1
|
Malik HS, Magnotti F, Loeven NA, Delgado JM, Kettenbach AN, Henry T, Bliska JB. Phosphoprotein phosphatase activity positively regulates oligomeric pyrin to trigger inflammasome assembly in phagocytes. mBio 2023; 14:e0206623. [PMID: 37787552 PMCID: PMC10653879 DOI: 10.1128/mbio.02066-23] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 08/14/2023] [Indexed: 10/04/2023] Open
Abstract
IMPORTANCE Pyrin, a unique cytosolic receptor, initiates inflammatory responses against RhoA-inactivating bacterial toxins and effectors like Yersinia's YopE and YopT. Understanding pyrin regulation is crucial due to its association with dysregulated inflammatory responses, including Familial Mediterranean Fever (FMF), linked to pyrin gene mutations. FMF mutations historically acted as a defense mechanism against plague. Negative regulation of pyrin through PKN phosphorylation is well established, with Yersinia using the YopM effector to promote pyrin phosphorylation and counteract its activity. This study highlights the importance of phosphoprotein phosphatase activity in positively regulating pyrin inflammasome assembly in phagocytic cells of humans and mice. Oligomeric murine pyrin has S205 phosphorylated before inflammasome assembly, and this study implicates the dephosphorylation of murine pyrin S205 by two catalytic subunits of PP2A in macrophages. These findings offer insights for investigating the regulation of oligomeric pyrin and the balance of kinase and phosphatase activity in pyrin-associated infectious and autoinflammatory diseases.
Collapse
Affiliation(s)
- Haleema S. Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - Nicole A. Loeven
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Department of Pathology and Laboratory Medicine, Hospital of the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Jose M. Delgado
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| | - Arminja N. Kettenbach
- Department of Biochemistry and Cell Biology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
- Dartmouth Cancer Center, Lebanon, New Hampshire, USA
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U111, Université Claude Bernard Lyon, CNRS, UMR5308, ENS de Lyon, Univ Lyon, Lyon, France
| | - James B. Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, New Hampshire, USA
| |
Collapse
|
2
|
Zhang L, Du G, Teng B, Shi X, He X, Li N, Chen Y, Xu R. Vascular anatomy-based localization of intervertebral discs assisting needle puncture for constructing a mouse model of mechanical injury-induced lumbar intervertebral disc degeneration. Biochem Biophys Res Commun 2022; 634:196-202. [DOI: 10.1016/j.bbrc.2022.10.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2022] [Revised: 09/19/2022] [Accepted: 10/05/2022] [Indexed: 11/29/2022]
|
3
|
Magnotti F, Chirita D, Dalmon S, Martin A, Bronnec P, Sousa J, Helynck O, Lee W, Kastner DL, Chae JJ, McDermott MF, Belot A, Popoff M, Sève P, Georgin-Lavialle S, Munier-Lehmann H, Tran TA, De Langhe E, Wouters C, Jamilloux Y, Henry T. Steroid hormone catabolites activate the pyrin inflammasome through a non-canonical mechanism. Cell Rep 2022; 41:111472. [PMID: 36223753 PMCID: PMC9626387 DOI: 10.1016/j.celrep.2022.111472] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2021] [Revised: 06/18/2022] [Accepted: 09/16/2022] [Indexed: 11/24/2022] Open
Abstract
The pyrin inflammasome acts as a guard of RhoA GTPases and is central to immune defenses against RhoA-manipulating pathogens. Pyrin activation proceeds in two steps. Yet, the second step is still poorly understood. Using cells constitutively activated for the pyrin step 1, a chemical screen identifies etiocholanolone and pregnanolone, two catabolites of testosterone and progesterone, acting at low concentrations as specific step 2 activators. High concentrations of these metabolites fully and rapidly activate pyrin, in a human specific, B30.2 domain-dependent manner and without inhibiting RhoA. Mutations in MEFV, encoding pyrin, cause two distinct autoinflammatory diseases pyrin-associated autoinflammation with neutrophilic dermatosis (PAAND) and familial Mediterranean fever (FMF). Monocytes from PAAND patients, and to a lower extent from FMF patients, display increased responses to these metabolites. This study identifies an unconventional pyrin activation mechanism, indicates that endogenous steroid catabolites can drive autoinflammation, through the pyrin inflammasome, and explains the "steroid fever" described in the late 1950s upon steroid injection in humans.
Collapse
Affiliation(s)
- Flora Magnotti
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Daria Chirita
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Sarah Dalmon
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Amandine Martin
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Pauline Bronnec
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Jeremy Sousa
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France
| | - Olivier Helynck
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Chemistry and Biocatalysis Unit, 75724 Paris Cedex 15, France
| | - Wonyong Lee
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Daniel L Kastner
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Jae Jin Chae
- Inflammatory Disease Section, Metabolic, Cardiovascular and Inflammatory Disease Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Michael F McDermott
- Leeds Institute of Rheumatic and Musculoskeletal Medicine, St James's University Hospital, Leeds, UK
| | - Alexandre Belot
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France; Department of Pediatric Nephrology, Rheumatology, Dermatology, Reference Centre for Rheumatic, AutoImmune and Systemic Diseases in Children (RAISE), Hôpital Femme Mère Enfant, CHU Lyon, Lyon, France; LIFE, Lyon Immunopathology Federation, Lyon, France
| | | | - Pascal Sève
- Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France
| | - Sophie Georgin-Lavialle
- Sorbonne University, Department of Internal Medicine, Tenon Hospital, DMU 3ID, AP-HP, National Reference Center for Autoinflammatory Diseases and Inflammatory Amyloidosis (CEREMAIA), INSERM U938, Paris, France
| | - Hélène Munier-Lehmann
- Institut Pasteur, Université de Paris Cité, CNRS UMR3523, Chemistry and Biocatalysis Unit, 75724 Paris Cedex 15, France
| | - Tu Anh Tran
- Department of Pediatrics, Carémeau Hospital, CHU Nîmes, Nîmes, France
| | - Ellen De Langhe
- Division of Rheumatology, University Hospitals Leuven, Leuven, Belgium; Laboratory of Tissue Homeostasis and Disease, Department of Development and Regeneration, KU Leuven, Leuven, Belgium
| | - Carine Wouters
- KU Leuven-University of Leuven, Department of Microbiology and Immunology, Laboratory of Adaptive Immunology & Immunobiology, Leuven, Belgium; Department of Pediatrics, University Hospitals Leuven, 3000 Leuven, Belgium
| | - Yvan Jamilloux
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France; LIFE, Lyon Immunopathology Federation, Lyon, France; Department of Internal Medicine, University Hospital Croix-Rousse, Lyon 1 University, Lyon, France.
| | - Thomas Henry
- CIRI, Centre International de Recherche en Infectiologie, Inserm U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de Lyon, University Lyon, 69007 Lyon, France.
