1
|
Porter I, Berko HE, Mafuvadze B. Natural and Synthetic Progestins Increase Transcriptional Expression of primiR-190 and primiR-199 in T47D Breast Cancer Cells: A Preliminary Study. Cureus 2025; 17:e78293. [PMID: 40026926 PMCID: PMC11872145 DOI: 10.7759/cureus.78293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2025] [Accepted: 01/31/2025] [Indexed: 03/05/2025] Open
Abstract
Background Previous studies have shown that aberrant expression of different microRNAs potentially contributes to carcinogenesis, growth, and metastasis of several human cancers. Given that progestins have been reported to alter the expression of microRNAs in various human cancers, we hypothesized that progestins potentially influence the growth of hormone-responsive breast cancer through mechanisms involving the regulation of miRNAs functioning either as tumor suppressors or oncogenes. Using computer-based analysis, we identified two microRNAs that we investigated in this study, namely miR-190 and miR-199. Our main objective in this preliminary study was to determine the effect of different progestins on the expression of these two microRNAs in breast cancer cells. Methods Progesterone receptor (PR)-positive cell line, T47D breast cancer cells were exposed to progesterone and three different synthetic progestins for 24 hours, after which RNA was extracted and real-time polymerase chain reaction (PCR) was used to determine the expression of primiR-190 and primiR-199. For comparison, progestin effects were also tested in T47Dco-Y, a PR-negative cell line. Results Our results showed exposing T47D cells to both progesterone and synthetic progestins increased the transcriptional expression of primiR-190 and primiR-199a1 by as high as four to seven fold (P<0.0001). RU-486, a progesterone receptor antagonist, suppressed progestin induction of both primiR-190 and primiR-199a1. Progestin-induced effects were not observed in a PR-negative subline of T47D cells (P>0.05), further confirming the involvement of progesterone receptor-dependent pathways. Additionally, 17β estradiol and dimethyl sulfoxide did not alter the expression of both primiR-190 and primiR-199a1. Conclusion Different progestins increase transcriptional expression of both primiR-190 and primiR-199a-1 through progesterone receptor (PR)-dependent mechanisms. Both primiR-190 and primiR-199a1 can potentially be useful as biomarkers for PR-positive breast cancer.
Collapse
Affiliation(s)
- Isabella Porter
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Hannah E Berko
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| | - Benford Mafuvadze
- Anatomy and Molecular Medicine, Alabama College of Osteopathic Medicine, Dothan, USA
| |
Collapse
|
2
|
Wang P, Wei X, Shen L, Xu K, Wen Z, Gao N, Fan T, Xun S, Zhu Q, Qu X, Zhu Y. Amplification-Free Analysis of Bladder Cancer MicroRNAs on Wrinkled Silica Nanoparticles with DNA-Functionalized Quantum Dots. Anal Chem 2024; 96:4860-4867. [PMID: 38478499 DOI: 10.1021/acs.analchem.3c05204] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/27/2024]
Abstract
Bladder cancer (BC) occurrence and progression are accompanied by alterations in microRNAs (miRNAs) expression levels. Simultaneous detection of multiple miRNAs contributes to the accuracy and reliability of the BC diagnosis. In this work, wrinkled silica nanoparticles (WSNs) were applied as the microreactor for multiplex miRNAs analysis without enzymes or nucleic acid amplification. Conjugated on the surface of WSNs, the S9.6 antibody was adopted as the universal module for binding DNA/miRNA duplexes, regardless of their sequence. Furthermore, single-stranded DNA (ssDNA) was labeled with quantum dots (QDs) for identifying a given miRNA to form QDs-ssDNA/miRNA, which enabled the specific capture of the corresponding QDs on the wrinkled surface of WSNs. Based on the detection of fluorescence signals that were ultimately focused on WSNs, target miRNAs could be sensitively identified to a femtomolar level (5 fM) with a wide dynamic range of up to 6 orders of magnitude. The proposed strategy achieved high specificity to obviously distinguish single-base mutation sequences and possessed multiplex assay capability. Moreover, the assay exhibited excellent practicability in the multiplex detection of miRNAs in clinical serum specimens.
Collapse
Affiliation(s)
- Pei Wang
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaowei Wei
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Luming Shen
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Kexin Xu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Zhongting Wen
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Nengjiao Gao
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Ting Fan
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Shenmei Xun
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Qingyi Zhu
- Department of Urology, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Xiaojun Qu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| | - Yefei Zhu
- Laboratory Medicine Center, The Second Affiliated Hospital of Nanjing Medical University, Nanjing 210011, China
| |
Collapse
|
3
|
Wu S, Li R, Jiang Y, Yu J, Zheng J, Li Z, Li M, Xin K, Wang Y, Xu Z, Li S, Chen X. Liquid biopsy in urothelial carcinoma: Detection techniques and clinical applications. Biomed Pharmacother 2023; 165:115027. [PMID: 37354812 DOI: 10.1016/j.biopha.2023.115027] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/13/2023] [Accepted: 06/14/2023] [Indexed: 06/26/2023] Open
Abstract
The types of urothelial carcinoma (UC) include urothelial bladder cancer and upper tract urothelial carcinoma. Current diagnostic techniques cannot meet the needs of patients. Liquid biopsy is an accurate method of determining the molecular profile of UC and is a cutting-edge and popular technique that is expected to complement existing detection techniques and benefit patients with UC. Circulating tumor cells, cell-free DNA, cell-free RNA, extracellular vesicles, proteins, and metabolites can be found in the blood, urine, or other bodily fluids and are examined during liquid biopsies. This article focuses on the components of liquid biopsies and their clinical applications in UC. Liquid biopsies have tremendous potential in multiple aspects of precision oncology, from early diagnosis and treatment monitoring to predicting prognoses. They may therefore play an important role in the management of UC and precision medicine.
