1
|
De Giorgio F, Maduro C, Fisher EMC, Acevedo-Arozena A. Transgenic and physiological mouse models give insights into different aspects of amyotrophic lateral sclerosis. Dis Model Mech 2019; 12:dmm037424. [PMID: 30626575 PMCID: PMC6361152 DOI: 10.1242/dmm.037424] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
A wide range of genetic mouse models is available to help researchers dissect human disease mechanisms. Each type of model has its own distinctive characteristics arising from the nature of the introduced mutation, as well as from the specific changes to the gene of interest. Here, we review the current range of mouse models with mutations in genes causative for the human neurodegenerative disease amyotrophic lateral sclerosis. We focus on the two main types of available mutants: transgenic mice and those that express mutant genes at physiological levels from gene targeting or from chemical mutagenesis. We compare the phenotypes for genes in which the two classes of model exist, to illustrate what they can teach us about different aspects of the disease, noting that informative models may not necessarily mimic the full trajectory of the human condition. Transgenic models can greatly overexpress mutant or wild-type proteins, giving us insight into protein deposition mechanisms, whereas models expressing mutant genes at physiological levels may develop slowly progressing phenotypes but illustrate early-stage disease processes. Although no mouse models fully recapitulate the human condition, almost all help researchers to understand normal and abnormal biological processes, providing that the individual characteristics of each model type, and how these may affect the interpretation of the data generated from each model, are considered and appreciated.
Collapse
Affiliation(s)
- Francesca De Giorgio
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Cheryl Maduro
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Elizabeth M C Fisher
- Department of Neuromuscular Diseases, UCL Institute of Neurology, and MRC Centre for Neuromuscular Disease, University College London, Queen Square, London WC1N 3BG, UK
| | - Abraham Acevedo-Arozena
- Unidad de Investigación Hospital Universitario de Canarias, Fundación Canaria de Investigación Sanitaria and Instituto de Tecnologías Biomédicas (ITB), La Laguna, 38320 Tenerife, Spain
| |
Collapse
|
2
|
Kumar S, Rathkolb B, Sabrautzki S, Krebs S, Kemter E, Becker L, Beckers J, Bekeredjian R, Brommage R, Calzada-Wack J, Garrett L, Hölter SM, Horsch M, Klingenspor M, Klopstock T, Moreth K, Neff F, Rozman J, Fuchs H, Gailus-Durner V, Hrabe de Angelis M, Wolf E, Aigner B. Standardized, systemic phenotypic analysis reveals kidney dysfunction as main alteration of Kctd1 I27N mutant mice. J Biomed Sci 2017; 24:57. [PMID: 28818080 PMCID: PMC5559776 DOI: 10.1186/s12929-017-0365-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2017] [Accepted: 08/09/2017] [Indexed: 12/28/2022] Open
Abstract
Background Increased levels of blood plasma urea were used as phenotypic parameter for establishing novel mouse models for kidney diseases on the genetic background of C3H inbred mice in the phenotype-driven Munich ENU mouse mutagenesis project. The phenotypically dominant mutant line HST014 was established and further analyzed. Methods Analysis of the causative mutation as well as the standardized, systemic phenotypic analysis of the mutant line was carried out. Results The causative mutation was detected in the potassium channel tetramerization domain containing 1 (Kctd1) gene which leads to the amino acid exchange Kctd1I27N thereby affecting the functional BTB domain of the protein. This line is the first mouse model harboring a Kctd1 mutation. Kctd1I27N homozygous mutant mice die perinatally. Standardized, systemic phenotypic analysis of Kctd1I27N heterozygous mutants was carried out in the German Mouse Clinic (GMC). Systematic morphological investigation of the external physical appearance did not detect the specific alterations that are described in KCTD1 mutant human patients affected by the scalp-ear-nipple (SEN) syndrome. The main pathological phenotype of the Kctd1I27N heterozygous mutant mice consists of kidney dysfunction and secondary effects thereof, without gross additional primary alterations in the other phenotypic parameters analyzed. Genome-wide transcriptome profiling analysis at the age of 4 months revealed about 100 differentially expressed genes (DEGs) in kidneys of Kctd1I27N heterozygous mutants as compared to wild-type controls. Conclusions In summary, the main alteration of the Kctd1I27N heterozygous mutants consists in kidney dysfunction. Additional analyses in 9–21 week-old heterozygous mutants revealed only few minor effects. Electronic supplementary material The online version of this article (doi:10.1186/s12929-017-0365-5) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Sudhir Kumar
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Sibylle Sabrautzki
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Research Unit Comparative Medicine, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Stefan Krebs
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany
| | - Johannes Beckers
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, 69120, Heidelberg, Germany
| | - Robert Brommage
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Julia Calzada-Wack
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Marion Horsch
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Department of Neurology, Friedrich-Baur-Institute, University Hospital Munich, 80336, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital Munich, 81377, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany.,German Center for Neurodegenerative Diseases (DZNE), 80336, Munich, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Molecular Nutritional Medicine, Else Kröner-Fresenius Center, TU Munich, 85350, Freising-Weihenstephan, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Valérie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany
| | - Martin Hrabe de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), 85764, Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, TU Munich, 85350, Freising-Weihenstephan, Germany.,German Center for Vertigo and Balance Disorders, University Hospital Munich, 81377, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis, Gene Center, LMU Munich, 81377, Munich, Germany.
