1
|
Sundberg JP, Rice RH. Phenotyping mice with skin, hair, or nail abnormalities: A systematic approach and methodologies from simple to complex. Vet Pathol 2023; 60:829-842. [PMID: 37191004 DOI: 10.1177/03009858231170329] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/17/2023]
Abstract
The skin and adnexa can be difficult to interpret because they change dramatically with the hair cycle throughout life. However, a variety of methods are commonly available to collect skin and perform assays that can be useful for figuring out morphological and molecular changes. This overview provides information on basic approaches to evaluate skin and its molecular phenotype, with references for more detail, and interpretation of results on the skin and adnexa in the mouse. These approaches range from mouse genetic nomenclature, setting up a cutaneous phenotyping study, skin grafts, hair follicle reconstitution, wax stripping, electron microscopy, and Köbner reaction to very specific approaches such as lipid and protein analyses on a large scale.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME
- Vanderbilt University Medical Center, Nashville, TN
| | | |
Collapse
|
2
|
Ruberte J, Schofield PN, Sundberg JP, Rodriguez-Baeza A, Carretero A, McKerlie C. Bridging mouse and human anatomies; a knowledge-based approach to comparative anatomy for disease model phenotyping. Mamm Genome 2023:10.1007/s00335-023-10005-4. [PMID: 37421464 PMCID: PMC10382392 DOI: 10.1007/s00335-023-10005-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Accepted: 06/13/2023] [Indexed: 07/10/2023]
Abstract
The laboratory mouse is the foremost mammalian model used for studying human diseases and is closely anatomically related to humans. Whilst knowledge about human anatomy has been collected throughout the history of mankind, the first comprehensive study of the mouse anatomy was published less than 60 years ago. This has been followed by the more recent publication of several books and resources on mouse anatomy. Nevertheless, to date, our understanding and knowledge of mouse anatomy is far from being at the same level as that of humans. In addition, the alignment between current mouse and human anatomy nomenclatures is far from being as developed as those existing between other species, such as domestic animals and humans. To close this gap, more in depth mouse anatomical research is needed and it will be necessary to extent and refine the current vocabulary of mouse anatomical terms.
Collapse
Affiliation(s)
- Jesús Ruberte
- Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain.
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain.
| | - Paul N Schofield
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK
| | - John P Sundberg
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Dermatology, Vanderbilt University Medical Center, Nashville, TN, USA
| | | | - Ana Carretero
- Center for Animal Biotechnology and Gene Therapy, Universitat Autònoma de Barcelona, Barcelona, Spain
- Department of Animal Health and Anatomy, Universitat Autònoma de Barcelona, Barcelona, Spain
| | - Colin McKerlie
- The Hospital for Sick Children, Toronto, Canada
- Department of Lab Medicine and Pathobiology, Faculty of Medicine, University of Toronto, Toronto, Canada
| |
Collapse
|
3
|
Sundberg JP, Pratt CH, Goodwin LP, Silva KA, Kennedy VE, Potter CS, Dunham A, Sundberg BA, HogenEsch H. Keratinocyte-specific deletion of SHARPIN induces atopic dermatitis-like inflammation in mice. PLoS One 2020; 15:e0235295. [PMID: 32687504 PMCID: PMC7371178 DOI: 10.1371/journal.pone.0235295] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2020] [Accepted: 06/12/2020] [Indexed: 12/30/2022] Open
Abstract
Spontaneous mutations in the SHANK-associated RH domain interacting protein (Sharpin) resulted in a severe autoinflammatory type of chronic proliferative dermatitis, inflammation in other organs, and lymphoid organ defects. To determine whether cell-type restricted loss of Sharpin causes similar lesions, a conditional null mutant was created. Ubiquitously expressing cre-recombinase recapitulated the phenotype seen in spontaneous mutant mice. Limiting expression to keratinocytes (using a Krt14-cre) induced a chronic eosinophilic dermatitis, but no inflammation in other organs or lymphoid organ defects. The dermatitis was associated with a markedly increased concentration of serum IgE and IL18. Crosses with S100a4-cre resulted in milder skin lesions and moderate to severe arthritis. This conditional null mutant will enable more detailed studies on the role of SHARPIN in regulating NFkB and inflammation, while the Krt14-Sharpin-/- provides a new model to study atopic dermatitis.
Collapse
Affiliation(s)
- John P. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - C. Herbert Pratt
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | | | | | | | | | - Anisa Dunham
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| | - Beth A. Sundberg
- The Jackson Laboratory, Bar Harbor, ME, United States of America
| | - Harm HogenEsch
- The Jackson Laboratory, Bar Harbor, ME, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, IN, United States of America
| |
Collapse
|
4
|
Elmore SA, Cardiff R, Cesta MF, Gkoutos GV, Hoehndorf R, Keenan CM, McKerlie C, Schofield PN, Sundberg JP, Ward JM. A Review of Current Standards and the Evolution of Histopathology Nomenclature for Laboratory Animals. ILAR J 2019; 59:29-39. [PMID: 30476141 DOI: 10.1093/ilar/ily005] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 05/04/2018] [Indexed: 12/14/2022] Open
Abstract
The need for international collaboration in rodent pathology has evolved since the 1970s and was initially driven by the new field of toxicologic pathology. First initiated by the World Health Organization's International Agency for Research on Cancer for rodents, it has evolved to include pathology of the major species (rats, mice, guinea pigs, nonhuman primates, pigs, dogs, fish, rabbits) used in medical research, safety assessment, and mouse pathology. The collaborative effort today is driven by the needs of the regulatory agencies in multiple countries, and by needs of research involving genetically engineered animals, for "basic" research and for more translational preclinical models of human disease. These efforts led to the establishment of an international rodent pathology nomenclature program. Since that time, multiple collaborations for standardization of laboratory animal pathology nomenclature and diagnostic criteria have been developed, and just a few are described herein. Recently, approaches to a nomenclature that is amenable to sophisticated computation have been made available and implemented for large-scale programs in functional genomics and aging. Most terminologies continue to evolve as the science of human and veterinary pathology continues to develop, but standardization and successful implementation remain critical for scientific communication now as ever in the history of veterinary nosology.