| |
Collapse
|
4
|
Samukawa S, Yoshimi R, Kirino Y, Nakajima H. The PRY/SPRY domain of pyrin/TRIM20 interacts with β 2-microglobulin to promote inflammasome formation. Sci Rep 2021; 11:23613. [PMID: 34880353 PMCID: PMC8654936 DOI: 10.1038/s41598-021-03073-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Accepted: 11/26/2021] [Indexed: 01/04/2023] Open
Abstract
Pyrin/TRIM20 is expressed in the neutrophils and monocytes/macrophages and regulates caspase-1 activation and interleukin-1β maturation. Although the mutations in the PRY/SPRY domain of pyrin cause familial Mediterranean fever (FMF), the mechanism of how mutated pyrin provokes excessive inflammation in FMF patients is not well understood. The present study investigated the role of pyrin/TRIM20 in inflammation and the pathogenesis of FMF. β2-Microglobulin (β2MG) was identified as the novel pyrin ligand binding to the PRY/SPRY domain by yeast two-hybrid screenings and co-immunoprecipitation analysis. β2MG was co-localized with pyrin not only in the HEK293 cells overexpressing these proteins but also in the monosodium urate-stimulated human neutrophils in the speck-like structures. The pyrin–β2MG interaction triggered the binding of pyrin and proline–serine–threonine phosphatase interacting protein 1 (PSTPIP1) and then the subsequent recruitment of apoptosis-associated speck-like protein containing caspase recruitment domain (ASC). Caspase-1 p20 subunit, produced by pyrin inflammasome, also interacted with the pyrin PRY/SPRY domain and inhibited the pyrin–β2MG interaction. FMF-associated pyrin mutation M694V did not affect pyrin–β2MG interaction but weakened this inhibition. Our findings suggest that β2MG functions as the pyrin ligand inducing pyrin inflammasome formation and that the FMF-associated pyrin mutations weakened negative feedback of caspase-1 p20 subunit.
Collapse
Affiliation(s)
- Sei Samukawa
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Ryusuke Yoshimi
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan.
| | - Yohei Kirino
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| | - Hideaki Nakajima
- Department of Stem Cell and Immune Regulation, Yokohama City University Graduate School of Medicine, 3-9 Fukuura, Kanazawa-ku, Yokohama, 236-0004, Japan
| |
Collapse
|
5
|
Recurrent expansions of B30.2-associated immune receptor families in fish. Immunogenetics 2021; 74:129-147. [PMID: 34850255 DOI: 10.1007/s00251-021-01235-4] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Accepted: 11/16/2021] [Indexed: 12/12/2022]
Abstract
B30.2 domains, also known as PRY/SPRY, are key components of specific subsets of two large families of proteins involved in innate immunity: the tripartite motif proteins (TRIMs) and the Nod-like receptors (NLRs). TRIM proteins are important, often inducible factors of antiviral innate immunity, targeting multiple steps of viral cycles through a variety of mechanisms. NLRs prime and regulate systemic innate defenses, especially against bacteria, and control inflammation. Large TRIM and NLR subsets characterized by the presence of a B30.2 domain have been reported from a few fish species including zebrafish and seem to be strongly prone to gene duplication/expansion. Here, we performed a large-scale survey of these receptors across about 150 fish genomes, focusing on ray-finned fishes. We assessed the number and genomic distribution of domains and domain combinations associated with TRIMs, NLRs, and other genes containing B30.2 domains and looked for gene expansion patterns across fish groups. We then used a model to test the impact of taxonomy, genome size, and environmental variables on the copy numbers of these genes. Our findings reveal novel domain structures, clade-specific gains and losses. They also assist with the timing of the gene expansions, reveal patterns associated with the MHC, and lay the groundwork for further studies delving deeper into the forces that drive the copy number variation of immune genes on a species level.
Collapse
|
6
|
Malik HS, Bliska JB. The pyrin inflammasome and the Yersinia effector interaction. Immunol Rev 2020; 297:96-107. [PMID: 32721043 DOI: 10.1111/imr.12907] [Citation(s) in RCA: 26] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2020] [Accepted: 07/08/2020] [Indexed: 12/11/2022]
Abstract
Pyrin is a cytosolic pattern-recognition receptor that normally functions as a guard to trigger capase-1 inflammasome assembly in response to bacterial toxins and effectors that inactivate RhoA. The MEFV gene encoding human pyrin is preferentially expressed in phagocytes. Key domains in pyrin include a pyrin domain (PYD), a linker region, and a B30.2 domain. Binding of ASC to pyrin by a PYD-PYD interaction triggers inflammasome assembly. Pyrin is held in an inactive conformation by negative regulation mechanisms to avoid premature inflammasome assembly. One mechanism of negative regulation involves phosphorylation of the linker by PRK kinase which in turn is positively regulated by active RhoA. The B30.2 domain also negatively regulates pyrin. Gain of function mutations in MEFV responsible for the autoinflammatory disease Familial Mediterranean Fever (FMF) map to exon 10 encoding the B30.2 domain. Insights into pyrin regulation have come from studies of several Yersinia effectors, which are injected into phagocytes and interact with the RhoA-PRK-pyrin axis during infection. Two effectors, YopE and YopT, inactivate RhoA to disrupt phagocytic signaling. To counteract an effector-triggered immune response, a third effector, YopM, binds to and inhibits pyrin by hijacking PRK and RSK and directing linker phosphorylation. Inhibition of pyrin by YopM is required for virulence of Yersinia pestis, the agent of plague. Recent results from infection studies with human phagocytes and mice producing pyrin B30.2 FMF variants show that gain of function MEFV mutations bypass inhibition by YopM. Population genetic data suggest that MEFV mutations were selected for in individuals of Mediterranean decent during historic plague pandemics. This review discusses current concepts of pyrin regulation and its interaction with Yersinia effectors.
Collapse
Affiliation(s)
- Haleema S Malik
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| | - James B Bliska
- Department of Microbiology and Immunology, Geisel School of Medicine at Dartmouth, Hanover, NH, USA
| |
Collapse
|
7
|
Ancient familial Mediterranean fever mutations in human pyrin and resistance to Yersinia pestis. Nat Immunol 2020; 21:857-867. [PMID: 32601469 PMCID: PMC7381377 DOI: 10.1038/s41590-020-0705-6] [Citation(s) in RCA: 79] [Impact Index Per Article: 15.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 05/07/2020] [Indexed: 02/07/2023]
Abstract
Familial Mediterranean fever (FMF) is an autoinflammatory disease caused by homozygous or compound heterozygous gain-of-function mutations in MEFV, encoding pyrin, an inflammasome protein. Heterozygous carrier frequencies for multiple MEFV mutations are high in several Mediterranean populations, suggesting that they confer selective advantage. Among 2,313 Turks, we found extended haplotype homozygosity flanking FMF-associated mutations, indicating evolutionarily recent positive selection of FMF-associated mutations. Two pathogenic pyrin variants independently arose >1,800 years ago. Mutant pyrin interacts less avidly with Yersinia pestis virulence factor YopM than wild type human pyrin, thereby attenuating YopM-induced IL-1β suppression. Relative to healthy controls, leukocytes from FMF patients harboring homozygous or compound heterozygous mutations and from asymptomatic heterozygous carriers released heightened IL-1β specifically in response to Y. pestis. Y. pestis-infected MefvM680I/M680I FMF knock-in mice exhibited IL-1-dependent increased survival relative to wild-type knock-in mice. Thus, FMF mutations that were positively selected in Mediterranean populations confer heightened resistance to Y. pestis.
