1
|
Zhang P, Wei L, Nie Z, Hu P, Zheng J, Lv J, Cui T, Liu C, Lan X. Research on the developments of artificial intelligence in radiomics for oncology over the past decade: a bibliometric and visualized analysis. Discov Oncol 2025; 16:763. [PMID: 40366503 PMCID: PMC12078899 DOI: 10.1007/s12672-025-02590-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/21/2025] [Accepted: 05/06/2025] [Indexed: 05/15/2025] Open
Abstract
OBJECTIVE To assess the publications' bibliographic features and look into how the advancement of artificial intelligence (AI) and its subfields in radiomics has affected the growth of oncology. METHODS The researchers conducted a search in the Web of Science (WoS) for scientific publications in cancer pertaining to AI and radiomics, published in English from 1 January 2015 to 31 December 2024.The research included a scientometric methodology and comprehensive data analysis utilising scientific visualization tools, including the Bibliometrix R software package, VOSviewer, and CiteSpace. Bibliometric techniques utilised were co-authorship, co-citation, co-occurrence, citation burst, and performance Analysis. RESULTS The final study encompassed 4,127 publications authored by 5,026 individuals and published across 597 journals. China (2087;50.57%) and USA (850;20.6%) were the two most productive countries. The authors with the highest publication counts were Tian Jie (60) and Cuocolo Renato (30). Fudan University (169;4.09%) and Sun Yat-sen University (162;3.93%) were the most active institutions. The foremost journals were Frontiers in Oncology and Cancer. The predominant author keywords were radiomics, artificial intelligence, and oncology research. CONCLUSION Investigations into the integration of AI with radiomics in oncology remain nascent, with numerous studies concentrating on biology, diagnosis, treatment, and cancer risk evaluation.
Collapse
Affiliation(s)
- Pengyu Zhang
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
- School of Qingdao Medical College, Qingdao University, 308 Ningxia Road, Qingdao, 266071, China
| | - Lili Wei
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Zonglong Nie
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Pengcheng Hu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Jilu Zheng
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China
| | - Ji Lv
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Tao Cui
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Chunlei Liu
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| | - Xiaopeng Lan
- Department of Urology, Qingdao Central Hospital, University of Health and Rehabilitation Sciences, Qingdao, 266042, People's Republic of China.
| |
Collapse
|
2
|
Zheng S, Chen J, Ren A, Long W, Zhang X, He J, Yang M, Wang F. CT Multidimensional Radiomics Combined with Inflammatory Immune Score For Preoperative Prediction of Pathological Grade in Esophageal Squamous Cell Carcinoma. Acad Radiol 2025; 32:2667-2678. [PMID: 39809604 DOI: 10.1016/j.acra.2024.12.030] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2024] [Revised: 12/01/2024] [Accepted: 12/13/2024] [Indexed: 01/16/2025]
Abstract
RATIONALE AND OBJECTIVES Inflammation and immune biomarkers can promote angiogenesis and proliferation and metastasis of esophageal squamous cell carcinoma (ESCC). The degree of pathological grade reflects the tumor heterogeneity of ESCC. The purpose is to develop and validate a nomogram based on enhanced CT multidimensional radiomics combined with inflammatory immune score (IIS) for predicting poorly differentiated ESCC. MATERIALS AND METHODS A total of 266 ESCC patients from the retrospective study were included and randomly divided into a training set (N=186) and a validation set (N=80), and a complete data set (N=266), and overall survival was determined to follow up after surgery. The tumor imaging was segmented to form intratumoral and peritumoral 3 mm areas of 3D volume of interest (VOI) on CT arterial and venous phases, and 3404 radiomics features were extracted. Finally, the radiomics scores were calculated for arterial phase intratumoral (aInRads), peritumoral 3 mm (aPeriRads3), and venous phase intratumoral (vInRads), peritumoral 3 mm (vPeriRads3). Logistic regression was used to fuse the four cohorts of scores to form a Stacking. Additionally, sixteen inflammatory-immune biomarkers were analyzed, including aspartate aminotransferase to lymphocyte ratio (ALRI), aspartate aminotransferase to alanine aminotransferase ratio (AAR), neutrophil times gamma-glutamyl transpeptidase to lymphocyte ratio (NγLR), and albumin plus 5 times lymphocyte sum (PNI), etc. Finally, IIS was constructed using ALRI, AAR, NγLR and PNI. Model performance was evaluated by area under receiver operating characteristic curve (AUC), calibration curve, and decision curve analyse (DCA). RESULTS Stacking and IIS were independent risk factors for predicting poorly differentiated ESCC (P<0.05). Ultimately, three models of the IIS, Stacking, and nomogram were developed. Compared with the Stacking and IIS models, nomogram achieved better diagnostic performance for predicting poorly differentiated ESCC in the training set (0.881vs 0.835 vs 0.750), validation set (0.808 vs 0.796 vs 0.595), and complete data set (0.857 vs 0.823 vs 0.703). The nomogram achieved an AUC of 0.881(95%CI 0.826-0.924) in the training set, and was well verified in the validation set (AUC: 0.808[95%CI 0.705-0.888]) and the complete data set (AUC: 0.857[95%CI 0.809-0.897]). Moreover, calibration curve and DCA showed that nomogram achieved good calibration and owned more clinical net benefits in the three cohorts. KaplanMeier survival curves indicated that nomogram achieved excellent stratification for ESCC grade status (P<0.0001). CONCLUSION The nomogram that integrates preoperative inflammatory-immune biomarkers, intratumoral and peritumoral CT radiomics achieves a high and stable diagnostic performance for predicting poorly differentiated ESCC, and may be promising for individualized surgical selection and management. AVAILABILITY OF DATA AND MATERIALS The original manuscript contained in the research is included in the article. Further inquiries can be made directly to the corresponding author.
Collapse
Affiliation(s)
- Shaokun Zheng
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Jun Chen
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Anwei Ren
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Weili Long
- Department of Pathology, Luzhou People's Hospital, Luzhou 646000, China (W.L.)
| | - Xiaojiao Zhang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Jiqiang He
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Ming Yang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.)
| | - Fei Wang
- Department of Radiology, Luzhou People's Hospital, Luzhou 646000, China (S.Z., J.C., A.R., X.Z., J.H., M.Y., F.W.).
| |
Collapse
|
3
|
Ahmadzadeh AM, Lomer NB, Torigian DA. Radiomics and machine learning models for diagnosing microvascular invasion in cholangiocarcinoma: a systematic review and meta-analysis of diagnostic test accuracy studies. Clin Imaging 2025; 121:110456. [PMID: 40088548 DOI: 10.1016/j.clinimag.2025.110456] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2024] [Revised: 01/30/2025] [Accepted: 03/12/2025] [Indexed: 03/17/2025]
Abstract
PURPOSE We aimed to systematically assess the value of radiomics/machine learning (ML) models for diagnosing microvascular invasion (MVI) in patients with cholangiocarcinoma (CCA) using various radiologic modalities. METHODS A systematic search of was conducted on Web of Sciences, PubMed, Scopus, and Embase. All the studies that assessed the value of radiomics models or ML models along with the use of imaging features were included. The Quality Assessment of Diagnostic Accuracy Studies (QUADAS-2) criteria and METhodological RadiomICs Score (METRICS) were used for quality assessment. Pooled estimates for the diagnostic performance of radiomics/ML models were calculated. I-squared was used to assess heterogeneity, and sensitivity and subgroup analyses were performed to find the sources of heterogeneity. Deeks' funnel plots were used to assess publication bias. RESULTS 11 studies were included in the systematic review with only one study being about extrahepatic CCA. According to the METRICS, the mean score was 62.99 %. Meta-analyses were performed on intrahepatic CCA studies. The meta-analysis of the best ML models revealed an AUC of 0.93 in the training cohort and an AUC of 0.85 in the validation cohort. Regarding the best radiomics model, the AUC was 0.85 in the training cohort and 0.81 in the validation cohort. CONCLUSION Radiomics/ML models showed very good diagnostic performance regarding MVI diagnosis in patients with intrahepatic CCA and may provide a non-invasive method for this purpose. However, given the high heterogeneity and low number of the included studies, further multi-center studies with prospective design and robust external validation are essential.
Collapse
Affiliation(s)
- Amir Mahmoud Ahmadzadeh
- Department of Radiology, School of Medicine, Mashhad University of Medical Sciences, Mashhad, Iran
| | - Nima Broomand Lomer
- Medical Image Processing Group, Department of Radiology, University of Pennsylvania, PA 19104, United States
| | - Drew A Torigian
- Department of Radiology, Hospital of the University of Pennsylvania, 3400 Spruce Street, Philadelphia, PA 19104, United States of America.
| |
Collapse
|
4
|
Zhu Y, Chen J, Cui W, Cui C, Jin H, Wang J, Wang Z. Preoperative Computed Tomography Radiomics-Based Models for Predicting Microvascular Invasion of Intrahepatic Mass-Forming Cholangiocarcinoma. J Comput Assist Tomogr 2025; 49:358-366. [PMID: 39761501 DOI: 10.1097/rct.0000000000001686] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
OBJECTIVES The aim of the study is to investigate the ability of preoperative CT (Computed Tomography)-based radiomics signature to predict microvascular invasion (MVI) of intrahepatic mass-forming cholangiocarcinoma (IMCC) and develop radiomics-based prediction models. MATERIALS AND METHODS Preoperative clinical data, basic CT features, and radiomics features of 121 IMCC patients (44 with MVI and 77 without MVI) were retrospectively reviewed. The loading and display of CT images, delineation of the volume of interest, and feature extraction were performed using 3D Slicer. Radiomics features were selected by the LASSO logistic regression model. Multivariate logistic regression analysis was used to establish the radiomics model, radiologic model, and combined model in the training set (n = 85) to predict the MVI of IMCC, and then verified in the validation set (n = 36). RESULTS Among the 3948 radiomics features extracted from multiphase dynamic enhanced CT imaging, 16 most stable features were selected. The AUC of the radiomics model for predicting MVI in the training set and validation set were 0.935 and 0.749, respectively. The AUC of the radiologic model for predicting MVI in the training set and validation set were 0.827 and 0.796, respectively. When radiomics and radiologic models are combined, the predictive performance of the combined model (constructed with shape, intratumoral vessels, portal venous phase tumor-liver CT ratio, and radscore) is optimal, with an AUC of 0.958 in the training set and 0.829 in the test set for predicting MVI. CONCLUSIONS CT radiomics signature is a powerful predictor for predicting MVI. The preoperative combined model (constructed with shape, intratumoral vessels, portal venous phase tumor-liver CT ratio, and radscore) performed well in predicting the MVI.
Collapse
Affiliation(s)
- Yong Zhu
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jiao Chen
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Wenjing Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Can Cui
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Hailin Jin
- Digestive Endoscopy Center, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Jianhua Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| | - Zhongqiu Wang
- Department of Radiology, Affiliated Hospital of Nanjing University of Chinese Medicine, Jiangsu Province Hospital of Chinese Medicine, Nanjing, Jiangsu Province, China
| |
Collapse
|
5
|
Shen J, Zhang L, Li S, Mu X, Yu T, Zhang W, Yu Y, He J, Gao W. Multi-sequence MRI based radiomics nomogram for prediction expression of programmed death ligand 1 in thymic epithelial tumor. Front Immunol 2025; 16:1555530. [PMID: 40292290 PMCID: PMC12021882 DOI: 10.3389/fimmu.2025.1555530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2025] [Accepted: 03/20/2025] [Indexed: 04/30/2025] Open
Abstract
Background High expression levels of programmed death receptor 1 (PD-1) and its ligand 1 (PD-L1) have been observed in thymic epithelial tumors (TET), suggesting their potential as prognostic indicators for disease progression and the effectiveness of immunotherapy in TET. The conventional method obtaining PD-L1 was challenging due to invasive sampling and tumor heterogeneity. Methods A total of 124 patients with pathologically confirmed TET (57 PD-L1 positive, 67 PD-L1 negative) were retrospectively enrolled and allocated into training and validation cohorts in a ratio of 7:3. Radiomics features were extracted from T1-weighted, T2-weighted fat suppression, and apparent diffusion coefficient (ADC) map images to establish a radiomics signature in the training cohort. Multivariate logistic regression analysis was conducted to develop a combined radiomics nomogram that incorporated clinical, conventional MR features, or ADC model for evaluation purposes. The performance of each model was compared using receiver operating characteristics analysis, while discrimination, calibration, and clinical efficiency of the combined radiomics nomogram were assessed. Results The radiomics signature, consisting of four features, demonstrated a favorable ability to predict and differentiate between PD-L1 positive and negative TET patients. The combined radiomics nomogram, which incorporates the peri-cardial invasion sign, ADC value, WHO classification, and radiomics signature, showed excellent performance (training cohort: area under the curve [AUC] = 0.903; validation cohorts: AUC = 0.894). The calibration curve and decision curve analysis further confirmed the clinical usefulness of this combined model. The decision curve analysis demonstrated the clinical utility of the integrated radiomics nomogram. Conclusions The radiomics signature serves as a valuable tool for predicting the PD-L1 status of TET patients. Furthermore, the integration of radiomics nomogram enhances the personalized prediction capability.
Collapse
Affiliation(s)
- Jie Shen
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Lantian Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Shuke Li
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Xiaofei Mu
- Department of Oncology, The Friendship Hospital of Ili Kazakh Autonomous Prefecture, Yining, China
| | - Tongfu Yu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wei Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Yue Yu
- Department of Thoracic Surgery, the First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Jing He
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| | - Wen Gao
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing, China
| |
Collapse
|
6
|
Viganò L, Zanuso V, Fiz F, Cerri L, Laino ME, Ammirabile A, Ragaini EM, Viganò S, Terracciano LM, Francone M, Ieva F, Di Tommaso L, Rimassa L. CT-based radiogenomics of intrahepatic cholangiocarcinoma. Dig Liver Dis 2025; 57:118-124. [PMID: 39003163 DOI: 10.1016/j.dld.2024.06.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 06/21/2024] [Accepted: 06/28/2024] [Indexed: 07/15/2024]
Abstract
BACKGROUND Intrahepatic cholangiocarcinoma (ICC) is an aggressive disease with increasing incidence and its genetic alterations could be the target of systemic therapies. AIMS To elucidate if radiomics extracted from computed tomography (CT) may non-invasively predict ICC genetic alterations. METHODS All consecutive patients with a diagnosis of a mass-forming ICC (01/2016-06/2022) were considered. Inclusion criteria were availability of a high-quality contrast-enhanced CT and molecular profiling by NGS or FISH for FGFR2 fusion/rearrangement. The CT scan at diagnosis was considered. Genetic analyses were performed on surgical specimens (resectable patients) or biopsies (unresectable ones). The radiomic features were extracted using the LifeX software. Multivariate predictive models of the commonest genetic alterations were built. RESULTS In the 90 enrolled patients (58 NGS/32 FISH, median age 65 years), the most common genetic alterations were FGFR2 (20/90), IDH1 (10/58), and KRAS (9/58). At internal validation, the combined clinical-radiomic models achieved the best performance for the prediction of FGFR2 (AUC = 0.892) and IDH1 status (AUC = 0.819), outperforming the pure clinical and radiomic models. The radiomic model for predicting KRAS mutations achieved an AUC = 0.767 (vs. 0.660 of the clinical model) without further improvements with the addition of clinical features. CONCLUSIONS CT-based radiomics provides a reliable non-invasive prediction of ICC genetic status with a major impact on therapeutic strategies.