Collapse
Affiliation(s)
- Susan A Elmore
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Cardiff
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Mark F Cesta
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Georgios V Gkoutos
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Robert Hoehndorf
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Charlotte M Keenan
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Colin McKerlie
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Paul N Schofield
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - John P Sundberg
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| | - Jerrold M Ward
- Susan A. Elmore, MS, DVM, DCVP, DABT, FIATP, is NTP Pathologist and Staff Scientist at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Robert D. Cardiff, MD, PhD, is Distinguished Professor of Pathology, Emeritus at the UCD Center for Comparative Medicine, University of California, and the Department of Pathology and Laboratory Medicine, School of Medicine, Davis, in Davis, California. Mark F. Cesta, DVM, PhD, DACVP, is NTP Pathologist and Staff Scientist, leading the effort for establishment of the online NTP Nonneoplastic Lesion Atlas at the National Toxicology Program, National Institute of Environmental Health Sciences in the Research Triangle Park, North Carolina. Georgios V. Gkoutos, PhD, DIC, is Professor of Clinical Bioinformatics at College of Medical and Dental Sciences, Institute of Cancer and Genomic Sciences Centre for Computational Biology, University of Birmingham in Birmingham, United Kingdom. Robert Hoehndorf, PhD, is Assistant Professor in Computer Science at the Computer, Electrical and Mathematical Sciences and Engineering Division, Computational Bioscience Research Center, King Abdullah University of Science and Technology in Thuwal, Kingdom of Saudi Arabia. Charlotte M. Keenan, VMD, DACVP, is a principle consultant at C.M. ToxPath Consulting in Doylestown, Pennsylvania, USA and leads the international STP effort for the publication of the harmonization of nomenclature and diagnostic criteria (INHAND) in toxicologic pathology. Colin McKerlie, DVM, DVSc, MRCVS, is a senior associate scientist in the Translational Medicine Research Program at The Hospital for Sick Children and a Professor in the Department of Pathobiology & Laboratory Medicine in the Faculty of Medicine at the University of Toronto, Toronto, Ontario, Canada. Paul N. Schofield, MA DPhil, is the University Reader in Biomedical Informatics at the Department of Physiology, Development & Neuroscience, University of Cambridge in Cambridge, United Kingdom and is also an adjunct professor at The Jackson Laboratory in Bar Harbor, Maine. John P. Sundberg, DVM, PhD, DACVP, is a professor at The Jackson Laboratory in Bar Harbor, Maine. Jerrold M. Ward, DVM, PhD, DACVP, FIATP, is a special volunteer at the National Cancer Institute, National Institutes of Health in Bethesda, MD and is also Adjunct Faculty at The Jackson Laboratory in Bar Harbor, Maine
| |
Collapse
|
5
|
Linn SC, Mustonen AM, Silva KA, Kennedy VE, Sundberg BA, Bechtold LS, Alghamdi S, Hoehndorf R, Schofield PN, Sundberg JP. Nail abnormalities identified in an ageing study of 30 inbred mouse strains. Exp Dermatol 2019; 28:383-390. [PMID: 30074290 PMCID: PMC6360140 DOI: 10.1111/exd.13759] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2018] [Accepted: 07/27/2018] [Indexed: 11/27/2022]
Abstract
In a large-scale ageing study, 30 inbred mouse strains were systematically screened for histologic evidence of lesions in all organ systems. Ten strains were diagnosed with similar nail abnormalities. The highest frequency was noted in NON/ShiLtJ mice. Lesions identified fell into two main categories: acute to chronic penetration of the third phalangeal bone through the hyponychium with associated inflammation and bone remodelling or metaplasia of the nail matrix and nail bed associated with severe orthokeratotic hyperkeratosis replacing the nail plate. Penetration of the distal phalanx through the hyponychium appeared to be the initiating feature resulting in nail abnormalities. The accompanying acute to subacute inflammatory response was associated with osteolysis of the distal phalanx. Evaluation of young NON/ShiLtJ mice revealed that these lesions were not often found, or affected only one digit. The only other nail unit abnormality identified was sporadic subungual epidermoid inclusion cysts which closely resembled similar lesions in human patients. These abnormalities, being age-related developments, may have contributed to weight loss due to impacts upon feeding and should be a consideration for future research due to the potential to interact with other experimental factors in ageing studies using the affected strains of mice.
Collapse
Affiliation(s)
- Sarah C. Linn
- The Ohio State University College of Veterinary Medicine, Columbus, OH, USA
| | | | | | | | | | | | - Sarah Alghamdi
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Robert Hoehndorf
- Computational Bioscience Research Center, King Abdullah University of Science and Technology, Thuwal, Kingdom of Saudi Arabia
| | - Paul N. Schofield
- The Jackson Laboratory, Bar Harbor, ME, USA
- Department of Physiology Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3EG, UK
| | | |
Collapse
|
6
|
Sundberg JP, Boyd K, Hogenesch H, Nikitin AY, Treuting PM, Ward JM. Training mouse pathologists: 16 th annual workshop on the pathology of mouse models of human disease. Lab Anim (NY) 2018; 47:38-40. [PMID: 29384517 DOI: 10.1038/laban.1399] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Affiliation(s)
| | - Kelli Boyd
- Departments of Comparative Medicine and Pathology, Vanderbilt University, Nashville, TN
| | - Harm Hogenesch
- Purdue University College of Veterinary Medicine, West Lafayette, IN
| | | | - Piper M Treuting
- Departments of Comparative Medicine and Pathology, University of Washington, Seattle, WA
| | | |
Collapse
|
7
|
Sundberg JP, Boyd K, Hogenesch H, Nikitin AY, Treuting PM, Ward JM. Training mouse pathologists: 15 years of workshops on the pathology of mouse models of human disease. Lab Anim (NY) 2017; 46:204-206. [PMID: 28422111 DOI: 10.1038/laban.1256] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
| | | | - Harm Hogenesch
- Purdue University College of Veterinary Medicine, West Lafayette, IN
| | | | - Piper M Treuting
- Departments of Comparative Medicine and Pathology, University of Washington, Seattle, WA
| | | |
Collapse
|
8
|
Mouse genome-wide association study identifies polymorphisms on chromosomes 4, 11, and 15 for age-related cardiac fibrosis. Mamm Genome 2016; 27:179-90. [PMID: 27126641 DOI: 10.1007/s00335-016-9634-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2015] [Accepted: 03/24/2016] [Indexed: 10/21/2022]
Abstract
Dystrophic cardiac calcinosis (DCC), also called epicardial and myocardial fibrosis and mineralization, has been detected in mice of a number of laboratory inbred strains, most commonly C3H/HeJ and DBA/2J. In previous mouse breeding studies between these DCC susceptible and the DCC-resistant strain C57BL/6J, 4 genetic loci harboring genes involved in DCC inheritance were identified and subsequently termed Dyscalc loci 1 through 4. Here, we report susceptibility to cardiac fibrosis, a sub-phenotype of DCC, at 12 and 20 months of age and close to natural death in a survey of 28 inbred mouse strains. Eight strains showed cardiac fibrosis with highest frequency and severity in the moribund mice. Using genotype and phenotype information of the 28 investigated strains, we performed genome-wide association studies (GWAS) and identified the most significant associations on chromosome (Chr) 15 at 72 million base pairs (Mb) (P < 10(-13)) and Chr 4 at 122 Mb (P < 10(-11)) and 134 Mb (P < 10(-7)). At the Chr 15 locus, Col22a1 and Kcnk9 were identified. Both have been reported to be morphologically and functionally important in the heart muscle. The strongest Chr 4 associations were located approximately 6 Mb away from the Dyscalc 2 quantitative trait locus peak within the boundaries of the Extl1 gene and in close proximity to the Trim63 and Cap1 genes. In addition, a single-nucleotide polymorphism association was found on chromosome 11. This study provides evidence for more than the previously reported 4 genetic loci determining cardiac fibrosis and DCC. The study also highlights the power of GWAS in the mouse for dissecting complex genetic traits.
