
- Jiangsu Key Laboratory of Molecular and Functional Imaging, Department of Radiology, Zhongda Hospital, Medical School, Southeast University, Nanjing, China
| |
Collapse
|
35
|
Liu J, Han Z, Chen G, Li Y, Zhang J, Xu J, van Zijl PCM, Zhang S, Liu G. CEST MRI of sepsis-induced acute kidney injury. NMR IN BIOMEDICINE 2018; 31:e3942. [PMID: 29897643 DOI: 10.1002/nbm.3942] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 04/15/2018] [Accepted: 04/23/2018] [Indexed: 06/08/2023]
Abstract
Sepsis-induced acute kidney injury (SAKI) is a major complication of kidney disease associated with increased mortality and faster progression. Therefore, the development of imaging biomarkers to detect septic AKI is of great clinical interest. In this study, we aimed to characterize the endogenous chemical exchange saturation transfer (CEST) MRI contrast in the lipopolysaccharide (LPS)-induced SAKI mouse model and to investigate the use of CEST MRI for detecting such injury. We used a SAKI mouse model that was generated by i.p. injection of 10 mg/kg LPS. The resulting kidney injury was confirmed by the elevation of serum creatinine and histology. MRI assessments were performed 24 h after LPS injection, including CEST MRI at different B1 strengths (1, 1.8 and 3 μT), T1 mapping, T2 mapping and conventional magnetization transfer contrast (MTC) MRI. The CEST MRI results were analyzed using Z-spectra, in which the normalized water signal saturation (Ssat /S0 ) is measured as a function of saturation frequency. Substantial decreases in CEST contrast were observed at both 3.5 and - 3.5 ppm frequency offset from water at all B1 powers, with the most significant difference obtained at a B1 of 1.8 μT. The average Ssat /S0 differences between injured and normal kidneys were 0.07 (0.55 ± 0.04 versus 0.62 ± 0.04, P = 0.0028) and 0.07 (0.50 ± 0.04 versus 0.57 ± 0.03, P = 0.0008) for 3.5 and - 3.5 ppm, respectively. In contrast, the T1 and T2 relaxation times and MTC contrast in the injured kidneys did not show a significant change compared with the normal control. Our results showed that CEST MRI is more sensitive to the pathological changes in injured kidneys than the changes in T1 , T2 and MTC effect, indicating its potential clinical utility for molecular imaging of renal diseases.
Collapse
Affiliation(s)
- Jing Liu
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zheng Han
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Guoli Chen
- Department of Pathology and Laboratory Medicine, Pennsylvania State University College of Medicine, Hershey, PA, USA
| | - Yuguo Li
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jia Zhang
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Jiadi Xu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Peter C M van Zijl
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| | - Shuixing Zhang
- Graduate College, Southern Medical University, Guangzhou, Guangdong, China
- Department of Radiology, Guangdong Provincial People's Hospital/Guangdong General Hospital, Guangzhou, Guangdong, China
- Department of Radiology, The First Affiliated Hospital of Jinan University, Guangzhou, China
| | - Guanshu Liu
- Department of Radiology, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- F.M. Kirby Research Center for Functional Brain Imaging, Kennedy Krieger Institute, Baltimore, MD, USA
| |
Collapse
|
36
|
Wang Y, Ren K, Xie L, Sun W, Liu Y, Li S. Effect of Repeated Injection of Iodixanol on Renal Function in Healthy Wistar Rats Using Functional MRI. BIOMED RESEARCH INTERNATIONAL 2018; 2018:7272485. [PMID: 29850557 PMCID: PMC5904815 DOI: 10.1155/2018/7272485] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/12/2017] [Revised: 11/13/2017] [Accepted: 02/01/2018] [Indexed: 11/24/2022]
Abstract
PURPOSE To determine the optimal time interval of repeated intravenous injections of iodixanol in rat model and to identify the injury location and causes of renal damage in vivo. MATERIALS AND METHODS Rats were randomly divided into Control group, Group 1 with one iodixanol injection, and Group 2 with two iodixanol injections. Group 2 was subdivided into 3 cohorts according to the interval between the first and second iodixanol injections as 1, 3, and 5 days, respectively. Blood oxygen level-dependent (BOLD) imaging and diffusion weighted imaging (DWI) were performed at 1 hour, 1 day, 3 days, 5 days, and 10 days after the application of solutions. RESULTS Compared with Group 1 (7.2%), Group 2 produced a remarkable R2⁎ increment at the inner stripe of the renal outer medulla by 15.37% (P = 0.012), 14.83% (P = 0.046), and 13.53% (P > 0.05), respectively, at 1 hour after repeated injection of iodixanol. The severity of BOLD MRI to detect renal hypoxia was consistent with the expression of HIF-1α and R2⁎ was well correlated with HIF-1α expression (r = 0.704). The acute tubular injury was associated with urinary NGAL and increased significantly at 1 day. CONCLUSIONS Repetitive injection of iodixanol within a short time window can induce acute kidney injury, the impact of which on renal damage in rats disappears gradually 3-5 days after the injections.
