1
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1979-2001. [PMID: 39280179 PMCID: PMC11372641 DOI: 10.4239/wjd.v15.i9.1979] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation. AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage. METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice. RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA. CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
2
|
Wang YY, Li K, Wang JJ, Hua W, Liu Q, Sun YL, Qi JP, Song YJ. Bone marrow-derived mesenchymal stem cell-derived exosome-loaded miR-129-5p targets high-mobility group box 1 attenuates neurological-impairment after diabetic cerebral hemorrhage. World J Diabetes 2024; 15:1978-2000. [DOI: 10.4239/wjd.v15.i9.1978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Revised: 06/29/2024] [Accepted: 07/23/2024] [Indexed: 08/27/2024] Open
Abstract
BACKGROUND Diabetic intracerebral hemorrhage (ICH) is a serious complication of diabetes. The role and mechanism of bone marrow mesenchymal stem cell (BMSC)-derived exosomes (BMSC-exo) in neuroinflammation post-ICH in patients with diabetes are unknown. In this study, we investigated the regulation of BMSC-exo on hyperglycemia-induced neuroinflammation.
AIM To study the mechanism of BMSC-exo on nerve function damage after diabetes complicated with cerebral hemorrhage.
METHODS BMSC-exo were isolated from mouse BMSC media. This was followed by transfection with microRNA-129-5p (miR-129-5p). BMSC-exo or miR-129-5p-overexpressing BMSC-exo were intravitreally injected into a diabetes mouse model with ICH for in vivo analyses and were cocultured with high glucose-affected BV2 cells for in vitro analyses. The dual luciferase test and RNA immunoprecipitation test verified the targeted binding relationship between miR-129-5p and high-mobility group box 1 (HMGB1). Quantitative polymerase chain reaction, western blotting, and enzyme-linked immunosorbent assay were conducted to assess the levels of some inflammation factors, such as HMGB1, interleukin 6, interleukin 1β, toll-like receptor 4, and tumor necrosis factor α. Brain water content, neural function deficit score, and Evans blue were used to measure the neural function of mice.
RESULTS Our findings indicated that BMSC-exo can promote neuroinflammation and functional recovery. MicroRNA chip analysis of BMSC-exo identified miR-129-5p as the specific microRNA with a protective role in neuroinflammation. Overexpression of miR-129-5p in BMSC-exo reduced the inflammatory response and neurological impairment in comorbid diabetes and ICH cases. Furthermore, we found that miR-129-5p had a targeted binding relationship with HMGB1 mRNA.
CONCLUSION We demonstrated that BMSC-exo can reduce the inflammatory response after ICH with diabetes, thereby improving the neurological function of the brain.
Collapse
Affiliation(s)
- Yue-Ying Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ke Li
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Jia-Jun Wang
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Wei Hua
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Qi Liu
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yu-Lan Sun
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Ji-Ping Qi
- Department of Pathology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| | - Yue-Jia Song
- Department of Endocrinology, The First Affiliated Hospital of Harbin Medical University, Harbin 150001, Heilongjiang Province, China
| |
Collapse
|
3
|
Liu J, Bilgi C, Bregasi A, Mitchell GF, Pahlevan NM. Noninvasive Left Ventricle Pressure-Volume Loop Determination Method With Cardiac Magnetic Resonance Imaging and Carotid Tonometry Using a Physics-Informed Approach. IEEE J Biomed Health Inform 2024; 28:5487-5496. [PMID: 38861439 DOI: 10.1109/jbhi.2024.3412671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2024]
Abstract
Left ventricular (LV) pressure-volume loop (PV-loop) is an important tool to quantify intrinsic left ventricular properties and ventricular-arterial coupling. A significant drawback of conventional PV-loop assessment is the need of invasive measurements which limits its widespread application. To tackle this issue, we developed a PV-loop determination method by using non-invasive measurements from arterial tonometry and cardiac magnetic resonance imaging. A physics-based optimization strategy was designed that adaptively identifies the optimal parameters to construct the PV-loop. We conducted comparative analysis in a convenience sample (N = 77) with heart failure (HF) (N = 23) patients and a control (N = 54) group to evaluate the sensitivity our PV-loop estimation algorithm. Significant and coherent differences between cohorts for the parameters derived using the PV-loop were observed. Our method captures the significant elevation of LV end diastolic pressure (p<0.001), and the decrease of the ventricular efficiency (p<0.0001) of the HF patients compared to the Control group. This method further captures the mechanistic changes of the LV by highlighting the significant differences of the smaller stroke work (p<0.0001), mean external power (p<0.05), and contractility (p<0.001) between these groups. The LV performance metrics align well with the previous clinical PV-loop observations of HF patients and our results demonstrate that the proposed PV-loop reconstruction method can be used to assess the ventricular functional changes associated with HF. Using this noninvasive method may significantly impact and facilitate the diagnosis and therapeutic management of HF.
Collapse
|
4
|
Hou B, Yu D, Bai H, Du X. Research Progress of miRNA in Heart Failure: Prediction and Treatment. J Cardiovasc Pharmacol 2024; 84:136-145. [PMID: 38922572 DOI: 10.1097/fjc.0000000000001588] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/10/2024] [Accepted: 04/23/2024] [Indexed: 06/27/2024]
Abstract
ABSTRACT This review summarizes the multiple roles of microRNAs (miRNAs) in the prediction and treatment of heart failure (HF), including the molecular mechanisms regulating cell apoptosis, myocardial fibrosis, cardiac hypertrophy, and ventricular remodeling, and highlights the importance of miRNAs in the prognosis of HF. In addition, the strategies for alleviating HF with miRNA intervention are discussed. On the basis of the challenges and emerging directions in the research and clinical practice of HF miRNAs, it is proposed that miRNA-based therapy could be a new approach for prevention and treatment of HF.
Collapse
Affiliation(s)
- Bingyan Hou
- Key Laboratory of Chinese Materia Medica, Ministry of Education, Pharmaceutical College, Heilongjiang University of Chinese Medicine, Harbin, China
| | | | | | | |
Collapse
|
5
|
Huang C, Han X, Yang L, Song W, Zhang H, Zhu X, Huang G, Xu J. Exosomal miR-129 and miR-342 derived from intermittent hypoxia-stimulated vascular smooth muscle cells inhibit the eIF2α/ATF4 axis from preventing calcified aortic valvular disease. J Cell Commun Signal 2023:10.1007/s12079-023-00785-4. [PMID: 37812275 DOI: 10.1007/s12079-023-00785-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2023] [Accepted: 09/01/2023] [Indexed: 10/10/2023] Open
Abstract
This study aims to elucidate the role of miR-129/miR-342 loaded in exosomes derived from vascular smooth muscle cells (VSMCs) stimulated by intermittent hypoxia in calcified aortic valvular disease (CAVD). Bioinformatics analysis was conducted to identify differentially expressed miRs in VSMCs-derived exosomes and CAVD samples, and their potential target genes were predicted. VSMCs were exposed to intermittent hypoxia to induce stimulation, followed by isolation of exosomes. Valvular interstitial cells (VICs) were cultured in vitro to investigate the impact of miR-129/miR-342 on VICs' osteogenic differentiation and aortic valve calcification with eIF2α. A CAVD mouse model was established using ApoE knockout mice for in vivo validation. In CAVD samples, miR-129 and miR-342 were downregulated, while eIF2α and ATF4 were upregulated. miR-129 and miR-342 exhibited inhibitory effects on eIF2α through targeted regulation. Exosomes released from intermittently hypoxia-stimulated VSMCs contained miR-129 and miR-342. Overexpression of miR-129 and miR-342, or silencing ATF4, suppressed VICs' osteogenic differentiation and aortic valve calcification, which could be rescued by overexpressed eIF2α. Collectively, intermittent hypoxia stimulation of VSMCs leads to the secretion of exosomes that activate the miR-129/miR-342 dual pathway, thereby inhibiting the eIF2α/ATF4 axis and attenuating VICs' osteogenic differentiation and CAVD progression.