Collapse
Affiliation(s)
- Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, Bergamo, Italy.
| | - Valentina Zanuso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesco Fiz
- Nuclear Medicine Unit, Department of Diagnostic Imaging, Ente Ospedaliero "Ospedali Galliera", Genoa, Italy; Department of Nuclear Medicine and Clinical Molecular Imaging, University Hospital, Tübingen, Germany
| | - Luca Cerri
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | | | - Angela Ammirabile
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Elisa Maria Ragaini
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy
| | - Samuele Viganò
- MOX laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy
| | - Luigi Maria Terracciano
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Pathology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Marco Francone
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Department of Radiology, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Francesca Ieva
- MOX laboratory, Department of Mathematics, Politecnico di Milano, Milan, Italy; CHDS - Center for Health Data Science, Human Technopole, Milan, Italy
| | - Luca Di Tommaso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Pathology Unit, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| | - Lorenza Rimassa
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, Milan, Italy; Medical Oncology and Hematology Unit, Humanitas Cancer Center, IRCCS Humanitas Research Hospital, Rozzano, Milan, Italy
| |
Collapse
|
7
|
Sheng R, Zheng B, Zhang Y, Sun W, Yang C, Han J, Zeng M, Zhou J. MRI-based microvascular invasion prediction in mass-forming intrahepatic cholangiocarcinoma: survival and therapeutic benefit. Eur Radiol 2024:10.1007/s00330-024-11296-0. [PMID: 39699676 DOI: 10.1007/s00330-024-11296-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/23/2024] [Accepted: 11/16/2024] [Indexed: 12/20/2024]
Abstract
OBJECTIVES To establish an MRI-based model for microvascular invasion (MVI) prediction in mass-forming intrahepatic cholangiocarcinoma (MF-iCCA) and further evaluate its potential survival and therapeutic benefit. METHODS One hundred and fifty-six pathologically confirmed MF-iCCAs with traditional surgery (121 in training and 35 in validation cohorts), 33 with neoadjuvant treatment and 57 with first-line systemic therapy were retrospectively included. Univariate and multivariate regression analyses were performed to identify the independent predictors for MVI in the traditional surgery group, and an MVI-predictive model was constructed. Survival analyses were conducted and compared between MRI-predicted MVI-positive and MVI-negative MF-iCCAs in different treatment groups. RESULTS Tumor multinodularity (odds ratio = 4.498, p < 0.001) and peri-tumor diffusion-weighted hyperintensity (odds ratio = 4.163, p < 0.001) were independently significant variables associated with MVI. AUC values for the predictive model were 0.760 [95% CI 0.674, 0.833] in the training cohort and 0.757 [95% CI 0.583, 0.885] in the validation cohort. Recurrence-free survival or progression-free survival of the MRI-predicted MVI-positive patients was significantly shorter than the MVI-negative patients in all three treatment groups (log-rank p < 0.001 to 0.046). The use of neoadjuvant therapy was not associated with improved postoperative recurrence-free survival for high-risk MF-iCCA patients in both MRI-predicted MVI-positive and MVI-negative groups (log-rank p = 0.79 and 0.27). Advanced MF-iCCA patients of the MRI-predicted MVI-positive group had significantly worse objective response rate than the MVI-negative group with systemic therapy (40.91% vs 76.92%, χ2 = 5.208, p = 0.022). CONCLUSION The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction in MF-iCCA patients with varied therapies and may aid in candidate selection for systemic therapy. KEY POINTS Question Identifying intrahepatic cholangiocarcinoma (iCCA) patients at high risk for microvascular invasion (MVI) may inform prognostic risk stratification and guide clinical treatment decision. Findings We established an MRI-based predictive model for MVI in mass-forming-iCCA, integrating imaging features of tumor multinodularity and peri-tumor diffusion-weighted hyperintensity. Clinical relevance The MRI-based MVI-predictive model could be a potential biomarker for personalized risk stratification and survival prediction across varied therapies and may aid in therapeutic candidate selection for systemic therapy.
Collapse
Affiliation(s)
- Ruofan Sheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Beixuan Zheng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Wei Sun
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Jing Han
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.
- Shanghai Institute of Medical Imaging, Shanghai, China.
| | - Jianjun Zhou
- Department of Radiology, Zhongshan Hospital (Xiamen), Fudan University, Fujian, China
| |
Collapse
|
8
|
Shen K, Su W, Liang C, Shi D, Sun J, Yu R. Differentiating small (< 2 cm) pancreatic ductal adenocarcinoma from neuroendocrine tumors with multiparametric MRI-based radiomic features. Eur Radiol 2024; 34:7553-7563. [PMID: 38869639 DOI: 10.1007/s00330-024-10837-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Revised: 04/08/2024] [Accepted: 05/02/2024] [Indexed: 06/14/2024]
Abstract
OBJECTIVES To assess MR-based radiomic analysis in preoperatively discriminating small (< 2 cm) pancreatic ductal adenocarcinomas (PDACs) from neuroendocrine tumors (PNETs). METHODS A total of 197 patients (146 in the training cohort, 51 in the validation cohort) from two centers were retrospectively collected. A total of 7338 radiomics features were extracted from T2-weighted, diffusion-weighted, T1-weighted, arterial phase, portal venous phase and delayed phase imaging. The optimal features were selected by the Mann-Whitney U test, Spearman's rank correlation test and least absolute shrinkage and selection operator method and used to construct the radiomic score (Rad-score). Conventional radiological and clinical features were also assessed. Multivariable logistic regression was used to construct a radiological model, a radiomic model and a fusion model. RESULTS Nine optimal features were identified and used to build the Rad-score. The radiomic model based on the Rad-score achieved satisfactory results with AUCs of 0.905 and 0.930, sensitivities of 0.780 and 0.800, specificities of 0.906 and 0.952 and accuracies of 0.836 and 0.863 for the training and validation cohorts, respectively. The fusion model, incorporating CA19-9, tumor margins, pancreatic duct dilatation and the Rad-score, exhibited the best performance with AUCs of 0.977 and 0.941, sensitivities of 0.914 and 0.852, specificities of 0.954 and 0.950, and accuracies of 0.932 and 0.894 for the training and validation cohorts, respectively. CONCLUSIONS The MR-based Rad-score is a novel image biomarker for discriminating small PDACs from PNETs. A fusion model combining radiomic, radiological and clinical features performed very well in differentially diagnosing these two tumors. CLINICAL RELEVANCE STATEMENT A fusion model combining MR-based radiomic, radiological, and clinical features could help differentiate between small pancreatic ductal adenocarcinomas and pancreatic neuroendocrine tumors. KEY POINTS Preoperatively differentiating small pancreatic ductal adenocarcinomas (PDACs) and pancreatic neuroendocrine tumors (PNETs) is challenging. Multiparametric MRI-based Rad-score can be used for discriminating small PDACs from PNETs. A fusion model incorporating radiomic, radiological, and clinical features differentiated small PDACs from PNETs well.
Collapse
Affiliation(s)
- Keren Shen
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Weijie Su
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Chunmiao Liang
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Dan Shi
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China
| | - Jihong Sun
- Department of Radiology, Sir Run Run Shaw Hospital, Zhejiang University School of Medicine, Hangzhou, 310016, China
| | - Risheng Yu
- Department of Radiology, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, 310009, China.
| |
Collapse
|
9
|
Huang Y, Zhang H, Ding Q, Chen D, Zhang X, Weng S, Liu G. Comparison of multiple machine learning models for predicting prognosis of pancreatic ductal adenocarcinoma based on contrast-enhanced CT radiomics and clinical features. Front Oncol 2024; 14:1419297. [PMID: 39605884 PMCID: PMC11598923 DOI: 10.3389/fonc.2024.1419297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2024] [Accepted: 10/25/2024] [Indexed: 11/29/2024] Open
Abstract
Objective The aim of this study was to evaluate the prognostic potential of combining clinical features and radiomics with multiple machine learning (ML) algorithms in pancreatic ductal adenocarcinoma (PDAC). Methods A total of 116 patients with PDAC who met the eligibility criteria were randomly assigned to a training or validation cohort. Seven ML algorithms, including Supervised Principal Components, stepwise Cox, Random Survival Forest, CoxBoost, Least absolute shrinkage and selection operation (Lasso), Ridge, and Elastic network, were integrated into 43 algorithm combinations. Forty-three radiomics models were constructed separately using radiomics features extracted from arterial phase (AP), venous phase (VP), and combined arterial and venous phase (AP+VP) images. The concordance index (C-index) of each model was calculated. The model with the highest mean C-index was identified as the best model for calculating the radiomics score (Radscore). Univariate and multivariate Cox analyses were used to identify independent prognostic indicators and create a clinical model for prognosis prediction. The multivariable Cox regression was used to combine Radscore with clinical features to create a combined model. The efficacy of the model was evaluated using the C-index, calibration curves, and decision curve analysis (DCA). Results The model based on the Lasso+StepCox[both] algorithm constructed using AP+VP radiomics features showed the best predictive ability among the 114 radiomics models. The C-indices of the model in the training and validation cohorts were 0.742 and 0.722, respectively. Based on the results of the univariate and multivariate Cox regression analyses, sex, Tumor-Node-Metastasis (TNM) stage, and systemic inflammation response index were included to build the clinical model. The combined model, incorporating three clinical factors and AP+VP-Radscore, achieved the highest C-indices of 0.764 and 0.746 in the training and validation cohorts, respectively. In terms of preoperative prognosis prediction for PDAC, the calibration curve and DCA showed that the combined model had a good consistency and greatest net benefit. Conclusion A combined model of clinical features and AP+VP-Radscore screened using multiple ML algorithms has an excellent ability to predict the prognosis of PDAC and may provide a noninvasive and effective method for clinical decision-making.
Collapse
Affiliation(s)
- Yue Huang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Han Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Qingzhu Ding
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Dehua Chen
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Department of Radiology, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Xiang Zhang
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| | - Shangeng Weng
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Provincial Key Laboratory of Precision Medicine for Cancer, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- Clinical Research Center for Hepatobiliary Pancreatic and Gastrointestinal Malignant Tumors Precise Treatment of Fujian, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
| | - Guozhong Liu
- Department of Hepatopancreatobiliary Surgery, The First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
- Fujian Abdominal Surgery Research Institute, The First Affiliated Hospital of Fujian Medical University, Fuzhou, Fujian, China
- National Regional Medical Center, Binhai Campus of the First Affiliated Hospital, Fujian Medical University, Fuzhou, Fujian, China
| |
Collapse
|
10
|
Lu D, Wang LF, Han H, Li LL, Kong WT, Zhou Q, Zhou BY, Sun YK, Yin HH, Zhu MR, Hu XY, Lu Q, Xia HS, Wang X, Zhao CK, Zhou JH, Xu HX. Prediction of microvascular invasion in hepatocellular carcinoma with conventional ultrasound, Sonazoid-enhanced ultrasound, and biochemical indicator: a multicenter study. Insights Imaging 2024; 15:261. [PMID: 39466459 PMCID: PMC11519233 DOI: 10.1186/s13244-024-01743-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Accepted: 06/16/2024] [Indexed: 10/30/2024] Open
Abstract
PURPOSE To develop and validate a preoperative prediction model based on multimodal ultrasound and biochemical indicator for identifying microvascular invasion (MVI) in patients with a single hepatocellular carcinoma (HCC) ≤ 5 cm. METHODS From May 2022 to November 2023, a total of 318 patients with pathologically confirmed single HCC ≤ 5 cm from three institutions were enrolled. All of them underwent preoperative biochemical, conventional ultrasound (US), and contrast-enhanced ultrasound (CEUS) (Sonazoid, 0.6 mL, bolus injection) examinations. Univariate and multivariate logistic regression analyses on clinical information, biochemical indicator, and US imaging features were performed in the training set to seek independent predictors for MVI-positive. The models were constructed and evaluated using the area under the receiver operating characteristic curve (AUC), calibration curve, and decision curve analysis in both validation and test sets. Subgroup analyses in patients with different liver background and tumor sizes were conducted to further investigate the model's performance. RESULTS Logistic regression analyses showed that obscure tumor boundary in B-mode US, intra-tumoral artery in pulsed-wave Doppler US, complete Kupffer-phase agent clearance in Sonazoid-CEUS, and biomedical indicator PIVKA-II were independently correlated with MVI-positive. The combined model comprising all predictors showed the highest AUC, which were 0.937 and 0.893 in the validation and test sets. Good calibration and prominent net benefit were achieved in both sets. No significant difference was found in subgroup analyses. CONCLUSIONS The combination of biochemical indicator, conventional US, and Sonazoid-CEUS features could help preoperative MVI prediction in patients with a single HCC ≤ 5 cm. CRITICAL RELEVANCE STATEMENT Investigation of imaging features in conventional US, Sonazoid-CEUS, and biochemical indicators showed a significant relation with MVI-positivity in patients with a single HCC ≤ 5 cm, allowing the construction of a model for preoperative prediction of MVI status to help treatment decision making. KEY POINTS MVI status is important for patients with a single HCC ≤ 5 cm. The model based on conventional US, Sonazoid-CEUS and PIVKA-II performs best for MVI prediction. The combined model has potential for preoperative prediction of MVI status.
Collapse
Affiliation(s)
- Dan Lu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Li-Fan Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hong Han
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Lin-Lin Li
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, Provincial Clinical Research Center for Cancer, Guangzhou, China
| | - Wen-Tao Kong
- Department of Ultrasound, Nanjing DrumTower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Qian Zhou
- Department of Ultrasound, Nanjing DrumTower Hospital, The Affiliated Hospital of Nanjing University Medical School, Nanjing, China
| | - Bo-Yang Zhou
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Yi-Kang Sun
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Hao-Hao Yin
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Ming-Rui Zhu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xin-Yuan Hu
- School of Medicine, Anhui University of Science and Technology, Anhui, China
| | - Qing Lu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Han-Sheng Xia
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Xi Wang
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China
- Shanghai Institute of Medical Imaging, Shanghai, China
| | - Chong-Ke Zhao
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| | - Jian-Hua Zhou
- Department of Ultrasound, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Guangdong, Provincial Clinical Research Center for Cancer, Guangzhou, China.
| | - Hui-Xiong Xu
- Department of Ultrasound, Institute of Ultrasound in Medicine and Engineering, Zhongshan Hospital, Fudan University, Shanghai, China.
| |
Collapse
|
11
|
Xu S, Wan M, Ye C, Chen R, Li Q, Zhang X, Ruan J. Machine learning based on biological context facilitates the identification of microvascular invasion in intrahepatic cholangiocarcinoma. Carcinogenesis 2024; 45:721-734. [PMID: 39086220 DOI: 10.1093/carcin/bgae052] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2023] [Revised: 05/27/2024] [Accepted: 07/31/2024] [Indexed: 08/02/2024] Open
Abstract
Intrahepatic cholangiocarcinoma is a rare disease associated with a poor prognosis, primarily due to early recurrence and metastasis. An important feature of this condition is microvascular invasion (MVI). However, current predictive models based on imaging have limited efficacy in this regard. This study employed a random forest model to construct a predictive model for MVI identification and uncover its biological basis. Single-cell transcriptome sequencing, whole exome sequencing, and proteome sequencing were performed. The area under the curve of the prediction model in the validation set was 0.93. Further analysis indicated that MVI-associated tumor cells exhibited functional changes related to epithelial-mesenchymal transition and lipid metabolism due to alterations in the nuclear factor-kappa B and mitogen-activated protein kinase signaling pathways. Tumor cells were also differentially enriched for the interleukin-17 signaling pathway. There was less infiltration of SLC30A1+ CD8+ T cells expressing cytotoxic genes in MVI-associated intrahepatic cholangiocarcinoma, whereas there was more infiltration of myeloid cells with attenuated expression of the major histocompatibility complex II pathway. Additionally, MVI-associated intercellular communication was closely related to the SPP1-CD44 and ANXA1-FPR1 pathways. These findings resulted in a brilliant predictive model and fresh insights into MVI.