Collapse
Affiliation(s)
- Yongfang Wang
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Ke Ren
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Lizhi Xie
- GE Healthcare, MR Research China, Beijing, China
| | - Wenge Sun
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Yi Liu
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| | - Songbai Li
- Department of Radiology, First Affiliated Hospital of China Medical University, Shenyang 110001, China
| |
Collapse
|
37
|
Pons M, Leporq B, Ali L, Alison M, Albuquerque M, Peuchmaur M, Poli Mérol ML, Blank U, Lambert SA, El Ghoneimi A. Renal parenchyma impairment characterization in partial unilateral ureteral obstruction in mice with intravoxel incoherent motion-MRI. NMR IN BIOMEDICINE 2018; 31:e3858. [PMID: 29178439 DOI: 10.1002/nbm.3858] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2017] [Revised: 08/19/2017] [Accepted: 10/11/2017] [Indexed: 06/07/2023]
Abstract
Ureteropelvic junction obstruction constitutes a major cause of progressive pediatric renal disease. The biological mechanisms underlying the renal response to obstruction can be investigated using a clinically relevant mouse model of partial unilateral ureteral obstruction (pUUO). Renal function and kidney morphology data can be evaluated using renal ultrasound, scintigraphy and uro-magnetic resonance imaging (uro-MRI), but these methods are poorly linked to histological change and not all are quantitative. Here, we propose to investigate pUUO for the first time using an intravoxel incoherent motion diffusion sequence. The aim of this study was to quantitatively characterize impairment of the kidney parenchyma in the pUUO model. This quantitative MRI method was able to assess the perfusion and microstructure of the kidney without requiring the injection of a contrast agent. The results suggest that a perfusion fraction (f) reduction is associated with a decrease in the volume of the renal parenchyma, which could be related to decreased renal vascularization. The latter may occur before impairment by fibrosis and the findings are in accordance with the literature using the UUO mice model and, more specifically, on pUUO. Further investigation is required before this technique can be made available for the diagnosis and management of children with antenatal hydronephrosis and to select the optimal timing of surgery if required.
Collapse
Affiliation(s)
- Maguelonne Pons
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Benjamin Leporq
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Liza Ali
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | - Marianne Alison
- Department of Pediatric Radiology, Hôpital Robert Debré, APHP, Université Paris Diderot, PRES Sorbonne Paris-Cité, INSERM U1141, DHU PROTECT, Paris, France
| | | | - Michel Peuchmaur
- Department of Pathology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| | | | - Ulrich Blank
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
| | - Simon A Lambert
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
- Université Lyon, INSA-Lyon, Université Claude Bernard Lyon 1, UJM-Saint Etienne, CNRS, Inserm, CREATIS UMR 5220, U1206, Lyon, France
| | - Alaa El Ghoneimi
- INSERM UMR 1149, Paris, France
- CNRS ERL8252, Paris, France
- Université Paris Diderot, Sorbonne Paris Cité, Laboratoire d'excellence INFLAMEX, Paris, France
- Department of Pediatric Surgery and Urology, Hôpital Robert Debré, APHP, Université Paris Diderot, Sorbonne Paris Cité, Paris, France
| |
Collapse
|
38
|
Federau C. Intravoxel incoherent motion MRI as a means to measure in vivo perfusion: A review of the evidence. NMR IN BIOMEDICINE 2017; 30. [PMID: 28885745 DOI: 10.1002/nbm.3780] [Citation(s) in RCA: 75] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2017] [Revised: 06/19/2017] [Accepted: 07/07/2017] [Indexed: 05/07/2023]
Abstract
The idea that in vivo intravoxel incoherent motion magnetic resonance signal is influenced by blood motion in the microvasculature is exciting, because it suggests that local and quantitative perfusion information can be obtained in a simple and elegant way from a few diffusion-weighted images, without contrast injection. When the method was proposed in the late 1980s some doubts appeared as to its feasibility, and, probably because the signal to noise and image quality at the time was not sufficient, no obvious experimental evidence could be produced to alleviate them. Helped by the tremendous improvements seen in the last three decades in MR hardware, pulse design, and post-processing capabilities, an increasing number of encouraging reports on the value of intravoxel incoherent motion perfusion imaging have emerged. The aim of this article is to review the current published evidence on the feasibility of in vivo perfusion imaging with intravoxel incoherent motion MRI.