Collapse
Affiliation(s)
- Chen Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Xu Han
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Linjie Yang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Wei Song
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Hualu Zhang
- Department of Physiology and Pathophysiology, Tianjin Medical University, Tianjin, 300070, China
| | - Xiaohua Zhu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Gongcheng Huang
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China
| | - Jing Xu
- Department of Cardiovascular Surgery, The First Affiliated Hospital of Zhengzhou University, No.1, Jianshe East Road, Erqi Distrcit, Zhengzhou, 450000, Henan Province, China.
| |
Collapse
|
6
|
Kuscu C, Mallisetty Y, Naik S, Han Z, Berta CJ, Kuscu C, Kovesdy CP, Sumida K. Circulating microRNA Profiles for Premature Cardiovascular Death in Patients with Kidney Failure with Replacement Therapy. J Clin Med 2023; 12:5010. [PMID: 37568412 PMCID: PMC10419472 DOI: 10.3390/jcm12155010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Revised: 07/21/2023] [Accepted: 07/27/2023] [Indexed: 08/13/2023] Open
Abstract
INTRODUCTION Patients with kidney failure with replacement therapy (KFRT) suffer from a disproportionately high cardiovascular disease burden. Circulating small non-coding RNAs (c-sncRNAs) have emerged as novel epigenetic regulators and are suggested as novel biomarkers and therapeutic targets for cardiovascular disease; however, little is known about the associations of c-sncRNAs with premature cardiovascular death in KFRT. METHODS In a pilot case-control study of 50 hemodialysis patients who died of cardiovascular events as cases, and 50 matched hemodialysis controls who remained alive during a median follow-up of 2.0 years, we performed c-sncRNAs profiles using next-generation sequencing to identify differentially expressed circulating microRNAs (c-miRNAs) between the plasma of cases and that of controls. mRNA target prediction and pathway enrichment analysis were performed to examine the functional relevance of differentially expressed c-miRNAs to cardiovascular pathophysiology. The association of differentially expressed c-miRNAs with cardiovascular mortality was examined using multivariable conditional logistic regression. RESULTS The patient characteristics were similar between cases and controls, with a mean age of 63 years, 48% male, and 54% African American in both groups. We detected a total of 613 miRNAs in the plasma, among which five miRNAs (i.e., miR-129-1-5p, miR-500b-3p, miR-125b-1-3p, miR-3648-2-5p, and miR-3150b-3p) were identified to be differentially expressed between cases and controls with cut-offs of p < 0.05 and log2 fold-change (log2FC) > 1. When using more stringent cut-offs of p-adjusted < 0.05 and log2FC > 1, only miR-129-1-5p remained significantly differentially expressed, with higher levels of miR-129-1-5p in the cases than in the controls. The pathway enrichment analysis using predicted miR-129-1-5p mRNA targets demonstrated enrichment in adrenergic signaling in cardiomyocytes, arrhythmogenic right ventricular cardiomyopathy, and oxytocin signaling pathways. In parallel, the circulating miR-129-1-5p levels were significantly associated with the risk of cardiovascular death (adjusted OR [95% CI], 1.68 [1.01-2.81] for one increase in log-transformed miR-129-1-5p counts), independent of potential confounders. CONCLUSIONS Circulating miR-129-1-5p may serve as a novel biomarker for premature cardiovascular death in KFRT.
Collapse
Affiliation(s)
- Canan Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Yamini Mallisetty
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Surabhi Naik
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Zhongji Han
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Caleb J. Berta
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| | - Cem Kuscu
- Transplant Research Institute, Department of Surgery, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (S.N.); (C.K.)
| | - Csaba P. Kovesdy
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
- Nephrology Section, Memphis VA Medical Center, Memphis, TN 38104, USA
| | - Keiichi Sumida
- Division of Nephrology, Department of Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA; (Y.M.); (Z.H.); (C.J.B.); (C.P.K.)
| |
Collapse
|
7
|
Tan L, Xiong D, Zhang H, Xiao S, Yi R, Wu J. ETS2 promotes cardiomyocyte apoptosis and autophagy in heart failure by regulating lncRNA TUG1/miR-129-5p/ATG7 axis. FASEB J 2023; 37:e22937. [PMID: 37171262 DOI: 10.1096/fj.202202148rr] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 04/03/2023] [Accepted: 04/14/2023] [Indexed: 05/13/2023]
Abstract
Heart failure (HF) is a chronic disease in which the heart is unable to provide enough blood and oxygen to the peripheral tissues. Cardiomyocyte apoptosis and autophagy have been linked to HF progression. However, the underlying mechanism of HF is unknown. In this study, H2 O2 -treated AC16 cells were used as a cell model of HF. The mRNA and protein levels of related genes were examined using RT-qPCR and western blot. Cell viability and apoptosis were assessed using CCK-8 and flow cytometry, respectively. The interactions between ETS2, TUG1, miR-129-5p, and ATG7 were validated by luciferase activity, ChIP, and RNA-Binding protein Immunoprecipitation assays. According to our findings, H2 O2 stimulation increased the expression of ETS2, TUG1, and ATG7 while decreasing the expression of miR-129-5p in AC16 cells. Furthermore, H2 O2 stimulation induced cardiomyocyte apoptosis and autophagy, which were reversed by ETS2 depletion, TUG1 silencing, or miR-129-5p upregulation. Mechanistically, ETS2 promoted TUG1 expression by binding to the TUG1 promoter, and TUG1 sponged miR-129-5p to increase ATG7 expression. Furthermore, TUG1 overexpression reversed ETS2 knockdown-mediated inhibition of cardiomyocyte apoptosis and autophagy and miR-129-5p inhibition abolished TUG1 depletion-mediated suppression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. As presumed, ATG7 overexpression reversed miR-129-5p mimics-mediated repression of cardiomyocyte apoptosis and autophagy in H2 O2 -induced AC16 cells. Finally, ETS2 silencing reduced cardiomyocyte apoptosis and autophagy to slow HF progression by targeting the ETS2/TUG1/miR-129-5p/ATG7 axis, which may provide new therapeutic targets for HF treatment.
Collapse
Affiliation(s)
- Li Tan
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Di Xiong
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Hui Zhang
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Sirou Xiao
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Ruilan Yi
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| | - Jian Wu
- Department of General Practice, ZhuZhou Central Hospital, ZhuZhou, P.R. China
| |
Collapse
|
8
|
Medzikovic L, Aryan L, Ruffenach G, Li M, Savalli N, Sun W, Sarji S, Hong J, Sharma S, Olcese R, Fishbein G, Eghbali M. Myocardial fibrosis and calcification are attenuated by microRNA-129-5p targeting Asporin and Sox9 in cardiac fibroblasts. JCI Insight 2023; 8:e168655. [PMID: 37154157 PMCID: PMC10243800 DOI: 10.1172/jci.insight.168655] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2023] [Accepted: 03/15/2023] [Indexed: 05/10/2023] Open
Abstract
Myocardial fibrosis and calcification associate with adverse outcomes in nonischemic heart failure. Cardiac fibroblasts (CF) transition into myofibroblasts (MF) and osteogenic fibroblasts (OF) to promote myocardial fibrosis and calcification. However, common upstream mechanisms regulating both CF-to-MF transition and CF-to-OF transition remain unknown. microRNAs are promising targets to modulate CF plasticity. Our bioinformatics revealed downregulation of miR-129-5p and upregulation of its targets small leucine-rich proteoglycan Asporin (ASPN) and transcription factor SOX9 as common in mouse and human heart failure (HF). We experimentally confirmed decreased miR-129-5p and enhanced SOX9 and ASPN expression in CF in human hearts with myocardial fibrosis and calcification. miR-129-5p repressed both CF-to-MF and CF-to-OF transition in primary CF, as did knockdown of SOX9 and ASPN. Sox9 and Aspn are direct targets of miR-129-5p that inhibit downstream β-catenin expression. Chronic Angiotensin II infusion downregulated miR-129-5p in CF in WT and TCF21-lineage CF reporter mice, and it was restored by miR-129-5p mimic. Importantly, miR-129-5p mimic not only attenuated progression of myocardial fibrosis, calcification marker expression, and SOX9 and ASPN expression in CF but also restored diastolic and systolic function. Together, we demonstrate miR-129-5p/ASPN and miR-129-5p/SOX9 as potentially novel dysregulated axes in CF-to-MF and CF-to-OF transition in myocardial fibrosis and calcification and the therapeutic relevance of miR-129-5p.
Collapse
Affiliation(s)
| | - Laila Aryan
- Department of Anesthesiology & Perioperative Medicine
| | | | - Min Li
- Department of Anesthesiology & Perioperative Medicine
| | | | - Wasila Sun
- Department of Anesthesiology & Perioperative Medicine
| | - Shervin Sarji
- Department of Anesthesiology & Perioperative Medicine
| | - Jason Hong
- Department of Anesthesiology & Perioperative Medicine
- Division of Pulmonary & Critical Care Medicine
| | - Salil Sharma
- Department of Anesthesiology & Perioperative Medicine
| | - Riccardo Olcese
- Department of Anesthesiology & Perioperative Medicine
- Department of Physiology, and
| | - Gregory Fishbein
- Department of Physiology, and
- Department of Pathology & Laboratory Medicine, David Geffen School of Medicine at UCLA, Los Angeles, California, USA
| | | |
Collapse
|
9
|
Lv X, Shi X, Maihemuti M, Yang D, Xiao D. Correlation of HMGB1, TLR2 and TLR4 with left ventricular diastolic dysfunction in sepsis patients. Scand J Immunol 2023; 97:e13260. [PMID: 39008025 DOI: 10.1111/sji.13260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2022] [Revised: 01/28/2023] [Accepted: 02/09/2023] [Indexed: 02/17/2023]
Abstract
Left ventricular diastolic dysfunction (LVDD) is a common consequence of sepsis due to dysregulated inflammatory responses. Here we aim to investigate high mobility group box 1 (HMGB1), toll-like receptor 2 (TLR2) and toll-like receptor 4 (TLR4) as serum biomarkers to assess LVDD risk of patients with sepsis. We recruited 120 patients with sepsis, among which 52 had ultrasonically confirmed LVDD and 68 were without LVDD. Blood samples were collected, and enzyme-linked immunosorbent assay (ELISA) was used to analyse levels of HMGB1, TLR2 and TLR4 in serum. Multivariate analysis was performed to assess the odds ratio of the serum biomarkers. Spearman's correlation analysis was conducted to evaluate the correlation between the serum biomarkers to B-type natriuretic peptide (BNP) and cardiac troponin I (cTnl) levels and the ratios of early diastolic mitral inflow velocity to early diastolic mitral annulus velocity (E/e' ratios) in ultrasound. Receiver operating curve was used to measure the sensitivity and specificity of HMGB1, TLR2 and TLR4 individually and in combination as diagnostic markers. Elevated HMGB1, TLR2 and TLR4 had significant values in predicting LVDD suggested by high odds ratio (all P < .05). A significant correlation was found between these values and cTnl, the current gold standard for LVDD analysis. HMGB1, TLR2 and TLR4 also showed a high diagnostic sensitivity and specificity in ROC analysis. HMGB1, TLR2 and TLR4 are potentially valuable in predicting LVDD risk among patients with sepsis, providing additional tools with the capability of potentially assisting the clinical management of patients with sepsis.