| |
Collapse
|
3
|
Rathkolb B, Klempt M, Sabrautzki S, Michel D, Klaften M, Laufs J, Sedlmeier R, Hans W, Fuchs H, Muckenthaler MU, Horsch M, Campagna DR, Fleming M, Hrabé de Angelis M, Wolf E, Aigner B. Screen for alterations of iron related parameters in N-ethyl-N-nitrosourea-treated mice identified mutant lines with increased plasma ferritin levels. Biometals 2015; 28:293-306. [DOI: 10.1007/s10534-015-9824-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2015] [Accepted: 01/21/2015] [Indexed: 11/28/2022]
|
4
|
Daxinger L, Harten SK, Oey H, Epp T, Isbel L, Huang E, Whitelaw N, Apedaile A, Sorolla A, Yong J, Bharti V, Sutton J, Ashe A, Pang Z, Wallace N, Gerhardt DJ, Blewitt ME, Jeddeloh JA, Whitelaw E. An ENU mutagenesis screen identifies novel and known genes involved in epigenetic processes in the mouse. Genome Biol 2015; 14:R96. [PMID: 24025402 PMCID: PMC4053835 DOI: 10.1186/gb-2013-14-9-r96] [Citation(s) in RCA: 64] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 09/06/2013] [Indexed: 12/28/2022] Open
Abstract
Background We have used a sensitized ENU mutagenesis screen to produce mouse lines that carry mutations in genes required for epigenetic regulation. We call these lines Modifiers of murine metastable epialleles (Mommes). Results We report a basic molecular and phenotypic characterization for twenty of the Momme mouse lines, and in each case we also identify the causative mutation. Three of the lines carry a mutation in a novel epigenetic modifier, Rearranged L-myc fusion (Rlf), and one gene, Rap-interacting factor 1 (Rif1), has not previously been reported to be involved in transcriptional regulation in mammals. Many of the other lines are novel alleles of known epigenetic regulators. For two genes, Rlf and Widely-interspaced zinc finger (Wiz), we describe the first mouse mutants. All of the Momme mutants show some degree of homozygous embryonic lethality, emphasizing the importance of epigenetic processes. The penetrance of lethality is incomplete in a number of cases. Similarly, abnormalities in phenotype seen in the heterozygous individuals of some lines occur with incomplete penetrance. Conclusions Recent advances in sequencing enhance the power of sensitized mutagenesis screens to identify the function of previously uncharacterized factors and to discover additional functions for previously characterized proteins. The observation of incomplete penetrance of phenotypes in these inbred mutant mice, at various stages of development, is of interest. Overall, the Momme collection of mouse mutants provides a valuable resource for researchers across many disciplines.
Collapse
|
5
|
Kemter E, Prueckl P, Sklenak S, Rathkolb B, Habermann FA, Hans W, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Wolf E, Aigner B, Wanke R. Type of uromodulin mutation and allelic status influence onset and severity of uromodulin-associated kidney disease in mice. Hum Mol Genet 2013; 22:4148-63. [PMID: 23748428 DOI: 10.1093/hmg/ddt263] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022] Open
Abstract
Uromodulin-associated kidney disease (UAKD) is a dominant heritable renal disease in humans which is caused by mutations in the uromodulin (UMOD) gene and characterized by heterogeneous clinical appearance. To get insights into possible causes of this heterogeneity of UAKD, we describe the new mutant mouse line Umod(C93F), leading to disruption of a putative disulfide bond which is also absent in a known human UMOD mutation, and compare the phenotype of this new mouse line with the recently published mouse line Umod(A227T). In both mutant mouse lines, which were both bred on the C3H background, the Umod mutations cause a gain-of-toxic function due to a maturation defect of the mutant uromodulin leading to a dysfunction of thick ascending limb of Henle's loop (TALH) cells of the kidney. Umod mutant mice exhibit increased plasma urea and Cystatin levels, impaired urinary concentration ability, reduced fractional excretion of uric acid and nephropathological alterations including uromodulin retention in TALH cells, interstitial fibrosis and inflammatory cell infiltrations, tubular atrophy and occasional glomerulo- und tubulocystic changes, a phenotype highly similar to UAKD in humans. The maturation defect of mutant uromodulin leads to the accumulation of immature uromodulin in the endoplasmic reticulum (ER) and to ER hyperplasia. Further, this study was able to demonstrate for the first time in vivo that the severity of the uromodulin maturation defect as well as onset and speed of progression of renal dysfunction and morphological alterations are strongly dependent on the particular Umod mutation itself and the zygosity status.