Collapse
Affiliation(s)
- Shuaishuai Xu
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Mingyu Wan
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Chanqi Ye
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Ruyin Chen
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Qiong Li
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Xiaochen Zhang
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| | - Jian Ruan
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, 25 Taiping Road, Luzhou 646000, Sichuan Province, China
- Department of Medical Oncology, The First Affiliated Hospital, Zhejiang University School of Medicine, and Key Laboratory of Cancer Prevention and Intervention, Ministry of Education, 79 Qingchun Road, Hangzhou 310000, Zhejiang Province, China
| |
Collapse
|
12
|
Xing LH, Wang SP, Zhuo LY, Zhang Y, Wang JN, Ma ZP, Zhao YJ, Yuan SR, Zu QH, Yin XP. Comparison of Machine Learning Models Using Diffusion-Weighted Images for Pathological Grade of Intrahepatic Mass-Forming Cholangiocarcinoma. JOURNAL OF IMAGING INFORMATICS IN MEDICINE 2024; 37:2252-2263. [PMID: 38627269 PMCID: PMC11522244 DOI: 10.1007/s10278-024-01103-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 03/22/2024] [Accepted: 03/26/2024] [Indexed: 10/30/2024]
Abstract
Is the radiomic approach, utilizing diffusion-weighted imaging (DWI), capable of predicting the various pathological grades of intrahepatic mass-forming cholangiocarcinoma (IMCC)? Furthermore, which model demonstrates superior performance among the diverse algorithms currently available? The objective of our study is to develop DWI radiomic models based on different machine learning algorithms and identify the optimal prediction model. We undertook a retrospective analysis of the DWI data of 77 patients with IMCC confirmed by pathological testing. Fifty-seven patients initially included in the study were randomly assigned to either the training set or the validation set in a ratio of 7:3. We established four different classifier models, namely random forest (RF), support vector machines (SVM), logistic regression (LR), and gradient boosting decision tree (GBDT), by manually contouring the region of interest and extracting prominent radiomic features. An external validation of the model was performed with the DWI data of 20 patients with IMCC who were subsequently included in the study. The area under the receiver operating curve (AUC), accuracy (ACC), precision (PRE), sensitivity (REC), and F1 score were used to evaluate the diagnostic performance of the model. Following the process of feature selection, a total of nine features were retained, with skewness being the most crucial radiomic feature demonstrating the highest diagnostic performance, followed by Gray Level Co-occurrence Matrix lmc1 (glcm-lmc1) and kurtosis, whose diagnostic performances were slightly inferior to skewness. Skewness and kurtosis showed a negative correlation with the pathological grading of IMCC, while glcm-lmc1 exhibited a positive correlation with the IMCC pathological grade. Compared with the other three models, the SVM radiomic model had the best diagnostic performance with an AUC of 0.957, an accuracy of 88.2%, a sensitivity of 85.7%, a precision of 85.7%, and an F1 score of 85.7% in the training set, as well as an AUC of 0.829, an accuracy of 76.5%, a sensitivity of 71.4%, a precision of 71.4%, and an F1 score of 71.4% in the external validation set. The DWI-based radiomic model proved to be efficacious in predicting the pathological grade of IMCC. The model with the SVM classifier algorithm had the best prediction efficiency and robustness. Consequently, this SVM-based model can be further explored as an option for a non-invasive preoperative prediction method in clinical practice.
Collapse
Affiliation(s)
- Li-Hong Xing
- College of Clinical Medicine, Hebei University, Baoding, 071000, China
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shu-Ping Wang
- College of Automation Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, 211106, China
| | - Li-Yong Zhuo
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Yu Zhang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Jia-Ning Wang
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ze-Peng Ma
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Ying-Jia Zhao
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Shuang-Rui Yuan
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China
| | - Qian-He Zu
- Clinical Medicine, College of Basic Medicine, Hebei University, Baoding, Hebei, 071000, China
| | - Xiao-Ping Yin
- Department of Radiology, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
- Hebei Key Laboratory of Precise Imaging of Inflammation-Related Tumors, Affiliated Hospital of Hebei University, Baoding, Hebei, 071000, China.
| |
Collapse
|
13
|
Liu S, Pan H, Li S, Li Z, Sun J, Ren T, Zhou J. Radiomic nomogram for predicting high-risk cytogenetic status in multiple myeloma based on fat-suppressed T2-weighted magnetic resonance imaging. J Bone Oncol 2024; 47:100617. [PMID: 39021591 PMCID: PMC11252923 DOI: 10.1016/j.jbo.2024.100617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2024] [Revised: 05/30/2024] [Accepted: 06/14/2024] [Indexed: 07/20/2024] Open
Abstract
Rationale and Objectives Radiomics has demonstrated potential in predicting the cytogenetic status of multiple myeloma (MM). However, the role of single-sequence radiomic nomograms in predicting the high-risk cytogenetic (HRC) status of MM remains underexplored. This study aims to develop and validate radiomic nomograms based on fat-suppressed T2-weighted images (T2WI-FS) for predicting MM's HRC status, facilitating pre-treatment decision-making and prognostic assessment. Materials and methods A cohort of 159 MM patients was included, comprising 71 HRC and 88 non-HRC cases. Regions of interest within the most significant tumor lesions on T2WI-FS images were manually delineated, yielding 1688 features. Fourteen radiomic features were selected using 10-fold cross-validation, employing methods such as variance thresholds, Student's t-test, redundancy analysis, and least absolute shrinkage and selection operator (LASSO). Logistic regression was utilized to develop three prediction models: a clinical model (model 1), a T2WI-FS radiomic model (model 2), and a combined clinical-radiomic model (model 3). Receiver operating characteristic (ROC) curves evaluated and compared the diagnostic performance of these models. Kaplan-Meier survival analysis and log-rank tests assessed the prognostic value of the radiomic nomograms. Results Models 2 and 3 demonstrated significantly greater diagnostic efficacy compared to model 1 (p < 0.05). The areas under the ROC curve for models 1, 2, and 3 were as follows: training set-0.650, 0.832, and 0.846; validation set-0.702, 0.730, and 0.757, respectively. Kaplan-Meier survival analysis indicated comparable prognostic values between the radiomic nomogram and MM cytogenetic status, with log-rank test results (p < 0.05) and concordance indices of 0.651 and 0.659, respectively; z-score test results were not statistically significant (p = 0.153). Additionally, Kaplan-Meier analysis revealed that patients in the non-HRC group, low-RS group, and aged ≤ 60 years exhibited the longest overall survival, while those in the HRC group, high-RS group, and aged > 60 years demonstrated the shortest overall survival (p = 0.004, Log-rank test). Conclusions Radiomic nomograms are capable of predicting the HRC status in MM. The cytogenetic status, radiomics model Rad score, and age collectively influence the overall survival of MM patients. These factors potentially contribute to pre-treatment clinical decision-making and prognostic assessment.
Collapse
Affiliation(s)
- Suwei Liu
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Haojie Pan
- Second Clinical School, Lanzhou University, Lanzhou, China
| | - Shenglin Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Zhengxiao Li
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Jiachen Sun
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Tiezhu Ren
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| | - Junlin Zhou
- Department of Radiology, Lanzhou University Second Hospital, Cuiyingmen No.82, Chengguan District, Lanzhou 730030, China
- Second Clinical School, Lanzhou University, Lanzhou, China
- Key Laboratory of Medical Imaging of Gansu Province, Lanzhou, China
- Gansu International Scientific and Technological Cooperation Base of Medical Imaging Artificial Intelligence, Lanzhou, China
| |
Collapse
|
14
|
Xu Y, Li Z, Yang Y, Zhang Y, Li L, Zhou Y, Ouyang J, Huang Z, Wang S, Xie L, Ye F, Zhou J, Ying J, Zhao H, Zhao X. Association Between MRI Radiomics and Intratumoral Tertiary Lymphoid Structures in Intrahepatic Cholangiocarcinoma and Its Prognostic Significance. J Magn Reson Imaging 2024; 60:715-728. [PMID: 37942838 DOI: 10.1002/jmri.29128] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 10/28/2023] [Accepted: 10/30/2023] [Indexed: 11/10/2023] Open
Abstract
BACKGROUND Tertiary lymphoid structures (TLSs) have prognostic value in intrahepatic cholangiocarcinoma (ICC) patients. Noninvasive tool to preoperatively evaluate TLSs is still lacking. PURPOSE To explore the association between TLSs status of ICC and preoperative MRI radiomics analysis. STUDY TYPE Retrospective. SUBJECTS One hundred and ninety-two patients with ICC, divided into training (T = 105), internal validation groups (V1 = 46), and external validation group (V2 = 41). SEQUENCE Coronal and axial single-shot fast spin-echo T2-weighted, diffusion-weighted imaging, T1-weighted, and T1WI fat-suppressed spoiled gradient-recall echo LAVA sequence at 3.0 T. ASSESSMENT The VOIs were drawn manually within the visible borders of the tumors using ITK-SNAP version 3.8.0 software in the axial T2WI, DWI, and portal vein phase sequences. Radiomics features were subjected to least absolute shrinkage and selection operator regression to select the associated features of TLSs and construct the radiomics model. Univariate and multivariate analyses were used to identify the clinical radiological variables associated with TLSs. The performances were evaluated by the area under the receiver operator characteristic curve (AUC). STATISTICAL TESTS Logistic regression analysis, ROC and AUC, Hosmer-Lemeshow test, Kaplan-Meier method with the log-rank test, calibration curves, and decision curve analysis. P < 0.05 was considered statistically significant. RESULTS The AUCs of arterial phase diffuse hyperenhancement were 0.59 (95% confidence interval [CI], 0.50-0.67), 0.52 (95% CI, 0.43-0.61), and 0.66 (95% CI, 0.52-0.80) in the T, V1, and V2 cohorts. The AUCs of Rad-score were 0.85 (95% CI, 0.77-0.92), 0.81 (95% CI, 0.67-0.94), and 0.84 (95% CI, 0.71-0.96) in the T, V1, and V2 cohorts, respectively. In cohort T, low-risk group showed significantly better median recurrence-free survival (RFS) than that of the high-risk group, which was also confirmed in cohort V1 and V2. DATA CONCLUSION A preoperative MRI radiomics signature is associated with the intratumoral TLSs status of ICC patients and correlate significantly with RFS. LEVEL OF EVIDENCE 3 TECHNICAL EFFICACY: Stage 2.
Collapse
Affiliation(s)
- Ying Xu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yi Yang
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yuwei Zhang
- Department of Radiology, Tianjin Medical University Cancer Institute and Hospital, National Clinical Research Center for Cancer, Key Laboratory of Cancer Prevention and Therapy, Tianjin, Tianjin's Clinical Research Center for Cancer, Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, China
| | - Lu Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Yanzhao Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jingzhong Ouyang
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Zhen Huang
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Sicong Wang
- Magnetic Resonance Imaging Research, General Electric Healthcare, Beijing, China
| | - Lizhi Xie
- Magnetic Resonance Imaging Research, General Electric Healthcare, Beijing, China
| | - Feng Ye
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Jinxue Zhou
- Department of Hepatobiliary and Pancreatic Surgery, The Affiliated Cancer Hospital of Zhengzhou University and Henan Cancer Hospital, Zhengzhou, China
| | - Jianming Ying
- Department of Pathology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Hong Zhao
- Key Laboratory of Gene Editing Screening and Research and Development (R&D) of Digestive System Tumor Drugs, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- Department of Hepatobiliary Surgery, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Xinming Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
15
|
Haghshomar M, Rodrigues D, Kalyan A, Velichko Y, Borhani A. Leveraging radiomics and AI for precision diagnosis and prognostication of liver malignancies. Front Oncol 2024; 14:1362737. [PMID: 38779098 PMCID: PMC11109422 DOI: 10.3389/fonc.2024.1362737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2023] [Accepted: 04/12/2024] [Indexed: 05/25/2024] Open
Abstract
Liver tumors, whether primary or metastatic, have emerged as a growing concern with substantial global health implications. Timely identification and characterization of liver tumors are pivotal factors in order to provide optimum treatment. Imaging is a crucial part of the detection of liver tumors; however, conventional imaging has shortcomings in the proper characterization of these tumors which leads to the need for tissue biopsy. Artificial intelligence (AI) and radiomics have recently emerged as investigational opportunities with the potential to enhance the detection and characterization of liver lesions. These advancements offer opportunities for better diagnostic accuracy, prognostication, and thereby improving patient care. In particular, these techniques have the potential to predict the histopathology, genotype, and immunophenotype of tumors based on imaging data, hence providing guidance for personalized treatment of such tumors. In this review, we outline the progression and potential of AI in the field of liver oncology imaging, specifically emphasizing manual radiomic techniques and deep learning-based representations. We discuss how these tools can aid in clinical decision-making challenges. These challenges encompass a broad range of tasks, from prognosticating patient outcomes, differentiating benign treatment-related factors and actual disease progression, recognizing uncommon response patterns, and even predicting the genetic and molecular characteristics of the tumors. Lastly, we discuss the pitfalls, technical limitations and future direction of these AI-based techniques.
Collapse
Affiliation(s)
| | | | | | | | - Amir Borhani
- Feinberg School of Medicine, Northwestern University, Chicago, IL, United States
| |
Collapse
|
16
|
Xia W, Sun T, Wang Y, Tian Y, Yan L, Liang Y, He C, Zhang J, Huang H. A morphological study of symptomatic uterine niche using three-dimensional models from thin-slice magnetic resonance imaging. Reprod Biomed Online 2024; 48:103683. [PMID: 38340538 DOI: 10.1016/j.rbmo.2023.103683] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2023] [Revised: 10/31/2023] [Accepted: 11/02/2023] [Indexed: 02/12/2024]
Abstract
RESEARCH QUESTION Is there a correlation between various morphological parameters of the uterine niche and post-menstrual spotting using three-dimensional models from thin-slice (1 mm) magnetic resonance imaging (MRI)? DESIGN This study retrospectively identified women diagnosed with a symptomatic niche by thin-slice MRI between December 2019 and December 2021. Univariable and multivariable linear regression models assessed the correlations between morphological parameters and the duration post-menstrual spotting. Morphological differences of the niche formed by one versus two Caesarean sections were analysed by univariable and multivariable logistic analysis. RESULTS A total of 205 women diagnosed with symptomatic niche were included in the study. The niche among most women with post-menstrual spotting was ellipsoidal, with width greater than length greater than depth, from which niche volume was estimated based on manual measurements (volume = 0.520 × length × width × depth). Manually calculated niche length (β = 0.257, 95% confidence interval [CI] 0.040-0.473, P = 0.020) and radiomically assessed minor axis length (β = 0.329, 95% CI 0.009-0.795, P = 0.045) both positively correlated with the duration of post-menstrual spotting, whereas the distance between the niche and external os (β = -0.120, 95% CI -0.202 to -0.038, P = 0.004) was inversely correlated. Women with two Cesarean sections reported more days of post-menstrual spotting (8.76 ± 3.54 versus 6.68 ± 3.90 days, P < 0.001) and had increased niche length diameter (adjusted odds ratio [aOR] 1.304, 95% CI 1.190-1.429) and a smaller surface-area-to-volume ratio (aOR 0.296, 95% CI 0.129-0.680). CONCLUSIONS Niche-associated post-menstrual spotting correlates with the length diameter of the niche and the distance between the niche and external os. Niches in women after two Caesarean sections tend to be longer in length diameter and more spherical.