Collapse
Affiliation(s)
- Xinwei Lv
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Xiaohui Shi
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Mutalifu Maihemuti
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Danping Yang
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| | - Dong Xiao
- Department of Critical Care Medicine, People's Hospital of Xinjiang Uygur Autonomous Region, Urumqi, China
| |
Collapse
|
10
|
Klimczak-Tomaniak D, Haponiuk-Skwarlińska J, Kuch M, Pączek L. Crosstalk between microRNA and Oxidative Stress in Heart Failure: A Systematic Review. Int J Mol Sci 2022; 23:15013. [PMID: 36499336 PMCID: PMC9736401 DOI: 10.3390/ijms232315013] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2022] [Revised: 11/12/2022] [Accepted: 11/16/2022] [Indexed: 12/02/2022] Open
Abstract
Heart failure is defined as a clinical syndrome consisting of key symptoms and is due to a structural and/or functional alteration of the heart that results in increased intracardiac pressures and/or inadequate cardiac output at rest and/or during exercise. One of the key mechanisms determining myocardial dysfunction in heart failure is oxidative stress. MicroRNAs (miRNAs, miRs) are short, endogenous, conserved, single-stranded non-coding RNAs of around 21-25 nucleotides in length that act as regulators of multiple processes. A systematic review following the PRISMA guidelines was performed on the evidence on the interplay between microRNA and oxidative stress in heart failure. A search of Pubmed, Embase, Scopus, and Scopus direct databases using the following search terms: 'heart failure' AND 'oxidative stress' AND 'microRNA' or 'heart failure' AND 'oxidative stress' AND 'miRNA' was conducted and resulted in 464 articles. Out of them, 15 full text articles were eligible for inclusion in the qualitative analysis. Multiple microRNAs are involved in the processes associated with oxidative stress leading to heart failure development including mitochondrial integrity and function, antioxidant defense, iron overload, ferroptosis, and survival pathways.
Collapse
Affiliation(s)
- Dominika Klimczak-Tomaniak
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Julia Haponiuk-Skwarlińska
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
- Department of Pediatric Cardiology and General Pediatrics, Doctoral School, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Marek Kuch
- Department of Cardiology, Hypertension and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| | - Leszek Pączek
- Department of Immunology, Transplantation and Internal Medicine, Medical University of Warsaw, 02-091 Warsaw, Poland
| |
Collapse
|
11
|
Zhang LL, Tang RJ, Yang YJ. The underlying pathological mechanism of ferroptosis in the development of cardiovascular disease. Front Cardiovasc Med 2022; 9:964034. [PMID: 36003910 PMCID: PMC9393259 DOI: 10.3389/fcvm.2022.964034] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Accepted: 07/25/2022] [Indexed: 11/13/2022] Open
Abstract
Cardiovascular diseases (CVDs) have been attracting the attention of academic society for decades. Numerous researchers contributed to figuring out the core mechanisms underlying CVDs. Among those, pathological decompensated cellular loss posed by cell death in different kinds, namely necrosis, apoptosis and necroptosis, was widely regarded to accelerate the pathological development of most heart diseases and deteriorate cardiac function. Recently, apart from programmed cell death revealed previously, ferroptosis, a brand-new cellular death identified by its ferrous-iron-dependent manner, has been demonstrated to govern the occurrence and development of different cardiovascular disorders in many types of research as well. Therefore, clarifying the regulatory function of ferroptosis is conducive to finding out strategies for cardio-protection in different conditions and improving the prognosis of CVDs. Here, molecular mechanisms concerned are summarized systematically and categorized to depict the regulatory network of ferroptosis and point out potential therapeutic targets for diverse cardiovascular disorders.
Collapse
Affiliation(s)
- Li-Li Zhang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - Rui-Jie Tang
- Department of Cardiology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Yue-Jin Yang
- State Key Laboratory of Cardiovascular Disease, Department of Cardiology, Fuwai Hospital, National Center for Cardiovascular Diseases, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
- *Correspondence: Yue-Jin Yang,
| |
Collapse
|
12
|
Luo X, Xu Y, Zhong Z, Xiang P, Wu X, Chong A. miR-8485 alleviates the injury of cardiomyocytes through TP53INP1. J Biochem Mol Toxicol 2022; 36:e23159. [PMID: 35876212 DOI: 10.1002/jbt.23159] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2021] [Revised: 04/25/2022] [Accepted: 07/01/2022] [Indexed: 11/10/2022]
Abstract
MicroRNAs (miRNAs) feature prominently in regulating the progression of chronic heart failure (CHF). This study was performed to investigate the role of miR-8485 in the injury of cardiomyocytes and CHF. It was found that miR-8485 level was markedly reduced in the plasma of CHF patients, compared with the healthy controls. H2 O2 treatment increased tumor necrosis factor-α, interleukin (IL)-6, and IL-1β levels, inhibited the viability of human adult ventricular cardiomyocyte cell line AC16, and increased the apoptosis, while miR-8485 overexpression reversed these effects. Tumor protein p53 inducible nuclear protein 1 (TP53INP1) was identified as a downstream target of miR-8485, and TP53INP1 overexpression weakened the effects of miR-8485 on cell viability, apoptosis, as well as inflammatory responses. Our data suggest that miR-8485 attenuates the injury of cardiomyocytes by targeting TP53INP1, suggesting it is a protective factor against CHF.
Collapse
Affiliation(s)
- Xiuying Luo
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Yanlin Xu
- Department of Nephrology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Ze Zhong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Peng Xiang
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Xindong Wu
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| | - Aiguo Chong
- Department of Cardiology, The Second Affiliated Hospital (Jiande Branch), Zhejiang University School of Medicine, Hangzhou, Zhejiang, China
| |
Collapse
|
13
|
Shen NN, Wang JL, Fu YP. The microRNA Expression Profiling in Heart Failure: A Systematic Review and Meta-Analysis. Front Cardiovasc Med 2022; 9:856358. [PMID: 35783849 PMCID: PMC9240229 DOI: 10.3389/fcvm.2022.856358] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Accepted: 05/27/2022] [Indexed: 12/16/2022] Open
Abstract
Background Heart failure (HF) is a main consequence of cardiovascular diseases worldwide. Abnormal expression levels of microRNAs (miRNAs) in HF are observed in current studies. Novel biomarkers miRNAs may play an important role in the development of HF. Nevertheless, the inconsistency of miRNA expression limits the clinical application. We thus perform this systematic review of the miRNAs expression profiling to identify potential HF biomarkers. Methods The electronic databases of Embase, Medline, and Cochrane Library were systematically searched to identify the miRNA expression profiles between HF subjects and non-HF controls before May 26th, 2021. The pooled results were shown as log10 odds ratios (logORs) with 95% confidence intervals (CI) using random-effect models. Subgroup analyses were conducted according to species, region, and sample source. The quality assessment of included studies was independently conducted based on Diagnostic Accuracy Study 2 (QUADAS-2). The sensitivity analysis was conducted based on sample size. Results A total of 55 miRNA expression articles reporting 276 miRNAs of HF were included. 47 consistently up-regulated and 10 down-regulated miRNAs were identified in the overall analysis, with the most up-regulated miR-21 (logOR 8.02; 95% CI: 6.76–9.27, P < 0.001) and the most down-regulated miR-30c (logOR 6.62; 95% CI: 3.04–10.20, P < 0.001). The subgroup analysis of sample source identified 35 up-regulated and 10 down-regulated miRNAs in blood sample, the most up-regulated and down-regulated miRNAs were miR-210-3p and miR-30c, respectively. In the region sub-groups, let-7i-5p and miR-129 were most up-regulated and down-regulated in Asian countries, while in non-Asian countries, let-7e-5p and miR-30c were the most dysregulated. It’s worth noting that miR-622 was consistently up-regulated in both Asian and non-Asian countries. Sensitivity analysis showed that 46 out of 58 (79.31%) miRNAs were dysregulated. Conclusion A total of 57 consistently dysregulated miRNAs related to HF were confirmed in this study. Seven dysregulated miRNAs (miR-21, miR-30c, miR-210-3p, let-7i-5p, miR-129, let-7e-5p, and miR-622) may be considered as potential non-invasive biomarkers for HF. However, further validation in larger-scale studies are needed to verify our conclusions.