Collapse
Affiliation(s)
- Christian Federau
- Division of Diagnostic and Interventional Neuroradiology, Department of Radiology, University Hospital Basel, Petersgraben, Basle, Switzerland
| |
Collapse
|
39
|
Diffusion-weighted imaging of the kidneys in haemolytic uraemic syndrome. Eur Radiol 2017; 27:4591-4601. [PMID: 28500363 DOI: 10.1007/s00330-017-4848-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2016] [Revised: 03/15/2017] [Accepted: 04/10/2017] [Indexed: 12/20/2022]
Abstract
OBJECTIVES To evaluate the kidneys of patients with haemolytic uraemic syndrome (HUS) using diffusion-weighted imaging (DWI) and Doppler ultrasound (US) compared with healthy controls. MATERIALS AND METHODS Fifteen patients (mean age 33.3 years; three male; 12 female) with diarrhoea-positive HUS and 15 healthy volunteers were prospectively evaluated with DWI and Doppler US. A total apparent diffusion coefficient (ADCTOT), and ADCs predominantly reflecting microperfusion (ADCLOW) and diffusion (ADCHIGH) were calculated. Doppler US evaluated renal vascularity and flow. RESULTS When compared with controls, kidneys affected by HUS showed reduced cortical ADC values (ADCTOT 1.79±0.22 vs. 2.04±0.1x10-3 mm2/s, P 0.001), resulting in either low corticomedullary differences (11/15 patients) or an inverted corticomedullary pattern (4/15 patients). Reduction of cortical ADC values was associated with a decrease of cortical vascularity on Doppler US (ADCTOT, P<0.001; ADCLOW, P 0.047). Kidneys with complete absence of the cortical vasculature on Doppler US (four patients) also demonstrated limited diffusion (ADCHIGH, P 0.002). Low glomerular filtration rate, requirement for haemodialysis during hospitalization, and longer duration of haemodialysis were associated with decreased cortical diffusivity (ADCTOT: P 0.04, 0.007, and <0.001, respectively). CONCLUSION DWI shows qualitative and quantitative abnormalities in kidneys affected by HUS, thereby extending the non-invasive assessment of renal parenchymal damage. KEY POINTS • In HUS, DWI is feasible for functional characterization of kidney involvement. • Kidneys affected by HUS showed reduced cortical diffusivity. • Decreased cortical diffusivity was associated with lower kidney function. • Requirement and duration of haemodialysis was linked to degree of cortical alterations.
Collapse
|
40
|
Severe bilateral ischemic-reperfusion renal injury: hyperacute and acute changes in apparent diffusion coefficient, T1, and T2 mapping with immunohistochemical correlations. Sci Rep 2017; 7:1725. [PMID: 28496138 PMCID: PMC5431885 DOI: 10.1038/s41598-017-01895-x] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2016] [Accepted: 04/04/2017] [Indexed: 02/08/2023] Open
Abstract
The aim of this study was to investigate the hyperacute and acute changes in apparent diffusion coefficient (ADC), T1, and T2 mapping in rat kidneys after severe bilateral renal ischemic-reperfusion injury (IRI). After baseline MRI, 24 Spraque-Dawley rats with renal IRI were divided equally as group 1 (post-IRI MRI at 6 hours, days 1, 3, and 7) and groups 2, 3, and 4 (post-IRI MRI at 6 hours; 6 hours and day 1; 6 hours, days 1 and 3, respectively), while six other rats without IRI (group 5) were used as sham control. ADC, T1, and T2 values of the cortex and outer and inner stripes of outer medulla (OSOM and ISOM), and immunohistochemical studies assessing monocyte chemoattractant protein-1 (MCP-1), CD68+ cells, tubular cast formation, and collagen deposition in three zones at different time points were evaluated. Significantly reduced ADCs in OSOM and ISOM are noninvasive biomarkers denoting hyperacute damages after IRI. Linear regression analysis revealed a significant inverse correlation between 6-hour/baseline ADC ratios and MCP-1 staining (P < 0.001, r2 = 0.738). ADC, T1, and T2 values are useful for assessing variable IRI changes in different layers depending on underlying microstructural and histopathological changes at different time points.