Collapse
Affiliation(s)
- Wei Xia
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Taotao Sun
- Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China; Department of Radiology, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Yang Wang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yuan Tian
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Li Yan
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Yan Liang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Chuqing He
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China
| | - Jian Zhang
- Department of Gynecology and Obstetrics, International Peace Maternity and Child Health Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, China; Shanghai Key Laboratory of Embryo Original Diseases, Shanghai, China; Shanghai Municipal Key Clinical Specialty, Shanghai, China.
| | - Hefeng Huang
- Obstetrics and Gynecology Hospital, Institute of Reproduction and Development, Fudan University, Shanghai, China.
| |
Collapse
|
17
|
Xia Z, Lin N, Chen W, Qi M, Sha Y. Multiparametric MRI-based radiomics nomogram for predicting malignant transformation of sinonasal inverted papilloma. Clin Radiol 2024; 79:e408-e416. [PMID: 38142140 DOI: 10.1016/j.crad.2023.11.004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2022] [Revised: 10/18/2023] [Accepted: 11/05/2023] [Indexed: 12/25/2023]
Abstract
AIM To investigate the feasibility of a radiomics nomogram model for predicting malignant transformation in sinonasal inverted papilloma (IP) based on radiomic signature and clinical risk factors. MATERIALS AND METHODS This single institutional retrospective review included a total of 143 patients with IP and 75 patients with IP with malignant transformation to squamous cell carcinoma (IP-SCC). All patients underwent surgical pathology and had preoperative magnetic resonance imaging (MRI) and computed tomography (CT) sinus studies between June 2014 and February 2022. Radiomics features were extracted from contrast-enhanced T1-weighted images (CE-T1WI), T2-weighted images (T2WI), and apparent diffusion coefficient (ADC) maps. The least absolute shrinkage and selection operator (LASSO) were performed to select the features extracted from the sequences mentioned above. Independent clinical risk factors were identified by multivariate logistic regression analysis. Radiomics nomogram was constructed by incorporating independent clinical risk factors and radiomics signature. Based on discrimination and calibration, the diagnostic performance of the nomogram was evaluated. RESULTS Twelve radiomics features were selected to develop the radiomics model with an area under the curve (AUC) of 0.987 and 0.989, respectively. Epistaxis (p=0.011), T2 equal signal (p=0.003), extranasal invasion (p<0.001), and loss of convoluted cerebriform pattern (p=0.002) were identified as independent clinical predictors. The radiomics nomogram model showed excellent calibration and discrimination (AUC: 0.993, 95% confidence interval [CI]: 0.985-1.00 and 0.990, 95% CI: 0.974-1.00) in the training and validation sets, respectively. CONCLUSION The nomogram that the combined radiomics signature and clinical risk factors showed a satisfactory ability to predict IP-SCC.
Collapse
Affiliation(s)
- Z Xia
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, No.83 Fenyang Road, Shanghai 200030, China
| | - N Lin
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, No.83 Fenyang Road, Shanghai 200030, China
| | - W Chen
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, No.83 Fenyang Road, Shanghai 200030, China; Shanghai Institute of Medical Imaging, Fudan University, Shanghai, China
| | - M Qi
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, No.83 Fenyang Road, Shanghai 200030, China.
| | - Y Sha
- Department of Radiology, Eye & ENT Hospital of Shanghai Medical School, Fudan University, No.83 Fenyang Road, Shanghai 200030, China.
| |
Collapse
|
18
|
Liu J, Shu J. Immunotherapy and targeted therapy for cholangiocarcinoma: Artificial intelligence research in imaging. Crit Rev Oncol Hematol 2024; 194:104235. [PMID: 38220125 DOI: 10.1016/j.critrevonc.2023.104235] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2023] [Revised: 12/12/2023] [Accepted: 12/14/2023] [Indexed: 01/16/2024] Open
Abstract
Cholangiocarcinoma (CCA) is a highly aggressive hepatobiliary malignancy, second only to hepatocellular carcinoma in prevalence. Despite surgical treatment being the recommended method to achieve a cure, it is not viable for patients with advanced CCA. Gene sequencing and artificial intelligence (AI) have recently opened up new possibilities in CCA diagnosis, treatment, and prognosis assessment. Basic research has furthered our understanding of the tumor-immunity microenvironment and revealed targeted molecular mechanisms, resulting in immunotherapy and targeted therapy being increasingly employed in the clinic. Yet, the application of these remedies in CCA is a challenging endeavor due to the varying pathological mechanisms of different CCA types and the lack of expressed immune proteins and molecular targets in some patients. AI in medical imaging has emerged as a powerful tool in this situation, as machine learning and deep learning are able to extract intricate data from CCA lesion images while assisting clinical decision making, and ultimately improving patient prognosis. This review summarized and discussed the current immunotherapy and targeted therapy related to CCA, and the research progress of AI in this field.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan 646000, PR China; Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan 646000, PR China.
| |
Collapse
|
19
|
Maino C, Vernuccio F, Cannella R, Franco PN, Giannini V, Dezio M, Pisani AR, Blandino AA, Faletti R, De Bernardi E, Ippolito D, Gatti M, Inchingolo R. Radiomics and liver: Where we are and where we are headed? Eur J Radiol 2024; 171:111297. [PMID: 38237517 DOI: 10.1016/j.ejrad.2024.111297] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Revised: 01/03/2024] [Accepted: 01/07/2024] [Indexed: 02/10/2024]
Abstract
Hepatic diffuse conditions and focal liver lesions represent two of the most common scenarios to face in everyday radiological clinical practice. Thanks to the advances in technology, radiology has gained a central role in the management of patients with liver disease, especially due to its high sensitivity and specificity. Since the introduction of computed tomography (CT) and magnetic resonance imaging (MRI), radiology has been considered the non-invasive reference modality to assess and characterize liver pathologies. In recent years, clinical practice has moved forward to a quantitative approach to better evaluate and manage each patient with a more fitted approach. In this setting, radiomics has gained an important role in helping radiologists and clinicians characterize hepatic pathological entities, in managing patients, and in determining prognosis. Radiomics can extract a large amount of data from radiological images, which can be associated with different liver scenarios. Thanks to its wide applications in ultrasonography (US), CT, and MRI, different studies were focused on specific aspects related to liver diseases. Even if broadly applied, radiomics has some advantages and different pitfalls. This review aims to summarize the most important and robust studies published in the field of liver radiomics, underlying their main limitations and issues, and what they can add to the current and future clinical practice and literature.
Collapse
Affiliation(s)
- Cesare Maino
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy.
| | - Federica Vernuccio
- Institute of Radiology, University Hospital of Padova, Padova 35128, Italy
| | - Roberto Cannella
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Paolo Niccolò Franco
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy
| | - Valentina Giannini
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Michele Dezio
- Department of Radiology, Miulli Hospital, Acquaviva delle Fonti 70021, Bari, Italy
| | - Antonio Rosario Pisani
- Nuclear Medicine Unit, Interdisciplinary Department of Medicine, University of Bari, Bari 70121, Italy
| | - Antonino Andrea Blandino
- Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University of Palermo, Palermo 90127, Italy
| | - Riccardo Faletti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Elisabetta De Bernardi
- Bicocca Bioinformatics Biostatistics and Bioimaging Centre - B4, University of Milano Bicocca, Milano 20100, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Davide Ippolito
- Department of Radiology, Fondazione IRCCS San Gerardo dei Tintori, Monza 20900, Italy; School of Medicine, University of Milano Bicocca, Milano 20100, Italy
| | - Marco Gatti
- Department of Surgical Sciences, University of Turin, Turin 10126, Italy
| | - Riccardo Inchingolo
- Unit of Interventional Radiology, F. Miulli Hospital, Acquaviva delle Fonti 70021, Italy
| |
Collapse
|
20
|
Chen S, Wan L, Zhao R, Peng W, Liu X, Li L, Zhang H. Nomogram based on preoperative clinical and MRI features to estimate the microvascular invasion status and the prognosis of solitary intrahepatic mass-forming cholangiocarcinoma. Abdom Radiol (NY) 2024; 49:425-436. [PMID: 37889266 DOI: 10.1007/s00261-023-04079-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 09/26/2023] [Accepted: 09/27/2023] [Indexed: 10/28/2023]
Abstract
PURPOSE To develop a nomogram based on preoperative clinical and magnetic resonance imaging (MRI) features for the microvascular invasion (MVI) status in solitary intrahepatic mass-forming cholangiocarcinoma (sIMCC) and to evaluate whether it could predict recurrence-free survival (RFS). METHODS We included 115 cases who experienced MRI examinations for sIMCC with R0 resection. The preoperative clinical and MRI features were extracted. Independent predictors related to MVI+ were evaluated by stepwise multivariate logistic regression, and a nomogram was constructed. A receiver operating characteristic (ROC) curve was used to assess the predictive ability. All patients were classified into high- and low-risk groups of MVI. Then, the correlations of the nomogram with RFS in patents with sIMCC were analyzed by Kaplan-Meier method. RESULTS The occurrence rate of MVI+ was 38.3% (44/115). The preoperative independent predictors of MVI+ were carbohydrate antigen 19-9 > 37 U/ml, tumor size > 5 cm, and an ill-defined tumor boundary. Integrating these predictors, the nomogram exerted a favorable diagnostic performance with areas under the ROC curve of 0.767 (95% confidence interval [CI] 0.654-0.881) in the development cohort, and 0.760 (95% CI 0.591-0.929) in the validation cohort. In the RFS analysis, significant differences were observed between the high- and low-risk MVI groups (6-month RFS rates: 64.5% vs. 78.8% and 46.7% vs. 82.4% in the development and validation cohorts, respectively) (P < 0.05). CONCLUSIONS A nomogram based on clinical and MRI features is a potential biomarker of MVI and may be a potent method to classify the risk of recurrence in patients with sIMCC.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Lijuan Wan
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Rui Zhao
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Wenjing Peng
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Xiangchun Liu
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Lin Li
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, #17 Panjiayuan nanli, Chaoyang district, Beijing, 100021, China.
| |
Collapse
|
21
|
Zhou G, Zhou Y, Xu X, Zhang J, Xu C, Xu P, Zhu F. MRI-based radiomics signature: a potential imaging biomarker for prediction of microvascular invasion in combined hepatocellular-cholangiocarcinoma. Abdom Radiol (NY) 2024; 49:49-59. [PMID: 37831165 DOI: 10.1007/s00261-023-04049-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Revised: 09/03/2023] [Accepted: 09/04/2023] [Indexed: 10/14/2023]
Abstract
PURPOSE To investigate the potential of radiomics analysis of dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) in preoperatively predicting microvascular invasion (MVI) in patients with combined hepatocellular-cholangiocarcinoma (cHCC-CC) before surgery. METHODS A cohort of 91 patients with histologically confirmed cHCC-CC who underwent preoperative liver DCE-MRI were enrolled and divided into a training cohort (27 MVI-positive and 37 MVI-negative) and a validation cohort (11 MVI-positive and 16 MVI-negative). Clinical characteristics and MR features of the patients were evaluated. Radiomics features were extracted from DCE-MRI, and a radiomics signature was built using the least absolute shrinkage and selection operator (LASSO) algorithm in the training cohort. Prediction performance of the developed radiomics signature was evaluated by utilizing the receiver operating characteristic (ROC) analysis. RESULTS Larger tumor size and higher Radscore were associated with the presence of MVI in the training cohort (p = 0.026 and < 0.001, respectively), and theses findings were also confirmed in the validation cohort (p = 0.040 and 0.001, respectively). The developed radiomics signature, composed of 4 stable radiomics features, showed high prediction performance in both the training cohort (AUC = 0.866, 95% CI 0.757-0.938, p < 0.001) and validation cohort (AUC = 0.841, 95% CI 0.650-0.952, p < 0.001). CONCLUSIONS The radiomics signature developed from DCE-MRI can be a reliable imaging biomarker to preoperatively predict MVI in cHCC-CC.
Collapse
Affiliation(s)
- Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Xun Xu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Pengju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China.
- Department of Radiology, Zhongshan Hospital, Shanghai Institute of Medical Imaging, Fudan University, No. 180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| |
Collapse
|
22
|
Grewal M, Ahmed T, Javed AA. Current state of radiomics in hepatobiliary and pancreatic malignancies. ARTIFICIAL INTELLIGENCE SURGERY 2023; 3:217-32. [DOI: 10.20517/ais.2023.28] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2025]
Abstract
Rising in incidence, hepatobiliary and pancreatic (HPB) cancers continue to exhibit dismal long-term survival. The overall poor prognosis of HPB cancers is reflective of the advanced stage at which most patients are diagnosed. Late diagnosis is driven by the often-asymptomatic nature of these diseases, as well as a dearth of screening modalities. Additionally, standard imaging modalities fall short of providing accurate and detailed information regarding specific tumor characteristics, which can better inform surgical planning and sequencing of systemic therapy. Therefore, precise therapeutic planning must be delayed until histopathological examination is performed at the time of resection. Given the current shortcomings in the management of HPB cancers, investigations of numerous noninvasive biomarkers, including circulating tumor cells and DNA, proteomics, immunolomics, and radiomics, are underway. Radiomics encompasses the extraction and analysis of quantitative imaging features. Along with summarizing the general framework of radiomics, this review synthesizes the state of radiomics in HPB cancers, outlining its role in various aspects of management, present limitations, and future applications for clinical integration. Current literature underscores the utility of radiomics in early detection, tumor characterization, therapeutic selection, and prognostication for HPB cancers. Seeing as single-center, small studies constitute the majority of radiomics literature, there is considerable heterogeneity with respect to steps of the radiomics workflow such as segmentation, or delineation of the region of interest on a scan. Nonetheless, the introduction of the radiomics quality score (RQS) demonstrates a step towards greater standardization and reproducibility in the young field of radiomics. Altogether, in the setting of continually improving artificial intelligence algorithms, radiomics represents a promising biomarker avenue for promoting enhanced and tailored management of HPB cancers, with the potential to improve long-term outcomes for patients.
Collapse
|
23
|
Ma X, Qian X, Wang Q, Zhang Y, Zong R, Zhang J, Qian B, Yang C, Lu X, Shi Y. Radiomics nomogram based on optimal VOI of multi-sequence MRI for predicting microvascular invasion in intrahepatic cholangiocarcinoma. LA RADIOLOGIA MEDICA 2023; 128:1296-1309. [PMID: 37679641 PMCID: PMC10620280 DOI: 10.1007/s11547-023-01704-8] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 08/11/2023] [Indexed: 09/09/2023]
Abstract
OBJECTIVE Microvascular invasion (MVI) is a significant adverse prognostic indicator of intrahepatic cholangiocarcinoma (ICC) and affects the selection of individualized treatment regimens. This study sought to establish a radiomics nomogram based on the optimal VOI of multi-sequence MRI for predicting MVI in ICC tumors. METHODS 160 single ICC lesions with MRI scanning confirmed by postoperative pathology were randomly separated into training and validation cohorts (TC and VC). Multivariate analysis identified independent clinical and imaging MVI predictors. Radiomics features were obtained from images of 6 MRI sequences at 4 different VOIs. The least absolute shrinkage and selection operator algorithm was performed to enable the derivation of robust and effective radiomics features. Then, the best three sequences and the optimal VOI were obtained through comparison. The MVI prediction nomogram combined the independent predictors and optimal radiomics features, and its performance was evaluated via the receiver operating characteristics, calibration, and decision curves. RESULTS Tumor size and intrahepatic ductal dilatation are independent MVI predictors. Radiomics features extracted from the best three sequences (T1WI-D, T1WI, DWI) with VOI10mm (including tumor and 10 mm peritumoral region) showed the best predictive performance, with AUCTC = 0.987 and AUCVC = 0.859. The MVI prediction nomogram obtained excellent prediction efficacy in both TC (AUC = 0.995, 95%CI 0.987-1.000) and VC (AUC = 0.867, 95%CI 0.798-0.921) and its clinical significance was further confirmed by the decision curves. CONCLUSION A nomogram combining tumor size, intrahepatic ductal dilatation, and the radiomics model of MRI multi-sequence fusion at VOI10mm may be a predictor of preoperative MVI status in ICC patients.
Collapse
Affiliation(s)
- Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Qing Wang
- Graduate Department, Bengbu Medical College, Bengbu, 233000, Anhui, People's Republic of China
| | - Yunfei Zhang
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Central Research Institute, United Imaging Healthcare, No. 2258 Chengbei Rd, Shanghai, 201807, People's Republic of China
| | - Ruilong Zong
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Jia Zhang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China
| | - Baoxin Qian
- Huiying Medical Technology, Huiying Medical Technology Co., Ltd, Room A206, B2, Dongsheng Science and Technology Park, Haidian District, Beijing City, 100192, People's Republic of China
| | - Chun Yang
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Shanghai Institute of Medical Imaging, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.