Collapse
Affiliation(s)
- Nan-Nan Shen
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
| | - Jia-Liang Wang
- Department of Pharmacy, Affiliated Hospital of Shaoxing University, Shaoxing, China
- *Correspondence: Jia-Liang Wang,
| | - Yong-ping Fu
- Department of Cardiology, Affiliated Hospital of Shaoxing University, Shaoxing, China
- Yong-ping Fu,
| |
Collapse
|
14
|
Cheng L, Fan Y, Cheng J, Wang J, Liu Q, Feng Z. Long non-coding RNA ZFY-AS1 represses periodontitis tissue inflammation and oxidative damage via modulating microRNA-129-5p/DEAD-Box helicase 3 X-linked axis. Bioengineered 2022; 13:12691-12705. [PMID: 35659193 PMCID: PMC9275892 DOI: 10.1080/21655979.2021.2019876] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022] Open
Abstract
A large number of studies have manifested long non-coding RNA (lncRNA) is involved in the modulation of the development of periodontitis, but the specific mechanism has not been fully elucidated. The purpose of this study was to explore the biological function and latent molecular mechanism of lncZFY-AS1 in periodontitis. The results clarified lncZFY-AS1 and DEAD-Box Helicase 3 X-Linked (DDX3X) were up-regulated, but microRNA (miR)-129-5p was down-regulated in periodontitis. Knockdown of lncZFY-AS2 or overexpression of miR-129-5p decreased macrophage infiltration and periodontal membrane cell apoptosis, increased cell viability, repressed inflammatory factors and nuclear factor kappa B activation, reduced oxidative stress, but promoted nuclear factor-E2-related factor 2/heme oxygenase 1 expression. LncZFY-AS1 elevation further aggravated periodontitis inflammation, oxidative stress, and apoptosis. LncZFY competitively adsorbed miR-129-5p to mediate DDX3X expression. Knockdown lncZFY’s improvement effect on periodontitis was reversed by depressive miR-129-5p or enhancive DDX3X. In conclusion, these data suggest lncZFY-AS1 promotes inflammatory injury and oxidative stress in periodontitis by competitively binding to miR-129-5p and mediating DDX3X expression. LncZFY-AS1/miR-129-5p/DDX3X may serve as a novel molecular target for treatment of periodontitis in the future.
Collapse
Affiliation(s)
- Lin Cheng
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - YuLing Fan
- Department of Stomatology, School of Stomatology, Shanxi Medical University, Taiyuan City, Shanxi Province, China
| | - Jue Cheng
- Department of Stomatology, The Community Health Service Center of Beijing Jiao Tong University, Beijing City, China
| | - Jun Wang
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - Qingmei Liu
- Department of Stomatology, Bethune Hospital, (Shanxi Academy of Medical Sciences), Taiyuan City, Shanxi Province, China
| | - ZhiYuan Feng
- Department of Orthodontics, Shanxi Provincial People’s Hospital, Taiyuan City, Shanxi Province, China
| |
Collapse
|
15
|
Yan F, Cui W, Chen Z. Mesenchymal Stem Cell-Derived Exosome-Loaded microRNA-129-5p Inhibits TRAF3 Expression to Alleviate Apoptosis and Oxidative Stress in Heart Failure. Cardiovasc Toxicol 2022; 22:631-645. [PMID: 35546649 DOI: 10.1007/s12012-022-09743-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Accepted: 04/16/2022] [Indexed: 11/03/2022]
Abstract
Heart failure (HF) represents a main global healthy and economic burden with unacceptably high morbidity and mortality rates. In the current study, we evaluated the potential effect of mesenchymal stem cell (MSC)-derived exosomes (MSC-Exos) on oxygen-glucose deprivation (OGD)-induced damages to HL-1 cells and HF mice and searched for the possible mechanism. MSC-Exos ameliorated oxidative stress and reduced apoptosis in OGD-treated HL-1 cells. By microarray analysis, we found that MSC-Exos treatment significantly increased the microRNA (miR)-129-5p expression in HL-1 cells. miR-129-5p inhibitor attenuated the protective effect of MSC-Exos on OGD-treated HL-1 cells. miR-129-5p targeted tumor necrosis factor receptor-associated factor 3 (TRAF3), and TRAF3 loss reversed the effect of miR-129-5p inhibitor by blunting the NF-κB signaling. MSC-Exos injection alleviated ventricular dysfunction and suppressed oxidative stress, apoptosis, inflammation, and fibrosis in cardiomyocytes in mice with HF by inhibiting NF-κB signaling pathway through miR-129-5p/TRAF3. Our findings suggest that exosomal miR-129-5p from MSCs protects the heart from failure by targeting TRAF3 and the following NF-κB signaling. This regulatory axis may be a possible therapeutic target for HF.
Collapse
Affiliation(s)
- Fang Yan
- Hebei Medical University, Shijiazhuang, 050000, Hebei, People's Republic of China.,Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China
| | - Wei Cui
- Department of Cardiology, the Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| | - Ziying Chen
- Department of Cardiac Surgery, The Second Hospital of Hebei Medical University, No. 215, Heping West Road, Xinhua District, Shijiazhuang, 050000, Hebei, People's Republic of China.
| |
Collapse
|
16
|
Qi Y, Tang Y, Yin L, Ding K, Zhao C, Yan W, Yao Y. miR-129-5p restores cardiac function in rats with chronic heart failure by targeting the E3 ubiquitin ligase Smurf1 and promoting PTEN expression. Bioengineered 2022; 13:2371-2386. [PMID: 35034538 PMCID: PMC8974089 DOI: 10.1080/21655979.2021.2024335] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022] Open
Abstract
Chronic heart failure (CHF) is a prevalent health concern with complex pathogenesis. This current study set out to estimate the function of the miR-129-5p/Smurf1/PTEN axis on cardiac function injury in CHF. The model of CHF in rats was established. The cardiac function indexes, myocardial tissue damage, and oxidative stress-related factors in CHF rats were evaluated after the interference of Smurf1/miR-129-5p/PTEN. The targeting relationships between miR-129-5p and Smurf1 and between PTEN and Smurf1 were verified. It was found that that after modeling, cardiac functions were impaired, heart/left ventricular/lung weight and the myocardial structure was destroyed, and the degree of fibrosis of myocardial tissue was increased. After Smurf1 knockdown, the cardiac function, myocardial structure, and oxidative stress were improved, and the fibrosis in myocardial tissue was decreased. Smurf1 was a target of miR-129-5p. miR-129-5p could annul the protective effect of Smurf1 silencing on CHF rats. Smurf1 inhibited PTEN expression by promoting PTEN ubiquitination, while miR-129-5p enhanced PTEN expression by inhibiting Smurf1. Meanwhile, overexpression of PTEN annulled the cardiac dysfunction in CHF rats induced by Smurf1. In conclusion, miR-129-5p targeted Smurf1 and repressed the ubiquitination of PTEN, and promoted PTEN expression, thus improving the cardiac function of CHF rats.
Collapse
Affiliation(s)
- Yuan Qi
- Department of Cardiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Yan Tang
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Lu Yin
- Department of Cardiology, Gongli Hospital of Shanghai Pudong New Area, Shanghai, China
| | - Keke Ding
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Cuimei Zhao
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Wenwen Yan
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| | - Yi'an Yao
- Department of Cardiology, Tongji Hospital Affiliated to Tongji University, Shanghai, China
| |
Collapse
|
17
|
Zheng J, Tian M, Liu L, Jia X, Sun M, Lai Y. Magnesium sulfate reduces vascular endothelial cell apoptosis in rats with preeclampsia via the miR-218-5p/HMGB1 pathway. Clin Exp Hypertens 2021; 44:159-166. [PMID: 34923889 DOI: 10.1080/10641963.2021.2013492] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
OBJECTIVE This study aims to investigate the mechanism by which magnesium sulfate regulates the miR-218-5p/HMGB-pathway-mediated apoptosis of vascular endothelial cells (VECs) in rats with preeclampsia (PE). METHODS Twenty pregnant rats were randomly divided into four groups: normal, PE, MgSO4, and high-mobility group protein B1 (HMGB1)-agomir groups. On the 14th day of each rat's pregnancy, endotoxin was used to establish a PE model in the PE, MgSO4, and HMGB1-agomir groups. Then, the MgSO4 and HMGB1-agomir groups were treated with magnesium sulfate. Finally, HMGB1 overexpression was performed only in the HMGB1-agomir group. The rats' urinary protein content and systolic blood pressure at 24 h were detected on the 11th, 13th, 15th, 17th, and 19th day of pregnancy. RESULTS Compared with the PE group, 24-h urinary protein content, blood pressure, VEC apoptosis rate, apoptosis marker levels, and HMGB1 expression decreased while miR-218-5p levels increased in the MgSO4 group. The dual-luciferase assay revealed that HMGB1 can be targeted and regulated by miR-218-5p. Compared with the MgSO4 group, 24-h urinary protein content, blood pressure, VEC apoptosis rate, apoptosis marker levels, and HMGB1 expression increased while miR-218-5p levels decreased in the HMGB1-agomir group. CONCLUSION MgSO4 reduces VEC apoptosis in PE rats via the miR-218-5p/HMGB1 pathway and thus plays a role in treating PE.