Collapse
Affiliation(s)
- Siyu Wu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Rong Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yuanhong Jiang
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jiazheng Yu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Jianyi Zheng
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Zeyu Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Mingyang Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Kerong Xin
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China
| | - Yang Wang
- Department of Gynecology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital & Institute, Shenyang, Liaoning 110042, China.
| | - Zhenqun Xu
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Shijie Li
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| | - Xiaonan Chen
- Department of Urology, Shengjing Hospital of China Medical University, Shenyang, Liaoning 110004, China.
| |
Collapse
|
4
|
Mohammaddoust S, Sadeghizadeh M. Mir-183 functions as an oncogene via decreasing PTEN in breast cancer cells. Sci Rep 2023; 13:8086. [PMID: 37208413 PMCID: PMC10199038 DOI: 10.1038/s41598-023-35059-x] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2022] [Accepted: 05/11/2023] [Indexed: 05/21/2023] Open
Abstract
Regarding the important role of microRNAs in breast cancer, investigating the molecular mechanisms of miRs and their impacts on breast cancer progression is critical. Thus, the present work aimed to investigate the molecular mechanism of miR-183 in breast cancer. PTEN was validated by dual luciferase assay as a target gene of miR-183. Through qRT-PCR analysis, miR-183 and PTEN mRNA levels in breast cancer cell lines were measured. To determine the impacts of miR-183 on cell viability, the MTT assay was used. Moreover, flowcytometry was applied to analyze the effects of miR-183 on the cell cycle progression. To detect the effects of miR-183 on the migration of BC cell lines, wound healing was used along with a Trans-well migration assay. Western blot was utilized to assess the effect of miR-183 on PTEN protein expression. MiR-183 can exert an oncogenic effect by promoting cell viability, migration, and cell cycle progression. It was revealed that cellular oncogenicity is positively regulated by miR-183 by inhibiting the expression of PTEN. According to the present data, miR-183 may play a vital role in the progression of breast cancer by reducing PTEN expression. It may be also a potential therapeutic target for this disease.
Collapse
Affiliation(s)
- Samaneh Mohammaddoust
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran
| | - Majid Sadeghizadeh
- Genetics Department, Faculty of Biological Sciences, Tarbiat Modares University, Tehran, Iran.
| |
Collapse
|
5
|
WITHDRAWN: LINC01606 promotes nephroblastoma by suppressing miR-644b-3p that targets AK4. Biochem Biophys Res Commun 2022. [DOI: 10.1016/j.bbrc.2022.01.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
6
|
Cavallari I, Ciccarese F, Sharova E, Urso L, Raimondi V, Silic-Benussi M, D’Agostino DM, Ciminale V. The miR-200 Family of microRNAs: Fine Tuners of Epithelial-Mesenchymal Transition and Circulating Cancer Biomarkers. Cancers (Basel) 2021; 13:5874. [PMID: 34884985 PMCID: PMC8656820 DOI: 10.3390/cancers13235874] [Citation(s) in RCA: 99] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2021] [Revised: 11/17/2021] [Accepted: 11/18/2021] [Indexed: 12/13/2022] Open
Abstract
The miR-200 family of microRNAs (miRNAs) includes miR-200a, miR-200b, miR-200c, miR-141 and miR-429, five evolutionarily conserved miRNAs that are encoded in two clusters of hairpin precursors located on human chromosome 1 (miR-200b, miR-200a and miR-429) and chromosome 12 (miR-200c and miR-141). The mature -3p products of the precursors are abundantly expressed in epithelial cells, where they contribute to maintaining the epithelial phenotype by repressing expression of factors that favor the process of epithelial-to-mesenchymal transition (EMT), a key hallmark of oncogenic transformation. Extensive studies of the expression and interactions of these miRNAs with cell signaling pathways indicate that they can exert both tumor suppressor- and pro-metastatic functions, and may serve as biomarkers of epithelial cancers. This review provides a summary of the role of miR-200 family members in EMT, factors that regulate their expression, and important targets for miR-200-mediated repression that are involved in EMT. The second part of the review discusses the potential utility of circulating miR-200 family members as diagnostic/prognostic biomarkers for breast, colorectal, lung, ovarian, prostate and bladder cancers.
Collapse
Affiliation(s)
- Ilaria Cavallari
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Francesco Ciccarese
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Evgeniya Sharova
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Loredana Urso
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| | - Vittoria Raimondi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Micol Silic-Benussi
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
| | - Donna M. D’Agostino
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Biomedical Sciences, University of Padua, 35131 Padova, Italy
| | - Vincenzo Ciminale
- Veneto Institute of Oncology IOV–IRCCS, 35128 Padova, Italy; (I.C.); (F.C.); (E.S.); (L.U.); (V.R.); (M.S.-B.)
- Department of Surgery, Oncology and Gastroenterology, University of Padua, 35128 Padova, Italy
| |
Collapse
|
7
|
Zhou L, Li L, Chen Y, Chen C, Zhi Z, Yan L, Wang Y, Liu B, Zhai Q. miR-190a-3p Promotes Proliferation and Migration in Glioma Cells via YOD1. COMPUTATIONAL AND MATHEMATICAL METHODS IN MEDICINE 2021; 2021:3957738. [PMID: 34527075 PMCID: PMC8437639 DOI: 10.1155/2021/3957738] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Revised: 08/11/2021] [Accepted: 08/13/2021] [Indexed: 11/17/2022]
Abstract
INTRODUCTION To investigate the function of miR-190a-3p on the proliferation and migration of glioma. METHODS Twenty glioma samples and 6 normal brain tissue samples were collected. Normal human glial cell line HEB and glioma cell lines were used for the experiments. We then used TargetScan to predict the target genes of miR-190a-3p. Dual-luciferase reporter assay was also used to validate. RESULTS Combined with dual-luciferase reporter experiment, we finally verified that YOD1 was the aim, and it was low-expressed in glioma. Besides, a series of mechanism experiments then proved that miR-190a-3p negatively regulates YOD1 expression. CONCLUSIONS Our research was the first to demonstrate the promoting function of miR-190a-3p in the proliferation and migration of glioma and provided new views for the treatment of glioma. miR-190a-3p was expected to be a new target for molecular therapy of glioma.