- Department of Cancer Center, Zhongshan Hospital, Fudan University, No. 180 Fenglin Rd, Shanghai, 200032, People's Republic of China.
- Department of Radiology, Shanghai Geriatric Medical Center, No. 2560 Chunshen Rd, Shanghai, 201104, People's Republic of China.
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, No. 199 Jiefang South Road, Quanshan District, Xuzhou, 221009, Jiangsu, People's Republic of China.
| |
Collapse
|
24
|
Fiz F, Rossi N, Langella S, Ruzzenente A, Serenari M, Ardito F, Cucchetti A, Gallo T, Zamboni G, Mosconi C, Boldrini L, Mirarchi M, Cirillo S, De Bellis M, Pecorella I, Russolillo N, Borzi M, Vara G, Mele C, Ercolani G, Giuliante F, Ravaioli M, Guglielmi A, Ferrero A, Sollini M, Chiti A, Torzilli G, Ieva F, Viganò L. Radiomic Analysis of Intrahepatic Cholangiocarcinoma: Non-Invasive Prediction of Pathology Data: A Multicenter Study to Develop a Clinical-Radiomic Model. Cancers (Basel) 2023; 15:4204. [PMID: 37686480 PMCID: PMC10486795 DOI: 10.3390/cancers15174204] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2023] [Revised: 08/08/2023] [Accepted: 08/16/2023] [Indexed: 09/10/2023] Open
Abstract
Standard imaging cannot assess the pathology details of intrahepatic cholangiocarcinoma (ICC). We investigated whether CT-based radiomics may improve the prediction of tumor characteristics. All consecutive patients undergoing liver resection for ICC (2009-2019) in six high-volume centers were evaluated for inclusion. On the preoperative CT, we segmented the ICC (Tumor-VOI, i.e., volume-of-interest) and a 5-mm parenchyma rim around the tumor (Margin-VOI). We considered two types of pathology data: tumor grading (G) and microvascular invasion (MVI). The predictive models were internally validated. Overall, 244 patients were analyzed: 82 (34%) had G3 tumors and 139 (57%) had MVI. For G3 prediction, the clinical model had an AUC = 0.69 and an Accuracy = 0.68 at internal cross-validation. The addition of radiomic features extracted from the portal phase of CT improved the model performance (Clinical data+Tumor-VOI: AUC = 0.73/Accuracy = 0.72; +Tumor-/Margin-VOI: AUC = 0.77/Accuracy = 0.77). Also for MVI prediction, the addition of portal phase radiomics improved the model performance (Clinical data: AUC = 0.75/Accuracy = 0.70; +Tumor-VOI: AUC = 0.82/Accuracy = 0.73; +Tumor-/Margin-VOI: AUC = 0.82/Accuracy = 0.75). The permutation tests confirmed that a combined clinical-radiomic model outperforms a purely clinical one (p < 0.05). The addition of the textural features extracted from the arterial phase had no impact. In conclusion, the radiomic features of the tumor and peritumoral tissue extracted from the portal phase of preoperative CT improve the prediction of ICC grading and MVI.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
| | - Noemi Rossi
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
| | - Serena Langella
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Andrea Ruzzenente
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Matteo Serenari
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Francesco Ardito
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Alessandro Cucchetti
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Teresa Gallo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Giulia Zamboni
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Cristina Mosconi
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Luca Boldrini
- Department of Radiology, Radiation Oncology and Hematology, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, 00168 Rome, Italy;
| | - Mariateresa Mirarchi
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Stefano Cirillo
- Department of Radiology, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (T.G.); (S.C.)
| | - Mario De Bellis
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Nadia Russolillo
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Borzi
- Department of Radiology, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (G.Z.); (M.B.)
| | - Giulio Vara
- Department of Radiology, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (C.M.); (G.V.)
| | - Caterina Mele
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Giorgio Ercolani
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
- Department of General Surgery, Morgagni-Pierantoni Hospital, 47121 Forlì, Italy;
| | - Felice Giuliante
- Hepatobiliary Surgery Unit, A. Gemelli Hospital, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (F.A.); (C.M.); (F.G.)
| | - Matteo Ravaioli
- General Surgery and Transplant Unit, IRCCS, Azienda Ospedaliero-Universitaria di Bologna, Sant’Orsola-Malpighi Hospital, 40138 Bologna, Italy; (M.S.); (M.R.)
- Department of Medical and Surgical Sciences, Alma Mater Studiorum, University of Bologna, 40126 Bologna, Italy; (A.C.); (G.E.)
| | - Alfredo Guglielmi
- Division of General and Hepatobiliary Surgery, Department of Surgical Sciences, Dentistry, Gynecology and Pediatrics, University of Verona, University Hospital G.B. Rossi, 37134 Verona, Italy; (A.R.); (M.D.B.); (A.G.)
| | - Alessandro Ferrero
- Department of Digestive and Hepatobiliary Surgery, Mauriziano Umberto I Hospital, 10128 Turin, Italy; (S.L.); (N.R.); (A.F.)
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Arturo Chiti
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Milan, Italy; (F.F.); (M.S.); (A.C.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
| | - Guido Torzilli
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
| | - Francesca Ieva
- MOX Laboratory, Department of Mathematics, Politecnico di Milano, 20133 Milan, Italy; (N.R.); (F.I.)
- CHDS—Center for Health Data Science, Human Technopole, 20157 Milan, Italy
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (I.P.); (G.T.)
- Hepatobiliary Unit, Department of Minimally Invasive General & Oncologic Surgery, Humanitas Gavazzeni University Hospital, 24125 Bergamo, Italy
| |
Collapse
|
25
|
Boca B, Caraiani C, Telecan T, Pintican R, Lebovici A, Andras I, Crisan N, Pavel A, Diosan L, Balint Z, Lupsor-Platon M, Buruian MM. MRI-Based Radiomics in Bladder Cancer: A Systematic Review and Radiomics Quality Score Assessment. Diagnostics (Basel) 2023; 13:2300. [PMID: 37443692 DOI: 10.3390/diagnostics13132300] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/30/2023] [Accepted: 07/03/2023] [Indexed: 07/15/2023] Open
Abstract
(1): Background: With the recent introduction of vesical imaging reporting and data system (VI-RADS), magnetic resonance imaging (MRI) has become the main imaging method used for the preoperative local staging of bladder cancer (BCa). However, the VI-RADS score is subject to interobserver variability and cannot provide information about tumor cellularity. These limitations may be overcome by using a quantitative approach, such as the new emerging domain of radiomics. (2) Aim: To systematically review published studies on the use of MRI-based radiomics in bladder cancer. (3) Materials and Methods: We performed literature research using the PubMed MEDLINE, Scopus, and Web of Science databases using PRISMA principles. A total of 1092 papers that addressed the use of radiomics for BC staging, grading, and treatment response were retrieved using the keywords "bladder cancer", "magnetic resonance imaging", "radiomics", and "textural analysis". (4) Results: 26 papers met the eligibility criteria and were included in the final review. The principal applications of radiomics were preoperative tumor staging (n = 13), preoperative prediction of tumor grade or molecular correlates (n = 9), and prediction of prognosis/response to neoadjuvant therapy (n = 4). Most of the developed radiomics models included second-order features mainly derived from filtered images. These models were validated in 16 studies. The average radiomics quality score was 11.7, ranging between 8.33% and 52.77%. (5) Conclusions: MRI-based radiomics holds promise as a quantitative imaging biomarker of BCa characterization and prognosis. However, there is still need for improving the standardization of image preprocessing, feature extraction, and external validation before applying radiomics models in the clinical setting.
Collapse
Affiliation(s)
- Bianca Boca
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Cosmin Caraiani
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Teodora Telecan
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Roxana Pintican
- Department of Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Andrei Lebovici
- Department of Radiology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
| | - Iulia Andras
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Nicolae Crisan
- Department of Urology, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Urology, Clinical Municipal Hospital, 400139 Cluj-Napoca, Romania
| | - Alexandru Pavel
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| | - Laura Diosan
- Department of Computer Science, Faculty of Mathematics and Computer Science, "Babes-Bolyai" University, 400157 Cluj-Napoca, Romania
| | - Zoltan Balint
- Department of Biomedical Physics, Faculty of Physics, "Babes-Bolyai" University, 400084 Cluj-Napoca, Romania
| | - Monica Lupsor-Platon
- Department of Medical Imaging and Nuclear Medicine, "Iuliu Hațieganu" University of Medicine and Pharmacy Cluj-Napoca, 400012 Cluj-Napoca, Romania
- Department of Radiology, Regional Institute of Gastroenterology and Hepatology "Prof. Dr. Octavian Fodor", 400162 Cluj-Napoca, Romania
| | - Mircea Marian Buruian
- Department of Radiology, "George Emil Palade", University of Medicine, Pharmacy, Science and Technology of Targu Mures, 540139 Targu Mures, Romania
| |
Collapse
|
26
|
Cerrito L, Ainora ME, Borriello R, Piccirilli G, Garcovich M, Riccardi L, Pompili M, Gasbarrini A, Zocco MA. Contrast-Enhanced Imaging in the Management of Intrahepatic Cholangiocarcinoma: State of Art and Future Perspectives. Cancers (Basel) 2023; 15:3393. [PMID: 37444503 PMCID: PMC10341250 DOI: 10.3390/cancers15133393] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2023] [Revised: 06/23/2023] [Accepted: 06/25/2023] [Indexed: 07/15/2023] Open
Abstract
Intrahepatic cholangiocarcinoma (iCCA) represents the second most common liver cancer after hepatocellular carcinoma, accounting for 15% of primary liver neoplasms. Its incidence and mortality rate have been rising during the last years, and total new cases are expected to increase up to 10-fold during the next two or three decades. Considering iCCA's poor prognosis and rapid spread, early diagnosis is still a crucial issue and can be very challenging due to the heterogeneity of tumor presentation at imaging exams and the need to assess a correct differential diagnosis with other liver lesions. Abdominal contrast-enhanced computed tomography (CT) and magnetic resonance imaging (MRI) plays an irreplaceable role in the evaluation of liver masses. iCCA's most typical imaging patterns are well-described, but atypical features are not uncommon at both CT and MRI; on the other hand, contrast-enhanced ultrasound (CEUS) has shown a great diagnostic value, with the interesting advantage of lower costs and no renal toxicity, but there is still no agreement regarding the most accurate contrastographic patterns for iCCA detection. Besides diagnostic accuracy, all these imaging techniques play a pivotal role in the choice of the therapeutic approach and eligibility for surgery, and there is an increasing interest in the specific imaging features which can predict tumor behavior or histologic subtypes. Further prognostic information may also be provided by the extraction of quantitative data through radiomic analysis, creating prognostic multi-parametric models, including clinical and serological parameters. In this review, we aim to summarize the role of contrast-enhanced imaging in the diagnosis and management of iCCA, from the actual issues in the differential diagnosis of liver masses to the newest prognostic implications.
Collapse
Affiliation(s)
| | - Maria Elena Ainora
- CEMAD Digestive Disease Center, Fondazione Policlinico Universitario “A. Gemelli” IRCCS, Università Cattolica del Sacro Cuore, 00168 Rome, Italy; (L.C.); (R.B.); (G.P.); (M.G.); (L.R.); (M.P.); (A.G.); (M.A.Z.)
| | | | | | | | | | | | | | | |
Collapse
|
27
|
Liu J, Liu M, Gong Y, Su S, Li M, Shu J. Prediction of angiogenesis in extrahepatic cholangiocarcinoma using MRI-based machine learning. Front Oncol 2023; 13:1048311. [PMID: 37274267 PMCID: PMC10233135 DOI: 10.3389/fonc.2023.1048311] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2022] [Accepted: 04/28/2023] [Indexed: 06/06/2023] Open
Abstract
Purpose Reliable noninvasive method to preoperative prediction of extrahepatic cholangiocarcinoma (eCCA) angiogenesis are needed. This study aims to develop and validate machine learning models based on magnetic resonance imaging (MRI) for predicting vascular endothelial growth factor (VEGF) expression and the microvessel density (MVD) of eCCA. Materials and methods In this retrospective study from August 2011 to May 2020, eCCA patients with pathological confirmation were selected. Features were extracted from T1-weighted, T2-weighted, and diffusion-weighted images using the MaZda software. After reliability testing and feature screening, retained features were used to establish classification models for predicting VEGF expression and regression models for predicting MVD. The performance of both models was evaluated respectively using area under the curve (AUC) and Adjusted R-Squared (Adjusted R2). Results The machine learning models were developed in 100 patients. A total of 900 features were extracted and 77 features with intraclass correlation coefficient (ICC) < 0.75 were eliminated. Among all the combinations of data preprocessing methods and classification algorithms, Z-score standardization + logistic regression exhibited excellent ability both in the training cohort (average AUC = 0.912) and the testing cohort (average AUC = 0.884). For regression model, Z-score standardization + stochastic gradient descent-based linear regression performed well in the training cohort (average Adjusted R2 = 0.975), and was also better than the mean model in the test cohort (average Adjusted R2 = 0.781). Conclusion Two machine learning models based on MRI can accurately predict VEGF expression and the MVD of eCCA respectively.
Collapse
Affiliation(s)
- Jiong Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Mali Liu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Yaolin Gong
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| | - Song Su
- Department of Hepatobiliary Surgery, The Affiliated Hospital of Southwest Medical University, Luzhou, China
| | - Man Li
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Shanghai, China
| | - Jian Shu
- Department of Radiology, The Affiliated Hospital of Southwest Medical University, Luzhou, Sichuan, China
- Nuclear Medicine and Molecular Imaging Key Laboratory of Sichuan Province, Luzhou, Sichuan, China
| |
Collapse
|
28
|
Brunese MC, Fantozzi MR, Fusco R, De Muzio F, Gabelloni M, Danti G, Borgheresi A, Palumbo P, Bruno F, Gandolfo N, Giovagnoni A, Miele V, Barile A, Granata V. Update on the Applications of Radiomics in Diagnosis, Staging, and Recurrence of Intrahepatic Cholangiocarcinoma. Diagnostics (Basel) 2023; 13:diagnostics13081488. [PMID: 37189589 DOI: 10.3390/diagnostics13081488] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/14/2023] [Accepted: 04/18/2023] [Indexed: 05/17/2023] Open
Abstract
BACKGROUND This paper offers an assessment of radiomics tools in the evaluation of intrahepatic cholangiocarcinoma. METHODS The PubMed database was searched for papers published in the English language no earlier than October 2022. RESULTS We found 236 studies, and 37 satisfied our research criteria. Several studies addressed multidisciplinary topics, especially diagnosis, prognosis, response to therapy, and prediction of staging (TNM) or pathomorphological patterns. In this review, we have covered diagnostic tools developed through machine learning, deep learning, and neural network for the recurrence and prediction of biological characteristics. The majority of the studies were retrospective. CONCLUSIONS It is possible to conclude that many performing models have been developed to make differential diagnosis easier for radiologists to predict recurrence and genomic patterns. However, all the studies were retrospective, lacking further external validation in prospective and multicentric cohorts. Furthermore, the radiomics models and the expression of results should be standardized and automatized to be applicable in clinical practice.