Collapse
|
9
|
Treuting PM, Snyder JM, Ikeno Y, Schofield PN, Ward JM, Sundberg JP. The Vital Role of Pathology in Improving Reproducibility and Translational Relevance of Aging Studies in Rodents. Vet Pathol 2016; 53:244-9. [PMID: 26792843 PMCID: PMC4835687 DOI: 10.1177/0300985815620629] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
Abstract
Pathology is a discipline of medicine that adds great benefit to aging studies of rodents by integrating in vivo, biochemical, and molecular data. It is not possible to diagnose systemic illness, comorbidities, and proximate causes of death in aging studies without the morphologic context provided by histopathology. To date, many rodent aging studies do not utilize end points supported by systematic necropsy and histopathology, which leaves studies incomplete, contradictory, and difficult to interpret. As in traditional toxicity studies, if the effect of a drug, dietary treatment, or altered gene expression on aging is to be studied, systematic pathology analysis must be included to determine the causes of age-related illness, moribundity, and death. In this Commentary, the authors discuss the factors that should be considered in the design of aging studies in mice, with the inclusion of robust pathology practices modified after those developed by toxicologic and discovery research pathologists. Investigators in the field of aging must consider the use of histopathology in their rodent aging studies in this era of integrative and preclinical geriatric science (geroscience).
Collapse
Affiliation(s)
- P M Treuting
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - J M Snyder
- Department of Comparative Medicine, School of Medicine, University of Washington, Seattle, WA, USA
| | - Y Ikeno
- Barshop Institute and Department of Pathology, University of Texas Health Science Center at San Antonio; Research Service and Geriatric Research and Education Clinical Center, Audie L. Murphy VA Hospital, South Texas Veterans Health Care System, San Antonio, TX, USA
| | - P N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, UK The Jackson Laboratory, Bar Harbor, ME, USA
| | - J M Ward
- Global VetPathology, Montgomery Village, MD, USA
| | | |
Collapse
|
10
|
Sundberg JP, Berndt A, Sundberg BA, Silva KA, Kennedy V, Smith RS, Cooper TK, Schofield PN. Approaches to Investigating Complex Genetic Traits in a Large-Scale Inbred Mouse Aging Study. Vet Pathol 2016; 53:456-67. [PMID: 26936752 PMCID: PMC5297262 DOI: 10.1177/0300985815612556] [Citation(s) in RCA: 31] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Inbred mice are a unique model system for studying aging because of the genetic homogeneity within inbred strains, the short life span of mice relative to humans, and the rich array of analytic tools that are available. A large-scale aging study was conducted on 28 inbred strains representing great genetic diversity to determine, via histopathology, the type and diversity of spontaneous diseases that aging mice develop. A total of 20 885 different diagnoses were made, with an average of 12 diagnoses per mouse in the study. Eighteen inbred strains have had their genomes sequenced, and many others have been partially sequenced to provide large repositories of data on genetic variation among the strains. This vast amount of genomic information can be utilized in genome-wide association studies to find candidate genes that are involved in the pathogenesis of spontaneous diseases. As an illustration, this article presents a genome-wide association study of the genetic associations of age-related intestinal amyloidosis, which implicated 3 candidate genes: translocating chain-associated membrane protein 1 (Tram1); splicing factor 3b, subunit 5 (Sf3b5); and syntaxin 11 (Stx11). Representative photomicrographs are available on the Mouse Tumor Biology Database and Pathbase to serve as a reference when evaluating inbred mice used in other genetic or experimental studies to rule out strain background lesions. Many of the age-related mouse diseases are similar, if not identical, to human diseases; therefore, the genetic discoveries have direct translational benefit.
Collapse
Affiliation(s)
| | - A Berndt
- University of Pittsburgh Medical Center, Pittsburgh, PA, USA
| | | | - K A Silva
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - V Kennedy
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - R S Smith
- The Jackson Laboratory, Bar Harbor, ME, USA
| | - T K Cooper
- Department of Comparative Medicine, Department of Pathology, Penn State Milton S. Hershey Medical Center, College of Medicine, Hershey, PA, USA
| | - P N Schofield
- The Jackson Laboratory, Bar Harbor, ME, USA Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| |
Collapse
|
11
|
Sundberg JP, Silva KA, King LE, Pratt CH. Skin Diseases in Laboratory Mice: Approaches to Drug Target Identification and Efficacy Screening. Methods Mol Biol 2016; 1438:199-224. [PMID: 27150092 PMCID: PMC5301944 DOI: 10.1007/978-1-4939-3661-8_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2023]
Abstract
A large variety of mouse models for human skin, hair, and nail diseases are readily available from investigators and vendors worldwide. Mouse skin is a simple organ to observe lesions and their response to therapy, but identifying and monitoring the progress of treatments of mouse skin diseases can still be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of new compounds or test potential new uses for compounds approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented.