Collapse
Affiliation(s)
- Lili Zhou
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Lingzhi Li
- Department of ICU in Emergency Center, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yan Chen
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Chun Chen
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Zhongwen Zhi
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Luxia Yan
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Yuqian Wang
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| | - Bing Liu
- Department of Neurology, Siyang Hospital of Traditional Chinese Medicine, Siyang, 223700 Jiangsu, China
| | - Qijin Zhai
- Department of Neurology, The Affiliated Huai'an Hospital of Xuzhou Medical University, Huai'an, 223002 Jiangsu, China
| |
Collapse
|
8
|
Papiewska-Pająk I, Przygodzka P, Krzyżanowski D, Soboska K, Szulc-Kiełbik I, Stasikowska-Kanicka O, Boncela J, Wągrowska-Danilewicz M, Kowalska MA. Snail Overexpression Alters the microRNA Content of Extracellular Vesicles Released from HT29 Colorectal Cancer Cells and Activates Pro-Inflammatory State In Vivo. Cancers (Basel) 2021; 13:cancers13020172. [PMID: 33419021 PMCID: PMC7830966 DOI: 10.3390/cancers13020172] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2020] [Revised: 12/22/2020] [Accepted: 12/29/2020] [Indexed: 01/14/2023] Open
Abstract
Simple Summary Knowledge of the factors that help migration of carcinoma cells is important for prevention of metastasis. Cancer cells release small particles, extracellular vesicles (EVs) that contain such factors. The aim of this study was to assess if the content of EVs changes through different stages of colorectal cancer (CRC) and evaluate how this process affects cancer progression in vivo in mouse CRC model. We found that EVs released from cells that have migratory properties contain different factors then EVs released from original tumor cells. We also show here that EVs can be incorporated into other cells that facilitate metastasis and change their properties depending on the EVs content. The content of cell-released EVs may also serve as a biomarker that denotes the stage of CRC and may be a target to prevent cancer progression. Abstract During metastasis, cancer cells undergo phenotype changes in the epithelial-mesenchymal transition (EMT) process. Extracellular vesicles (EVs) released by cancer cells are the mediators of intercellular communication and play a role in metastatic process. Knowledge of factors that influence the modifications of the pre-metastatic niche for the migrating carcinoma cells is important for prevention of metastasis. We focus here on how cancer progression is affected by EVs released from either epithelial-like HT29-cells or from cells that are in early EMT stage triggered by Snail transcription factor (HT29-Snail). We found that EVs released from HT29-Snail, as compared to HT29-pcDNA cells, have a different microRNA profile. We observed the presence of interstitial pneumonias in the lungs of mice injected with HT29-Snail cells and the percent of mice with lung inflammation was higher after injection of HT29-Snail-EVs. Incorporation of EVs released from HT29-pcDNA, but not released from HT29-Snail, leads to the increased secretion of IL-8 from macrophages. We conclude that Snail modifications of CRC cells towards more invasive phenotype also alter the microRNA cargo of released EVs. The content of cell-released EVs may serve as a biomarker that denotes the stage of CRC and EVs-specific microRNAs may be a target to prevent cancer progression.
Collapse
Affiliation(s)
- Izabela Papiewska-Pająk
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Correspondence: (I.P.-P.); (M.A.K.)
| | - Patrycja Przygodzka
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Damian Krzyżanowski
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Kamila Soboska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Faculty of Biology and Environmental Protection, University of Lodz, 90-236 Lodz, Poland
| | - Izabela Szulc-Kiełbik
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Olga Stasikowska-Kanicka
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - Joanna Boncela
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
| | - Małgorzata Wągrowska-Danilewicz
- Department of Diagnostic Techniques in Pathomorphology, Medical University of Lodz, 90-419 Lodz, Poland; (O.S.-K.); (M.W.-D.)
| | - M. Anna Kowalska
- Institute of Medical Biology, Polish Academy of Sciences, 93-232 Lodz, Poland; (P.P.); (D.K.); (K.S.); (I.S.-K.); (J.B.)
- Department of Pediatrics, The Children’s Hospital of Philadelphia, Philadelphia, PA 19104, USA
- Correspondence: (I.P.-P.); (M.A.K.)
| |
Collapse
|
9
|
Khan K, Quispe C, Javed Z, Iqbal MJ, Sadia H, Raza S, Irshad A, Salehi B, Reiner Ž, Sharifi-Rad J. Resveratrol, curcumin, paclitaxel and miRNAs mediated regulation of PI3K/Akt/mTOR pathway: go four better to treat bladder cancer. Cancer Cell Int 2020; 20:560. [PMID: 33292283 PMCID: PMC7685642 DOI: 10.1186/s12935-020-01660-7] [Citation(s) in RCA: 51] [Impact Index Per Article: 10.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Accepted: 11/16/2020] [Indexed: 02/06/2023] Open
Abstract
Bladder cancer (BC) is a leading cause of death among urothelial malignancies that more commonly affect male population. Poor prognosis and resistance to chemotherapy are the two most important characteristics of this disease. PI3K/Akt/mTOR signaling pathway has been considered pivotal in the regulation of proliferation, migration, invasiveness, and metastasis. Deregulation of PI3K/Akt/mTOR signaling has been found in 40% of bladder cancers. Several microRNAs (miRNAs) have been reported to interact with the PI3K/Akt/mTOR signaling pathway with a different possible role in proliferation and apoptosis in bladder cancer. Thus, miRNAs can be used as potential biomarkers for BC. Natural compounds have been in the spotlight for the past decade due to their effective anti-proliferative capabilities. However, little is known of its possible effects in bladder cancer. The aim of this review is to discuss the interplay between PI3K/Akt/mTOR, miRNAs, and natural compounds and emphasize the importance of miRNAs as biomarkers and resveratrol, curcumin and paclitaxel as a possible therapeutic approach against bladder cancer.