Collapse
Affiliation(s)
- Jiacui Zheng
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Meirong Tian
- Department of Obstetrics, Shandong Maternal and Child Health Hospital Affiliated of Shandong, Jinan City, Shandong, China
| | - Lanlan Liu
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Xueqin Jia
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Meiling Sun
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| | - Yongjing Lai
- Department of Obstetrics, Rizhao People's Hospital Affiliated to Jining Medical Unversity, Rizhao City, Shandong, China
| |
Collapse
|
18
|
Gao L, Li T, Li S, Song Z, Chang Y, Yuan L. Schisandrin A protects against isoproterenol‑induced chronic heart failure via miR‑155. Mol Med Rep 2021; 25:24. [PMID: 34812475 PMCID: PMC8630813 DOI: 10.3892/mmr.2021.12540] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2021] [Accepted: 09/27/2021] [Indexed: 12/29/2022] Open
Abstract
Schisandrin A (Sch A) has a protective effect on cardiomyocytes. Circulating miR-155 levels are related to chronic heart failure (CHF). The present study aimed to clarify the role and the molecular mechanism of Sch A in CHF. C57BL/6JGpt mice were used for an isoproterenol (ISO)-induced CHF model to collect heart samples. Echocardiography was employed to detect heartbeat indicators. The degree of myocardial hypertrophy was evaluated based on the measurement of heart weight (HW), body weight (BW) and tibia length (TL) and the observation using hematoxylin-eosin staining. Sprague-Dawley rats were purchased for the separation of neonatal rat ventricular myocytes (NRVMs), which were treated with ISO for 24 h. Transfection regulated the level of miR-155. The viability of NRVMs was detected via MTT assay. The mRNA and protein levels were measured via reverse transcription-quantitative PCR and western blotting and immunofluorescence was used to detect the content of α-smooth muscle actin (α-SMA). Treatment with ISO resulted in rising left ventricular posterior wall thickness, intra-ventricular septum diastole, left ventricular end diastolic diameter, left ventricular end systolic diameter, HW/BW, HW/TL and falling ejection fraction and fractional shortening, the trend of which could be reversed by Sch A. Sch A ameliorated myocardial hypertrophy in CHF mice. In addition, Sch A inhibited ISO-induced upregulated expressions of atrial natriuretic peptide, B-type natriuretic peptide, B-myosin heavy chain and miR-155 in myocardial tissue. Based on the results in vitro, Sch A had no significant effect on the viability of NRVMs when its concentration was <24 µmol/l. Sch A inhibited the levels of miR-155, α-SMA and the phosphorylation levels of AKT and cyclic AMP response-element binding protein (CREB) in ISO-induced NRVMs, which was reversed by the upregulation of miR-155. Schisandrin A mediated the AKT/CREB signaling pathway to prevent CHF by regulating the expression of miR-155, which may shed light on a possible therapeutic target for CHF.
Collapse
Affiliation(s)
- Lijing Gao
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Ting Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Shufen Li
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Zhuohui Song
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Yongli Chang
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| | - Li Yuan
- Medical College, Changzhi Medical College, Changzhi, Shanxi 046000, P.R. China
| |
Collapse
|
19
|
Zhu Q, Li S, Ji K, Zhou H, Luo C, Sui Y. Differentially expressed TUG1 and miR-145-5p indicate different severity of chronic heart failure and predict 2-year survival prognosis. Exp Ther Med 2021; 22:1362. [PMID: 34659508 PMCID: PMC8515550 DOI: 10.3892/etm.2021.10796] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Accepted: 09/02/2021] [Indexed: 12/01/2022] Open
Abstract
Long non-coding RNAs (lncRNAs) and microRNAs (miRs) have critical roles in the progression of various diseases. The present study aimed to investigate the levels and clinical significance of lncRNA taurine upregulated gene 1 (TUG1) and miR-145-5p in patients with chronic heart failure (CHF) and explore their indicative value regarding disease severity. TUG1 and miR-145-5p levels were detected by reverse-transcription quantitative PCR. Correlations were examined using Pearson's correlation analysis. Receiver operating characteristic analysis was used to evaluate the diagnostic value of TUG1, miR-145-5p and brain natriuretic peptide (BNP). Survival analysis was performed by the Kaplan-Meier method. Cox regression analysis was used to evaluate the prognostic value of TUG1 and miR-145-5p. The levels of interleukin-6 and tumor necrosis factor-α in serum were detected by ELISA. The results indicated that TUG1 was upregulated and miR-145-5p was downregulated in patients with CHF and they were negatively correlated. TUG1 and miR-145-5p were associated with the left ventricle ejection fraction and were able to indicate the severity of CHF. Serum TUG1 and miR-145-5p had a certain diagnostic value and the combination of BNP, TUG1 and miR-145-5p had high diagnostic accuracy. TUG1 and miR-145-5p were closely associated with overall survival and may function as independent prognostic biomarkers for patients with CHF. In addition, TUG1 and miR-145-5p levels were markedly correlated with inflammation in CHF. Upregulated TUG1 and downregulated miR-145-5p may indicate the severity of CHF, may serve as diagnostic and prognostic biomarkers and may be involved in CHF progression by regulating inflammatory responses.
Collapse
Affiliation(s)
- Qinwei Zhu
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Shuanghong Li
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Kui Ji
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Hongyuan Zhou
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Chuanchao Luo
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| | - Yana Sui
- Department of Emergency, Weifang Hospital of Traditional Chinese Medicine, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
20
|
Díez-Ricote L, Ruiz-Valderrey P, Micó V, Blanco-Rojo R, Tomé-Carneiro J, Dávalos A, Ordovás JM, Daimiel L. Trimethylamine n-Oxide (TMAO) Modulates the Expression of Cardiovascular Disease-Related microRNAs and Their Targets. Int J Mol Sci 2021; 22:ijms222011145. [PMID: 34681805 PMCID: PMC8539082 DOI: 10.3390/ijms222011145] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/09/2021] [Accepted: 10/11/2021] [Indexed: 12/20/2022] Open
Abstract
Diet is a well-known risk factor of cardiovascular diseases (CVDs). Some microRNAs (miRNAs) have been described to regulate molecular pathways related to CVDs. Diet can modulate miRNAs and their target genes. Choline, betaine, and l-carnitine, nutrients found in animal products, are metabolized into trimethylamine n-oxide (TMAO), which has been associated with CVD risk. The aim of this study was to investigate TMAO regulation of CVD-related miRNAs and their target genes in cellular models of liver and macrophages. We treated HEPG-2, THP-1, mouse liver organoids, and primary human macrophages with 6 µM TMAO at different timepoints (4, 8, and 24 h for HEPG-2 and mouse liver organoids, 12 and 24 h for THP-1, and 12 h for primary human macrophages) and analyzed the expression of a selected panel of CVD-related miRNAs and their target genes and proteins by real-time PCR and Western blot, respectively. HEPG-2 cells were transfected with anti-miR-30c and syn-miR-30c. TMAO increased the expression of miR-21-5p and miR-30c-5p. PER2, a target gene of both, decreased its expression with TMAO in HEPG-2 and mice liver organoids but increased its mRNA expression with syn-miR-30c. We concluded that TMAO modulates the expression of miRNAs related to CVDs, and that such modulation affects their target genes.
Collapse
Affiliation(s)
- Laura Díez-Ricote
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Paloma Ruiz-Valderrey
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Víctor Micó
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
| | - Ruth Blanco-Rojo
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Research and Development Department, Biosearch Life, 18004 Granada, Spain
| | - João Tomé-Carneiro
- Bioactive Food Ingredients Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain;
| | - Alberto Dávalos
- Epigenetics of Lipid Metabolism Group, Precision Nutrition and Cardiometabolic Health Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain;
| | - José M. Ordovás
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Nutrition and Genomics Laboratory, JM_USDA Human Nutrition Research Center on Aging, Tufts University, Boston, MA 02111, USA
| | - Lidia Daimiel
- Nutritional Control of the Epigenome Group, Precision Nutrition and Obesity Program, IMDEA Food, UAM + CSIC, 28049 Madrid, Spain; (L.D.-R.); (P.R.-V.); (V.M.); (R.B.-R.); (J.M.O.)
- Correspondence: ; Tel.: +34-(91)-7278100 (ext. 309)
| |
Collapse
|
21
|
Deng B, Tang X, Wang Y. Role of microRNA-129 in cancer and non-cancerous diseases (Review). Exp Ther Med 2021; 22:918. [PMID: 34335879 PMCID: PMC8290460 DOI: 10.3892/etm.2021.10350] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 06/11/2021] [Indexed: 12/15/2022] Open
Abstract
An increasing number of studies indicate that microRNAs (miRNAs/miRs) are involved in diverse biological signaling pathways and play important roles in the progression of various diseases, including both oncological and non-oncological diseases. These small non-coding RNAs can block translation, resulting in a low expression level of target genes. miR-129 is an miRNA that has been the focus of considerable research in recent years. A growing body of evidence shows that the miR-129 family not only functions in cancer, including osteosarcoma, nasopharyngeal carcinoma, and ovarian, prostate, lung, breast and colon cancer, but also in non-cancerous diseases, including heart failure (HF), epilepsy, Alzheimer's disease (AD), obesity, diabetes and intervertebral disc degeneration (IVDD). It is therefore necessary to summarize current research progress on the role of miR-129 in different diseases. The present review includes an updated summary of the mechanisms of the miR-129 family in oncological and non-oncological diseases. To the best of our knowledge, this is the first review focusing on the role of miR-129 in non-cancerous diseases such as obesity, HF, epilepsy, diabetes, IVDD and AD.