Collapse
Affiliation(s)
- Maria Chiara Brunese
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | | | - Roberta Fusco
- Medical Oncology Division, Igea SpA, 80013 Naples, Italy
| | - Federica De Muzio
- Department of Medicine and Health Sciences "V. Tiberio", University of Molise, 86100 Campobasso, Italy
| | - Michela Gabelloni
- Nuclear Medicine Unit, Department of Translational Research, University of Pisa, 56126 Pisa, Italy
| | - Ginevra Danti
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Alessandra Borgheresi
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Pierpaolo Palumbo
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Federico Bruno
- Department of Diagnostic Imaging, Area of Cardiovascular and Interventional Imaging, Abruzzo Health Unit 1, 67100 L'Aquila, Italy
| | - Nicoletta Gandolfo
- Diagnostic Imaging Department, Villa Scassi Hospital-ASL 3, 16149 Genoa, Italy
| | - Andrea Giovagnoni
- Department of Radiology, University Hospital "Azienda Ospedaliera Universitaria delle Marche", 60121 Ancona, Italy
- Department of Clinical, Special and Dental Sciences, Università Politecnica delle Marche, 60121 Ancona, Italy
| | - Vittorio Miele
- Italian Society of Medical and Interventional Radiology (SIRM), SIRM Foundation, Via della Signora 2, 20122 Milan, Italy
- Department of Emergency Radiology, Careggi University Hospital, Largo Brambilla 3, 50134 Florence, Italy
| | - Antonio Barile
- Department of Biotechnological and Applied Clinical Sciences, University of L'Aquila, 67100 L'Aquila, Italy
| | - Vincenza Granata
- Division of Radiology, Istituto Nazionale Tumori IRCCS Fondazione Pascale-IRCCS di Napoli, 80131 Naples, Italy
| |
Collapse
|
29
|
Chen S, Wan L, Zhao R, Peng W, Li Z, Zou S, Zhang H. Predictive factors of microvascular invasion in patients with intrahepatic mass-forming cholangiocarcinoma based on magnetic resonance images. Abdom Radiol (NY) 2023; 48:1306-1319. [PMID: 36872324 DOI: 10.1007/s00261-023-03847-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/13/2022] [Revised: 08/17/2022] [Accepted: 08/18/2022] [Indexed: 03/07/2023]
Abstract
PURPOSE The aim of this retrospective study was to develop and validate a preoperative nomogram for predicting microvascular invasion (MVI) in patients with intrahepatic mass-forming cholangiocarcinoma (IMCC) based on magnetic resonance imaging (MRI). METHODS In this retrospective study, 224 consecutive patients with clinicopathologically confirmed IMCC were enrolled. Patients whose data were collected from February 2010 to December 2020 were randomly divided into the training (131 patients) and internal validation (51 patients) datasets. The data from January 2021 to November 2021 (42 patients) were allocated to the time-independent validation dataset. Univariate and multivariate forward logistic regression analyses were used to identify preoperative MRI features that were significantly related to MVI, which were then used to develop the nomogram. We used the area under the receiver operating characteristic curve (AUC) and calibration curve to evaluate the performance of the nomogram. RESULTS Interobserver agreement of MRI qualitative features was good to excellent, with κ values of 0.613-0.882. Multivariate analyses indicated that the following variables were independent predictors of MVI: multiple tumours (odds ratio [OR]) = 4.819, 95% confidence interval [CI] 1.562-14.864, P = 0.006), ill-defined margin (OR = 6.922, 95% CI 2.883-16.633, P < 0.001), and carbohydrate antigen 19-9 (CA 19-9) > 37 U/ml (OR = 2.890, 95% CI 1.211-6.897, P = 0.017). A nomogram incorporating these factors was established using well-fitted calibration curves. The nomogram showed good diagnostic efficacy for MVI, with AUC values of 0.838, 0.819, and 0.874 for the training, internal validation, and time-independent validation datasets, respectively. CONCLUSION A nomogram constructed using independent factors, namely the presence of multiple tumours, ill-defined margins, and CA 19-9 > 37 U/ml could predict the presence of MVI. This can facilitate personalised therapeutic strategy and clinical management in patients with IMCC.
Collapse
Affiliation(s)
- Shuang Chen
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Lijuan Wan
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Rui Zhao
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Wenjing Peng
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China
| | - Zhuo Li
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Shuangmei Zou
- Department of Pathology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| | - Hongmei Zhang
- Department of Diagnostic Radiology, National Cancer Center, National Clinical Research Center for Cancer, Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 17 Panjiayuan Nanli, Chaoyang District, Beijing, 100021, China.
| |
Collapse
|
30
|
A Bayesian Network Prediction Model for Microvascular Invasion in Patients with Intrahepatic Cholangiocarcinoma: A Multi-institutional Study. World J Surg 2023; 47:773-784. [PMID: 36607391 DOI: 10.1007/s00268-022-06867-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/19/2022] [Indexed: 01/07/2023]
Abstract
BACKGROUND Microvascular invasion (MVI) has been reported to be an independent prognostic factor of recurrence and poor overall survival in patients with intrahepatic cholangiocarcinoma (ICC). This study aimed to explore the preoperative independent risk factors of MVI and establish a Bayesian network (BN) prediction model to provide a reference for surgical diagnosis and treatment. METHODS A total of 531 patients with ICC who underwent radical resection between 2010 and 2018 were used to establish and validate a BN model for MVI. The BN model was established based on the preoperative independent variables. The ROC curves and confusion matrix were used to assess the performance of the model. RESULTS MVI was an independent risk factor for relapse-free survival (RFS) (P < 0.05). MVI has a correlation with postoperative recurrence, early recurrence (< 6 months), median RFS and median overall survival (all P < 0.05). The preoperative independent risk variables of MVI included obstructive jaundice, prognostic nutritional index, CA19-9, tumor size, and major vascular invasion, which were used to establish the BN model. The AUC of the BN model was 78.92% and 83.01%, and the accuracy was 70.85% and 77.06% in the training set and testing set, respectively. CONCLUSION The BN model established based on five independent risk variables for MVI is an effective and practical model for predicting MVI in patients with ICC.
Collapse
|
31
|
Wei Q, Yuan W, Jia Z, Chen J, Li L, Yan Z, Liao Y, Mao L, Hu S, Liu X, Chen W. Preoperative MR radiomics based on high-resolution T2-weighted images and amide proton transfer-weighted imaging for predicting lymph node metastasis in rectal adenocarcinoma. Abdom Radiol (NY) 2023; 48:458-470. [PMID: 36460837 DOI: 10.1007/s00261-022-03731-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2022] [Revised: 10/26/2022] [Accepted: 10/26/2022] [Indexed: 12/04/2022]
Abstract
OBJECTIVES Lymph node (LN) metastasis is an important prognostic factor in rectal cancer (RC). However, accurate identification of LN metastasis can be challenged for radiologists. The aim of our study was to assess the utility of MRI radiomics based on T2-weighted images (T2WI) and amide proton transfer-weighted (APTw) images for predicting LN metastasis in RC preoperatively. METHODS A total of 125 patients with pathologically confirmed rectal adenocarcinoma (RA) from January 2019 to June 2021 who underwent preoperative MR were enrolled in this retrospective study. Radiomics features were extracted from high-resolution T2WI and APTw images of primary tumor. The most relevant radiomics and clinical features were selected using correlation and multivariate logistic analysis. Radiomics models were built using five machine learning algorithms including support vector machine (SVM), logical regression (LR), k- nearest neighbor (KNN), naive bayes (NB), and random forest (RF). The best algorithm was selected for further establish the clinical- radiomics model. The receiver operating characteristic curve (ROC) analysis was used to assess the performance of radiomics and clinical-radiomics model for predicting LN metastasis. RESULTS The LR classifier had the best prediction performance, with AUCs of 0.983 (95% CI 0.957-1.000), 0.864 (95% CI 0.729-0.972), 0.851 (95% CI 0.713-0.940) on the training set, validation, and test sets, respectively. In terms of prediction, the clinical-radiomics combined model outperformed the radiomics model. The AUCs of the clinical-radiomics combined model in the validation and test sets were 0.900 (95% CI 0.785-0.986), and 0.929 (95% CI 0.721-0.943), respectively. CONCLUSION The radiomics model based on high-resolution T2WI and APTw images can predict LN metastasis accurately in patients with RA.
Collapse
Affiliation(s)
- Qiurong Wei
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Wenjing Yuan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Ziqi Jia
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Jialiang Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Ling Li
- Department of Radiology, The Second People's Hospital of Shaanxi Province, Xi'an, 710000, Shaanxi province, China
| | - Zhaoxian Yan
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Yuting Liao
- GE Healthcare, Guangzhou, 510623, Guangdong Province, China
| | - Liting Mao
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Shaowei Hu
- Department of Pathology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Xian Liu
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China
| | - Weicui Chen
- Department of Radiology, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, Guangdong Province, China.
| |
Collapse
|
32
|
Cannella R, Vernuccio F, Klontzas ME, Ponsiglione A, Petrash E, Ugga L, Pinto dos Santos D, Cuocolo R. Systematic review with radiomics quality score of cholangiocarcinoma: an EuSoMII Radiomics Auditing Group Initiative. Insights Imaging 2023; 14:21. [PMID: 36720726 PMCID: PMC9889586 DOI: 10.1186/s13244-023-01365-1] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Accepted: 12/24/2022] [Indexed: 02/02/2023] Open
Abstract
OBJECTIVES To systematically review current research applications of radiomics in patients with cholangiocarcinoma and to assess the quality of CT and MRI radiomics studies. METHODS A systematic search was conducted on PubMed/Medline, Web of Science, and Scopus databases to identify original studies assessing radiomics of cholangiocarcinoma on CT and/or MRI. Three readers with different experience levels independently assessed quality of the studies using the radiomics quality score (RQS). Subgroup analyses were performed according to journal type, year of publication, quartile and impact factor (from the Journal Citation Report database), type of cholangiocarcinoma, imaging modality, and number of patients. RESULTS A total of 38 original studies including 6242 patients (median 134 patients) were selected. The median RQS was 9 (corresponding to 25.0% of the total RQS; IQR 1-13) for reader 1, 8 (22.2%, IQR 3-12) for reader 2, and 10 (27.8%; IQR 5-14) for reader 3. The inter-reader agreement was good with an ICC of 0.75 (95% CI 0.62-0.85) for the total RQS. All studies were retrospective and none of them had phantom assessment, imaging at multiple time points, nor performed cost-effectiveness analysis. The RQS was significantly higher in studies published in journals with impact factor > 4 (median 11 vs. 4, p = 0.048 for reader 1) and including more than 100 patients (median 11.5 vs. 0.5, p < 0.001 for reader 1). CONCLUSIONS Quality of radiomics studies on cholangiocarcinoma is insufficient based on the radiomics quality score. Future research should consider prospective studies with a standardized methodology, validation in multi-institutional external cohorts, and open science data.
Collapse
Affiliation(s)
- Roberto Cannella
- Section of Radiology - Department of Biomedicine, Neuroscience and Advanced Diagnostics (BiND), University Hospital “Paolo Giaccone”, Via del Vespro 129, 90127 Palermo, Italy ,grid.10776.370000 0004 1762 5517Department of Health Promotion, Mother and Child Care, Internal Medicine and Medical Specialties (PROMISE), University of Palermo, Via del Vespro, 129, 90127 Palermo, Italy
| | - Federica Vernuccio
- grid.411474.30000 0004 1760 2630Department of Radiology, University Hospital of Padova, Via Nicolò Giustiniani 2, 35128 Padua, Italy
| | - Michail E. Klontzas
- grid.412481.a0000 0004 0576 5678Department of Medical Imaging, University Hospital of Heraklion, 71110 Voutes, Crete, Greece ,grid.8127.c0000 0004 0576 3437Department of Radiology, School of Medicine, University of Crete, 71003 Heraklion, Crete, Greece ,grid.4834.b0000 0004 0635 685XComputational Biomedicine Laboratory, Institute of Computer Science, Foundation for Research and Technology, Vassilika Vouton, 70013 Crete, Greece
| | - Andrea Ponsiglione
- grid.4691.a0000 0001 0790 385XDepartment of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Ekaterina Petrash
- grid.415738.c0000 0000 9216 2496Radiology Department Research Institute of Children’s Oncology and Hematology, FSBI “National Medical Research Center of Oncology n.a. N.N. Blokhin” of Ministry of Health of RF, Kashirskoye Highway 24, Moscow, Russia ,IRA-Labs, Medical Department, Skolkovo, Bolshoi Boulevard, 30, Building 1, Moscow, Russia
| | - Lorenzo Ugga
- grid.4691.a0000 0001 0790 385XDepartment of Advanced Biomedical Sciences, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| | - Daniel Pinto dos Santos
- grid.6190.e0000 0000 8580 3777Department of Diagnostic and Interventional Radiology, Faculty of Medicine and University Hospital Cologne, University of Cologne, Kerpener Str. 62, 50937 Cologne, Germany ,grid.411088.40000 0004 0578 8220Department of Radiology, University Hospital Frankfurt, Theodor-Stern-Kai 7, 60590 Frankfurt, Germany
| | - Renato Cuocolo
- grid.11780.3f0000 0004 1937 0335Department of Medicine, Surgery, and Dentistry, University of Salerno, Via Salvador Allende 43, 84081 Baronissi, SA Italy ,grid.4691.a0000 0001 0790 385XAugmented Reality for Health Monitoring Laboratory (ARHeMLab), Department of Electrical Engineering and Information Technology, University of Naples “Federico II”, Via Sergio Pansini 5, 80131 Naples, Italy
| |
Collapse
|
33
|
Yu X, Gao L, Zhang S, Sun C, Zhang J, Kang B, Wang X. Development and validation of A CT-based radiomics nomogram for prediction of synchronous distant metastasis in clear cell renal cell carcinoma. Front Oncol 2023; 12:1016583. [PMID: 36686790 PMCID: PMC9846314 DOI: 10.3389/fonc.2022.1016583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2022] [Accepted: 12/12/2022] [Indexed: 01/06/2023] Open
Abstract
Background Early identification of synchronous distant metastasis (SDM) in patients with clear cell Renal cell carcinoma (ccRCC) can certify the reasonable diagnostic examinations. Methods This retrospective study recruited 463 ccRCC patients who were divided into two cohorts (training and internal validation) at a 7:3 ratio. Besides, 115 patients from other hospital were assigned external validation cohort. A radiomics signature was developed based on features by means of the least absolute shrinkage and selection operator method. Demographics, laboratory variables and CT findings were combined to develop clinical factors model. Integrating radiomics signature and clinical factors model, a radiomics nomogram was developed. Results Ten features were used to build radiomics signature, which yielded an area under the curve (AUC) 0.882 in the external validation cohort. By incorporating the clinical independent predictors, the clinical model was developed with AUC of 0.920 in the external validation cohort. Radiomics nomogram (external validation, 0.925) had better performance than clinical factors model or radiomics signature. Decision curve analysis demonstrated the superiority of the radiomics nomogram in terms of clinical usefulness. Conclusions The CT-based nomogram could help in predicting SDM status in patients with ccRCC, which might provide assistance for clinicians in making diagnostic examinations.
Collapse
Affiliation(s)
- Xinxin Yu
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,School of Medicine, Shandong University, Jinan, China
| | - Lin Gao
- Department of Nuclear Medicine, The First Affiliated Hospital of Shandong First Medical University & Shandong Provincial Qianfoshan Hospital, Jinan, China,School of Medicine, Shandong First Medical University, Jinan, China
| | - Shuai Zhang
- School of Medicine, Shandong First Medical University, Jinan, China
| | - Cong Sun
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China
| | - Juntao Zhang
- GE Healthcare, PDx GMS Advanced Analytics, Shanghai, China,*Correspondence: Ximing Wang, ; Bing Kang, ; Juntao Zhang,
| | - Bing Kang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,*Correspondence: Ximing Wang, ; Bing Kang, ; Juntao Zhang,
| | - Ximing Wang
- Department of Radiology, Shandong Provincial Hospital Affiliated to Shandong First Medical University, Jinan, China,School of Medicine, Shandong University, Jinan, China,*Correspondence: Ximing Wang, ; Bing Kang, ; Juntao Zhang,
| |
Collapse
|
34
|
Chen P, Yang Z, Zhang H, Huang G, Li Q, Ning P, Yu H. Personalized intrahepatic cholangiocarcinoma prognosis prediction using radiomics: Application and development trend. Front Oncol 2023; 13:1133867. [PMID: 37035147 PMCID: PMC10076873 DOI: 10.3389/fonc.2023.1133867] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/29/2022] [Accepted: 03/13/2023] [Indexed: 04/11/2023] Open
Abstract
Radiomics was proposed by Lambin et al. in 2012 and since then there has been an explosion of related research. There has been significant interest in developing high-throughput methods that can automatically extract a large number of quantitative image features from medical images for better diagnostic or predictive performance. There have also been numerous radiomics investigations on intrahepatic cholangiocarcinoma in recent years, but no pertinent review materials are readily available. This work discusses the modeling analysis of radiomics for the prediction of lymph node metastasis, microvascular invasion, and early recurrence of intrahepatic cholangiocarcinoma, as well as the use of deep learning. This paper briefly reviews the current status of radiomics research to provide a reference for future studies.