Collapse
|
41
|
Mou A, Zhang C, Li M, Jin F, Song Q, Liu A, Li Z. Evaluation of myocardial microcirculation using intravoxel incoherent motion imaging. J Magn Reson Imaging 2017; 46:1818-1828. [PMID: 28306208 DOI: 10.1002/jmri.25706] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2016] [Accepted: 03/02/2017] [Indexed: 11/07/2022] Open
Affiliation(s)
- Anna Mou
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Chen Zhang
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Mengying Li
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Fengqiang Jin
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Qingwei Song
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Ailian Liu
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| | - Zhiyong Li
- Department of Radiology; First Affiliated Hospital of Dalian Medical University; Dalian P.R. China
| |
Collapse
|
42
|
Shen N, Zhao L, Jiang J, Jiang R, Su C, Zhang S, Tang X, Zhu W. Intravoxel incoherent motion diffusion-weighted imaging analysis of diffusion and microperfusion in grading gliomas and comparison with arterial spin labeling for evaluation of tumor perfusion. J Magn Reson Imaging 2016; 44:620-32. [PMID: 26880230 DOI: 10.1002/jmri.25191] [Citation(s) in RCA: 65] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2015] [Accepted: 01/25/2016] [Indexed: 11/09/2022] Open
Abstract
PURPOSE To determine the utility of intravoxel incoherent motion (IVIM) imaging in grading gliomas and compare IVIM perfusion metrics with arterial spin labeling (ASL)-derived cerebral blood flow (CBF). MATERIALS AND METHODS Fifty-two patients with pathologically confirmed gliomas underwent IVIM and ASL imaging at 3.0T. IVIM perfusion-related diffusivity (D*), perfusion fraction (f), product of f and D*(f×D*), true diffusivity (D), and apparent diffusion coefficient (ADC) were obtained to distinguish glioma grades. The CBF derived from pseudocontinuous ASL within the solid tumor was compared and correlated with IVIM perfusion metrics for grading of gliomas. Values were also normalized to the contralateral normal-appearing white matter. Receiver-operating characteristic was performed to determine diagnostic efficiency. The reliability was estimated with intraclass coefficient, coefficient of variance, and Bland-Altman plots. RESULTS IVIM perfusion metrics and CBF were significantly higher in the high-grade than the low-grade gliomas (P < 0.001), ADC and D were significantly lower in the high-grade than the low-grade gliomas (P < 0.001). f×D* differed significantly between grades II through IV (P < 0.05 for all). The other metrics showed significant difference between grade II and grade III (P < 0.05 for all). Area under the curve (AUC) was largest for f×D* in distinguishing high-grade from low-grade gliomas (AUC = 0.979, P < 0.001) and between grade II and grade III (AUC = 0.957, P < 0.001). f×D* improved diagnostic performance of CBF in grading gliomas and showed strong correlation with CBF (r = 0.696, P < 0.001). CONCLUSION IVIM-derived metrics are promising biomarkers in preoperative grading gliomas. IVIM imaging may be an additive method to ASL and ADC for evaluating tumor perfusion and diffusion. J. Magn. Reson. Imaging 2016;44:620-632.
Collapse
Affiliation(s)
- Nanxi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Lingyun Zhao
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Jingjing Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Rifeng Jiang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Changliang Su
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Shun Zhang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Xiangyu Tang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Wenzhen Zhu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| |
Collapse
|
43
|
Zhou HY, Chen TW, Zhang XM. Functional Magnetic Resonance Imaging in Acute Kidney Injury: Present Status. BIOMED RESEARCH INTERNATIONAL 2016; 2016:2027370. [PMID: 26925411 PMCID: PMC4746277 DOI: 10.1155/2016/2027370] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/01/2015] [Revised: 01/05/2016] [Accepted: 01/06/2016] [Indexed: 12/27/2022]
Abstract
Acute kidney injury (AKI) is a common complication of hospitalization that is characterized by a sudden loss of renal excretory function and associated with the subsequent development of chronic kidney disease, poor prognosis, and increased mortality. Although the pathophysiology of renal functional impairment in the setting of AKI remains poorly understood, previous studies have identified changes in renal hemodynamics, perfusion, and oxygenation as key factors in the development and progression of AKI. The early assessment of these changes remains a challenge. Many established approaches are not applicable to humans because of their invasiveness. Functional renal magnetic resonance (MR) imaging offers an alternative assessment tool that could be used to evaluate renal morphology and function noninvasively and simultaneously. Thus, the purpose of this review is to illustrate the principle, application, and role of the techniques of functional renal MR imaging, including blood oxygen level-dependent imaging, arterial spin labeling, and diffusion-weighted MR imaging, in the management of AKI. The use of gadolinium in MR imaging may exacerbate renal impairment and cause nephrogenic systemic fibrosis. Therefore, dynamic contrast-enhanced MR imaging will not be discussed in this paper.
Collapse
Affiliation(s)
- Hai Ying Zhou
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Tian Wu Chen
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| | - Xiao Ming Zhang
- Sichuan Key Laboratory of Medical Imaging, Department of Radiology, Affiliated Hospital of North Sichuan Medical College, 63 Wenhua Road, Shunqing District, Nanchong, Sichuan 637000, China
| |
Collapse
|