Collapse
Affiliation(s)
- Khushbukhat Khan
- Atta-Ur-Rahman School of Applied Biosciences (ASAB), National University of Sciences and Technology (NUST), Sector H-12, Islamabad, 44000, Pakistan
| | - Cristina Quispe
- Facultad de Ciencias de La Salud, Universidad Arturo Prat, Avda. Arturo Prat 2120, 1110939, Iquique, Chile
| | - Zeeshan Javed
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Muhammad Javed Iqbal
- Department of Biotechnology, Faculty of Sciences, University of Sialkot, Punjab, Pakistan
| | - Haleema Sadia
- Department of Biotechnology, BUITMS, Quetta, Pakistan
| | - Shahid Raza
- Lahore Garrison University, Main Campus, Sector C, Phase VI, DHA Lahore Pakistan, Lahore, Pakistan
| | - Asma Irshad
- Department of Life Sciences, University of Management Sciences, Lahore, Pakistan
| | - Bahare Salehi
- Medical Ethics and Law Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| | - Željko Reiner
- Department of Internal Medicine, School of Medicine, University Hospital Centre Zagreb, University of Zagreb, Zagreb, Croatia
| | - Javad Sharifi-Rad
- Phytochemistry Research Center, Shahid Beheshti University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
10
|
Kolenda T, Guglas K, Baranowski D, Sobocińska J, Kopczyńska M, Teresiak A, Bliźniak R, Lamperska K. cfRNAs as biomarkers in oncology - still experimental or applied tool for personalized medicine already? Rep Pract Oncol Radiother 2020; 25:783-792. [PMID: 32904167 PMCID: PMC7451588 DOI: 10.1016/j.rpor.2020.07.007] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2019] [Revised: 02/13/2020] [Accepted: 07/31/2020] [Indexed: 02/07/2023] Open
Abstract
Currently, the challenges of contemporary oncology are focused mainly on the development of personalized medicine and precise treatment, which could be achieved through the use of molecular biomarkers. One of the biological molecules with great potential are circulating free RNAs (cfRNAs) which are present in various types of body fluids, such as blood, serum, plasma, and saliva. Also, different types of cfRNA particles can be distinguished depending on their length and function: microRNA (miRNA), PIWI-interacting RNA (piRNA), tRNA-derived RNA fragments (tRFs), circular RNA (circRNA), long non-coding RNA (lncRNA), and messenger RNA (mRNA). Moreover, cfRNAs occur in various forms: as a free molecule alone, in membrane vesicles, such as exosomes, or in complexes with proteins and lipids. One of the modern approaches for monitoring patient's condition is a "liquid biopsy" that provides a non-invasive and easily available source of circulating RNAs. Both the presence of specific cfRNA types as well as their concentration are dependent on many factors including cancer type or even reaction to treatment. Despite the possibility of using circulating free RNAs as biomarkers, there is still a lack of validated diagnostic panels, defined protocols for sampling, storing as well as detection methods. In this work we examine different types of cfRNAs, evaluate them as possible biomarkers, and analyze methods of their detection. We believe that further research on cfRNA and defining diagnostic panels could lead to better and faster cancer identification and improve treatment monitoring.
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Dawid Baranowski
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
11
|
Kolenda T, Guglas K, Kopczyńska M, Sobocińska J, Teresiak A, Bliźniak R, Lamperska K. Good or not good: Role of miR-18a in cancer biology. Rep Pract Oncol Radiother 2020; 25:808-819. [PMID: 32884453 DOI: 10.1016/j.rpor.2020.07.006] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 04/24/2020] [Accepted: 07/31/2020] [Indexed: 02/06/2023] Open
Abstract
miR-18a is a member of primary transcript called miR-17-92a (C13orf25 or MIR17HG) which also contains five other miRNAs: miR-17, miR-19a, miR-20a, miR-19b and miR-92a. This cluster as a whole shows specific characteristics, where miR-18a seems to be unique. In contrast to the other members, the expression of miR-18a is additionally controlled and probably functions as its own internal controller of the cluster. miR-18a regulates many genes involved in proliferation, cell cycle, apoptosis, response to different kinds of stress, autophagy and differentiation. The disturbances of miR-18a expression are observed in cancer as well as in different diseases or pathological states. The miR-17-92a cluster is commonly described as oncogenic and it is known as 'oncomiR-1', but this statement is a simplification because miR-18a can act both as an oncogene and a suppressor. In this review we summarize the current knowledge about miR-18a focusing on its regulation, role in cancer biology and utility as a potential biomarker.