Collapse
Affiliation(s)
- John P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA.
| | - Kathleen A Silva
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| | - Lloyd E King
- Division of Dermatology, Department of Medicine, Vanderbilt Medical Center, Nashville, TN, USA
| | - C Herbert Pratt
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME, 04609-1500, USA
| |
Collapse
|
12
|
Berndt A, Ackert-Bicknell C, Silva KA, Kennedy VE, Sundberg BA, Cates JM, Schofield PN, Sundberg JP. Genetic determinants of fibro-osseous lesions in aged inbred mice. Exp Mol Pathol 2015; 100:92-100. [PMID: 26589134 DOI: 10.1016/j.yexmp.2015.11.018] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Accepted: 11/12/2015] [Indexed: 12/12/2022]
Abstract
Fibro-osseous lesions in mice are progressive aging changes in which the bone marrow is replaced to various degrees by fibrovascular stroma and bony trabeculae in a wide variety of bones. The frequency and severity varied greatly among 28 different inbred mouse stains, predominantly affecting females, ranging from 0% for 10 strains to 100% for KK/HlJ and NZW/LacJ female mice. Few lesions were observed in male mice and for 23 of the strains, no lesions were observed in males for any of the cohorts. There were no significant correlations between strain-specific severities of fibro-osseous lesions and ovarian (r=0.11; P=0.57) or endometrial (r=0.03; P=0.89) cyst formation frequency or abnormalities in parathyroid glands. Frequency of fibro-osseous lesions was most strongly associated (P<10(-6)) with genome variations on chromosome (Chr) 8 at 90.6 and 90.8Mb (rs33108071, rs33500669; P=5.0·10(-10), 1.3·10(-6)), Chr 15 at 23.6 and 23.8Mb (rs32087871, rs45770368; P=7.3·10(-7), 2.7·10(-6)), and Chr 19 at 33.2, 33.4, and 33.6Mb (rs311004232, rs30524929, rs30448815; P=2.8·10(-6), 2.8·10(-6), 2.8·10(-6)) in genome-wide association studies (GWAS). The relatively large number of candidate genes identified in the GWAS analyses suggests that this may be an extremely complex polygenic disease. These results indicate that fibro-osseous lesions are surprisingly common in many inbred strains of laboratory mice as they age. While this presents little problem in most studies that utilize young animals, it may complicate aging studies, particularly those focused on bone.
Collapse
Affiliation(s)
- Annerose Berndt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, United States.
| | | | | | | | | | - Justin M Cates
- Department of Pathology, Microbiology and Immunology, Vanderbilt University School of Medicine, Nashville, TN, United States.
| | - Paul N Schofield
- The Jackson Laboratory, Bar Harbor, ME, United States; Department of Physiology, Development and Neuroscience, University of Cambridge, Cambridge, United Kingdom.
| | | |
Collapse
|
13
|
Brayton CF, Treuting PM, Ward JM. Pathobiology of aging mice and GEM: background strains and experimental design. Vet Pathol 2014; 49:85-105. [PMID: 22215684 DOI: 10.1177/0300985811430696] [Citation(s) in RCA: 120] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
The use of induced and spontaneous mutant mice and genetically engineered mice (and combinations thereof) to study cancers and other aging phenotypes to advance improved functional human life spans will involve studies of aging mice. Genetic background contributes to pathology phenotypes and to causes of death as well as to longevity. Increased recognition of expected phenotypes, experimental variables that influence phenotypes and research outcomes, and experimental design options and rationales can maximize the utility of genetically engineered mice (GEM) models to translational research on aging. This review aims to provide resources to enhance the design and practice of chronic and longevity studies involving GEM. C57BL6, 129, and FVB/N strains are emphasized because of their widespread use in the generation of knockout, transgenic, and conditional mutant GEM. Resources are included also for pathology of other inbred strain families, including A, AKR, BALB/c, C3H, C57L, C58, CBA, DBA, GR, NOD.scid, SAMP, and SJL/J, and non-inbred mice, including 4WC, AB6F1, Ames dwarf, B6, 129, B6C3F1, BALB/c,129, Het3, nude, SENCAR, and several Swiss stocks. Experimental strategies for long-term cross-sectional and longitudinal studies to assess causes of or contributors to death, disease burden, spectrum of pathology phenotypes, longevity, and functional healthy life spans (health spans) are compared and discussed.
Collapse
Affiliation(s)
- C F Brayton
- Johns Hopkins University, 733 North Broadway, BRB Ste 851, Baltimore, MD 21205, USA.
| | | | | |
Collapse
|
14
|
Potter CS, Wang Z, Silva KA, Kennedy VE, Stearns TM, Burzenski L, Shultz LD, HogenEsch H, Sundberg JP. Chronic proliferative dermatitis in Sharpin null mice: development of an autoinflammatory disease in the absence of B and T lymphocytes and IL4/IL13 signaling. PLoS One 2014; 9:e85666. [PMID: 24465642 PMCID: PMC3897490 DOI: 10.1371/journal.pone.0085666] [Citation(s) in RCA: 48] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2013] [Accepted: 12/01/2013] [Indexed: 12/30/2022] Open
Abstract
SHARPIN is a key regulator of NFKB and integrin signaling. Mice lacking Sharpin develop a phenotype known as chronic proliferative dermatitis (CPDM), typified by progressive epidermal hyperplasia, apoptosis of keratinocytes, cutaneous and systemic eosinophilic inflammation, and hypoplasia of secondary lymphoid organs. Rag1(-/-) mice, which lack mature B and T cells, were crossed with Sharpin(-/-) mice to examine the role of lymphocytes in CDPM. Although inflammation in the lungs, liver, and joints was reduced in these double mutant mice, dermatitis was not reduced in the absence of functional lymphocytes, suggesting that lymphocytes are not primary drivers of the inflammation in the skin. Type 2 cytokine expression is increased in CPDM. In an attempt to reduce this aspect of the phenotype, Il4ra(-/-) mice, unresponsive to both IL4 and IL13, were crossed with Sharpin(-/-) mice. Double homozygous Sharpin(-/-) , Il4ra(-/-) mice developed an exacerbated granulocytic dermatitis, acute system inflammation, as well as hepatic necrosis and mineralization. High expression of CHI3L4, normally seen in CPDM skin, was abolished in Sharpin(-/-) , Il4ra(-/-) double mutant mice indicating the crucial role of IL4 and IL13 in the expression of this protein. Cutaneous eosinophilia persisted in Sharpin(-/-) , Il4ra(-/-) mice, although expression of Il5 mRNA was reduced and the expression of Ccl11 and Ccl24 was completely abolished. TSLP and IL33 were both increased in the skin of Sharpin(-/-) mice and this was maintained in Sharpin(-/-) , Il4ra(-/-) mice suggesting a role for TSLP and IL33 in the eosinophilic dermatitis in SHARPIN-deficient mice. These studies indicate that cutaneous inflammation in SHARPIN-deficient mice is autoinflammatory in nature developing independently of B and T lymphocytes, while the systemic inflammation seen in CPDM has a strong lymphocyte-dependent component. Both the cutaneous and systemic inflammation is enhanced by loss of IL4 and IL13 signaling indicating that these cytokines normally play an anti-inflammatory role in SHARPIN-deficient mice.