Collapse
|
6
|
French CA, Jin X, Campbell TG, Gerfen E, Groszer M, Fisher SE, Costa RM. An aetiological Foxp2 mutation causes aberrant striatal activity and alters plasticity during skill learning. Mol Psychiatry 2012; 17:1077-85. [PMID: 21876543 PMCID: PMC3481071 DOI: 10.1038/mp.2011.105] [Citation(s) in RCA: 78] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
Mutations in the human FOXP2 gene cause impaired speech development and linguistic deficits, which have been best characterised in a large pedigree called the KE family. The encoded protein is highly conserved in many vertebrates and is expressed in homologous brain regions required for sensorimotor integration and motor-skill learning, in particular corticostriatal circuits. Independent studies in multiple species suggest that the striatum is a key site of FOXP2 action. Here, we used in vivo recordings in awake-behaving mice to investigate the effects of the KE-family mutation on the function of striatal circuits during motor-skill learning. We uncovered abnormally high ongoing striatal activity in mice carrying an identical mutation to that of the KE family. Furthermore, there were dramatic alterations in striatal plasticity during the acquisition of a motor skill, with most neurons in mutants showing negative modulation of firing rate, starkly contrasting with the predominantly positive modulation seen in control animals. We also observed striking changes in the temporal coordination of striatal firing during motor-skill learning in mutants. Our results indicate that FOXP2 is critical for the function of striatal circuits in vivo, which are important not only for speech but also for other striatal-dependent skills.
Collapse
Affiliation(s)
- C A French
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK,Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal
| | - X Jin
- Section on In Vivo Neural Function, Laboratory for Integrative Neuroscience, NIAAA/NIH, Bethesda, MD, USA
| | - T G Campbell
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK
| | - E Gerfen
- Section on In Vivo Neural Function, Laboratory for Integrative Neuroscience, NIAAA/NIH, Bethesda, MD, USA
| | - M Groszer
- Institut du Fer à Moulin, INSERM, Université Pierre et Marie Curie, UMR-S839, Paris, France
| | - S E Fisher
- Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, UK,Department of Language and Genetics, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands
| | - R M Costa
- Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Oeiras, Portugal,Section on In Vivo Neural Function, Laboratory for Integrative Neuroscience, NIAAA/NIH, Bethesda, MD, USA,Champalimaud Neuroscience Programme, Instituto Gulbenkian de Ciência, Rua da Quinta Grande 6, 2780-901 Oeiras, Portugal. E-mail:
| |
Collapse
|
7
|
Mariotta L, Ramadan T, Singer D, Guetg A, Herzog B, Stoeger C, Palacín M, Lahoutte T, Camargo SMR, Verrey F. T-type amino acid transporter TAT1 (Slc16a10) is essential for extracellular aromatic amino acid homeostasis control. J Physiol 2012; 590:6413-24. [PMID: 23045339 DOI: 10.1113/jphysiol.2012.239574] [Citation(s) in RCA: 59] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
Abstract
The uniporter TAT1 (Slc16a10) mediates the facilitated diffusion of aromatic amino acids (AAAs) across basolateral membranes of kidney, small intestine and liver epithelial cells, and across the plasma membrane of non-epithelial cells like skeletal myocytes. Its role for body AA homeostasis has now been investigated using newly generated TAT1 (Slc16a10) defective mice (tat1(-/-)). These mice grow and reproduce normally, show no gross phenotype and no obvious neurological defect. Histological analysis did not reveal abnormalities and there is no compensatory change in any tested AA transporter mRNA. TAT1 null mice, however, display increased plasma, muscle and kidney AAA concentration under both normal and high protein diet, although this concentration remains normal in the liver. A major aromatic aminoaciduria and a smaller urinary loss of all substrates additionally transported by l-type AA antiporter Lat2-4F2hc (Slc7a8) were revealed under a high protein diet. This suggests an epithelial transport defect as also shown by the accumulation of intravenously injected (123)I-2-I-l-Phe in kidney and l-[(3)H]Phe in ex vivo everted gut sac enterocytes. Taken together, these data indicate that the uniporter TAT1 is required to equilibrate the concentration of AAAs across specific membranes. For instance, it enables hepatocytes to function as a sink that controls the extracellular AAAs concentration. Additionally, it facilitates the release of AAAs across the basolateral membrane of small intestine and proximal kidney tubule epithelial cells, thereby allowing the efflux of other neutral AAs presumably via Lat2-4F2hc.
Collapse
Affiliation(s)
- Luca Mariotta
- Institute of Physiology and Zurich Center for Integrative Human Physiology (ZIHP), University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | | | |
Collapse
|
8
|
Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in hematological parameters. Mamm Genome 2011; 22:495-505. [PMID: 21553221 DOI: 10.1007/s00335-011-9328-4] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2011] [Accepted: 04/14/2011] [Indexed: 12/31/2022]
Abstract
Research on hematological disorders relies on suitable animal models. We retrospectively evaluated the use of the hematological parameters hematocrit (HCT), hemoglobin (HGB), mean corpuscular hemoglobin (MCH), mean corpuscular hemoglobin concentration (MCHC), mean corpuscular volume (MCV), red blood cell count (RBC), white blood cell count (WBC), and platelet count (PLT) in the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project as parameters for the generation of novel animal models for human diseases. The analysis was carried out on more than 16,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the levels of the chosen parameters. Identification of animals exhibiting altered values and transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for the parameters MCV, RBC, and PLT. Analysis of the causative mutation was started in selected lines, thereby revealing a novel mutation in the transferrin receptor gene (Tfrc) in one line. Thus, novel phenotype-driven mouse models were established to analyze the genetic components of hematological disorders.