Collapse
Key Words
- 5-FU, 5-fluorouracyl
- ACVR2A, activin A receptor type 2A
- AKT, AKT serine/threonine kinase
- AR, androgen receptor
- ATG7, autophagy related 7
- ATM, ATM serine/threonine kinase
- BAX, BCL2 associated Xapoptosis regulator
- BCL2, BCL2 apoptosis regulator
- BCL2L10, BCL2 like 10
- BDNF, brain derived neurotrophic factor
- BLCA, bladder urothelial carcinoma
- BRCA, breast cancer
- Biomarker
- Bp, base pair
- C-myc (MYCBP), MYC binding protein
- CASC2, cancer susceptibility 2
- CD133 (PROM1), prominin 1
- CDC42, cell division cycle 42
- CDKN1, Bcyclin dependent kinase inhibitor 1B
- COAD, colon adenocarcinoma
- Cancer
- Circulating miRNA
- DDR, DNA damage repair
- E2F family (E2F1, E2F2, E2F3), E2F transcription factors
- EBV, Epstein-Barr virus
- EMT, epithelial-to-mesenchymal transition
- ER, estrogen receptor
- ERBB (EGFR), epidermal growth factor receptor
- ESCA, esophageal carcinoma
- FENDRR, FOXF1 adjacent non-coding developmental regulatory RNA
- FER1L4, fer-1 like family member 4 (pseudogene)
- GAS5, growth arrest–specific 5
- HIF-1α (HIF1A), hypoxia inducible factor 1 subunit alpha
- HNRNPA1, heterogeneous nuclear ribonucleoprotein A1
- HNSC, head and neck squamous cell carcinoma
- HRR, homologous recombination-based DNA repair
- IFN-γ (IFNG), interferon gamma
- IGF1, insulin like growth factor 1
- IL6, interleukin 6
- IPMK, inositol phosphate multikinase
- KIRC, clear cell kidney carcinoma
- KIRP, kidney renal papillary cell carcinoma
- KRAS, KRAS proto-oncogene, GTPase
- LIHC, liver hepatocellular carcinoma
- LMP1, latent membrane protein 1
- LUAD, lung adenocarcinoma
- LUSC, lung squamous cell carcinoma
- Liquid biopsy
- MAPK, mitogen-activated protein kinase
- MCM7, minichromosome maintenance complex component 7
- MET, mesenchymal-to-epithelial transition
- MTOR, mechanistic target of rapamycin kinase
- N-myc (MYCN), MYCN proto-oncogene, bHLH transcription factor
- NF-κB, nuclear factor kappa-light-chain-enhancer of activated B cells
- NOTCH2, notch receptor 2
- Oncogene
- PAAD, pancreatic adenocarcinoma
- PERK (EIF2AK3), eukaryotic translation initiation factor 2 alpha kinase 3
- PI3K (PIK3CA), phosphatidylinositol-4,5-bisphosphate 3-kinase catalytic subunit alpha
- PIAS3, protein inhibitor of activated STAT 3
- PRAD, prostate adenocarcinoma
- RISC, RNA-induced silencing complex
- SMAD2, SMAD family member 2
- SMG1, SMG1 nonsense mediated mRNA decay associated PI3K related kinase
- SNHG1, small nucleolar RNA host gene 1
- SOCS5, suppressor of cytokine signaling 5
- STAD, stomach adenocarcinoma
- STAT3, signal transducer and activator of transcription 3
- STK4, serine/threonine kinase 4
- Suppressor
- TCGA
- TCGA, The Cancer Genome Atlas
- TGF-β (TGFB1), transforming growth factor beta 1
- TGFBR2, transforming growth factor beta receptor 2
- THCA, papillary thyroid carcinoma
- TNM, Classification of Malignant Tumors: T - tumor / N - lymph nodes / M – metastasis
- TP53, tumor protein p53
- TP53TG1, TP53 target 1
- TRIAP1, p53-regulating inhibitor of apoptosis gene
- TSC1, TSC complex subunit 1
- UCA1, urothelial cancer associated 1
- UCEC, uterine corpus endometrial carcinoma
- UTR, untranslated region
- WDFY3-AS2, WDFY3 antisense RNA 2
- WEE1, WEE1 G2 checkpoint kinase
- WNT family, Wingless-type MMTV integration site family/Wnt family ligands
- ZEB1/ZEB2, zinc finger E-box binding homeobox 1 and 2
- ceRNA, competitive endogenous RNA
- cncRNA, protein coding and non-coding RNA
- lncRNA, long-non coding RNA
- miR-17-92a
- miR-18a
- miRNA
Collapse
Affiliation(s)
- Tomasz Kolenda
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Kacper Guglas
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Postgraduate School of Molecular Medicine, Medical University of Warsaw, Warszawa, Poland
| | - Magda Kopczyńska
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland.,Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Sobocińska
- Department of Cancer Immunology, Chair of Medical Biotechnology, Poznan University of Medical Sciences, Poznan, Poland
| | - Anna Teresiak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | - Renata Bliźniak
- Laboratory of Cancer Genetics, Greater Poland Cancer Centre, Poznan, Poland
| | | |
Collapse
|
12
|
Tan X, Broses LJ, Zhou M, Day KC, Liu W, Li Z, Weizer AZ, Munson KA, Khaing Oo MK, Day ML, Fan X. Multiparameter urine analysis for quantitative bladder cancer surveillance of orthotopic xenografted mice. LAB ON A CHIP 2020; 20:634-646. [PMID: 31922156 DOI: 10.1039/c9lc01006h] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
The human-derived orthotopic xenograft mouse model is an effective platform for performing in vivo bladder cancer studies to examine tumor development, metastasis, and therapeutic effects of drugs. To date, the surveillance of tumor progression in real time for orthotopic bladder xenografts is highly dependent on semi-quantitative in vivo imaging technologies such as bioluminescence. While these imaging technologies can estimate tumor progression, they are burdened with requirements such as anesthetics, specialized equipment, and genetic modification of the injected cell line. Thus, a convenient and non-invasive technology to quantitatively monitor the growth of bladder cancer in orthotopic xenografts is highly desired. In this work, using a microfluidic chemiluminescent ELISA platform, we have successfully developed a rapid, multiparameter urine-based and non-invasive biomolecular prognostic technology for orthotopic bladder cancer xenografts. This method consists of two steps. First, the concentrations of a panel of four urinary biomarkers are quantified from the urine of mice bearing orthotopic bladder xenografts. Second, machine learning and principal component analysis (PCA) algorithms are applied to analyze the urinary biomarkers, and subsequently, a score is assigned to indicate the tumor growth. With this methodology, we have quantitatively monitored the orthotopic growth of human bladder cancer that was inoculated with low, medium, and high cancer cell numbers. We also employed this method and performed a proof of principle experiment to examine the in vivo therapeutic efficacy of the EGFR inhibitor, dacomitinib.