Collapse
|
8
|
Benaoudia S, Martin A, Puig Gamez M, Gay G, Lagrange B, Cornut M, Krasnykov K, Claude J, Bourgeois CF, Hughes S, Gillet B, Allatif O, Corbin A, Ricci R, Henry T. A genome-wide screen identifies IRF2 as a key regulator of caspase-4 in human cells. EMBO Rep 2019; 20:e48235. [PMID: 31353801 PMCID: PMC6727027 DOI: 10.15252/embr.201948235] [Citation(s) in RCA: 64] [Impact Index Per Article: 10.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2019] [Revised: 07/01/2019] [Accepted: 07/10/2019] [Indexed: 12/12/2022] Open
Abstract
Caspase-4, the cytosolic LPS sensor, and gasdermin D, its downstream effector, constitute the non-canonical inflammasome, which drives inflammatory responses during Gram-negative bacterial infections. It remains unclear whether other proteins regulate cytosolic LPS sensing, particularly in human cells. Here, we conduct a genome-wide CRISPR/Cas9 screen in a human monocyte cell line to identify genes controlling cytosolic LPS-mediated pyroptosis. We find that the transcription factor, IRF2, is required for pyroptosis following cytosolic LPS delivery and functions by directly regulating caspase-4 levels in human monocytes and iPSC-derived monocytes. CASP4, GSDMD, and IRF2 are the only genes identified with high significance in this screen highlighting the simplicity of the non-canonical inflammasome. Upon IFN-γ priming, IRF1 induction compensates IRF2 deficiency, leading to robust caspase-4 expression. Deficiency in IRF2 results in dampened inflammasome responses upon infection with Gram-negative bacteria. This study emphasizes the central role of IRF family members as specific regulators of the non-canonical inflammasome.
Collapse
Affiliation(s)
- Sacha Benaoudia
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Amandine Martin
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Marta Puig Gamez
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Centre National de la Recherche Scientifique, UMR 7104Institut National de la Santé et de la Recherche Médicale U964Université de StrasbourgIllkirchFrance
- Laboratoire de Biochimie et de Biologie MoléculaireNouvel Hôpital CivilStrasbourgFrance
- Université de StrasbourgStrasbourgFrance
- INGESTEM National iPSC InfrastructureVillejuifFrance
| | - Gabrielle Gay
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Brice Lagrange
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Maxence Cornut
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Kyrylo Krasnykov
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| | - Jean‐Baptiste Claude
- LBMC, Laboratoire de Biologie et Modélisation de la celluleUniversité Claude Bernard Lyon 1INSERM U1210, CNRS, UMR5239École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Cyril F Bourgeois
- LBMC, Laboratoire de Biologie et Modélisation de la celluleUniversité Claude Bernard Lyon 1INSERM U1210, CNRS, UMR5239École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Sandrine Hughes
- Sequencing PlatformInstitut de Génomique Fonctionnelle de Lyon (IGFL)Université Claude Bernard Lyon 1, CNRS, UMR5242École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Benjamin Gillet
- Sequencing PlatformInstitut de Génomique Fonctionnelle de Lyon (IGFL)Université Claude Bernard Lyon 1, CNRS, UMR5242École Normale Supérieure de LyonUniv LyonLyonFrance
| | - Omran Allatif
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
- BIBS, Bioinformatic and Biostatic ServicesCIRILyonFrance
| | - Antoine Corbin
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
- BIBS, Bioinformatic and Biostatic ServicesCIRILyonFrance
| | - Romeo Ricci
- Institut de Génétique et de Biologie Moléculaire et Cellulaire (IGBMC)Centre National de la Recherche Scientifique, UMR 7104Institut National de la Santé et de la Recherche Médicale U964Université de StrasbourgIllkirchFrance
- Laboratoire de Biochimie et de Biologie MoléculaireNouvel Hôpital CivilStrasbourgFrance
- Université de StrasbourgStrasbourgFrance
- INGESTEM National iPSC InfrastructureVillejuifFrance
| | - Thomas Henry
- CIRI, Centre International de Recherche en InfectiologieInserm, U1111, Université Claude Bernard Lyon 1, CNRS, UMR5308, ENS de LyonUniv LyonLyonFrance
| |
Collapse
|
9
|
Gurung P, Kanneganti TD. Autoinflammatory Skin Disorders: The Inflammasomme in Focus. Trends Mol Med 2016; 22:545-564. [PMID: 27267764 PMCID: PMC4925313 DOI: 10.1016/j.molmed.2016.05.003] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2016] [Accepted: 05/10/2016] [Indexed: 12/24/2022]
Abstract
Autoinflammatory skin disorders are a group of heterogeneous diseases that include diseases such as cryopyrin-associated periodic syndrome (CAPS) and familial Mediterranean fever (FMF). Therapeutic strategies targeting IL-1 cytokines have proved helpful in ameliorating some of these diseases. While inflammasomes are the major regulators of IL-1 cytokines, inflammasome-independent complexes can also process IL-1 cytokines. Herein, we focus on recent advances in our understanding of how IL-1 cytokines, stemming from inflammasome-dependent and -independent pathways are involved in the regulation of skin conditions. Importantly, we discuss several mouse models of skin inflammation generated to help elucidate the basic cellular and molecular effects and modulation of IL-1 in the skin. Such models offer perspectives on how these signaling pathways could be targeted to improve therapeutic approaches in the treatment of these rare and debilitating inflammatory skin disorders.
Collapse
Affiliation(s)
- Prajwal Gurung
- Department of Immunology, St. Jude Children's Research Hospital, Memphis, TN 38105, USA
| | | |
Collapse
|
10
|
Sellin ME, Maslowski KM, Maloy KJ, Hardt WD. Inflammasomes of the intestinal epithelium. Trends Immunol 2015; 36:442-50. [PMID: 26166583 DOI: 10.1016/j.it.2015.06.002] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2015] [Revised: 06/16/2015] [Accepted: 06/16/2015] [Indexed: 02/08/2023]
Abstract
While the functional importance of inflammasomes in blood-derived cell types is well established, it remains poorly understood how inflammasomes in nonhematopoietic cells contribute to mucosal immunity. Recent studies have revealed functional roles of inflammasomes - particularly NAIP/NLRC4, NLRP6, and noncanonical caspase-4 (caspase-11) - within epithelial cells of the gut in mucosal immune defense, inflammation, and tumorigenesis. Here, we review and discuss these findings in the broader context of tissue compartment-specific mucosal immunity. We propose several models whereby activities of the intestinal epithelial inflammasomes converge on mechanisms to remove compromised epithelial cells, maintain host-microbiota mutualism, and communicate with immune cells of the underlying lamina propria.
Collapse
Affiliation(s)
- Mikael E Sellin
- Institute of Microbiology, ETH Zürich, 8093 Zürich, Switzerland.