Collapse
|
9
|
Whitelaw NC, Chong S, Morgan DK, Nestor C, Bruxner TJ, Ashe A, Lambley E, Meehan R, Whitelaw E. Reduced levels of two modifiers of epigenetic gene silencing, Dnmt3a and Trim28, cause increased phenotypic noise. Genome Biol 2010; 11:R111. [PMID: 21092094 PMCID: PMC3156950 DOI: 10.1186/gb-2010-11-11-r111] [Citation(s) in RCA: 65] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2010] [Revised: 09/30/2010] [Accepted: 11/19/2010] [Indexed: 01/05/2023] Open
Abstract
BACKGROUND Inbred individuals reared in controlled environments display considerable variance in many complex traits but the underlying cause of this intangible variation has been an enigma. Here we show that two modifiers of epigenetic gene silencing play a critical role in the process. RESULTS Inbred mice heterozygous for a null mutation in DNA methyltransferase 3a (Dnmt3a) or tripartite motif protein 28 (Trim28) show greater coefficients of variance in body weight than their wild-type littermates. Trim28 mutants additionally develop metabolic syndrome and abnormal behavior with incomplete penetrance. Genome-wide gene expression analyses identified 284 significantly dysregulated genes in Trim28 heterozygote mutants compared to wild-type mice, with Mas1, which encodes a G-protein coupled receptor implicated in lipid metabolism, showing the greatest average change in expression (7.8-fold higher in mutants). This gene also showed highly variable expression between mutant individuals. CONCLUSIONS These studies provide a molecular explanation of developmental noise in whole organisms and suggest that faithful epigenetic control of transcription is central to suppressing deleterious levels of phenotypic variation. These findings have broad implications for understanding the mechanisms underlying sporadic and complex disease in humans.
Collapse
Affiliation(s)
- Nadia C Whitelaw
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Medicine, University of Queensland, 288 Herston Road, Brisbane, Queensland 4001, Australia
| | - Suyinn Chong
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Daniel K Morgan
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
- School of Medicine, University of Queensland, 288 Herston Road, Brisbane, Queensland 4001, Australia
| | - Colm Nestor
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
- Breakthrough Research Unit, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Timothy J Bruxner
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | | | - Eleanore Lambley
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| | - Richard Meehan
- MRC Human Genetics Unit, Institute of Genetics and Molecular Medicine, Crewe Road, Edinburgh EH4 2XU, UK
- Breakthrough Research Unit, University of Edinburgh, Crewe Road, Edinburgh EH4 2XU, UK
| | - Emma Whitelaw
- Genetics and Population Health, Queensland Institute of Medical Research, 300 Herston Road, Brisbane, Queensland 4006, Australia
| |
Collapse
|
10
|
Ashrafian H, Docherty L, Leo V, Towlson C, Neilan M, Steeples V, Lygate CA, Hough T, Townsend S, Williams D, Wells S, Norris D, Glyn-Jones S, Land J, Barbaric I, Lalanne Z, Denny P, Szumska D, Bhattacharya S, Griffin JL, Hargreaves I, Fernandez-Fuentes N, Cheeseman M, Watkins H, Dear TN. A mutation in the mitochondrial fission gene Dnm1l leads to cardiomyopathy. PLoS Genet 2010; 6:e1001000. [PMID: 20585624 PMCID: PMC2891719 DOI: 10.1371/journal.pgen.1001000] [Citation(s) in RCA: 104] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2009] [Accepted: 05/25/2010] [Indexed: 12/03/2022] Open
Abstract
Mutations in a number of genes have been linked to inherited dilated cardiomyopathy (DCM). However, such mutations account for only a small proportion of the clinical cases emphasising the need for alternative discovery approaches to uncovering novel pathogenic mutations in hitherto unidentified pathways. Accordingly, as part of a large-scale N-ethyl-N-nitrosourea mutagenesis screen, we identified a mouse mutant, Python, which develops DCM. We demonstrate that the Python phenotype is attributable to a dominant fully penetrant mutation in the dynamin-1-like (Dnm1l) gene, which has been shown to be critical for mitochondrial fission. The C452F mutation is in a highly conserved region of the M domain of Dnm1l that alters protein interactions in a yeast two-hybrid system, suggesting that the mutation might alter intramolecular interactions within the Dnm1l monomer. Heterozygous Python fibroblasts exhibit abnormal mitochondria and peroxisomes. Homozygosity for the mutation results in the death of embryos midway though gestation. Heterozygous Python hearts show reduced levels of mitochondria enzyme complexes and suffer from cardiac ATP depletion. The resulting energy deficiency may contribute to cardiomyopathy. This is the first demonstration that a defect in a gene involved in mitochondrial remodelling can result in cardiomyopathy, showing that the function of this gene is needed for the maintenance of normal cellular function in a relatively tissue-specific manner. This disease model attests to the importance of mitochondrial remodelling in the heart; similar defects might underlie human heart muscle disease.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Base Sequence
- Cardiomyopathy, Dilated/congenital
- Cardiomyopathy, Dilated/genetics
- Cardiomyopathy, Dilated/metabolism
- Cardiomyopathy, Dilated/pathology
- Dynamins
- Embryo, Mammalian/metabolism
- Embryo, Mammalian/pathology
- GTP Phosphohydrolases/chemistry
- GTP Phosphohydrolases/genetics
- GTP Phosphohydrolases/metabolism
- Genes, Mitochondrial
- Genetic Predisposition to Disease
- Male
- Mice
- Mice, Inbred BALB C
- Microscopy, Electron, Transmission
- Microtubule-Associated Proteins/chemistry
- Microtubule-Associated Proteins/genetics
- Microtubule-Associated Proteins/metabolism
- Models, Molecular
- Molecular Sequence Data
- Mutation
- Protein Structure, Quaternary
- Sequence Alignment
Collapse
Affiliation(s)
- Houman Ashrafian