Collapse
Affiliation(s)
| | - Zhe Wang
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | | | | | | | - Lisa Burzenski
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
| | | | - Harm HogenEsch
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
| | - John P. Sundberg
- The Jackson Laboratory, Bar Harbor, Maine, United States of America
- Department of Comparative Pathobiology, College of Veterinary Medicine, Purdue University, West Lafayette, Indiana, United States of America
- * E-mail:
| |
Collapse
|
15
|
Cardiff RD, Miller CH, Munn RJ, Galvez JJ. Structured reporting in anatomic pathology for coclinical trials: the caELMIR model. Cold Spring Harb Protoc 2014; 2014:32-43. [PMID: 24173313 DOI: 10.1101/pdb.top078790] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023]
Abstract
Electronic media, with their tremendous potential for storing, retrieving, and integrating data, are an essential part of modern collaborative multidisciplinary science. Structured reporting is a fundamental aspect of keeping accurate, searchable electronic records. This discussion on structured reporting in anatomic pathology for pre- and coclinical trials in animal models provides background information for scientists who are not familiar with structured reporting. Practical examples are provided using a working database system for preclinical research-caELMIR (Cancer Electronic Laboratory Management Information and Retrieval)-developed by the U.S. National Cancer Institute's (NCI's) Mouse Models of Human Cancers Consortium (MMHCC).
Collapse
Affiliation(s)
- Robert D Cardiff
- Center for Comparative Medicine and Center for Genomic Pathology, University of California, Davis, Davis, California 95616
| | | | | | | |
Collapse
|
16
|
Schofield PN, Sundberg JP, Sundberg BA, McKerlie C, Gkoutos GV. The mouse pathology ontology, MPATH; structure and applications. J Biomed Semantics 2013; 4:18. [PMID: 24033988 PMCID: PMC3851164 DOI: 10.1186/2041-1480-4-18] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2013] [Accepted: 08/19/2013] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND The capture and use of disease-related anatomic pathology data for both model organism phenotyping and human clinical practice requires a relatively simple nomenclature and coding system that can be integrated into data collection platforms (such as computerized medical record-keeping systems) to enable the pathologist to rapidly screen and accurately record observations. The MPATH ontology was originally constructed in 2,000 by a committee of pathologists for the annotation of rodent histopathology images, but is now widely used for coding and analysis of disease and phenotype data for rodents, humans and zebrafish. CONSTRUCTION AND CONTENT MPATH is divided into two main branches describing pathological processes and structures based on traditional histopathological principles. It does not aim to include definitive diagnoses, which would generally be regarded as disease concepts. It contains 888 core pathology terms in an almost exclusively is_a hierarchy nine layers deep. Currently, 86% of the terms have textual definitions and contain relationships as well as logical axioms to other ontologies such the Gene Ontology. APPLICATION AND UTILITY MPATH was originally devised for the annotation of histopathological images from mice but is now being used much more widely in the recording of diagnostic and phenotypic data from both mice and humans, and in the construction of logical definitions for phenotype and disease ontologies. We discuss the use of MPATH to generate cross-products with qualifiers derived from a subset of the Phenotype and Trait Ontology (PATO) and its application to large-scale high-throughput phenotyping studies. MPATH provides a largely species-agnostic ontology for the descriptions of anatomic pathology, which can be applied to most amniotes and is now finding extensive use in species other than mice. It enables investigators to interrogate large datasets at a variety of depths, use semantic analysis to identify the relations between diseases in different species and integrate pathology data with other data types, such as pharmacogenomics.
Collapse
Affiliation(s)
- Paul N Schofield
- Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, CB2 3EG, Cambridge, UK.
| | | | | | | | | |
Collapse
|
17
|
Berndt A, Sundberg BA, Silva KA, Kennedy VE, Richardson MA, Li Q, Bronson RT, Uitto J, Sundberg JP. Phenotypic characterization of the KK/HlJ inbred mouse strain. Vet Pathol 2013; 51:846-57. [PMID: 24009271 DOI: 10.1177/0300985813501335] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Detailed histopathological diagnoses of inbred mouse strains are important for interpreting research results and defining novel models of human diseases. The aim of this study was to histologically detect lesions affecting the KK/HlJ inbred strain. Mice were examined at 6, 12, and 20 months of age and near natural death (ie, moribund mice). Histopathological lesions were quantified by percentage of affected mice per age group and sex. Predominant lesions were mineralization, hyperplasia, and fibro-osseous lesions. Mineralization was most frequently found in the connective tissue dermal sheath of vibrissae, the heart, and the lung. Mineralization was also found in many other organs but to a lesser degree. Hyperplasia was found most commonly in the pancreatic islets, and fibro-osseous lesions were observed in several bones. The percentage of lesions increased with age until 20 months. This study shows that KK/HlJ mice demonstrate systemic aberrant mineralization, with greatest frequency in aged mice. The detailed information about histopathological lesions in the inbred strain KK/HlJ can help investigators to choose the right model and correctly interpret the experimental results.
Collapse
Affiliation(s)
- A Berndt
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - K A Silva
- The Jackson Laboratory, Bar Harbor, ME, USA
| | | | - M A Richardson
- Department of Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | - Q Li
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | | - J Uitto
- Department of Dermatology and Cutaneous Biology, Jefferson Medical College, Philadelphia, PA, USA
| | | |
Collapse
|
18
|
Abstract
C57BL/6 mice develop dermatitis and scarring alopecia resembling human cicatricial alopecias (CA), particularly the central centrifugal cicatricial alopecia (CCCA) type. To evaluate the role of retinoids in CA, expression of retinoid metabolism components were examined in these mice with mild, moderate, or severe CA compared to hair cycle matched mice with no disease. Two feeding studies were performed with dams fed either NIH 31 diet (study 1) or AIN93G diet (study 2). Adult mice were fed AIN93M diet with 4 (recommended), 28, or 56 IU vitamin A/g diet. Feeding the AIN93M diet to adults increased CA frequency over NIH 31 fed mice. Increased follicular dystrophy was seen in study 1 and increased dermal scars in study 2 in mice fed the 28 IU diet. These results indicate that retinoid metabolism is altered in CA in C57BL/6J mice that require precise levels of dietary vitamin A. Human patients with CCCA, pseudopelade (end stage scarring), and controls with no alopecia were also studied. Many retinoid metabolism proteins were increased in mild CCCA, but were undetectable in pseudopelade. Studies to determine if these dietary alterations in retinoid metabolism seen in C57BL/6J mice are also involved in different types of human CA are needed.