Collapse
Affiliation(s)
- Bingpeng Deng
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Xuan Tang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| | - Yong Wang
- Department of Forensic Science, School of Basic Medical Science, Central South University, Changsha, Hunan 410013, P.R. China
| |
Collapse
|
22
|
Liu S, Liao Q, Xu W, Zhang Z, Yin M, Cao X. MiR-129-5p Protects H9c2 Cardiac Myoblasts From Hypoxia/Reoxygenation Injury by Targeting TRPM7 and Inhibiting NLRP3 Inflammasome Activation. J Cardiovasc Pharmacol 2021; 77:586-593. [PMID: 33951695 DOI: 10.1097/fjc.0000000000000991] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/28/2020] [Accepted: 01/16/2021] [Indexed: 11/26/2022]
Abstract
ABSTRACT As a biomarker for heart failure, miR-129-5p is abnormally expressed during myocardial I/R, but its specific functions and mechanisms remain largely unclear. Thus, this study explored the roles and possible mechanisms of miR-129-5p in hypoxia/reoxygenation (H/R)-insulted H9c2 cardiac myoblasts. After H/R insult, miR-129-5p expression levels were decreased, along with reduced cell viability and enhanced lactate dehydrogenase release in H9c2 cells. Overexpression of miR-129-5p through transfection of miR-129-5p mimics effectively improved cell viability and reduced lactate dehydrogenase release in H9c2 cells exposed to H/R, along with decreased apoptosis and caspase-3 activities. Moreover, miR-129-5p mimics inhibited reactive oxygen species production and upsurged superoxide dismutase activity in H9c2 cells exposed to H/R, and suppressed H/R-caused massive release of proinflammatory cytokines TNF-α and IL-1β. TRPM7 was identified as the target of miR-129-5p and was negatively regulated by miR-129-5p. TRPM7 overexpression counteracted the antagonistic effect of miR-129-5p on H/R-induced increase in intracellular calcium levels. TRPM7 overexpression also abolished miR-129-5p-induced elevation on cell viability and reduction on apoptosis as well as attenuated miR-129-5p-induced inhibition on reactive oxygen species and IL-1β production. Besides, H/R-induced NLRP3 inflammasome activation was inhibited by miR-129-5p mimic but reactivated by TRPM7. In conclusion, miR-129-5p alleviates H/R injury of H9c2 cardiomyocytes by targeting TRPM7 and inhibiting NLRP3 inflammasome activation, suggesting that miR-129-5p and TRPM7 may be potential therapeutic targets for myocardial I/R injury.
Collapse
Affiliation(s)
- Shuke Liu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Qingchi Liao
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Central South University, Changsha, Hubei, China ; and
| | - Wei Xu
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Yangzhou University, Yangzhou, Jiangsu, China
| | - Zhen Zhang
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Minming Yin
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Dalian Medical University, Dalian, Liaoning, China
| | - Xiaohu Cao
- Department of Cardiology, Northern Jiangsu People's Hospital, Yangzhou, Jiangsu, China
- Graduate School of Yangzhou University, Yangzhou, Jiangsu, China
| |
Collapse
|
23
|
Zhang H, Zhang N, Jiang W, Lun X. Clinical significance of the long non-coding RNA NEAT1/miR-129-5p axis in the diagnosis and prognosis for patients with chronic heart failure. Exp Ther Med 2021; 21:512. [PMID: 33791021 PMCID: PMC8005689 DOI: 10.3892/etm.2021.9943] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2020] [Accepted: 02/24/2021] [Indexed: 12/14/2022] Open
Abstract
Chronic heart failure (CHF) is the leading cause of death worldwide. The regulatory interactions of long non-coding RNA (lncRNAs) and microRNAs (miRs) have important roles in multiple diseases. However, the clinical significance of the nuclear-enriched abundant transcript 1 (NEAT1)/miR-129-5p axis in CHF has remained elusive. The present study explored whether the NEAT1/miR-129-5p axis may be a suitable diagnostic and prognostic marker for CHF. The expression of lncRNA NEAT1 and miR-129-5p in the serum of patients with CHF was analyzed by reverse transcription-quantitative PCR. Furthermore, inter-indicator correlations were assessed by Pearson correlation coefficient analysis. Receiver operating characteristic (ROC) curves were generated to evaluate the ability of NEAT1, miR-129-5p and brain natriuretic peptide (BNP) to identify patients with CHF. The prognostic value of the NEAT1/miR-129-5p axis was analyzed by drawing Kaplan-Meier survival curves and by Cox logistic regression analysis. Baseline data were not significantly different between CHF (n=70) and control subjects (n=62). The serum level of NEAT1 was increased and the expression level of miR-129-5p was decreased in patients with CHF (all P<0.001). The ROC curves suggested that serum NEAT1 and miR-129-5p were of diagnostic value in patients with CHF and the combined diagnostic accuracy of NEAT1, miR-129-5p and BNP was significantly improved. Kaplan-Meier and multivariate Cox regression analysis suggested that low NEAT1 and high miR-129-5p were able to predict overall survival of patients with CHF (all P<0.01). In conclusion, the present study indicated that patients with CHF had increased NEAT1 and decreased miR-129-5p expression. The deregulated NEAT1/miR-129-5p axis may provide novel non-invasive biomarkers for the diagnosis and prognosis of CHF.
Collapse
Affiliation(s)
- Haohua Zhang
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Nianli Zhang
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Wenbin Jiang
- Department of Cardiovascular Surgery, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| | - Xiaoqin Lun
- Department of Anesthesiology, Weifang People's Hospital, Weifang, Shandong 261041, P.R. China
| |
Collapse
|
24
|
Ling S, Xu JW. NETosis as a Pathogenic Factor for Heart Failure. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2021; 2021:6687096. [PMID: 33680285 PMCID: PMC7929675 DOI: 10.1155/2021/6687096] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 02/07/2021] [Accepted: 02/12/2021] [Indexed: 12/13/2022]
Abstract
Heart failure threatens the lives of patients and reduces their quality of life. Heart failure, especially heart failure with preserved ejection fraction, is closely related to systemic and local cardiac persistent chronic low-grade aseptic inflammation, microvascular damage characterized by endothelial dysfunction, oxidative stress, myocardial remodeling, and fibrosis. However, the initiation and development of persistent chronic low-grade aseptic inflammation is unexplored. Oxidative stress-mediated neutrophil extracellular traps (NETs) are the main immune defense mechanism against external bacterial infections. Furthermore, NETs play important roles in noninfectious diseases. After the onset of myocardial infarction, atrial fibrillation, or myocarditis, neutrophils infiltrate the damaged tissue and aggravate inflammation. In tissue injury, damage-related molecular patterns (DAMPs) may induce pattern recognition receptors (PRRs) to cause NETs, but whether NETs are directly involved in the pathogenesis and development of heart failure and the mechanism is still unclear. In this review, we analyzed the markers of heart failure and heart failure-related diseases and comorbidities, such as mitochondrial DNA, high mobility box group box 1, fibronectin extra domain A, and galectin-3, to explore their role in inducing NETs and to investigate the mechanism of PRRs, such as Toll-like receptors, receptor for advanced glycation end products, cGAS-STING, and C-X-C motif chemokine receptor 2, in activating NETosis. Furthermore, we discussed oxidative stress, especially the possibility that imbalance of thiol redox and MPO-derived HOCl promotes the production of 2-chlorofatty acid and induces NETosis, and analyzed the possibility of NETs triggering coronary microvascular thrombosis. In some heart diseases, the deletion or blocking of neutrophil-specific myeloperoxidase and peptidylarginine deiminase 4 has shown effectiveness. According to the results of current pharmacological studies, MPO and PAD4 inhibitors are effective at least for myocardial infarction, atherosclerosis, and certain autoimmune diseases, whose deterioration can lead to heart failure. This is essential for understanding NETosis as a therapeutic factor of heart failure and the related new pathophysiology and therapeutics of heart failure.