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Louise Docherty
- Mammalian Genetics of Disease Unit, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Vincenzo Leo
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, United Kingdom
| | - Christopher Towlson
- Mammalian Genetics of Disease Unit, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Monica Neilan
- Mammalian Genetics of Disease Unit, School of Medicine, University of Sheffield, Sheffield, United Kingdom
| | - Violetta Steeples
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Craig A. Lygate
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Tertius Hough
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, United Kingdom
| | - Stuart Townsend
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, United Kingdom
| | - Debbie Williams
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Sara Wells
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Dominic Norris
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Sarah Glyn-Jones
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - John Land
- Neurometabolic Unit, National Hospital, London, United Kingdom
| | - Ivana Barbaric
- Department of Biomedical Science, University of Sheffield, Sheffield, United Kingdom
| | - Zuzanne Lalanne
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Paul Denny
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Dorota Szumska
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Shoumo Bhattacharya
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - Julian L. Griffin
- Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom
| | - Iain Hargreaves
- Neurometabolic Unit, National Hospital, London, United Kingdom
| | - Narcis Fernandez-Fuentes
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, United Kingdom
| | - Michael Cheeseman
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| | - Hugh Watkins
- Department of Cardiovascular Medicine and Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| | - T. Neil Dear
- Mammalian Genetics of Disease Unit, School of Medicine, University of Sheffield, Sheffield, United Kingdom
- Leeds Institute of Molecular Medicine, Wellcome Trust Brenner Building, St. James's University Hospital, Leeds, United Kingdom
- Mary Lyon Centre and Mammalian Genetics Unit, Medical Research Council, Harwell, United Kingdom
| |
Collapse
|
11
|
Kemter E, Rathkolb B, Bankir L, Schrewe A, Hans W, Landbrecht C, Klaften M, Ivandic B, Fuchs H, Gailus-Durner V, Hrabé de Angelis M, Wolf E, Wanke R, Aigner B. Mutation of the Na+-K+-2Cl−cotransporter NKCC2 in mice is associated with severe polyuria and a urea-selective concentrating defect without hyperreninemia. Am J Physiol Renal Physiol 2010; 298:F1405-15. [DOI: 10.1152/ajprenal.00522.2009] [Citation(s) in RCA: 34] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
The bumetanide-sensitive Na+-K+-2Cl−cotransporter NKCC2, located in the thick ascending limb of Henle's loop, plays a critical role in the kidney's ability to concentrate urine. In humans, loss-of-function mutations of the solute carrier family 12 member 1 gene ( SLC12A1), coding for NKCC2, cause type I Bartter syndrome, which is characterized by prenatal onset of a severe polyuria, salt-wasting tubulopathy, and hyperreninemia. In this study, we describe a novel chemically induced, recessive mutant mouse line termed Slc12a1I299Fexhibiting late-onset manifestation of type I Bartter syndrome. Homozygous mutant mice are viable and exhibit severe polyuria, metabolic alkalosis, marked increase in plasma urea but close to normal creatininemia, hypermagnesemia, hyperprostaglandinuria, hypotension,, and osteopenia. Fractional excretion of urea is markedly decreased. In addition, calcium and magnesium excretions are more than doubled compared with wild-type mice, while uric acid excretion is twofold lower. In contrast to hyperreninemia present in human disease, plasma renin concentration in homozygotes is not increased. The polyuria observed in homozygotes may be due to the combination of two additive factors, a decrease in activity of mutant NKCC2 and an increase in medullary blood flow, due to prostaglandin-induced vasodilation, that impairs countercurrent exchange of urea in the medulla. In conclusion, this novel viable mouse line with a missense Slc12a1 mutation exhibits most of the features of type I Bartter syndrome and may represent a new model for the study of this human disease.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Lise Bankir
- INSERM Unité 872, Centre de Recherche des Cordeliers, Paris, France
| | - Anja Schrewe
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg; and
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Wolfgang Hans
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Christina Landbrecht
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Matthias Klaften
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Boris Ivandic
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg; and
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich, Germany
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| | - Ruediger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, LMU Munich, Munich
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology, and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, and
| |
Collapse
|
12
|
ENU mutagenesis reveals a novel phenotype of reduced limb strength in mice lacking fibrillin 2. PLoS One 2010; 5:e9137. [PMID: 20161761 PMCID: PMC2817753 DOI: 10.1371/journal.pone.0009137] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2009] [Accepted: 01/25/2010] [Indexed: 01/14/2023] Open
Abstract