| | - Kendle M Maslowski
- Laboratory for Intestinal Ecosystem, RIKEN Center for Integrative Medical Sciences, Yokohama 230-0045, Japan
| | - Kevin J Maloy
- Sir William Dunn School of Pathology, University of Oxford, South Parks Road, Oxford, OX1 3RE, UK
| | | |
Collapse
|
11
|
Sucharski F, Noga MJ, Suder P, Kotlińska J, Silberring J. Integrated workflow for quantitative phosphoproteomic analysis of the selected brain structures in development of morphine dependence. Pharmacol Rep 2014; 66:1003-10. [DOI: 10.1016/j.pharep.2014.06.012] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2014] [Revised: 05/20/2014] [Accepted: 06/05/2014] [Indexed: 11/25/2022]
|
12
|
Versteeg GA, Benke S, García-Sastre A, Rajsbaum R. InTRIMsic immunity: Positive and negative regulation of immune signaling by tripartite motif proteins. Cytokine Growth Factor Rev 2014; 25:563-76. [PMID: 25172371 PMCID: PMC7173094 DOI: 10.1016/j.cytogfr.2014.08.001] [Citation(s) in RCA: 107] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2014] [Accepted: 08/05/2014] [Indexed: 12/25/2022]
Abstract
During the immune response, striking the right balance between positive and negative regulation is critical to effectively mount an anti-microbial defense while preventing detrimental effects from exacerbated immune activation. Intra-cellular immune signaling is tightly regulated by various post-translational modifications, which allow for this dynamic response. One of the post-translational modifiers critical for immune control is ubiquitin, which can be covalently conjugated to lysines in target molecules, thereby altering their functional properties. This is achieved in a process involving E3 ligases which determine ubiquitination target specificity. One of the most prominent E3 ligase families is that of the tripartite motif (TRIM) proteins, which counts over 70 members in humans. Over the last years, various studies have contributed to the notion that many members of this protein family are important immune regulators. Recent studies into the mechanisms by which some of the TRIMs regulate the innate immune system have uncovered important immune regulatory roles of both covalently attached, as well as unanchored poly-ubiquitin chains. This review highlights TRIM evolution, recent findings in TRIM-mediated immune regulation, and provides an outlook to current research hurdles and future directions.
Collapse
Affiliation(s)
- Gijs A Versteeg
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria.
| | - Stefan Benke
- Max F. Perutz Laboratories, Department of Microbiology, Immunobiology and Genetics, University of Vienna, Vienna, Austria
| | - Adolfo García-Sastre
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Department of Medicine, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA
| | - Ricardo Rajsbaum
- Department of Microbiology, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; Global Health and Emerging Pathogens Institute, Icahn School of Medicine at Mount Sinai, One Gustave L. Levy Place, New York, NY 10029, USA; University of Texas Medical Branch, Department of Microbiology and Immunology, 301 University Avenue, Galveston, TX 77555, USA
| |
Collapse
|
13
|
Savic S, Dickie LJ, Wittmann M, McDermott MF. Autoinflammatory syndromes and cellular responses to stress: pathophysiology, diagnosis and new treatment perspectives. Best Pract Res Clin Rheumatol 2012; 26:505-33. [DOI: 10.1016/j.berh.2012.07.009] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2012] [Accepted: 07/19/2012] [Indexed: 12/20/2022]
|
14
|
Abstract
Autoinflammatory diseases are characterized by seemingly unprovoked pathological activation of the innate immune system in the absence of autoantibodies or autoreactive T cells. Discovery of the causative mutations underlying several monogenic autoinflammatory diseases has identified key regulators of innate immune responses. Recent studies have highlighted the role of misfolding, oligomerization and abnormal trafficking of pathogenic mutant proteins in triggering autoinflammation, and suggest that more common rheumatic diseases may have an autoinflammatory component. This coincides with recent discoveries of new links between endoplasmic reticulum stress and inflammatory signalling pathways, which support the emerging view that autoinflammatory diseases may be due to pathological dysregulation of stress-sensing pathways that normally function in host defence.
Collapse
|
15
|
Chae JJ, Cho YH, Lee GS, Cheng J, Liu PP, Feigenbaum L, Katz SI, Kastner DL. Gain-of-function Pyrin mutations induce NLRP3 protein-independent interleukin-1β activation and severe autoinflammation in mice. Immunity 2011; 34:755-68. [PMID: 21600797 PMCID: PMC3129608 DOI: 10.1016/j.immuni.2011.02.020] [Citation(s) in RCA: 347] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2010] [Revised: 12/10/2010] [Accepted: 02/12/2011] [Indexed: 01/10/2023]
Abstract
Missense mutations in the C-terminal B30.2 domain of pyrin cause familial Mediterranean fever (FMF), the most common Mendelian autoinflammatory disease. However, it remains controversial as to whether FMF is due to the loss of an inhibitor of inflammation or to the activity of a proinflammatory molecule. We generated both pyrin-deficient mice and "knockin" mice harboring mutant human B30.2 domains. Homozygous knockin, but not pyrin-deficient, mice exhibited spontaneous bone marrow-dependent inflammation similar to but more severe than human FMF. Caspase-1 was constitutively activated in knockin macrophages and active IL-1β was secreted when stimulated with lipopolysaccharide alone, which is also observed in FMF patients. The inflammatory phenotype of knockin mice was completely ablated by crossing with IL-1 receptor-deficient or adaptor molecule ASC-deficient mice, but not NLRP3-deficient mice. Thus, our data provide evidence for an ASC-dependent NLRP3-independent inflammasome in which gain-of-function pyrin mutations cause autoinflammatory disease.
Collapse
Affiliation(s)
- Jae Jin Chae
- Medical Genetics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | | | |
Collapse
|
16
|
Gavrilin MA, Wewers MD. Francisella Recognition by Inflammasomes: Differences between Mice and Men. Front Microbiol 2011; 2:11. [PMID: 21687407 PMCID: PMC3109362 DOI: 10.3389/fmicb.2011.00011] [Citation(s) in RCA: 29] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2010] [Accepted: 01/19/2011] [Indexed: 12/31/2022] Open
Abstract
Pathogen recognition by intracellular sensors involves the assembly of a caspase-1 activation machine termed the inflammasome. Intracellular pathogens like Francisella that gain access to the cytosolic detection systems are useful tools to uncover the details of caspase-1 activation events. This review overviews Francisella function in the mononuclear phagocyte with particular attention to inflammasome versus pyroptosome roles and outlines differences between mouse and human caspase-1 activation pathways. Specific attention is placed on functional differences between human and murine pyrin as an intracellular recognition molecule for Francisella.
Collapse
Affiliation(s)
- Mikhail A Gavrilin
- Division of Pulmonary, Allergy, Critical Care and Sleep Medicine, Davis Heart and Lung Research Institute, The Center for Microbial Interface Biology, The Ohio State University Columbus, OH, USA
| | | |
Collapse
|
17
|
Abstract
The innate immune system relies on the recognition of pathogens by pattern recognition receptors as a first line of defense and to initiate the adaptive immune response. Substantial progress has been made in defining the role of Nod (nucleotide-binding oligimerization domain)-like receptors and AIM2 (absent in melanoma 2) as pattern recognition receptors that activate inflammasomes in macrophages. Inflammasomes are protein platforms essential for the activation of inflammatory caspases and subsequent maturation of their pro-inflammatory cytokine substrates and induction of pyroptosis. This paper summarizes recent developments regarding the function of Nod-like receptors in immunity and disease.