Collapse
Affiliation(s)
- Shuang Ling
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| | - Jin-Wen Xu
- Institute of Interdisciplinary Medical Science, Shanghai University of Traditional Chinese Medicine, Shanghai 201203, China
| |
Collapse
|
25
|
Ye H, Xu G, Zhang D, Wang R. The protective effects of the miR-129-5p/keap-1/Nrf2 axis on Ang II-induced cardiomyocyte hypertrophy. ANNALS OF TRANSLATIONAL MEDICINE 2021; 9:154. [PMID: 33569456 PMCID: PMC7867905 DOI: 10.21037/atm-20-8079] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/29/2022]
Abstract
Background Cardiac hypertrophy is a common pathological process in many cardiac diseases, and persistent cardiac hypertrophy is the main cause of heart failure and sudden cardiogenic death. Thus, it is essential to elucidate the mechanism of cardiac hypertrophy to ensure better prevention and treatment. Methods The Human cardiac myocytes (HCMs) were incubated with 100 nmol/L Ang II (Sigma) for 48 hours to induce the in vitro cardiomyocyte hypertrophy model. The [(3H])-leucine incorporation assay was used to evaluate cardiomyocytes hypertrophy. The activities of oxidative stress related enzymes superoxide dismutase (SOD), catalase (CAT), malondialdehyde (MDA) and nitric oxide (NO) were detected using corresponding detection kits following standard protocol. Targeting relationship was verified through Bioinformatics analysis and luciferase reporter gene assay. The morphological change of cardiomyocyte was observed through immunofluorescence staining. Expressions of message ribonucleic acid (mRNA) and proteins were detected by quantitative real-time polymerase chain reaction and western blot, respectively. Results In our study, the suppressed expression of micro ribonucleic acid (miRNA)-129-5p and the elevated expression of kelch-like ECH-associated protein 1 (keap-1) were found in the angiotensin II (Ang II)-induced cardiomyocyte hypertrophy model. MiR-129-5p effectively mimics suppressed Ang II-induced hypertrophic responses and oxidative stress. The results also showed that keap-1 was a target of miR-129-5p, and that the miR-129-5p inhibitor promoted cardiomyocyte hypertrophy and oxidative stress by elevating keap-1. Additionally, small interfering RNA (siRNA)-keap-1 activated the nuclear factor erythroid2-related factor 2 (Nrf2) pathway, while the miR-129-5p inhibitor inactivated the Nrf2 pathway by further elevating keap-1. The addition of the Nrf2 pathway activator NK-252 largely weakened the promoting effects of the miR-129-5p inhibitor on the progression of cardiomyocyte hypertrophy by suppressing oxidative stress. Conclusions In general, the results indicate that the overexpression of miRNA-129-5p protects against cardiomyocyte hypertrophy by targeting keap-1 via the Nrf2 pathway.
Collapse
Affiliation(s)
- Huiming Ye
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Guiyu Xu
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Dexian Zhang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| | - Rupeng Wang
- Department of Cardiology, Beijing Shijitan Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
26
|
Guo X, Piao H, Zhang Y, Sun P, Yao B. Overexpression of microRNA-129-5p in glioblastoma inhibits cell proliferation, migration, and colony-forming ability by targeting ZFP36L1. Bosn J Basic Med Sci 2020; 20:459-470. [PMID: 31999936 PMCID: PMC7664791 DOI: 10.17305/bjbms.2019.4503] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2019] [Accepted: 11/24/2019] [Indexed: 12/21/2022] Open
Abstract
Glioblastoma multiforme (GBM) is a highly invasive cancer with a high recurrence rate. The prognosis of GBM patients remains poor, even after standard surgical resection combined with chemoradiotherapy. Thus, there is an urgent need for new therapeutic targets in GBM. In recent years, microRNAs have received considerable attention due to their important role in tumor development and progression. In this study, we investigated the role of miR-129-5p and miR-129-5p/ZFP36L1 axis in GBM tumorigenesis. Analysis of GSE103228 microarray data from the GEO database showed that miR-129-5p was significantly downregulated in GBM vs. normal brain tissues. Quantitative reverse transcription PCR analysis of miR-129-5p expression in seven GBM cell lines (LN229, A172, U87, T98G, U251, H4, and LN118) vs. normal human astrocytes (NHA) showed miR-129-5p was significantly downregulated in GBM cells. Overexpression of miR-129-5p in LN229 and A172 cells significantly suppressed cell proliferation, migration, invasion, and colony-forming ability. Target Scan analysis identified ZFP36L1 as the target of miR-129-5p. UALCAN dataset analysis found that ZFP36L1 was significantly upregulated in GBM vs. normal brain tissues, and high ZFP36L1 expression was positively associated with poor survival of GBM patients. Western blot analysis demonstrated that ZFP36L1 was significantly upregulated in seven GBM cell lines vs. NHA. Overexpression of miR-129-5p in LN229 and A172 cells significantly inhibited ZFP36L1 mRNA and protein expression, while overexpression of ZFP36L1 in LN229 and A172 cells reversed miR-129-5p-mediated inhibition on GBM tumorigenesis. Our results revealed an important role of miR-129-5p in the negative regulation of ZFP36L1 expression in GBM, suggesting new candidates for targeted therapy in GBM patients.
Collapse
Affiliation(s)
- Xu Guo
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Haozhe Piao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Ye Zhang
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Peixin Sun
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| | - Bing Yao
- Department of Neurosurgery, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
27
|
LncRNA FAM181A-AS1 promotes gliomagenesis by sponging miR-129-5p and upregulating ZRANB2. Aging (Albany NY) 2020; 12:20069-20084. [PMID: 33080570 PMCID: PMC7655169 DOI: 10.18632/aging.103391] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Accepted: 05/20/2020] [Indexed: 02/06/2023]
Abstract
In this study, we investigated the functional and clinical significance of the long non-coding RNA (lncRNA) FAM181A-AS1 in human gliomas. TCGA, GTEx and CGGA database analyses showed that high FAM181A-AS1 expression correlates with advanced tumor stage and poor survival of glioma patients. FAM181A-AS1 expression is higher in glioma cell lines compared to normal human astrocytes (NHA). CCK-8, EdU, and colony formation assays show that FAM181A-AS1 knockdown decreases proliferation and colony formation in glioma cells, whereas, FAM181A-AS1 overexpression reverses these effects. Bioinformatics analysis showed that miR-129-5p is a potential target of FAM181A-AS1. MiR-129-5p expression negatively correlates with FAM181A-AS1 expression in glioma patients. Dual luciferase reporter assays confirmed that miR-129-5p binds directly to FAM181A-AS1 in glioma cells. RNA immunoprecipitation (RIP) assays using anti-Ago2 antibody pulled down FAM181A-AS1 with miR-129-5p. Bioinformatics analysis identified ZRANB2 as a potential miR-129-5p target gene. Dual luciferase reporter assays confirmed that miR-129-5p binds directly to the 3'-UTR of ZRANB2 mRNA. Furthermore, miR-129-5p overexpression or ZRANB2 knockdown reduces proliferation and colony formation of FAM181A-AS1 overexpressing glioma cells. These findings show that FAM181A-AS1 promotes gliomagenesis by enhancing ZRANB2 expression by sponging of miR-129-5p.
Collapse
|
28
|
Huang X, Hou X, Chuan L, Wei S, Wang J, Yang X, Ru J. miR-129-5p alleviates LPS-induced acute kidney injury via targeting HMGB1/TLRs/NF-kappaB pathway. Int Immunopharmacol 2020; 89:107016. [PMID: 33039954 DOI: 10.1016/j.intimp.2020.107016] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2020] [Revised: 09/07/2020] [Accepted: 09/14/2020] [Indexed: 12/15/2022]
Abstract
INTRODUCTION The present study aimed to investigate whether miR-129-5p can regulate high-mobility group box protein 1 (HMGB1)-modulated TLRs/NF-kappaB inflammatory pathway that contributed to lipopolysaccharide (LPS)-induced podocyte apoptosis and acutekidneyinjury (AKI). MATERIAL AND METHODS In vitro and in vivo models of sepsis were simulated using LPS-administrated podocytes and mice, respectively. The effects of LPS, mR-129-5p mimics and short hairpin RNA of HMGB1 (sh-HMGB1) on podocyte apoptosis were monitored using TUNEL staining. Protein expression was measured using western blotting. Survival outcomes were analyzed in septic mice with agomir-mR-129-5p administration. RESULTS We observed that stimulation of podocytes with LPS significantly inhibits the expression of miR-129-5p, and overexpression of miR-129-5p protects against LPS-induced podocyte damage, over-activation of inflammatory response and apoptosis. In a mouse model, agomir-miR-129-5p administration significantly improves the survival outcomes in septic mice and LPS-induced AKI. Mechanically, LPS-induced the elevation of HMGB1, TLR2, TLR4 and nuclear NF-κB protein expression in vitro and in vivo are restrained by the overexpression of miR-129-5p. CONCLUSIONS Overexpression of miR-129-5p protects against LPS-induced podocyte apoptosis, inflammation and AKI in vivo and in vitro models of sepsis. The underlying molecular mechanism is mediated via attenuating HMGB1/TLRs/NF-κB signaling axis modulated inflammatory response.