Background Fibrillins 1 (FBN1) and 2 (FBN2) are components of microfibrils, microfilaments that are present in many connective tissues, either alone or in association with elastin. Marfan's syndrome and congenital contractural arachnodactyly (CCA) result from dominant mutations in the genes FBN1 and FBN2 respectively. Patients with both conditions often present with specific muscle atrophy or weakness, yet this has not been reported in the mouse models. In the case of Fbn1, this is due to perinatal lethality of the homozygous null mice making measurements of strength difficult. In the case of Fbn2, four different mutant alleles have been described in the mouse and in all cases syndactyly was reported as the defining phenotypic feature of homozygotes. Methodology/Principal Findings As part of a large-scale N-ethyl-N-nitrosourea (ENU) mutagenesis screen, we identified a mouse mutant, Mariusz, which exhibited muscle weakness along with hindlimb syndactyly. We identified an amber nonsense mutation in Fbn2 in this mouse mutant. Examination of a previously characterised Fbn2-null mutant, Fbn2fp, identified a similar muscle weakness phenotype. The two Fbn2 mutant alleles complement each other confirming that the weakness is the result of a lack of Fbn2 activity. Skeletal muscle from mutants proved to be abnormal with higher than average numbers of fibres with centrally placed nuclei, an indicator that there are some regenerating muscle fibres. Physiological tests indicated that the mutant muscle produces significantly less maximal force, possibly as a result of the muscles being relatively smaller in Mariusz mice. Conclusions These findings indicate that Fbn2 is involved in integrity of structures required for strength in limb movement. As human patients with mutations in the fibrillin genes FBN1 and FBN2 often present with muscle weakness and atrophy as a symptom, Fbn2-null mice will be a useful model for examining this aspect of the disease process further.
Collapse
|
13
|
Kemter E, Rathkolb B, Rozman J, Hans W, Schrewe A, Landbrecht C, Klaften M, Ivandic B, Fuchs H, Gailus-Durner V, Klingenspor M, de Angelis MH, Wolf E, Wanke R, Aigner B. Novel missense mutation of uromodulin in mice causes renal dysfunction with alterations in urea handling, energy, and bone metabolism. Am J Physiol Renal Physiol 2009; 297:F1391-8. [DOI: 10.1152/ajprenal.00261.2009] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
Uromodulin-associated kidney disease is a heritable renal disease in humans caused by mutations in the uromodulin ( UMOD) gene. The pathogenesis of the disease is mostly unknown. In this study, we describe a novel chemically induced mutant mouse line termed UmodA227T exhibiting impaired renal function. The A227T amino acid exchange may impair uromodulin trafficking, leading to dysfunction of thick ascending limb cells of Henle's loop of the kidney. As a consequence, homozygous mutant mice display azotemia, impaired urine concentration ability, reduced fractional excretion of uric acid, and a selective defect in concentrating urea. Osteopenia in mutant mice is presumably a result of chronic hypercalciuria. In addition, body composition, lipid, and energy metabolism are indirectly affected in heterozygous and homozygous mutant UmodA227T mice, manifesting in reduced body weight, fat mass, and metabolic rate as well as reduced blood cholesterol, triglycerides, and nonesterified fatty acids. In conclusion, UmodA227T might act as a gain-of-toxic-function mutation. Therefore, the UmodA227T mouse line provides novel insights into consequences of disturbed uromodulin excretion regarding renal dysfunction as well as bone, energy, and lipid metabolism.
Collapse
Affiliation(s)
- Elisabeth Kemter
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis, Gene Center, and
| | - Birgit Rathkolb
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis, Gene Center, and
| | - Jan Rozman
- Molecular Nutricial Medicine, Else-Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan
| | - Wolfgang Hans
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich; and
| | - Anja Schrewe
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Christina Landbrecht
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis, Gene Center, and
| | - Matthias Klaften
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich; and
| | - Boris Ivandic
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Heidelberg, Germany
| | - Helmut Fuchs
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich; and
| | - Valérie Gailus-Durner
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich; and
| | - Martin Klingenspor
- Molecular Nutricial Medicine, Else-Kröner-Fresenius Center, Technische Universität München, Freising-Weihenstephan
| | - Martin Hrabé de Angelis
- Institute of Experimental Genetics, Helmholtz Zentrum München, Neuherberg, and Chair for Experimental Genetics, Technische Universität München, Munich; and
| | - Eckhard Wolf
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis, Gene Center, and
| | - Ruediger Wanke
- Institute of Veterinary Pathology, Center for Clinical Veterinary Medicine, Ludwig-Maximilians-Universität Munich, Munich
| | - Bernhard Aigner
- Chair for Molecular Animal Breeding and Biotechnology and Laboratory for Functional Genome Analysis, Gene Center, and
| |
Collapse
|
14
|
Insulin secretion from beta-cells is affected by deletion of nicotinamide nucleotide transhydrogenase. Methods Enzymol 2009; 457:451-80. [PMID: 19426883 DOI: 10.1016/s0076-6879(09)05025-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/29/2023]
Abstract
Nicotinamide nucleotide transhydrogenase (NNT) is an inner mitochondrial membrane transmembrane protein involved in regenerating NADPH, coupled with proton translocation across the inner membrane. We have shown that a defect in Nnt function in the mouse, and specifically within the beta-cell, leads to a reduction in insulin secretion. This chapter describes methods for examining Nnt function in the mouse. This includes generating in vivo models with point mutations and expression of Nnt by transgenesis, and making in vitro models, by silencing of gene expression. In addition, techniques are described to measure insulin secretion, calcium and hydrogen peroxide concentrations, membrane potential, and NNT activity. These approaches and techniques can also be applied to other genes of interest.