Collapse
Affiliation(s)
- Sonal Khare
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Nancy Luc
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Andrea Dorfleutner
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| | - Christian Stehlik
- Division of Rheumatology, Department of Medicine and Robert H. Lurie Comprehensive Cancer Center, Feinberg School of Medicine, Northwestern University, Chicago, IL, USA
| |
Collapse
|
18
|
Grandemange S, Soler S, Touitou I. Expression of the familial Mediterranean fever gene is regulated by nonsense-mediated decay. Hum Mol Genet 2009; 18:4746-55. [PMID: 19755381 DOI: 10.1093/hmg/ddp437] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023] Open
Abstract
Mutations in the MEditerranean FeVer (MEFV) gene are responsible for familial Mediterranean fever (FMF), a recessively inherited auto-inflammatory disease. Cases of dominant inheritance and phenotype-genotype heterogeneity have been reported; however, the underlying molecular mechanism is not currently understood. The FMF protein named pyrin or marenostrin (P/M) is thought to be involved in regulating innate immunity but its function remains subject to controversy. Recent studies postulate that a defect in MEFV expression regulation may play a role in FMF physiopathology. Our group, along with others, has identified several alternatively spliced MEFV transcripts in leukocytes. Since alternative splicing and nonsense-mediated decay (NMD) pathways are usually coupled in the post-transcriptional regulation of gene expression, we hypothesized that NMD could contribute to the regulation of the MEFV gene. To address this issue, we examined the effect of indirect and direct inhibition of NMD on expression of the MEFV transcripts in THP1, monocyte and neutrophil cells. We showed that MEFV is the first auto-inflammatory gene regulated by NMD in both a cell- and transcript-specific manner. These results and preliminary western-blot analyses suggest the possible translation of alternatively spliced MEFV transcripts into several P/M variants according to cell type and inflammatory state. Our results introduce the novel hypothesis that variation of NMD efficiency could play an important role in FMF physiopathology as a potent phenotypic modifier.
Collapse
Affiliation(s)
- Sylvie Grandemange
- Génétique des Maladies Auto-Inflammatoires, Institut de Génétique Humaine, CNRS-UPR1142, Montpellier, France
| | | | | |
Collapse
|
19
|
Gavrilin MA, Mitra S, Seshadri S, Nateri J, Berhe F, Hall MW, Wewers MD. Pyrin critical to macrophage IL-1beta response to Francisella challenge. JOURNAL OF IMMUNOLOGY (BALTIMORE, MD. : 1950) 2009; 182:7982-9. [PMID: 19494323 PMCID: PMC3964683 DOI: 10.4049/jimmunol.0803073] [Citation(s) in RCA: 70] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Relative to monocytes, human macrophages are deficient in their ability to process and release IL-1beta. In an effort to explain this difference, we used a model of IL-1beta processing and release that is dependent upon bacterial escape into the cytosol. Fresh human blood monocytes were compared with monocyte-derived macrophages (MDM) for their IL-1beta release in response to challenge with Francisella novicida. Although both cell types produced similar levels of IL-1beta mRNA and intracellular pro-IL-1beta, only monocytes readily released processed mature IL-1beta. Baseline mRNA expression profiling of candidate genes revealed a remarkable deficiency in the pyrin gene, MEFV, expression in MDM compared with monocytes. Immunoblots confirmed a corresponding deficit in MDM pyrin protein. To determine whether pyrin levels were responsible for the monocyte/MDM difference in mature IL-1beta release, pyrin expression was knocked down by nucleofecting small interfering RNA against pyrin into monocytes or stably transducing small interfering RNA against pyrin into the monocyte cell line, THP-1. Pyrin knockdown was associated with a significant drop in IL-1beta release in both cell types. Importantly, M-CSF treatment of MDM restored pyrin levels and IL-1beta release. Similarly, the stable expression of pyrin in PMA-stimulated THP-1-derived macrophages induces caspase-1 activation, associated with increased IL-1beta release after infection with F. novicida. In summary, intracellular pyrin levels positively regulate MDM IL-1beta responsiveness to Francisella challenge.
Collapse
Affiliation(s)
- Mikhail A. Gavrilin
- Davis Heart and Lung Research Institute, Division of Pulmonary Allergy Critical Care and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Srabani Mitra
- Davis Heart and Lung Research Institute, Division of Pulmonary Allergy Critical Care and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Sudarshan Seshadri
- Davis Heart and Lung Research Institute, Division of Pulmonary Allergy Critical Care and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Jyotsna Nateri
- Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Freweine Berhe
- Davis Heart and Lung Research Institute, Division of Pulmonary Allergy Critical Care and Sleep Medicine, Ohio State University, Columbus, OH 43210
| | - Mark W. Hall
- Research Institute at Nationwide Children’s Hospital, Columbus, OH 43205
| | - Mark D. Wewers
- Davis Heart and Lung Research Institute, Division of Pulmonary Allergy Critical Care and Sleep Medicine, Ohio State University, Columbus, OH 43210
| |
Collapse
|
20
|
Ubiquitous SPRY domains and their role in the skeletal type ryanodine receptor. EUROPEAN BIOPHYSICS JOURNAL: EBJ 2009; 39:51-9. [DOI: 10.1007/s00249-009-0455-8] [Citation(s) in RCA: 23] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2009] [Revised: 03/28/2009] [Accepted: 04/07/2009] [Indexed: 10/20/2022]
|
21
|
Masters SL, Simon A, Aksentijevich I, Kastner DL. Horror autoinflammaticus: the molecular pathophysiology of autoinflammatory disease (*). Annu Rev Immunol 2009; 27:621-68. [PMID: 19302049 PMCID: PMC2996236 DOI: 10.1146/annurev.immunol.25.022106.141627] [Citation(s) in RCA: 789] [Impact Index Per Article: 49.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The autoinflammatory diseases are characterized by seemingly unprovoked episodes of inflammation, without high-titer autoantibodies or antigen-specific T cells. The concept was proposed ten years ago with the identification of the genes underlying hereditary periodic fever syndromes. This nosology has taken root because of the dramatic advances in our knowledge of the genetic basis of both mendelian and complex autoinflammatory diseases, and with the recognition that these illnesses derive from genetic variants of the innate immune system. Herein we propose an updated classification scheme based on the molecular insights garnered over the past decade, supplanting a clinical classification that has served well but is opaque to the genetic, immunologic, and therapeutic interrelationships now before us. We define six categories of autoinflammatory disease: IL-1beta activation disorders (inflammasomopathies), NF-kappaB activation syndromes, protein misfolding disorders, complement regulatory diseases, disturbances in cytokine signaling, and macrophage activation syndromes. A system based on molecular pathophysiology will bring greater clarity to our discourse while catalyzing new hypotheses both at the bench and at the bedside.
Collapse
Affiliation(s)
- Seth L. Masters
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Anna Simon
- Department of General Internal Medicine, Radboud University Nijmegen Medical Center, The Netherlands
| | - Ivona Aksentijevich
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| | - Daniel L. Kastner
- National Institute of Arthritis and Musculoskeletal and Skin Diseases, National Institutes of Health, Bethesda, Maryland 20892
| |
Collapse
|
22
|
Yu JW, Fernandes-Alnemri T, Datta P, Wu J, Juliana C, Solorzano L, McCormick M, Zhang Z, Alnemri ES. Pyrin activates the ASC pyroptosome in response to engagement by autoinflammatory PSTPIP1 mutants. Mol Cell 2007; 28:214-27. [PMID: 17964261 PMCID: PMC2719761 DOI: 10.1016/j.molcel.2007.08.029] [Citation(s) in RCA: 211] [Impact Index Per Article: 11.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2006] [Revised: 05/20/2007] [Accepted: 08/12/2007] [Indexed: 12/22/2022]
Abstract
The molecular mechanism by which mutations in the cytoskeleton-organizing protein PSTPIP1 cause the autoinflammatory PAPA syndrome is still elusive. Here, we demonstrate that PSTPIP1 requires the familial Mediterranean fever protein pyrin to assemble the ASC pyroptosome, a molecular platform that recruits and activates caspase-1. We provide evidence that pyrin is a cytosolic receptor for PSTPIP1. Pyrin exists as a homotrimer in an autoinhibited state due to intramolecular interactions between its pyrin domain (PYD) and B-box. Ligation by PSTPIP1, which is also a homotrimer, activates pyrin by unmasking its PYD, thereby allowing it to interact with ASC and facilitate ASC oligomerization into an active ASC pyroptosome. Because of their high binding affinity to pyrin's B-box, PAPA-associated PSTPIP1 mutants were found to be more effective than WT PSTPIP1 in inducing pyrin activation. Therefore, constitutive ligation and activation of pyrin by mutant PSTPIP1 proteins explain the autoinflammatory phenotype seen in PAPA syndrome.