Collapse
Affiliation(s)
- Xin Huang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiangping Hou
- Department of Laboratory, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China.
| | - Libo Chuan
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Shutao Wei
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jingrong Wang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Xiaohua Yang
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| | - Jin Ru
- Department of Critical Care Medicine, The First People's Hospital of Yunnan Province, Affiliated Hospital of Kunming University of Science and Technology, Kunming 650032, China
| |
Collapse
|
29
|
Overexpression of miR-129-5p Mitigates Sepsis-Induced Acute Lung Injury by Targeting High Mobility Group Box 1. J Surg Res 2020; 256:23-30. [PMID: 32682121 DOI: 10.1016/j.jss.2020.05.101] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Revised: 05/14/2020] [Accepted: 05/24/2020] [Indexed: 12/18/2022]
Abstract
BACKGROUND MicroRNAs are dysregulated in sepsis. Acute lung injury is a progressive syndrome during sepsis. However, the role of miR-129-5p in the development of acute lung injury induced by sepsis remains unclear. METHODS The acute lung injury of sepsis model was established by cecal ligation puncture (CLP)-treated mice and lipopolysaccharide (LPS)-treated murine alveolar epithelial cell line (MLE)-12 cells. The lung injury in vivo was investigated by hematoxylin and eosin staining, terminal dexynucleotidyl transferase (TdT)-mediated dUTP nick end labeling staining, enzyme-linked immunosorbent assay, lung wet-to-dry weight ratio, and myeloperoxidase activity. The lung injury in vitro was evaluated by 3-(4,5-dimethyl-2-thiazolyl)-2, 5-diphenyl-2-H-tetrazolium bromide, flow cytometry, and enzyme-linked immunosorbent assay. The expression levels of miR-129-5p and high mobility group box 1 (HMGB1) were measured by quantitative real-time polymerase chain reaction and Western blot. The association between miR-129-5p and HMGB1 was validated by luciferase assay and RNA immunoprecipitation. RESULTS The expression of miR-129-5p was decreased in CLP model and LPS-treated MLE-12 cells. Overexpression of miR-129-5p attenuated inflammatory response, apoptosis, lung wet/dry weight ratio, and myeloperoxidase activity induced by CLP surgery in vivo. Moreover, addition of miR-129-5p increased cell viability and suppressed cell apoptosis and inflammatory response in vitro. HMGB1 as a target of miR-129-5p alleviated miR-129-5p-mediated injury suppression in LPS-treated MLE-12 cells. CONCLUSIONS miR-129-5p protects against sepsis-induced acute lung injury by decreasing HMGB1 expression, providing new target for sepsis treatment.
Collapse
|
30
|
Climent M, Viggiani G, Chen YW, Coulis G, Castaldi A. MicroRNA and ROS Crosstalk in Cardiac and Pulmonary Diseases. Int J Mol Sci 2020; 21:ijms21124370. [PMID: 32575472 PMCID: PMC7352701 DOI: 10.3390/ijms21124370] [Citation(s) in RCA: 92] [Impact Index Per Article: 18.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 06/14/2020] [Accepted: 06/16/2020] [Indexed: 12/12/2022] Open
Abstract
Reactive oxygen species (ROS) affect many cellular functions and the proper redox balance between ROS and antioxidants contributes substantially to the physiological welfare of the cell. During pathological conditions, an altered redox equilibrium leads to increased production of ROS that in turn may cause oxidative damage. MicroRNAs (miRNAs) regulate gene expression at the post-transcriptional level contributing to all major cellular processes, including oxidative stress and cell death. Several miRNAs are expressed in response to ROS to mediate oxidative stress. Conversely, oxidative stress may lead to the upregulation of miRNAs that control mechanisms to buffer the damage induced by ROS. This review focuses on the complex crosstalk between miRNAs and ROS in diseases of the cardiac (i.e., cardiac hypertrophy, heart failure, myocardial infarction, ischemia/reperfusion injury, diabetic cardiomyopathy) and pulmonary (i.e., idiopathic pulmonary fibrosis, acute lung injury/acute respiratory distress syndrome, asthma, chronic obstructive pulmonary disease, lung cancer) compartments. Of note, miR-34a, miR-144, miR-421, miR-129, miR-181c, miR-16, miR-31, miR-155, miR-21, and miR-1/206 were found to play a role during oxidative stress in both heart and lung pathologies. This review comprehensively summarizes current knowledge in the field.
Collapse
Affiliation(s)
- Montserrat Climent
- Humanitas Clinical and Research Center—IRCCS, Via Manzoni 56, 20089 Rozzano, MI, Italy;
| | - Giacomo Viggiani
- Department of Biomedical Sciences, Humanitas University, 20090 Pieve Emanuele, MI, Italy;
| | - Ya-Wen Chen
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Department of Stem Cell Biology and Regenerative Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA
| | - Gerald Coulis
- Department of Physiology and Biophysics, and Institute for Immunology, University of California Irvine, Irvine, CA 92697, USA;
| | - Alessandra Castaldi
- Hastings Center for Pulmonary Research and Division of Pulmonary, Critical Care and Sleep Medicine, Department of Medicine, Keck School of Medicine, University of Southern California, Los Angeles, CA 90033, USA;
- Correspondence:
| |
Collapse
|
31
|
Long Y, Wang L, Li Z. SP1-induced SNHG14 aggravates hypertrophic response in in vitro model of cardiac hypertrophy via up-regulation of PCDH17. J Cell Mol Med 2020; 24:7115-7126. [PMID: 32436661 PMCID: PMC7339172 DOI: 10.1111/jcmm.15073] [Citation(s) in RCA: 28] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 01/26/2020] [Accepted: 02/04/2020] [Indexed: 12/19/2022] Open
Abstract
Cardiac hypertrophy (CH) is a common cardiac disease and is closely associated with heart failure. Protocadherin 17 (PCDH17) was reported to aggravate myocardial infarction. Present study was designed to illustrate the impact of PCDH17 and the mechanism of PCDH17 expression regulation in CH. CH model in vivo and in vitro was established by transverse aortic constriction (TAC) and Ang‐II treatment. Hypertrophy was evaluated in PMC and H9c2 cells by examining cell surface area and hypertrophic markers. Results demonstrated that PCDH17 was up‐regulated in CH in vivo and in vitro. PCDH17 knock‐down alleviated hypertrophic response in Ang‐II‐induced cardiomyocytes. By means of ENCORI database and a series of mechanism assays, miR‐322‐5p and miR‐384‐5p were identified to interact with and inhibit PCDH17. Next, lncRNA SNHG14 (small nucleolar RNA host gene 14) was validated to sponge both miR‐322‐5p and miR‐384‐5p to elevate PCDH17 level. The subsequent rescue assays revealed that miR‐322‐5p and miR‐384‐5p restored SNHG14 depletion‐mediated suppression on hypertrophy in Ang‐II‐induced cardiomyocytes. Besides, Sp1 transcription factor (SP1) was verified as the transcription factor activating both SNHG14 and PCDH17. Both SNHG14 and PCDH17 reversed SP1 knock‐down‐mediated repression on hypertrophy in Ang‐II‐induced cardiomyocytes. Together, present study first uncovered ceRNA network of SNHG14/miR‐322‐5p/miR‐384‐5p/PCDH17 in Ang‐II‐induced cardiomyocytes.
Collapse
Affiliation(s)
- Yadong Long
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Lin Wang
- Department of Cardiovascular Surgery, Xiangya Hospital, Central South University, Changsha, China
| | - Zhiqiang Li
- Cardiovascular Surgery II, National Center for Children's Health, Beijing Children's Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
32
|
Zhu HL, Chen YQ, Zhang ZF. Downregulation of lncRNA ZFAS1 and upregulation of microRNA-129 repress endocrine disturbance, increase proliferation and inhibit apoptosis of ovarian granulosa cells in polycystic ovarian syndrome by downregulating HMGB1. Genomics 2020; 112:3597-3608. [PMID: 32320818 DOI: 10.1016/j.ygeno.2020.04.011] [Citation(s) in RCA: 34] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2019] [Revised: 01/17/2020] [Accepted: 04/17/2020] [Indexed: 12/14/2022]
Abstract
OBJECTIVE The objective was to find the role of long-non-coding RNA zinc finger antisense 1 (lncRNA ZFAS1)/microRNA (miR)-129/high-mobility group box protein 1 (HMGB1) axis in polycystic ovary syndrome (PCOS). METHODS Ovarian granulosa cells from non-PCOS patients and PCOS patients were collected, and HMGB1, miR-129 and lncRNA ZFAS1 expression were detected. Ovarian granulosa cells were transfected with si-ZFAS1 or miR-129 mimics to verify their roles in P4 and E2 secretion, and the biological functions of ovarian granulosa cells. RESULTS LncRNA ZFAS1 and HMGB1 were elevated, while miR-129 was down-regulated in ovarian granulosa cells of PCOS patients. Down-regulated lncRNA ZFAS1 or overexpressed miR-129 could decrease HMGB1 expression, increase P4 and E2 secretion, promote proliferation activity while inhibit apoptosis of ovarian granulosa cells in PCOS. CONCLUSION LncRNA ZFAS1 could bind to miR-129 to promote HMGB1 expression, thereby affecting the endocrine disturbance, proliferation and apoptosis of ovarian granulosa cells in PCOS.
Collapse
Affiliation(s)
- Hong-Li Zhu
- Department of Gynecology and Obstetrics, Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou 310010, Zhejiang, PR China
| | - Yue-Qun Chen
- Department of Gynecology and Obstetrics, Affiliated Hangzhou First People's Hospital of Zhejiang University, Hangzhou 310010, Zhejiang, PR China
| | - Zhi-Fen Zhang
- Department of Gynecology and Obstetrics, Affiliated Hangzhou People's Hospital of Nanjing Medical University, Hangzhou 310010, Zhejiang, PR China.
| |
Collapse
|