Collapse
|
15
|
Aigner B, Rathkolb B, Klaften M, Sedlmeier R, Klempt M, Wagner S, Michel D, Mayer U, Klopstock T, de Angelis MH, Wolf E. Generation of N-ethyl-N-nitrosourea-induced mouse mutants with deviations in plasma enzyme activities as novel organ-specific disease models. Exp Physiol 2009; 94:412-21. [PMID: 19151073 DOI: 10.1113/expphysiol.2008.045864] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Measurement of plasma enzyme activities is part of routine medical examination protocols and provides valuable parameters for the diagnosis of various organ diseases. In the phenotype-driven Munich N-ethyl-N-nitrosourea (ENU) mouse mutagenesis project, clinical chemical blood analysis was carried out on more than 20,000 G1 and G3 offspring of chemically mutagenized inbred C3H mice to detect dominant and recessive mutations leading to deviations in the plasma enzyme activities of alanine aminotransferase, aspartate aminotransferase, alkaline phosphatase, alpha-amylase and creatine kinase. We identified a large number of animals that consistently exhibited altered plasma enzyme activities. Transmission of the phenotypic deviations to the subsequent generations led to the successful establishment of mutant lines for each parameter. Breeding experiments in selected lines detected the linkage of the causative mutations to defined chromosomal regions. Subsequently, identification of the mutated genes was successfully carried out in chosen lines, resulting in a novel alkaline phosphatase liver/bone/kidney (Alpl) alteration in one line and the strong indication for a dystrophin (Dmd) alteration in another line. The mouse mutants with abnormal plasma enzyme activities recovered in the Munich ENU project are novel tools for the systematic dissection of the pathogenesis of organ diseases.
Collapse
Affiliation(s)
- Bernhard Aigner
- Department of Veterinary Sciences and Laboratory for Functional Genome Analysis (LAFUGA), Gene Center, Ludwig-Maximilians-University Munich, Munich, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Ashe A, Morgan DK, Whitelaw NC, Bruxner TJ, Vickaryous NK, Cox LL, Butterfield NC, Wicking C, Blewitt ME, Wilkins SJ, Anderson GJ, Cox TC, Whitelaw E. A genome-wide screen for modifiers of transgene variegation identifies genes with critical roles in development. Genome Biol 2008; 9:R182. [PMID: 19099580 PMCID: PMC2646286 DOI: 10.1186/gb-2008-9-12-r182] [Citation(s) in RCA: 82] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2008] [Revised: 10/22/2008] [Accepted: 12/19/2008] [Indexed: 12/22/2022] Open
Abstract
An extended ENU screen for modifiers of transgene variegation identified four new modifiers, MommeD7-D10. Background Some years ago we established an N-ethyl-N-nitrosourea screen for modifiers of transgene variegation in the mouse and a preliminary description of the first six mutant lines, named MommeD1-D6, has been published. We have reported the underlying genes in three cases: MommeD1 is a mutation in SMC hinge domain containing 1 (Smchd1), a novel modifier of epigenetic gene silencing; MommeD2 is a mutation in DNA methyltransferase 1 (Dnmt1); and MommeD4 is a mutation in Smarca 5 (Snf2h), a known chromatin remodeler. The identification of Dnmt1 and Smarca5 attest to the effectiveness of the screen design. Results We have now extended the screen and have identified four new modifiers, MommeD7-D10. Here we show that all ten MommeDs link to unique sites in the genome, that homozygosity for the mutations is associated with severe developmental abnormalities and that heterozygosity results in phenotypic abnormalities and reduced reproductive fitness in some cases. In addition, we have now identified the underlying genes for MommeD5 and MommeD10. MommeD5 is a mutation in Hdac1, which encodes histone deacetylase 1, and MommeD10 is a mutation in Baz1b (also known as Williams syndrome transcription factor), which encodes a transcription factor containing a PHD-type zinc finger and a bromodomain. We show that reduction in the level of Baz1b in the mouse results in craniofacial features reminiscent of Williams syndrome. Conclusions These results demonstrate the importance of dosage-dependent epigenetic reprogramming in the development of the embryo and the power of the screen to provide mouse models to study this process.