Collapse
Affiliation(s)
- Pengyu Chen
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Zhenwei Yang
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Haofeng Zhang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Guan Huang
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Qingshan Li
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
| | - Peigang Ning
- Department of Radiology, People’s Hospital of Zhengzhou University, Zhengzhou, China
| | - Haibo Yu
- Department of Hepatobiliary Surgery, Henan University People’s Hospital, Henan Provincial People’s Hospital, Zhengzhou, China
- Department of Hepatobiliary Surgery, People’s Hospital of Zhengzhou University, Zhengzhou, China
- Department of Hepatobiliary Surgery, Henan Provincial People’s Hospital, Zhengzhou, China
- *Correspondence: Haibo Yu,
| |
Collapse
|
35
|
Qu C, Wang Q, Li C, Xie Q, Cai P, Yan X, Sparrelid E, Zhang L, Ma K, Brismar TB. A Radiomics Model Based on Gd-EOB-DTPA-Enhanced MRI for the Prediction of Microvascular Invasion in Solitary Hepatocellular Carcinoma ≤ 5 cm. Front Oncol 2022; 12:831795. [PMID: 35664790 PMCID: PMC9160991 DOI: 10.3389/fonc.2022.831795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 04/19/2022] [Indexed: 11/13/2022] Open
Abstract
Aim The aim of this study is to establish and validate a radiomics-based model using preoperative Gd-EOB-DTPA-enhanced MRI to predict microvascular invasion (MVI) in patients with hepatocellular carcinoma ≤ 5 cm. Methods Clinicopathologic and MRI data of 178 patients with solitary hepatocellular carcinoma (HCC) (≤5 cm) were retrospectively collected from a single medical center between May 2017 and November 2020. Patients were randomly assigned into training and test subsets by a ratio of 7:3. Imaging features were extracted from the segmented tumor volume of interest with 1-cm expansion on arterial phase (AP) and hepatobiliary phase (HBP) images. Different models based on the significant clinical risk factors and/or selected imaging features were established and the predictive performance of the models was evaluated. Results Three radiomics models, the AP_model, the HBP_model, and the AP+HBP_model, were constructed for MVI prediction. Among them, the AP+HBP_model outperformed the other two. When it was combined with a clinical model, consisting of tumor size and alpha-fetoprotein (AFP), the combined model (AP+HBP+Clin_model) showed an area under the curve of 0.90 and 0.70 in the training and test subsets, respectively. Its sensitivity and specificity were 0.91 and 0.76 in the training subset and 0.60 and 0.79 in the test subset, respectively. The calibration curve illustrated that the combined model possessed a good agreement between the predicted and the actual probabilities. Conclusions The radiomics-based model combining imaging features from the arterial and hepatobiliary phases of Gd-EOB-DTPA-enhanced MRI and clinical risk factors provides an effective and reliable tool for the preoperative prediction of MVI in patients with HCC ≤ 5 cm.
Collapse
Affiliation(s)
- Chengming Qu
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qiang Wang
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Changfeng Li
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Qiao Xie
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ping Cai
- Department of Radiology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Xiaochu Yan
- Department of Pathology, Southwest Hospital, Army Medical University, Chongqing, China
| | - Ernesto Sparrelid
- Division of Surgery, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Leida Zhang
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Kuansheng Ma
- Institute of Hepatobiliary Surgery, Southwest Hospital, Army Medical University, Chongqing, China
| | - Torkel B. Brismar
- Division of Medical Imaging and Technology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Stockholm, Sweden
- Division of Radiology, Department of Clinical Science, Intervention and Technology (CLINTEC), Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| |
Collapse
|
36
|
Granata V, Fusco R, Belli A, Borzillo V, Palumbo P, Bruno F, Grassi R, Ottaiano A, Nasti G, Pilone V, Petrillo A, Izzo F. Conventional, functional and radiomics assessment for intrahepatic cholangiocarcinoma. Infect Agent Cancer 2022; 17:13. [PMID: 35346300 PMCID: PMC8961950 DOI: 10.1186/s13027-022-00429-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/30/2022] [Accepted: 03/18/2022] [Indexed: 02/08/2023] Open
Abstract
Background This paper offers an assessment of diagnostic tools in the evaluation of Intrahepatic Cholangiocarcinoma (ICC). Methods Several electronic datasets were analysed to search papers on morphological and functional evaluation in ICC patients. Papers published in English language has been scheduled from January 2010 to December 2021.
Results We found that 88 clinical studies satisfied our research criteria. Several functional parameters and morphological elements allow a truthful ICC diagnosis. The contrast medium evaluation, during the different phases of contrast studies, support the recognition of several distinctive features of ICC. The imaging tool to employed and the type of contrast medium in magnetic resonance imaging, extracellular or hepatobiliary, should change considering patient, departement, and regional features. Also, Radiomics is an emerging area in the evaluation of ICCs. Post treatment studies are required to evaluate the efficacy and the safety of therapies so as the patient surveillance. Conclusions Several morphological and functional data obtained during Imaging studies allow a truthful ICC diagnosis.
Collapse
|
37
|
Fiz F, Jayakody Arachchige VS, Gionso M, Pecorella I, Selvam A, Wheeler DR, Sollini M, Viganò L. Radiomics of Biliary Tumors: A Systematic Review of Current Evidence. Diagnostics (Basel) 2022; 12:diagnostics12040826. [PMID: 35453878 PMCID: PMC9024804 DOI: 10.3390/diagnostics12040826] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2022] [Revised: 03/19/2022] [Accepted: 03/25/2022] [Indexed: 02/06/2023] Open
Abstract
Biliary tumors are rare diseases with major clinical unmet needs. Standard imaging modalities provide neither a conclusive diagnosis nor robust biomarkers to drive treatment planning. In several neoplasms, texture analyses non-invasively unveiled tumor characteristics and aggressiveness. The present manuscript aims to summarize the available evidence about the role of radiomics in the management of biliary tumors. A systematic review was carried out through the most relevant databases. Original, English-language articles published before May 2021 were considered. Three main outcome measures were evaluated: prediction of pathology data; prediction of survival; and differential diagnosis. Twenty-seven studies, including a total of 3605 subjects, were identified. Mass-forming intrahepatic cholangiocarcinoma (ICC) was the subject of most studies (n = 21). Radiomics reliably predicted lymph node metastases (range, AUC = 0.729−0.900, accuracy = 0.69−0.83), tumor grading (AUC = 0.680−0.890, accuracy = 0.70−0.82), and survival (C-index = 0.673−0.889). Textural features allowed for the accurate differentiation of ICC from HCC, mixed HCC-ICC, and inflammatory masses (AUC > 0.800). For all endpoints (pathology/survival/diagnosis), the predictive/prognostic models combining radiomic and clinical data outperformed the standard clinical models. Some limitations must be acknowledged: all studies are retrospective; the analyzed imaging modalities and phases are heterogeneous; the adoption of signatures/scores limits the interpretability and applicability of results. In conclusion, radiomics may play a relevant role in the management of biliary tumors, from diagnosis to treatment planning. It provides new non-invasive biomarkers, which are complementary to the standard clinical biomarkers; however, further studies are needed for their implementation in clinical practice.
Collapse
Affiliation(s)
- Francesco Fiz
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (F.F.); (M.S.)
| | - Visala S Jayakody Arachchige
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Matteo Gionso
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Ilaria Pecorella
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Apoorva Selvam
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Dakota Russell Wheeler
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Martina Sollini
- Department of Nuclear Medicine, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy; (F.F.); (M.S.)
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
| | - Luca Viganò
- Department of Biomedical Sciences, Humanitas University, Pieve Emanuele, 20072 Milan, Italy; (V.S.J.A.); (M.G.); (I.P.); (A.S.); (D.R.W.)
- Division of Hepatobiliary and General Surgery, Department of Surgery, IRCCS Humanitas Research Hospital, 20089 Rozzano, Italy
- Correspondence: ; Tel.: +39-02-8224-7361
| |
Collapse
|
38
|
Fiz F, Masci C, Costa G, Sollini M, Chiti A, Ieva F, Torzilli G, Viganò L. PET/CT-based radiomics of mass-forming intrahepatic cholangiocarcinoma improves prediction of pathology data and survival. Eur J Nucl Med Mol Imaging 2022; 49:3387-3400. [DOI: 10.1007/s00259-022-05765-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Accepted: 03/11/2022] [Indexed: 12/18/2022]
|
39
|
Qian X, Lu X, Ma X, Zhang Y, Zhou C, Wang F, Shi Y, Zeng M. A Multi-Parametric Radiomics Nomogram for Preoperative Prediction of Microvascular Invasion Status in Intrahepatic Cholangiocarcinoma. Front Oncol 2022; 12:838701. [PMID: 35280821 PMCID: PMC8907475 DOI: 10.3389/fonc.2022.838701] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2021] [Accepted: 01/24/2022] [Indexed: 02/06/2023] Open
Abstract
Background Intrahepatic cholangiocarcinoma (ICC) is the second most common primary liver cancer with increasing incidence in the last decades. Microvascular invasion (MVI) is a poor prognostic factor for patients with ICC, which correlates early recurrence and poor prognosis, and it can affect the selection of personalized therapeutic regime. Purpose This study aimed to develop and validate a radiomics-based nomogram for predicting MVI in ICC patients preoperatively. Methods A total of 163 pathologically confirmed ICC patients (training cohort: n = 130; validation cohort: n = 33) with postoperative Ga-DTPA-enhanced MR examination were enrolled, and a time-independent test cohort (n = 24) was collected for external validation. Univariate and multivariate analyses were used to determine the independent predictors of MVI status, which were then incorporated into the MVI prediction nomogram. Least absolute shrinkage and selection operator logistic regression was performed to select optimal features and construct radiomics models. The prediction performances of models were assessed by receiver operating characteristic (ROC) curve analysis. The performance of the MVI prediction nomogram was evaluated by its calibration, discrimination, and clinical utility. Results Larger tumor size (p = 0.003) and intrahepatic duct dilatation (p = 0.002) are independent predictors of MVI. The final radiomics model shows desirable and stable prediction performance in the training cohort (AUC = 0.950), validation cohort (AUC = 0.883), and test cohort (AUC = 0.812). The MVI prediction nomogram incorporates tumor size, intrahepatic duct dilatation, and the final radiomics model and achieves excellent predictive efficacy in training cohort (AUC = 0.953), validation cohort (AUC = 0.861), and test cohort (AUC = 0.819), fitting well in calibration curves (p > 0.05). Decision curve and clinical impact curve further confirm the clinical usefulness of the nomogram. Conclusion The nomogram incorporating tumor size, intrahepatic duct dilatation, and the final radiomics model is a potential biomarker for preoperative prediction of the MVI status in ICC patients.
Collapse
Affiliation(s)
- Xianling Qian
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xin Lu
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Xijuan Ma
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Ying Zhang
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Changwu Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| | - Fang Wang
- Department of Research and Development, Shanghai United Imaging Intelligence Co., Ltd., Shanghai, China
| | - Yibing Shi
- Department of Radiology, Xuzhou Central Hospital, Xuzhou Clinical School of Xuzhou Medical University, Xuzhou, China
| | - Mengsu Zeng
- Department of Radiology, Zhongshan Hospital, Fudan University, Shanghai, China.,Shanghai Institute of Medical Imaging, Shanghai, China.,Department of Cancer Center, Zhongshan Hospital, Fudan University, Shanghai, China
| |
Collapse
|
40
|
Yang Y, Zou X, Zhou W, Yuan G, Hu D, Shen Y, Xie Q, Zhang Q, Kuang D, Hu X, Li Z. DWI-based radiomic signature: potential role for individualized adjuvant chemotherapy in intrahepatic cholangiocarcinoma after partial hepatectomy. Insights Imaging 2022; 13:37. [PMID: 35244793 PMCID: PMC8897536 DOI: 10.1186/s13244-022-01179-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2021] [Accepted: 02/07/2022] [Indexed: 11/10/2022] Open
Abstract
Objectives To develop a diffusion-weighted imaging (DWI) based radiomic signature for predicting early recurrence (ER) (i.e., recurrence within 1 year after surgery), and to explore the potential value for individualized adjuvant chemotherapy. Methods A total of 124 patients with intrahepatic cholangiocarcinoma (ICC) were randomly divided into the training (n = 87) and the validation set (n = 37). Radiomic signature was built using radiomic features extracted from DWI with random forest. An integrated radiomic nomogram was constructed with multivariate logistic regression analysis to demonstrate the incremental value of the radiomic signature beyond clinicopathological-radiographic factors. A clinicopathological-radiographic (CPR) model was constructed as a reference. Results The radiomic signature showed a comparable discrimination performance for predicting ER to CPR model in the validation set (AUC, 0.753 vs. 0.621, p = 0.274). Integrating the radiomic signature with clinicopathological-radiographic factors further improved prediction performance compared with CPR model, with an AUC of 0.821 (95%CI 0.684–0.959) in the validation set (p = 0.01). The radiomic signature succeeded to stratify patients into distinct survival outcomes according to their risk index of ER, and remained an independent prognostic factor in multivariable analysis (disease-free survival (DFS), p < 0.0001; overall survival (OS), p = 0.029). Furthermore, adjuvant chemotherapy improved prognosis in high-risk patients defined by the radiomic signature (DFS, p = 0.029; OS, p = 0.088) and defined by the nomogram (DFS, p = 0.031; OS, p = 0.023), whereas poor chemotherapy efficacy was detected in low-risk patients. Conclusions The preoperative DWI-based radiomic signature could improve prognostic prediction and help to identify ICC patients who may benefit from postoperative adjuvant chemotherapy. Supplementary Information The online version contains supplementary material available at 10.1186/s13244-022-01179-7.