Collapse
Affiliation(s)
- Je-Wook Yu
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Teresa Fernandes-Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Pinaki Datta
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Jianghong Wu
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Christine Juliana
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Leobaldo Solorzano
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Margaret McCormick
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - ZhiJia Zhang
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| | - Emad S. Alnemri
- Department of Biochemistry and Molecular Biology, Center for Apoptosis Research, Kimmel Cancer Institute, Thomas Jefferson University, Philadelphia, PA 19107, USA
| |
Collapse
|
23
|
Seshadri S, Duncan MD, Hart JM, Gavrilin MA, Wewers MD. Pyrin levels in human monocytes and monocyte-derived macrophages regulate IL-1beta processing and release. THE JOURNAL OF IMMUNOLOGY 2007; 179:1274-81. [PMID: 17617620 DOI: 10.4049/jimmunol.179.2.1274] [Citation(s) in RCA: 108] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
Abstract
Macrophages and their precursors, monocytes, are key cells involved in the innate immune response. Although both monocytes and macrophages produce caspase-1, the key enzyme responsible for pro-IL-1beta processing; macrophages are limited in their ability to activate the enzyme and release functional IL-1beta. In this context, because mutations in the pyrin gene (MEFV) cause the inflammatory disorder familial Mediterranean fever, pyrin is believed to regulate IL-1beta processing. To determine whether variations in pyrin expression explain the difference between monocytes and macrophages in IL-1beta processing and release, pyrin was studied in human monocytes and monocyte-derived macrophages. Although monocytes express pyrin mRNA and protein, which is readily inducible by endotoxin, monocyte-derived macrophages express significantly less pyrin mRNA and protein. Pyrin levels directly correlated with IL-1beta processing in monocytes and macrophages; therefore, we asked whether pyrin might promote IL-1beta processing and release. HEK293 cells were transfected with pyrin, caspase-1, apoptotic speck protein with a caspase recruitment domain, and IL-1beta. Pyrin induced IL-1beta processing and release in a dose-dependent manner. Conversely, pyrin small interference RNA suppressed pro-IL-1beta processing in both THP-1 cells and fresh human monocytes. In summary, both pyrin expression and IL-1beta processing and release are diminished upon the maturation of monocytes to macrophages. When pyrin is ectopically expressed or silenced, IL-1beta processing and release parallels the level of pyrin. In conclusion, in the context of endotoxin-induced activation of mononuclear phagocytes, pyrin augments IL-1beta processing and release.
Collapse
Affiliation(s)
- Sudarshan Seshadri
- Davis Heart and Lung Research Institute, Ohio State University, Columbus, OH 43210, USA
| | | | | | | | | |
Collapse
|
24
|
Papin S, Cuenin S, Agostini L, Martinon F, Werner S, Beer HD, Grütter C, Grütter M, Tschopp J. The SPRY domain of Pyrin, mutated in familial Mediterranean fever patients, interacts with inflammasome components and inhibits proIL-1beta processing. Cell Death Differ 2007; 14:1457-66. [PMID: 17431422 DOI: 10.1038/sj.cdd.4402142] [Citation(s) in RCA: 243] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Abstract
The autoinflammatory disorders Muckle-Wells syndrome, familial cold urtecaria and chronic infantile neurological cutaneous and articular syndrome are associated with mutations in the NALP3 (Cryopyrin) gene, which is the central platform of the proinflammatory caspase-1 activating complex, named the inflammasome. In patients with another autoinflammatory disorder, familial Mediterranean fever (FMF), mutations in the SPRY domain of the Pyrin protein are frequently found. Recent evidence suggests that Pyrin associates with ASC, an inflammasome component, via its Pyrin domain, thereby halting the inflammatory response. This interaction, however, does not explain the effects of mutations of the SPRY domain found in FMF patients. Here we show that the Pyrin SPRY domain not only interacts with NALP3, but also with caspase-1 and its substrate pro-interleukin(IL)-1beta. Whereas a Pyrin knockdown results in increased caspase-1 activation and IL-1beta secretion, overexpression of the SPRY domain alone blocks these processes. Thus Pyrin binds to several inflammasome components thereby modulating their activity.
Collapse
Affiliation(s)
- S Papin
- Department of Biochemistry, University of Lausanne, Chemin des Boveresses 155, CH-1066 Epalinges, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Ting JPY, Kastner DL, Hoffman HM. CATERPILLERs, pyrin and hereditary immunological disorders. Nat Rev Immunol 2006; 6:183-95. [PMID: 16498449 DOI: 10.1038/nri1788] [Citation(s) in RCA: 237] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
The newly described CATERPILLER family (also known as NOD-LRR or NACHT-LRR) is comprised of proteins with a nucleotide-binding domain and a leucine-rich region. This family has gained rapid prominence because of its demonstrated and anticipated roles in immunity, cell death and growth, and diseases. CATERPILLER proteins are structurally similar to a subgroup of plant-disease-resistance (R) proteins and to the apoptotic protease activating factor 1 (APAF1). They provide positive and negative signals for the control of immune and inflammatory responses, and might represent intracellular sensors of pathogen products. Most importantly, they are genetically linked to several human immunological disorders.
Collapse
Affiliation(s)
- Jenny P-Y Ting
- Department of Microbiology-Immunology, Lineberger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, North Carolina 27599, USA.
| | | | | |
Collapse
|
26
|
Diaz A, Hu C, Kastner DL, Schaner P, Reginato AM, Richards N, Gumucio DL. Lipopolysaccharide-induced expression of multiple alternatively spliced MEFV transcripts in human synovial fibroblasts: a prominent splice isoform lacks the C-terminal domain that is highly mutated in familial Mediterranean fever. ACTA ACUST UNITED AC 2004; 50:3679-89. [PMID: 15529356 DOI: 10.1002/art.20600] [Citation(s) in RCA: 73] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Abstract
OBJECTIVE To investigate the expression of the familial Mediterranean fever (FMF) gene (MEFV) in human synovial fibroblasts. METHODS MEFV messenger RNA in synovial fibroblasts, chondrocytes, and peripheral blood leukocytes (PBLs) was analyzed by semiquantitative and real-time polymerase chain reaction and ribonuclease protection assay. The subcellular localization of pyrin, the MEFV product, was determined in transfected synovial fibroblasts and HeLa cells with plasmids encoding pyrin isoforms. Native pyrin was detected with an antipyrin antibody. RESULTS MEFV was expressed in synovial fibroblasts, but not in chondrocytes. Four alternatively spliced transcripts were identified: an extension of exon 8 (exon 8ext) resulting in a frameshift that predicts a truncated protein lacking exons 9 and 10, the addition of an exon (exon 4a) predicting a truncated protein at exon 5, the in-frame substitution of exon 2a for exon 2, and the previously described removal of exon 2 (exon 2Delta). Exon 8ext transcripts represented 27% of the total message population in synovial fibroblasts. All other alternatively spliced transcripts were rare. Consensus and alternatively spliced transcripts were induced by lipopolysaccharide in synovial fibroblasts and PBLs. In transfected cells, the proteins encoded by all highly expressed splice forms were cytoplasmic. In contrast, native pyrin was predominantly nuclear in synovial fibroblasts, neutrophils, and dendritic cells, but was cytoplasmic in monocytes. CONCLUSION Several MEFV transcripts are expressed and inducible in synovial fibroblasts. A prominent isoform lacks the C-terminal domain that contains the majority of mutations found in patients with FMF. While recombinant forms of all major pyrin isoforms are cytoplasmic, native pyrin is nuclear in several cell types. Thus, mechanisms in addition to splicing patterns must control pyrin's subcellular distribution.