Collapse
Affiliation(s)
- Alyson Ashe
- Epigenetics Laboratory, Queensland Institute of Medical Research, 300 Herston Road, Herston, Queensland 4006, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
17
|
Wang H, Feng J, Qi C, Morse HC. An ENU-induced mutation in the lymphotoxin alpha gene impairs organogenesis of lymphoid tissues in C57BL/6 mice. Biochem Biophys Res Commun 2008; 370:461-7. [PMID: 18384745 DOI: 10.1016/j.bbrc.2008.03.118] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2008] [Accepted: 03/22/2008] [Indexed: 10/22/2022]
Abstract
The TNF family is critical for development of lymphoid organs and plays significant roles in regulation of innate and adoptive immune responses. Here, we describe a novel N-ethyl-N-nitrosourea (ENU)-induced mutant strain, HLB382, with a point mutation in the Lta gene, which encodes lymphotoxin (LT) alpha, a member of the TNF family. Mutant mice had no lymph nodes and no Peyer's patches. Microscopically, the spleens had disordered follicles and no germinal centers or discernible marginal zones (MZ). While the development of T cells and follicular B cells was normal, the numbers of NK and MZ B cells were significantly reduced. Interestingly, the numbers of peritoneal B1b cells were significantly increased. Genomic DNA sequences revealed a single base pair insertion in the coding region of Lta resulting in a frame shift and a premature stop codon. This new strain provides opportunities for understanding the full range of Lta gene function on a pure C57BL/6 background.
Collapse
Affiliation(s)
- Hongsheng Wang
- Laboratory of Immunopathology, National Institute of Allergy and Infectious Diseases, National Institutes of Health, 5640 Fishers LN, TB1, Rm 1518, Rockville, MD 20852, USA.
| | | | | | | |
Collapse
|
18
|
Aigner B, Rathkolb B, Herbach N, Hrabé de Angelis M, Wanke R, Wolf E. Diabetes models by screen for hyperglycemia in phenotype-driven ENU mouse mutagenesis projects. Am J Physiol Endocrinol Metab 2008; 294:E232-40. [PMID: 18056790 DOI: 10.1152/ajpendo.00592.2007] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/17/2023]
Abstract
More than 150 million people suffer from diabetes mellitus worldwide, and this number is expected to rise substantially within the next decades. Despite its high prevalence, the pathogenesis of diabetes mellitus is not completely understood. Therefore, appropriate experimental models are essential tools to gain more insight into the genetics and pathogenesis of the disease. Here, we describe the current efforts to establish novel diabetes models derived from unbiased, phenotype-driven, large-scale N-ethyl-N-nitrosourea (ENU) mouse mutagenesis projects started a decade ago using hyperglycemia as a high-throughput screen parameter. Mouse lines were established according to their hyperglycemia phenotype over several generations, thereby revealing a mutation as cause for the aberrant phenotype. Chromosomal assignment of the causative mutation and subsequent candidate gene analysis led to the detection of the mutations that resulted in novel alleles of genes already known to be involved in glucose homeostasis, like glucokinase, insulin 2, and insulin receptor. Additional ENU-induced hyperglycemia lines are under genetic analysis. Improvements in screen for diabetic animals are implemented to detect more subtle phenotypes. Moreover, diet challenge assays are being employed to uncover interactions between genetic and environmental factors in the pathogenesis of diabetes mellitus. The new mouse mutants recovered in phenotype-driven ENU mouse mutagenesis projects complement the available models generated by targeted mutagenesis of candidate genes, all together providing the large resource of models required for a systematic dissection of the pathogenesis of diabetes mellitus.
Collapse
Affiliation(s)
- Bernhard Aigner
- Institute of Molecular Animal Breeding and Biotechnology, Hackerstrasse 27, Oberschleissheim, Germany.
| | | | | | | | | | | |
Collapse
|
19
|
Barbaric I, Perry MJ, Dear TN, Rodrigues Da Costa A, Salopek D, Marusic A, Hough T, Wells S, Hunter AJ, Cheeseman M, Brown SDM. An ENU-induced mutation in the Ankrd11 gene results in an osteopenia-like phenotype in the mouse mutant Yoda. Physiol Genomics 2007; 32:311-21. [PMID: 17986521 DOI: 10.1152/physiolgenomics.00116.2007] [Citation(s) in RCA: 46] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The mechanisms that regulate bone mass are important in a variety of complex diseases such as osteopenia and osteoporosis. Regulation of bone mass is a polygenic trait and is also influenced by various environmental and lifestyle factors, making analysis of the genetic basis difficult. As an effort toward identifying novel genes involved in regulation of bone mass, N-ethyl-N-nitrosourea (ENU) mutagenesis in mice has been utilized. Here we describe a mouse mutant termed Yoda that was identified in an ENU mutagenesis screen for dominantly acting mutations. Mice heterozygous for the Yoda mutation exhibit craniofacial abnormalities: shortened snouts, wider skulls, and deformed nasal bones, underlined by altered morphology of frontonasal sutures and failure of interfrontal suture to close. A major feature of the mutant is reduced bone mineral density. Homozygosity for the mutation results in embryonic lethality. Positional cloning of the locus identified a missense mutation in a highly conserved region of the ankyrin repeat domain 11 gene (Ankrd11). This gene has not been previously associated with bone metabolism and, thus, identifies a novel genetic regulator of bone homeostasis.
Collapse
|
20
|
Affiliation(s)
- Bruce Beutler
- Department of Genetics, The Scripps Research Institute, La Jolla, California 92037, USA.
| | | | | |
Collapse
|