Collapse
|
19
|
Sundberg JP, HogenEsch H, Nikitin AY, Treuting PM, Ward JM. Training Mouse Pathologists: Ten Years of Workshops on the Pathology of Mouse Models of Human Disease. Toxicol Pathol 2012; 40:823-5. [DOI: 10.1177/0192623312439123] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Affiliation(s)
| | - Harm HogenEsch
- Purdue University College of Veterinary Medicine, West Lafayette, Indiana, USA
| | | | | | | |
Collapse
|
20
|
Sundberg JP, Ward JM, HogenEsch H, Nikitin AY, Treuting PM, Macauley JB, Schofield PN. Training pathologists in mouse pathology. Vet Pathol 2012; 49:393-7. [PMID: 20817889 PMCID: PMC3329931 DOI: 10.1177/0300985810381244] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Expertise in the pathology of mice has expanded from traditional regulatory and drug safety screening (toxicologic pathology) primarily performed by veterinary pathologists to the highly specialized area of mouse research pathobiology performed by veterinary and medical pathologists encompassing phenotyping of mutant mice and analysis of research experiments exploiting inbred mouse strains and genetically engineered lines. With increasing use of genetically modified mice in research, mouse pathobiology and, by extension, expert mouse research-oriented pathologists have become integral to the success of basic and translational biomedical research. Training for today's research-oriented mouse pathologist must go beyond knowledge of anatomic features of mice and strain-specific background diseases to the specialized genetic nomenclature, husbandry, and genetics, including the methodology of genetic engineering and complex trait analysis. While training can be accomplished through apprenticeships in formal programs, these are often heavily service related and do not provide the necessary comprehensive training. Specialty courses and short-term mentoring with expert specialists are opportunities that, when combined with active practice and publication, will lead to acquisition of the skills required for cutting-edge mouse-based experimental science.
Collapse
Affiliation(s)
- J P Sundberg
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA.
| | | | | | | | | | | | | |
Collapse
|
21
|
Cheng KC, Xin X, Clark DP, La Riviere P. Whole-animal imaging, gene function, and the Zebrafish Phenome Project. Curr Opin Genet Dev 2011; 21:620-9. [PMID: 21963132 DOI: 10.1016/j.gde.2011.08.006] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2011] [Revised: 08/02/2011] [Accepted: 08/11/2011] [Indexed: 12/31/2022]
Abstract
Imaging can potentially make a major contribution to the Zebrafish Phenome Project, which will probe the functions of vertebrate genes through the generation and phenotyping of mutants. Imaging of whole animals at different developmental stages through adulthood will be used to infer biological function. Cell resolutions will be required to identify cellular mechanism and to detect a full range of organ effects. Light-based imaging of live zebrafish embryos is practical only up to ∼2 days of development, owing to increasing pigmentation and diminishing tissue lucency with age. The small size of the zebrafish makes possible whole-animal imaging at cell resolutions by histology and micron-scale tomography (microCT). The histological study of larvae is facilitated by the use of arrays, and histology's standard use in the study of human disease enhances its translational value. Synchrotron microCT with X-rays of moderate energy (10-25 keV) is unimpeded by pigmentation or the tissue thicknesses encountered in zebrafish of larval stages and beyond, and is well-suited to detecting phenotypes that may require 3D modeling. The throughput required for this project will require robotic sample preparation and loading, increases in the dimensions and sensitivity of scintillator and CCD chips, increases in computer power, and the development of new approaches to image processing, segmentation, and quantification.
Collapse
Affiliation(s)
- Keith C Cheng
- Jake Gittlen Cancer Research Foundation and Division of Experimental Pathology, Penn State Hershey College of Medicine, Hershey, PA 17033, United States.
| | | | | | | |
Collapse
|
22
|
Berndt A, Cario CL, Silva KA, Kennedy VE, Harrison DE, Paigen B, Sundberg JP. Identification of fat4 and tsc22d1 as novel candidate genes for spontaneous pulmonary adenomas. Cancer Res 2011; 71:5779-91. [PMID: 21764761 PMCID: PMC3165088 DOI: 10.1158/0008-5472.can-11-1418] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Genetic influences that underlie spontaneous lung oncogenesis are poorly understood. The objective of this study was to determine the genetic influences on spontaneous pulmonary adenoma frequency and severity in 28 strains of mice as part of a large-scale aging study conducted at the Jackson Aging Center (http://agingmice.jax.org/). Genome-wide association studies were conducted in these strains with both low-density (132,000) and high-density (4,000,000) panel of single-nucleotide polymorphisms (SNP). Our analysis revealed that adenomas were relatively less frequent and less severe in females than males, and that loci implicated in frequency and severity were often different between male and female mice. While some of the significant loci identified mapped to genomic locations known to be responsible for carcinogen-induced cancers (e.g., Pas1), others were unique to our study. In particular, Fat4 was influential in males and Tsc22d1 was influential in females. SNPs implicated were predicted to alter amino acid sequence and change protein function. In summary, our results suggested that genetic influences that underlie pulmonary adenoma frequency are dependent on gender, and that Fat4 and Tsc22d1 are likely candidate genes to influence formation of spontaneous pulmonary adenoma in aging male and female mice, respectively.
Collapse
Affiliation(s)
- Annerose Berndt
- Berndt Laboratory, University of Pittsburgh School of Medicine, Pittsburgh, Pennsylvania, USA.
| | | | | | | | | | | | | |
Collapse
|
23
|
Sundberg JP, Berndt A, Sundberg BA, Silva KA, Kennedy V, Bronson R, Yuan R, Paigen B, Harrison D, Schofield PN. The mouse as a model for understanding chronic diseases of aging: the histopathologic basis of aging in inbred mice. PATHOBIOLOGY OF AGING & AGE RELATED DISEASES 2011; 1:PBA-1-7179. [PMID: 22953031 PMCID: PMC3417678 DOI: 10.3402/pba.v1i0.7179] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/07/2011] [Revised: 04/28/2011] [Accepted: 04/29/2011] [Indexed: 11/30/2022]
Abstract
Inbred mice provide a unique tool to study aging populations because of the genetic homogeneity within an inbred strain, their short life span, and the tools for analysis which are available. A large-scale longitudinal and cross-sectional aging study was conducted on 30 inbred strains to determine, using histopathology, the type and diversity of diseases mice develop as they age. These data provide tools that when linked with modern in silico genetic mapping tools, can begin to unravel the complex genetics of many of the common chronic diseases associated with aging in humans and other mammals. In addition, novel disease models were discovered in some strains, such as rhabdomyosarcoma in old A/J mice, to diseases affecting many but not all strains including pseudoxanthoma elasticum, pulmonary adenoma, alopecia areata, and many others. This extensive data set is now available online and provides a useful tool to help better understand strain-specific background diseases that can complicate interpretation of genetically engineered mice and other manipulatable mouse studies that utilize these strains.