Collapse
Affiliation(s)
- Xiaotian Tan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Luke J Broses
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Menglian Zhou
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Kathleen C Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Wenyi Liu
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Ziqi Li
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| | - Alon Z Weizer
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Katherine A Munson
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | | | - Mark L Day
- Department of Urology, University of Michigan, Ann Arbor, MI 48109, USA. and Rogel Comprehensive Cancer Center, University of Michigan, Ann Arbor, MI 48109, USA
| | - Xudong Fan
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI 48109, USA.
| |
Collapse
|
13
|
Ou C, Peng NF, Li H, Peng YC, Li LQ. The potential mechanism of miR-130b on promotion of the invasion and metastasis of hepatocellular carcinoma by inhibiting Notch-Dll1. J Recept Signal Transduct Res 2020; 40:157-165. [PMID: 32019397 DOI: 10.1080/10799893.2020.1721537] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
Introduction: This study aimed to elucidate the regulatory role and molecular regulation mechanism of miR-130b gene in the process of invasion and metastasis of hepatocarcinoma, and provide a theoretical basis for seeking of effective prevention and treatment of new targets for hepatocellular carcinoma.Materials and methods: The expression level of miR-130b gene in hepatocarcinoma tissues was determined by qRT-PCR. The biological function and mechanism of miR-130b gene were verified by cell and animal models, and the target gene was verified by double luciferase assay.Results: In the liver cancer tissues of patients with metastasis, the expression level of miR-130b gene was increased, and the difference was significantly significant (p < 0.05). Evaluation of independent risk factors for overall survival showed significant difference (p < 0.01). Up-regulation of miR-130b in MHCC97L- subpopulation cells significantly enhanced the invasion and migration ability, and the difference was statistically significant (p < 0.05). The invasion and migration ability of MHCC97H + subpopulation cells with increased expression of miR-130b was significantly decreased, and the difference was notably significant (p < 0.05). When the expression of miR-130b in MHCC97H + subpopulation cells was inhibited, the expressions of Notch-Dll1 and SOX2, Nanog and E2F3 proteins in transplanted tumor tissues were significantly higher than those in other groups (p < 0.05). When miR-130b in MHCC97L- subpopulation cells was up-regulated, the expressions of Notch-Dll1 and Bcl-2, CCND1, Nanog and MET proteins in transplanted tumor tissues were significantly increased than those in other groups (p < 0.05). The prediction results of bioinformatics data suggest that the target gene of miR-130b may be Notch-Dll1 gene. The experiment of luciferase reporter gene confirmed that miR-130b gene can be inhibited and contains fluorescent reporter gene with complementary binding site, lost activity.Conclusion: The miR-130b gene can inhibit the protein expression of Notch-Dll1, and it can promote the invasion and metastasis of liver cancer cells.
Collapse
Affiliation(s)
- Chao Ou
- Department of Clinical Laboratory Medicine, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Ning-Fu Peng
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Hang Li
- Department of Ultrasound, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Yu-Chong Peng
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| | - Le-Qun Li
- Department of Hepatobiliary Surgery, The Affiliated Tumor Hospital of Guangxi Medical University, Nanning, China
| |
Collapse
|
14
|
Lu JJ, Yang WM, Li F, Zhu W, Chen Z. Tunneling Nanotubes Mediated microRNA-155 Intercellular Transportation Promotes Bladder Cancer Cells' Invasive and Proliferative Capacity. Int J Nanomedicine 2019; 14:9731-9743. [PMID: 31849465 PMCID: PMC6911338 DOI: 10.2147/ijn.s217277] [Citation(s) in RCA: 37] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2019] [Accepted: 11/15/2019] [Indexed: 01/07/2023] Open
Abstract
Objective To investigate differential microRNAs' expression in heterogeneous bladder cancer cells, as well as to investigate the mechanism of changes in invasive and proliferative capacity induced by tunneling nanotubes (TNTs) mediated transport of microRNA between bladder cancer cells of varying histological grade. Materials and methods Differences in microRNA expression between bladder cancer cells of different grade were identified from a literature review. The identified heterogeneous microRNAs were analyzed by qPCR in T24 (high grade) and RT4 (low grade) bladder cancer cells. Scanning electron microscopy (SEM) and laser confocal fluorescence microscopy (LCM) were used to observe tunneling nanotubes (TNTs) between RT4 and T24 cells. Differentially expressed microRNA was labeled and traced by Fluorescent In Situ Hybridization (FISH) following co-culture of T24 and RT4 cells. MicroRNA mimic and inhibition technologies were applied to investigate how TNTs-mediated intercellular transport of microRNA affects the invasive and proliferative behavior of bladder cancer cells. Results MicroRNA-155 (miR-155) levels were highly expressed in T24 cells, whereas the same was not true in RT4 cells. MiR-155 was confirmed to be a crucial factor sustaining T24 bladder cancer cell proliferation, migration and cell cycle progression by CCK8, Matrigel test and cell cycle analysis, respectively. After T24 and RT4 co-culture, TNTs were assessed by SEM and LCM between T24 and RT4 cells. In addition, we observed TNTs mediated transport of miR-155 from T24 cells to RT4 cells, which thereby acquired a higher proliferative rate, an increased frequency of cells in the S phase, and increased invasive ability in Matrigel test. At the same time, Deptor, the target protein of miR-155 in RT4 cells, was downregulated, followed by mTOR/4EBP1/p70S6K- eIF4e/S6RP signaling activation. Conclusion MiR-155 was differentially expressed between RT4 and T24 bladder cancer cells. Intercellular transport of miR-155 via TNTs can promote bladder cancer cell reprogramming by Deptor-mTOR signal pathway activation. ![]()
Point your SmartPhone at the code above. If you have a QR code reader the video abstract will appear. Or use: https://youtu.be/E2WwLr86AOg
Collapse
Affiliation(s)