Collapse
Affiliation(s)
- Arturo Diaz
- Department of Cell and Developmental Biology, University of Michigan Medical School, 1301 Catherine Street, Ann Arbor, MI 48109, USA
| | | | | | | | | | | | | |
Collapse
|
27
|
Tchernitchko D, Goossens M, Wajcman H. In silico prediction of the deleterious effect of a mutation: proceed with caution in clinical genetics. Clin Chem 2004; 50:1974-8. [PMID: 15502081 DOI: 10.1373/clinchem.2004.036053] [Citation(s) in RCA: 87] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
When a sequence variation is found in a candidate gene for a disease, it is important to establish whether this change is neutral or responsible for the observed disorders in a patient. To answer this question, in the absence of further experimental investigations, several simulation programs have been proposed to predict whether a nonsynonymous single-nucleotide polymorphism is likely to have or not have a deleterious effect on the phenotype. In this work, we tested two such programs, PolyPhen and SIFT, using two kinds of targets. The first ones concerned the products of the hemoglobin and glucose-6-phosphate dehydrogenase genes, which are abundantly documented. The second concerned two systems for which much less information is available: (a) the TNFRSF1A gene, implicated in tumor necrosis factor receptor-associated periodic syndrome, and (b) the MEFV gene, which is believed to be involved in familial Mediterranean fever. Our data suggest that, from a practical point of view, these programs should not be used to decide, in the absence of other tests or arguments, whether the sequence variation found in a patient is or is not responsible for the disease. The consequence of an erroneous prediction may be disastrous in the perspective of genetic counseling.
Collapse
Affiliation(s)
- Dimitri Tchernitchko
- Service de Biochimie et de Génétique Moléculaire and INSERM U468, Hôpital Henri-Mondor, 94010 Créteil, France
| | | | | |
Collapse
|
28
|
Anderson JP, Mueller JL, Rosengren S, Boyle DL, Schaner P, Cannon SB, Goodyear CS, Hoffman HM. Structural, expression, and evolutionary analysis of mouse CIAS1. Gene 2004; 338:25-34. [PMID: 15302403 PMCID: PMC4348074 DOI: 10.1016/j.gene.2004.05.002] [Citation(s) in RCA: 44] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2003] [Revised: 04/12/2004] [Accepted: 05/06/2004] [Indexed: 10/26/2022]
Abstract
Mutations in the human CIAS1 (hCIAS1) gene have been identified in a continuum of inflammatory disorders including familial cold autoinflammatory syndrome (FCAS), Muckle-Wells syndrome (MWS), and neonatal onset multisystem inflammatory disease (NOMID). CIAS1 codes for the protein Cryopyrin, which appears to play a role in innate immune function by regulating the production of proinflammatory cytokines. Human and mouse Cryopyrin are highly conserved and consist of three functional domains including a pyrin domain, an NACHT domain, and a leucine-rich repeat (LRR) domain that are characteristics of the NALP family of proteins. The pyrin and NACHT domains of Cryopyrin and other NALP proteins are highly conserved among primate and nonprimate mammals, suggesting purifying selection throughout mammalian evolution. Cryopyrin expression is also very similar in human and mouse with mouse CIAS1 mRNA expression found primarily in peripheral blood leukocytes consistent with the postulated inflammatory function. We also detected significant expression in mouse eye and skin tissue, which is consistent with symptoms observed in human Cryopyrin-associated diseases.
Collapse
MESH Headings
- Amino Acid Sequence
- Animals
- Blotting, Northern
- Carrier Proteins/genetics
- Cloning, Molecular
- DNA/chemistry
- DNA/genetics
- DNA, Complementary/chemistry
- DNA, Complementary/genetics
- Evolution, Molecular
- Female
- Gene Expression Profiling
- Genes/genetics
- Male
- Mice
- Mice, Inbred BALB C
- Mice, Inbred C57BL
- Molecular Sequence Data
- NLR Family, Pyrin Domain-Containing 3 Protein
- Phylogeny
- Primates/genetics
- RNA, Messenger/genetics
- RNA, Messenger/metabolism
- Sequence Alignment
- Sequence Analysis, DNA
- Sequence Homology, Amino Acid
Collapse
Affiliation(s)
- Justin P. Anderson
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - James L. Mueller
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
- Ludwig Institute of Cancer Research, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
| | - Sanna Rosengren
- UCSD Division of Rheumatology, Allergy, and Immunology, Rheumatic Disease Core Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0635, USA
| | - David L. Boyle
- UCSD Division of Rheumatology, Allergy, and Immunology, Rheumatic Disease Core Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0635, USA
| | - Philip Schaner
- Department of Cell and Developmental Biology, University of Michigan, Ann Arbor, MI 48109-0616, USA
| | - Steven B. Cannon
- Department of Plant Pathology, University of Minnesota, St. Paul, MN 55108 USA
| | - Carl S. Goodyear
- UCSD Division of Rheumatology, Allergy, and Immunology, Rheumatic Disease Core Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0635, USA
| | - Hal M. Hoffman
- Department of Pediatrics, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
- Ludwig Institute of Cancer Research, University of California San Diego School of Medicine, La Jolla, CA 92093, USA
- UCSD Division of Rheumatology, Allergy, and Immunology, Rheumatic Disease Core Center, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0635, USA
- Corresponding author. UCSD Division of Rheumatology, Allergy, and Immunology, University of California San Diego School of Medicine, 9500 Gilman Drive, La Jolla, CA 92093-0635, USA. Tel.: +1-858-534-2108; fax: +1-858-534-2110. (H.M. Hoffman)
| |
Collapse
|
29
|
Chae JJ, Komarow HD, Cheng J, Wood G, Raben N, Liu PP, Kastner DL. Targeted disruption of pyrin, the FMF protein, causes heightened sensitivity to endotoxin and a defect in macrophage apoptosis. Mol Cell 2003; 11:591-604. [PMID: 12667444 DOI: 10.1016/s1097-2765(03)00056-x] [Citation(s) in RCA: 299] [Impact Index Per Article: 13.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
Abstract
Familial Mediterranean fever (FMF) is an inherited disorder characterized by recurrent episodes of fever and inflammation. Most patients with FMF carry missense mutations in the C-terminal half of the pyrin protein. To study the physiologic role of pyrin, we generated mice expressing a truncated pyrin molecule that, similar to FMF patients, retains the full PYRIN domain. Bacterial lipopolysaccharide (LPS) induces accentuated body temperatures and increased lethality in homozygous mutant mice. When stimulated, macrophages from these mice produce increased amounts of activated caspase-1 and, consequently, elevated levels of mature IL-1beta. Full-length pyrin competes in vitro with caspase-1 for binding to ASC, a known caspase-1 activator. Apoptosis is impaired in macrophages from pyrin-truncation mice through an IL-1-independent pathway. These data support a critical role for pyrin in the innate immune response, possibly by acting on ASC, and suggest a biologic basis for the selection of hypomorphic pyrin variants in man.