Collapse
|
24
|
Schofield PN, Dubus P, Klein L, Moore M, McKerlie C, Ward JM, Sundberg JP. Pathology of the laboratory mouse: an International Workshop on Challenges for High Throughput Phenotyping. Toxicol Pathol 2011; 39:559-62. [PMID: 21444746 DOI: 10.1177/0192623311399789] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
Abstract
The fifth in a series of European workshops for veterinary and human pathologists, "Pathology of the Laboratory Mouse: An International Workshop on Challenges for High Throughput Phenotyping," was held in Bordeaux, France, from September 30 to October 1, 2010. In this report we outline the rationale for setting up this workshop series, summarize our experience, and suggest approaches for optimizing histopathology phenotyping for gene function discovery.
Collapse
|
25
|
Abstract
Mice are an ideal mammalian model for studying the genetics of aging: considerable resources are available, the generation time is short, and the environment can be easily controlled, an important consideration when performing mapping studies to identify genes that influence lifespan and age-related diseases. In this review we highlight some salient contributions of the mouse in aging research: lifespan intervention studies in the Interventions Testing Program of the National Institute on Aging; identification of the genetic underpinnings of the effects of calorie restriction on lifespan; the Aging Phenome Project at the Jackson Laboratory, which has submitted multiple large, freely available phenotyping datasets to the Mouse Phenome Database; insights from spontaneous and engineered mouse mutants; and complex traits analyses identifying quantitative trait loci that affect lifespan. We also show that genomewide association peaks for lifespan in humans and lifespan quantitative loci for mice map to homologous locations in the genome. Thus, the vast bioinformatic and genetic resources of the mouse can be used to screen candidate genes identified in both mouse and human mapping studies, followed by functional testing, often not possible in humans, to determine their influence on aging.
Collapse
Affiliation(s)
- Rong Yuan
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
26
|
Nguyen N, Judd LM, Kalantzis A, Whittle B, Giraud AS, van Driel IR. Random mutagenesis of the mouse genome: a strategy for discovering gene function and the molecular basis of disease. Am J Physiol Gastrointest Liver Physiol 2011; 300:G1-11. [PMID: 20947703 PMCID: PMC3774088 DOI: 10.1152/ajpgi.00343.2010] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mutagenesis of mice with N-ethyl-N-nitrosourea (ENU) is a phenotype-driven approach to unravel gene function and discover new biological pathways. Phenotype-driven approaches have the advantage of making no assumptions about the function of genes and their products and have been successfully applied to the discovery of novel gene-phenotype relationships in many physiological systems. ENU mutagenesis of mice is used in many large-scale and more focused projects to generate and identify novel mouse models for the study of gene functions and human disease. This review examines the strategies and tools used in ENU mutagenesis screens to efficiently generate and identify functional mutations.
Collapse
Affiliation(s)
- Nhung Nguyen
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| | - Louise M. Judd
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Anastasia Kalantzis
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Belinda Whittle
- 3Australian Phenomics Facility, John Curtin School of Medical Research, Australian National University, Canberra, Australia
| | - Andrew S. Giraud
- 2Gastrointestinal Research in Inflammation and Pathology Laboratory, Murdoch Children's Research Institute, Melbourne; and
| | - Ian R. van Driel
- 1Department of Biochemistry and Molecular Biology, Bio21 Molecular Science and Biotechnology Institute, The University of Melbourne, Melbourne;
| |
Collapse
|
27
|
Powell JA, Allen J, Sutter NB. DOG-SPOT database for comprehensive management of dog genetic research data. SOURCE CODE FOR BIOLOGY AND MEDICINE 2010; 5:10. [PMID: 21159202 PMCID: PMC3009958 DOI: 10.1186/1751-0473-5-10] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/22/2010] [Accepted: 12/15/2010] [Indexed: 11/25/2022]
Abstract
Research laboratories studying the genetics of companion animals have no database tools specifically designed to aid in the management of the many kinds of data that are generated, stored and analyzed. We have developed a relational database, "DOG-SPOT," to provide such a tool. Implemented in MS-Access, the database is easy to extend or customize to suit a lab's particular needs. With DOG-SPOT a lab can manage data relating to dogs, breeds, samples, biomaterials, phenotypes, owners, communications, amplicons, sequences, markers, genotypes and personnel. Such an integrated data structure helps ensure high quality data entry and makes it easy to track physical stocks of biomaterials and oligonucleotides.
Collapse
Affiliation(s)
- Julie As Powell
- Department of Clinical Sciences, College of Veterinary Medicine, Cornell University, Ithaca, 14853, USA.
| | | | | |
Collapse
|
28
|
Schofield PN, Gruenberger M, Sundberg JP. Pathbase and the MPATH ontology. Community resources for mouse histopathology. Vet Pathol 2010; 47:1016-20. [PMID: 20587689 PMCID: PMC3038412 DOI: 10.1177/0300985810374845] [Citation(s) in RCA: 39] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
Pathbase, the database of mouse histopathology images, was developed as a resource to provide free access to representative images of lesions in background and mutant strains of laboratory mice. When utilized with diagnostic workups or phenotyping of mutant mice, it can provide a "virtual second opinion" for those working without access to groups of experienced pathologists. This is a community resource, and it facilitates the sharing of expertise and data among members of the pathology community worldwide. MPATH-the mouse pathology ontology-was developed alongside Pathbase for the annotation of images and now represents an important resource for the coding of diagnoses, permitting sophisticated data retrieval and computational analysis of mouse phenotypes. In this article, the structure and use of MPATH is discussed, along with current and future challenges for the coding of mutant mouse phenotypes.