- Jin Jin Lu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China.,Department of Urology, The Central Hospital of Wuhan, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, People's Republic of China
| | - Wei Min Yang
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Fan Li
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Wei Zhu
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| | - Zhong Chen
- Department of Urology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430030, People's Republic of China
| |
Collapse
|
15
|
Lu X, Chen F, Yuan D, He X, Liu X, Zi Y, Lu Y. Retracted Article: Exosome-derived PTENP1 suppresses cisplatin resistance of bladder cancer (BC) by suppressing cell proliferation, migration and inducing apoptosis via the miR-103a/PDCD4 axis. RSC Adv 2019; 9:37642-37651. [PMID: 35542268 PMCID: PMC9075761 DOI: 10.1039/c9ra07823a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2019] [Accepted: 11/07/2019] [Indexed: 11/26/2022] Open
Abstract
Bladder cancer (BC) is a lethal cancer that threatens the health of millions of people. Chemotherapy drug resistance, for example, cisplatin (DDP) resistance, is a huge limitation for BC therapy. PTEN pseudogene-1 (PTENP1) has been identified as a significant biomarker of multiple cancers. Therefore, it is essential to illuminate the molecular mechanism of PTENP1 in BC cell DDP resistance and progression. Serum exosomes were isolated using an ExoQuick precipitation kit. Serum exosomes were round-shaped vesicles of 100 ± 60 nm in size. The expression of PTENP1 was down-regulated in serum exosomes isolated from cisplatin non-responsive patients compared with responsive patients. ROC curves certified the diagnostic value of PTENP1. Apparently, PTENP1 transfection inhibited DDP-resistant BC cell proliferation, migration, cisplatin resistance and facilitated apoptosis. Next, we discovered that PTENP1 was a sponge of miR-103a, while PDCD4 was a target of miR-103a. More importantly, PTENP1 regulated DDP-resistant cell viability, migration, apoptosis and cisplatin resistance by interacting with the miR-103a/PDCD4 axis. In addition, PTENP1 hindered tumor growth of cisplatin-resistant mice. Exosome-derived PTENP1 suppressed the DDP resistance of BC by inhibiting cell proliferation, migration and promoting apoptosis through regulating the miR-103a/PDCD4 axis, representing a targeted therapy for DDP-resistant BC patients.
Collapse
Affiliation(s)
- Xingre Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Fengyu Chen
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Diao Yuan
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiang He
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Xiaowen Liu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yunju Zi
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| | - Yu Lu
- Department of Clinical Laboratory, The People's Hospital of Wenshan Prefecture in Yunnan ProvinceNo. 228, Kaihua Middle RoadWenshanYunnan663000China+86 876 2124990
| |
Collapse
|
16
|
Abstract
miRNAs, a major class of small noncoding RNAs approximately 18-25 nucleotides in length, function by repressing the expression of target genes through binding to complementary sequences in the 3'-UTRs of target genes. Emerging evidence has highlighted their important roles in numerous diseases, including human cancers. Recently, miR-190 has been shown to be dysregulated in various types of human cancers that participates in cancer-related biological processes, including proliferation, apoptosis, metastasis, drug resistance, by regulating associated target genes, and to predict cancer diagnosis and prognosis. In this review, we summarized the roles of miR-190-5p in human diseases, especially in human cancers. Then we classified its target genes in tumorigenesis and progression, which might provide evidence for cancer diagnosis and prognosis, promising tools for cancer treatment, or leads for further investigation.
Collapse
Affiliation(s)
- Yue Yu
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| | - Xu-Chen Cao
- 1The First Department of Breast Cancer, National Clinical Research Center for Cancer, Tianjin Medical University Cancer Institute and Hospital, Huan-Hu-Xi Road, Hexi District, Tianjin, 300060 China.,2Key Laboratory of Cancer Prevention and Therapy, Tianjin, 300060 China.,Tianjin's Clinical Research Center for Cancer, Tianjin, 300060 China.,4Key Laboratory of Breast Cancer Prevention and Therapy, Tianjin Medical University, Ministry of Education, Tianjin, 300060 China
| |
Collapse
|
17
|
Min C, Zhang A, Qin J. Increased expression of miR-601 is associated with poor prognosis and tumor progression of gastric cancer. Diagn Pathol 2019; 14:107. [PMID: 31547835 PMCID: PMC6757374 DOI: 10.1186/s13000-019-0882-5] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Accepted: 09/02/2019] [Indexed: 02/03/2023] Open
Abstract
Background MicroRNAs (miRNAs) have been considered to participate in many tumorigenesis, including gastric cancer (GC). Abnormal expression of miR-601 has been reported in GC, but its role is not clear. The goal of this study is to explore the expression patterns, clinical value and functional role of miR-601 in GC. Methods Quantitative real-time polymerase chain reaction (qRT-PCR) was conducted to evaluate the expression level of miR-601. The association between miR-601 expression and overall survival was estimated by the Kaplan-Meier survival method. The significance of different variables with respect to survival was analyzed by using the Cox regression assay. Cell experiments were applied to investigate the functional role of miR-601 in GC. Results We found that miR-601 was significantly up-regulated in GC tissues and cells compared with the controls (all P < 0.01). The levels of miR-601 expression were significantly associated with TNM stage, lymph node metastasis, lymphatic invasion, and distant metastasis (all P < 0.05). Kaplan-Meier survival analysis showed that patients in the high miR-601 expression group had poor overall survival (log-rank P = 0.001). Moreover, we confirmed that miR-601, TNM stage, and distant metastasis were independent prognostic factors for GC patients. Overexpression of miR-601 in AGS and SGC-7901 cells by miR-601 mimic transfection significantly promoted the cell proliferation, migration, and invasion (P < 0.05). Conclusions The expression level of miR-601 is dramatically up-regulated in GC. The overexpression of miR-601 promotes the tumor progression of GC, and may be a novel prognostic factor for poor survival in GC patients.