Collapse
Affiliation(s)
- Jae Jin Chae
- Inflammatory Biology Section, Genetics and Genomics Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases, Bethesda, MD 20892, USA.
| | | | | | | | | | | | | |
Collapse
|
30
|
Abstract
The usefulness of molecular diagnosis is now well established for genetically determined recurrent fevers. In familial Mediterranean fever, the severity of the disease and the risk of renal amyloidosis are correlated with mutations in MEFV, and the serum amyloid-associated protein (SAA)1 alpha/alpha allele is a modifying factor for amyloidosis. Study of the genes in various species shows that the human mutations represent a reappearance of the ancestral amino acid state and the B30-2 domain, where most human mutations are localized, is absent in the rat and mouse proteins. Since the discovery of the responsible gene, TNF-receptor-associated periodic syndrome seems to be more frequent than previously considered. Among the new mutations described, some are associated with an incomplete penetrance.
Collapse
Affiliation(s)
- M Delpech
- Génétique et Physiopathologie des Maladies Inflammatoires, Institut National de la Santé et de la Recherche Médicale (INSERM) EMI 00-05, Faculté de Médecine Cochin Port-Royal, 24 rue du fg St Jacques, 75014, Paris, France.
| | | |
Collapse
|
31
|
Mansfield E, Chae JJ, Komarow HD, Brotz TM, Frucht DM, Aksentijevich I, Kastner DL. The familial Mediterranean fever protein, pyrin, associates with microtubules and colocalizes with actin filaments. Blood 2001; 98:851-9. [PMID: 11468188 DOI: 10.1182/blood.v98.3.851] [Citation(s) in RCA: 142] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Familial Mediterranean fever (FMF) is a recessive disorder characterized by episodes of fever and intense inflammation. FMF attacks are unique in their sensitivity to the microtubule inhibitor colchicine, contrasted with their refractoriness to the anti-inflammatory effects of glucocorticoids. The FMF gene, MEFV, was recently identified by positional cloning; it is expressed at high levels in granulocytes and monocytes. The present study investigated the subcellular localization of the normal gene product, pyrin. These experiments did not support previously proposed nuclear or Golgi localizations. Instead fluorescence microscopy demonstrated colocalization of full-length GFP- and epitope-tagged pyrin with microtubules; this was markedly accentuated in paclitaxel-treated cells. Moreover, immunoblot analysis of precipitates of stabilized microtubules with recombinant pyrin demonstrated a direct interaction in vitro. Pyrin expression did not affect the stability of microtubules. Deletion constructs showed that the unique N-terminal domain of pyrin is necessary and sufficient for colocalization, whereas disease-associated mutations in the C-terminal B30.2 (rfp) domain did not disrupt this interaction. By phalloidin staining, a colocalization of pyrin with actin was also observed in perinuclear filaments and in peripheral lamellar ruffles. The proposal is made that pyrin regulates inflammatory responses at the level of leukocyte cytoskeletal organization and that the unique therapeutic effect of colchicine in FMF may be dependent on this interaction. (Blood. 2001;98:851-859)
Collapse
Affiliation(s)
- E Mansfield
- Genetics Section, Arthritis and Rheumatism Branch, National Institute of Arthritis and Musculoskeletal and Skin Diseases/NIH, Bethesda, MD 20892-1820, USA.
| | | | | | | | | | | | | |
Collapse
|
32
|
Touitou I. The spectrum of Familial Mediterranean Fever (FMF) mutations. Eur J Hum Genet 2001; 9:473-83. [PMID: 11464238 DOI: 10.1038/sj.ejhg.5200658] [Citation(s) in RCA: 365] [Impact Index Per Article: 15.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2000] [Revised: 03/05/2001] [Accepted: 03/19/2001] [Indexed: 11/09/2022] Open
Abstract
Familial Mediterranean Fever (FMF) is the prototype of a group of inherited inflammatory disorders. The gene (MEFV) responsible for this disease, comprises 10 exons and 781 codons. Twenty-nine mutations, most located in the last exon, have been identified so far. It is unclear whether all are true disease-causing mutations. Five founder mutations, V726A, M694V, M694I, M680I and E148Q account for 74% of FMF chromosomes from typical cases (Armenians, Arabs, Jews, and Turks). Rare mutations are preferentially found in populations not usually affected by FMF (eg Europeans not from the above ancestries). The various combinations of MEFV mutations define severe to mild genotypes. The trend is that genotypes including two mutations located within mutational 'hot-spots' (codons 680 or 694) of the gene are associated with severe phenotypes, whereas mild phenotypes are associated with some other mutations, E148Q being the mildest and least penetrant. Understanding the correlation between the FMF phenotype and genotype is further obscured by the existence of complex alleles, modifier loci, genetic heterogeneity and possible epigenetic factors. Additionally, mutations in the MEFV gene are thought to be involved in non FMF disorders. Carrier rates for FMF mutations may be as high as 1:3 in some populations, suggesting that the disease is underdiagnosed. This review update emphasises that both clinical and genetic features are to be taken into account for patient diagnosis, colchicine treatment and prognosis.
Collapse
Affiliation(s)
- I Touitou
- Hopital A de Villeneuve, Montpellier, France.
| |
Collapse
|
33
|
Schaner P, Richards N, Wadhwa A, Aksentijevich I, Kastner D, Tucker P, Gumucio D. Episodic evolution of pyrin in primates: human mutations recapitulate ancestral amino acid states. Nat Genet 2001; 27:318-21. [PMID: 11242116 DOI: 10.1038/85893] [Citation(s) in RCA: 89] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Abstract
Familial Mediterranean fever (FMF; MIM 249100) is an autosomal recessive disease characterized by recurrent attacks of fever with synovial, pleural or peritoneal inflammation. The disease is caused by mutations in the gene encoding the pyrin protein. Human population studies have revealed extremely high allele frequencies for several different pyrin mutations, leading to the conclusion that the mutant alleles confer a selective advantage. Here we examine the ret finger protein (rfp) domain (which contains most of the disease-causing mutations) of pyrin during primate evolution. Amino acids that cause human disease are often present as wild type in other species. This is true at positions 653 (a novel mutation), 680, 681, 726, 744 and 761. For several of these human mutations, the mutant represents the reappearance of an ancestral amino acid state. Examination of lineage-specific dN/dS ratios revealed a pattern consistent with the signature of episodic positive selection. Our data, together with previous human population studies, indicate that selective pressures may have caused functional evolution of pyrin in humans and other primates.
Collapse
Affiliation(s)
- P Schaner
- Cellular and Molecular Biology Program, University of Michigan, Ann Arbor, Michigan, USA
| | | | | | | | | | | | | |
Collapse
|
34
|
Bertin J, DiStefano PS. The PYRIN domain: a novel motif found in apoptosis and inflammation proteins. Cell Death Differ 2000; 7:1273-4. [PMID: 11270363 DOI: 10.1038/sj.cdd.4400774] [Citation(s) in RCA: 144] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022] Open
|