Collapse
Affiliation(s)
- P N Schofield
- The Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609, USA
| | | | | |
Collapse
|
29
|
Sundberg JP, Schofield PN. Commentary: mouse genetic nomenclature. Standardization of strain, gene, and protein symbols. Vet Pathol 2010; 47:1100-4. [PMID: 20685919 PMCID: PMC3039125 DOI: 10.1177/0300985810374837] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The use of standard nomenclatures for describing the strains, genes, and proteins of species is vital for the interpretation, archiving, analysis, and recovery of experimental data on the laboratory mouse. At a time when sharing of data and meta-analysis of experimental results is becoming a dominant mode of scientific investigation, failure to respect formal nomenclatures can cause confusion and errors and, in some cases, contribute to poor science. Here, the authors present the basic nomenclature rules for laboratory mice and explain how these rules should be applied to complex genetic manipulations and crosses.
Collapse
Affiliation(s)
- J P Sundberg
- Jackson Laboratory, 600 Main Street, Bar Harbor, ME 04609-1500, USA.
| | | |
Collapse
|
30
|
Gkoutos GV, Mungall C, Dolken S, Ashburner M, Lewis S, Hancock J, Schofield P, Kohler S, Robinson PN. Entity/quality-based logical definitions for the human skeletal phenome using PATO. ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. IEEE ENGINEERING IN MEDICINE AND BIOLOGY SOCIETY. ANNUAL INTERNATIONAL CONFERENCE 2010; 2009:7069-72. [PMID: 19964203 DOI: 10.1109/iembs.2009.5333362] [Citation(s) in RCA: 51] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
This paper describes an approach to providing computer-interpretable logical definitions for the terms of the Human Phenotype Ontology (HPO) using PATO, the ontology of phenotypic qualities, to link terms of the HPO to the anatomic and other entities that are affected by abnormal phenotypic qualities. This approach will allow improved computerized reasoning as well as a facility to compare phenotypes between different species. The PATO mapping will also provide direct links from phenotypic abnormalities and underlying anatomic structures encoded using the Foundational Model of Anatomy, which will be a valuable resource for computational investigations of the links between anatomical components and concepts representing diseases with abnormal phenotypes and associated genes.
Collapse
Affiliation(s)
- Georgios V Gkoutos
- Department of Genetics, University of Cambridge, Downing Street, Cambridge, CB2 3EH, England.
| | | | | | | | | | | | | | | | | |
Collapse
|
31
|
Abstract
A standardized, controlled vocabulary allows phenotypic information to be described in an unambiguous fashion in medical publications and databases. The Human Phenotype Ontology (HPO) is being developed in an effort to provide such a vocabulary. The use of an ontology to capture phenotypic information allows the use of computational algorithms that exploit semantic similarity between related phenotypic abnormalities to define phenotypic similarity metrics, which can be used to perform database searches for clinical diagnostics or as a basis for incorporating the human phenome into large-scale computational analysis of gene expression patterns and other cellular phenomena associated with human disease. The HPO is freely available at http://www.human-phenotype-ontology.org.
Collapse
Affiliation(s)
- P N Robinson
- Institute for Medical Genetics, Augustenburger Platz 1, 13353 Berlin, Germany.
| | | |
Collapse
|
32
|
Sundberg JP, Silva KA, McPhee C, King LE. Skin diseases in laboratory mice: approaches to drug target identification and efficacy screening. Methods Mol Biol 2010; 602:193-213. [PMID: 20012400 DOI: 10.1007/978-1-60761-058-8_12] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2023]
Abstract
A large variety of mouse models for human skin and adnexa diseases are readily available from investigators and vendors worldwide. While the skin is an obvious organ to observe lesions and their response to therapy, actually treating and monitoring progress in mice can be challenging. This chapter provides an overview on how to use the laboratory mouse as a preclinical tool to evaluate efficacy of a new compound or test potential new uses for a compound approved for use for treating an unrelated disease. Basic approaches to handling mice, applying compounds, and quantifying effects of the treatment are presented.
Collapse
|
33
|
Brown SDM, Wurst W, Kühn R, Hancock JM. The functional annotation of mammalian genomes: the challenge of phenotyping. Annu Rev Genet 2009; 43:305-33. [PMID: 19689210 DOI: 10.1146/annurev-genet-102108-134143] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
The mouse is central to the goal of establishing a comprehensive functional annotation of the mammalian genome that will help elucidate various human disease genes and pathways. The mouse offers a unique combination of attributes, including an extensive genetic toolkit that underpins the creation and analysis of models of human disease. An international effort to generate mutations for every gene in the mouse genome is a first and essential step in this endeavor. However, the greater challenge will be the determination of the phenotype of every mutant. Large-scale phenotyping for genome-wide functional annotation presents numerous scientific, infrastructural, logistical, and informatics challenges. These include the use of standardized approaches to phenotyping procedures for the population of unified databases with comparable data sets. The ultimate goal is a comprehensive database of molecular interventions that allows us to create a framework for biological systems analysis in the mouse on which human biology and disease networks can be revealed.
Collapse
Affiliation(s)
- Steve D M Brown
- MRC Mammalian Genetics Unit, MRC Harwell, Harwell Science and Innovation Campus, Oxfordshire OX11 0RD, United Kingdom.
| | | | | | | |
Collapse
|
34
|
Abstract
The Mouse Disease Information System is a free Microsoft Access database (http://research.jax.org/faculty/sundberg/index.html) designed by veterinary pathologists to aid veterinary pathologists in data acquisition, analysis, and coordination of tissue-sample archives. Linking the system to the Mouse Anatomy and Mouse Pathology Ontologies provides controlled vocabulary (and spelling) for organ, tissue, and diagnosis. Severity scores provide a quantitative assessment of all lesions to enable quantitative trait locus analysis for large-scale studies. Individual diagnoses can be verified for their definition by online linkage to Pathbase.net. Histologic images can be accessed from Pathbase by using the Mouse Pathology Ontology directly for comparison with slides being viewed at the time of data entry and providing the user with a reference and a "virtual second opinion."
Collapse
Affiliation(s)
| | - Paul N. Schofield
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | - Michael Gruenberger
- Department of Physiology, Development, and Neuroscience, University of Cambridge, Cambridge, UK
| | | |
Collapse
|
35
|
Abstract
A recurring motto from the Tony Blair government in the UK was "Education, Education, Education." An appropriate exhortation for the biomedical sciences would be "Standardization, Standardization, Standardization." Inevitably, the two go hand in hand, and the challenge we face is how to encourage researchers to comply with existing or emerging standard terminologies and nomenclatures. This is both an educational and a regulatory task, one in which it is vital to succeed if we are to efficiently and accurately share and use the huge volume of data emerging in the biosciences.
Collapse
|
36
|
Affiliation(s)
- J P Sundberg
- The Jackson Laboratory, Bar Harbor, ME 04609-1500, USA.
| | | | | |
Collapse
|