Collapse
Affiliation(s)
- Yang Yang
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Xianlun Zou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Wei Zhou
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Guanjie Yuan
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Daoyu Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Yaqi Shen
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| | - Qingguo Xie
- Department of Biomedical Engineering, Huazhong University of Science and Technology, 430074, Wuhan, Hubei, China
| | - Qingpeng Zhang
- School of Data Science, City University of Hong Kong, Kowloon, Hong Kong, China
| | - Dong Kuang
- Department of Pathology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Xuemei Hu
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China.
| | - Zhen Li
- Department of Radiology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1095 Jiefang Avenue, Qiaokou District, Wuhan, 430030, Hubei, China
| |
Collapse
|
41
|
Gao W, Wang W, Song D, Wang K, Lian D, Yang C, Zhu K, Zheng J, Zeng M, Rao S, Wang M. A
Multiparametric
Fusion Deep Learning Model Based on
DCE‐MRI
for Preoperative Prediction of Microvascular Invasion in Intrahepatic Cholangiocarcinoma. J Magn Reson Imaging 2022; 56:1029-1039. [PMID: 35191550 DOI: 10.1002/jmri.28126] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2021] [Revised: 02/11/2022] [Accepted: 02/11/2022] [Indexed: 12/22/2022] Open
Affiliation(s)
- Wenyu Gao
- Digital Medical Research Center School of Basic Medical Sciences, Fudan University Shanghai 200032 China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Shanghai 200032 China
| | - Wentao Wang
- Department of Radiology Cancer center, Zhongshan Hospital, Fudan University China
- Shanghai Institute of Medical Imaging Shanghai China
| | - Danjun Song
- Liver Cancer Institute, Zhongshan Hospital, Fudan University Shanghai China
- Department of Interventional Radiology Zhejiang Cancer Hospital Hangzhou Zhejiang China
| | - Kang Wang
- Digital Medical Research Center School of Basic Medical Sciences, Fudan University Shanghai 200032 China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Shanghai 200032 China
| | - Danlan Lian
- Department of Radiology Xiamen Branch, Zhongshan Hospital, Fudan University Xiamen China
| | - Chun Yang
- Department of Radiology Cancer center, Zhongshan Hospital, Fudan University China
| | - Kai Zhu
- Liver Cancer Institute, Zhongshan Hospital, Fudan University Shanghai China
| | - Jiaping Zheng
- Department of Interventional Radiology Zhejiang Cancer Hospital Hangzhou Zhejiang China
| | - Mengsu Zeng
- Department of Radiology Cancer center, Zhongshan Hospital, Fudan University China
- Shanghai Institute of Medical Imaging Shanghai China
| | - Sheng‐xiang Rao
- Department of Radiology Cancer center, Zhongshan Hospital, Fudan University China
- Shanghai Institute of Medical Imaging Shanghai China
| | - Manning Wang
- Digital Medical Research Center School of Basic Medical Sciences, Fudan University Shanghai 200032 China
- Shanghai Key Laboratory of Medical Imaging Computing and Computer Assisted Intervention Shanghai 200032 China
| |
Collapse
|
42
|
Zhou Y, Zhou G, Zhang J, Xu C, Zhu F, Xu P. DCE-MRI based radiomics nomogram for preoperatively differentiating combined hepatocellular-cholangiocarcinoma from mass-forming intrahepatic cholangiocarcinoma. Eur Radiol 2022; 32:5004-5015. [PMID: 35128572 DOI: 10.1007/s00330-022-08548-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2021] [Accepted: 12/20/2021] [Indexed: 02/07/2023]
Abstract
OBJECTIVE To establish a radiomics nomogram based on dynamic contrast-enhanced (DCE) MR images to preoperatively differentiate combined hepatocellular-cholangiocarcinoma (cHCC-CC) from mass-forming intrahepatic cholangiocarcinoma (IMCC). METHODS A total of 151 training cohort patients (45 cHCC-CC and 106 IMCC) and 65 validation cohort patients (19 cHCC-CC and 46 IMCC) were enrolled. Findings of clinical characteristics and MR features were analyzed. Radiomics features were extracted from the DCE-MR images. A radiomics signature was built based on radiomics features by the least absolute shrinkage and selection operator algorithm. Univariate and multivariate analyses were used to identify the significant clinicoradiological variables and construct a clinical model. The radiomics signature and significant clinicoradiological variables were then incorporated into the radiomics nomogram by multivariate logistic regression analysis. Performance of the radiomics nomogram, radiomics signature, and clinical model was assessed by receiver operating characteristic and area under the curve (AUC) was compared. RESULTS Eleven radiomics features were selected to develop the radiomics signature. The radiomics nomogram integrating the alpha fetoprotein, background liver disease (cirrhosis or chronic hepatitis), and radiomics signature showed favorable calibration and discrimination performance with an AUC value of 0.945 in training cohort and 0.897 in validation cohort. The AUCs for the radiomics signature and clinical model were 0.848 and 0.856 in training cohort and 0.792 and 0.809 in validation cohort, respectively. The radiomics nomogram outperformed both the radiomics signature and clinical model alone (p < 0.05). CONCLUSION The radiomics nomogram based on DCE-MRI may provide an effective and noninvasive tool to differentiate cHCC-CC from IMCC, which could help guide treatment strategies. KEY POINTS • The radiomics signature based on dynamic contrast-enhanced magnetic resonance imaging is useful to preoperatively differentiate cHCC-CC from IMCC. • The radiomics nomogram showed the best performance in both training and validation cohorts for differentiating cHCC-CC from IMCC.
Collapse
Affiliation(s)
- Yang Zhou
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Guofeng Zhou
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, China.,Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, China
| | - Jiulou Zhang
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China
| | - Chen Xu
- Department of Pathology, Zhongshan Hospital, Fudan University, Shanghai, 200032, China
| | - Feipeng Zhu
- Department of Radiology, The First Affiliated Hospital of Nanjing Medical University, No 300, Guangzhou Road, Nanjing, 210029, Jiangsu Province, China.
| | - Pengju Xu
- Department of Radiology, Zhongshan Hospital, Fudan University, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, China. .,Shanghai Institute of Medical Imaging, No.180 Fenglin Road, Xuhui District, Shanghai, 200032, China.
| |
Collapse
|
43
|
Xiang F, Wei S, Liu X, Liang X, Yang L, Yan S. Radiomics Analysis of Contrast-Enhanced CT for the Preoperative Prediction of Microvascular Invasion in Mass-Forming Intrahepatic Cholangiocarcinoma. Front Oncol 2021; 11:774117. [PMID: 34869018 PMCID: PMC8640186 DOI: 10.3389/fonc.2021.774117] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/02/2021] [Indexed: 12/13/2022] Open
Abstract
Background Microvascular invasion (MVI) has been shown to be closely associated with postoperative recurrence and metastasis in patients with intrahepatic cholangiocarcinoma (ICC). We aimed to develop a radiomics prediction model based on contrast-enhanced CT (CECT) to distinguish MVI in patients with mass-forming ICC. Methods 157 patients were included and randomly divided into training (n=110) and test (n=47) datasets. Radiomic signatures were built based on the recursive feature elimination support vector machine (Rfe-SVM) algorithm. Significant clinical-radiologic factors were screened, and a clinical model was built by multivariate logistic regression. A nomogram was developed by integrating radiomics signature and the significant clinical risk factors. Results The portal phase image radiomics signature with 6 features was constructed and provided an area under the receiver operating characteristic curve (AUC) of 0.804 in the training and 0.769 in the test datasets. Three significant predictors, including satellite nodules (odds ratio [OR]=13.73), arterial hypo-enhancement (OR=4.31), and tumor contour (OR=4.99), were identified by multivariate analysis. The clinical model using these predictors exhibited an AUC of 0.822 in the training and 0.756 in the test datasets. The nomogram combining significant clinical factors and radiomics signature achieved satisfactory prediction efficacy, showing an AUC of 0.886 in the training and 0.80 in the test datasets. Conclusions Both CECT radiomics analysis and radiologic factors have the potential for MVI prediction in mass-forming ICC patients. The nomogram can further improve the prediction efficacy.
Collapse
Affiliation(s)
- Fei Xiang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Shumei Wei
- Department of Pathology, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xingyu Liu
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Xiaoyuan Liang
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Lili Yang
- Department of Radiology, The First Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| | - Sheng Yan
- Department of Hepatobiliary and Pancreatic Surgery, The Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou, China
| |
Collapse
|
44
|
Zheng Z, Gu Z, Xu F, Maskey N, He Y, Yan Y, Xu T, Liu S, Yao X. Magnetic resonance imaging-based radiomics signature for preoperative prediction of Ki67 expression in bladder cancer. Cancer Imaging 2021; 21:65. [PMID: 34863282 PMCID: PMC8642943 DOI: 10.1186/s40644-021-00433-3] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 11/12/2021] [Indexed: 12/24/2022] Open
Abstract
PURPOSE The Ki67 expression is associated with the advanced clinicopathological features and poor prognosis in bladder cancer (BCa). We aimed to develop and validate magnetic resonance imaging (MRI)-based radiomics signatures to preoperatively predict the Ki67 expression status in BCa. METHODS AND MATERIALS We retrospectively collected 179 BCa patients with Ki67 expression and preoperative MRI. Radiomics features were extracted from T2-weighted (T2WI) and dynamic contrast-enhancement (DCE) images. The synthetic minority over-sampling technique (SMOTE) was used to balance the minority group (low Ki67 expression group) in the training set. Minimum redundancy maximum relevance was used to identify the best features associated with Ki67 expression. Support vector machine and Least Absolute Shrinkage and Selection Operator algorithms (LASSO) were used to construct radiomics signatures in training and SMOTE-training sets, and diagnostic performance was assessed by the area under the curve (AUC) and accuracy. The decision curve analyses (DCA) and calibration curve and were used to investigate the clinical usefulness and calibration of radiomics signatures, respectively. The Kaplan-Meier test was performed to investigate the prognostic value of radiomics-predicted Ki67 expression status. RESULTS 1218 radiomics features were extracted from T2WI and DCE images, respectively. The SMOTE-LASSO model based on nine features achieved the best predictive performance in the SMOTE-training (AUC, 0.859; accuracy, 80.3%) and validation sets (AUC, 0.819; accuracy, 81.5%) with a good calibration performance and clinical usefulness. Immunohistochemistry-based high Ki67 expression and radiomics-predicted high Ki67 expression based on the SMOTE-LASSO model were significantly associated with poor disease-free survival in training and validation sets (all P < 0.05). CONCLUSIONS The SMOTE-LASSO model could predict the Ki67 expression status and was associated with survival outcomes of the BCa patients, thereby may aid in clinical decision-making.
Collapse
Affiliation(s)
- Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
| | - Zhuoran Gu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
| | - Feijia Xu
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Niraj Maskey
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
| | - Yanyan He
- Department of Pathology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China
- Department of Radiology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
- Institute of Urinary Oncology, School of Medicine, Tongji University, Yan Chang Zhong Road 301, Shanghai, 200072, China.
| |
Collapse
|
45
|
Silva M, Maddalo M, Leoni E, Giuliotti S, Milanese G, Ghetti C, Biasini E, De Filippo M, Missale G, Sverzellati N. Integrated prognostication of intrahepatic cholangiocarcinoma by contrast-enhanced computed tomography: the adjunct yield of radiomics. Abdom Radiol (NY) 2021; 46:4689-4700. [PMID: 34165602 PMCID: PMC8435517 DOI: 10.1007/s00261-021-03183-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 06/13/2021] [Accepted: 06/14/2021] [Indexed: 12/13/2022]
Abstract
Purpose To test radiomics for prognostication of intrahepatic mass-forming cholangiocarcinoma (IMCC) and to develop a comprehensive risk model. Methods Histologically proven IMCC (representing the full range of stages) were retrospectively analyzed by volume segmentation on baseline hepatic venous phase computed tomography (CT), by two readers with different experience (R1 and R2). Morphological CT features included: tumor size, hepatic satellite lesions, lymph node and distant metastases. Radiomic features (RF) were compared across CT protocols and readers. Univariate analysis against overall survival (OS) warranted ranking and selection of RF into radiomic signature (RSign), which was dichotomized into high and low-risk strata (RSign*). Models without and with RSign* (Model 1 and 2, respectively) were compared. Results Among 78 patients (median follow-up 262 days, IQR 73–957), 62/78 (79%) died during the study period, 46/78 (59%) died within 1 year. Up to 10% RF showed variability across CT protocols; 37/108 (34%) RF showed variability due to manual segmentation. RSign stratified OS (univariate: HR 1.37 for R1, HR 1.28 for R2), RSign* was different between readers (R1 0.39; R2 0.57). Model 1 showed AUC 0.71, which increased in Model 2: AUC 0.81 (p < 0.001) and AIC 89 for R1, AUC 0.81 (p = 0.001) and AIC 90.2 for R2. Conclusion The use of RF into a unified RSign score stratified OS in patients with IMCC. Dichotomized RSign* classified survival strata, its inclusion in risk models showed adjunct yield. The cut-off value of RSign* was different between readers, suggesting that the use of reference values is hampered by interobserver variability. Supplementary Information The online version contains supplementary material available at 10.1007/s00261-021-03183-9.
Collapse
Affiliation(s)
- Mario Silva
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of “Scienze Radiologiche”, University Hospital of Parma, Parma, Italy
| | - Michele Maddalo
- Servizio Di Fisica Sanitaria, University Hospital of Parma, Parma, Italy
| | - Eleonora Leoni
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
| | - Sara Giuliotti
- Unit of Radiology, University Hospital of Parma, Parma, Italy
| | - Gianluca Milanese
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
| | - Caterina Ghetti
- Servizio Di Fisica Sanitaria, University Hospital of Parma, Parma, Italy
| | - Elisabetta Biasini
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Massimo De Filippo
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of Radiology, University Hospital of Parma, Parma, Italy
| | - Gabriele Missale
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of Infectious Diseases and Hepatology, University Hospital of Parma, Parma, Italy
| | - Nicola Sverzellati
- Department of Medicine and Surgery (DiMeC), University of Parma, Via Gramsci 14, Parma, Italy
- Unit of “Scienze Radiologiche”, University Hospital of Parma, Parma, Italy
| |
Collapse
|
46
|
Zheng Z, Xu F, Gu Z, Yan Y, Xu T, Liu S, Yao X. Combining Multiparametric MRI Radiomics Signature With the Vesical Imaging-Reporting and Data System (VI-RADS) Score to Preoperatively Differentiate Muscle Invasion of Bladder Cancer. Front Oncol 2021; 11:619893. [PMID: 34055600 PMCID: PMC8155615 DOI: 10.3389/fonc.2021.619893] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2020] [Accepted: 04/26/2021] [Indexed: 12/31/2022] Open
Abstract
Background The treatment and prognosis for muscle-invasive bladder cancer (MIBC) and non-muscle-invasive bladder cancer (NMIBC) are different. We aimed to construct a nomogram based on the multiparametric MRI (mpMRI) radiomics signature and the Vesical Imaging-Reporting and Data System (VI-RADS) score for the preoperative differentiation of MIBC from NMIBC. Method The retrospective study involved 185 pathologically confirmed bladder cancer (BCa) patients (training set: 129 patients, validation set: 56 patients) who received mpMRI before surgery between August 2014 to April 2020. A total of 2,436 radiomics features were quantitatively extracted from the largest lesion located on the axial T2WI and from dynamic contrast-enhancement images. The minimum redundancy maximum relevance (mRMR) algorithm was used for feature screening. The selected features were introduced to construct radiomics signatures using three classifiers, including least absolute shrinkage and selection operator (LASSO), support vector machines (SVM) and random forest (RF) in the training set. The differentiation performances of the three classifiers were evaluated using the area under the curve (AUC) and accuracy. Univariable and multivariable logistic regression were used to develop a nomogram based on the optimal radiomics signature and clinical characteristics. The performance of the radiomics signatures and the nomogram was assessed and validated in the validation set. Results Compared to the RF and SVM classifiers, the LASSO classifier had the best capacity for muscle invasive status differentiation in both the training (accuracy: 90.7%, AUC: 0.934) and validation sets (accuracy: 87.5%, AUC: 0.906). Incorporating the radiomics signature and VI-RADS score, the nomogram demonstrated better discrimination and calibration both in the training set (accuracy: 93.0%, AUC: 0.970) and validation set (accuracy: 89.3%, AUC: 0.943). Decision curve analysis showed the clinical usefulness of the nomogram. Conclusions The mpMRI radiomics signature may be useful for the preoperative differentiation of muscle-invasive status in BCa. The proposed nomogram integrating the radiomics signature with the VI-RADS score may further increase the differentiation power and improve clinical decision making.
Collapse
Affiliation(s)
- Zongtai Zheng
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Feijia Xu
- Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Zhuoran Gu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Yang Yan
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Tianyuan Xu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China.,Department of Radiology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Shenghua Liu
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| | - Xudong Yao
- Department of Urology, Shanghai Tenth People's Hospital, Tongji University School of Medicine, Shanghai, China
| |
Collapse
|