Collapse
Affiliation(s)
- Cuili Min
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, No.4138, South Linglongshan Road, Shandong, 262500, China.
| | - Aixia Zhang
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, No.4138, South Linglongshan Road, Shandong, 262500, China
| | - Jing Qin
- Department of Laboratory Medicine, Yidu Central Hospital of Weifang, No.4138, South Linglongshan Road, Shandong, 262500, China
| |
Collapse
|
18
|
Lopez-Rincon A, Martinez-Archundia M, Martinez-Ruiz GU, Schoenhuth A, Tonda A. Automatic discovery of 100-miRNA signature for cancer classification using ensemble feature selection. BMC Bioinformatics 2019; 20:480. [PMID: 31533612 PMCID: PMC6751684 DOI: 10.1186/s12859-019-3050-8] [Citation(s) in RCA: 43] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2019] [Accepted: 08/22/2019] [Indexed: 12/16/2022] Open
Abstract
Background MicroRNAs (miRNAs) are noncoding RNA molecules heavily involved in human tumors, in which few of them circulating the human body. Finding a tumor-associated signature of miRNA, that is, the minimum miRNA entities to be measured for discriminating both different types of cancer and normal tissues, is of utmost importance. Feature selection techniques applied in machine learning can help however they often provide naive or biased results. Results An ensemble feature selection strategy for miRNA signatures is proposed. miRNAs are chosen based on consensus on feature relevance from high-accuracy classifiers of different typologies. This methodology aims to identify signatures that are considerably more robust and reliable when used in clinically relevant prediction tasks. Using the proposed method, a 100-miRNA signature is identified in a dataset of 8023 samples, extracted from TCGA. When running eight-state-of-the-art classifiers along with the 100-miRNA signature against the original 1046 features, it could be detected that global accuracy differs only by 1.4%. Importantly, this 100-miRNA signature is sufficient to distinguish between tumor and normal tissues. The approach is then compared against other feature selection methods, such as UFS, RFE, EN, LASSO, Genetic Algorithms, and EFS-CLA. The proposed approach provides better accuracy when tested on a 10-fold cross-validation with different classifiers and it is applied to several GEO datasets across different platforms with some classifiers showing more than 90% classification accuracy, which proves its cross-platform applicability. Conclusions The 100-miRNA signature is sufficiently stable to provide almost the same classification accuracy as the complete TCGA dataset, and it is further validated on several GEO datasets, across different types of cancer and platforms. Furthermore, a bibliographic analysis confirms that 77 out of the 100 miRNAs in the signature appear in lists of circulating miRNAs used in cancer studies, in stem-loop or mature-sequence form. The remaining 23 miRNAs offer potentially promising avenues for future research. Electronic supplementary material The online version of this article (10.1186/s12859-019-3050-8) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Alejandro Lopez-Rincon
- Division of Pharmacology, Utrecht Institute for Pharmaceutical Sciences, Faculty of Science, Utrecht University, David de Wied building,Universiteitsweg 99, Utrecht, 3584 CG, The Netherlands.
| | - Marlet Martinez-Archundia
- Laboratorio de Modelado Molecular, Bioinformática y diseño de fármacos. Departamento de Posgrado. Escuela Superior de Medicina del Instituto Politécnico Nacional (IPN), Mexico City, Mexico
| | - Gustavo U Martinez-Ruiz
- Faculty of Medicine, National Autonomous University of Mexico; Federico Gomez Children's Hospital of Mexico, Mexico City, Mexico
| | | | - Alberto Tonda
- UMR 782 GMPA, Université Paris-Saclay, INRA, AgroParisTech, Thiverval-Grignon, France
| |
Collapse
|
19
|
Zheng P, Bin H, Chen W. Inhibition of microRNA-103a inhibits the activation of astrocytes in hippocampus tissues and improves the pathological injury of neurons of epilepsy rats by regulating BDNF. Cancer Cell Int 2019; 19:109. [PMID: 31049031 PMCID: PMC6482545 DOI: 10.1186/s12935-019-0821-2] [Citation(s) in RCA: 30] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2018] [Accepted: 04/08/2019] [Indexed: 12/13/2022] Open
Abstract
Background The aim of this study is to explore the effect of microRNA-103a (miR-103a) on astrocytes activation and hippocampal neuron injury in epilepsy rats by targeting brain-derived neurotrophic factor (BDNF). Methods The epilepsy rat model was induced by intraperitoneal injection of lithium chloride-pilocarpine. Successful modeled rats were intralateroventricularly microinjected with miR-103a inhibitors, inhibitors negative control (NC), siRNA-NC and BDNF-siRNA, respectively. The RT-qPCR and western blot analysis were used to detect the expression of miR-103a, BDNF and glial fibrillary acidic protein (GFAP) in hippocampus tissues of rats. TUNEL staining was used to detect the apoptosis of hippocampal neurons. The RT-PCR and ELISA was used to detect the levels of TNF-α and IL-6 in hippocampal tissues and in serum, respectively. Results Increased expression of miR-103a, GFAP, and number of apoptotic neurons, decreased expression of BDNF and number of surviving neurons were found in hippocampus tissues of epilepsy rats. After miR-103a inhibitors interfered with epilepsy rats, there showed decreased expression of miR-103a and GFAP, increased expression of BDNF and decreased number of apoptotic neuron as well as increased number of surviving neurons. Compared with miR-103a inhibitors alone, epilepsy rats treated with BDNF-siRNA combined with miR-103a inhibitors significantly increased expression of GFAP in hippocampal tissues of epilepsy rats, increased number of apoptotic neurons and significantly decreased the number of surviving neurons. Conclusion Our study provides evidence that the inhibition of miR-103a can inhibit the activation of astrocytes in hippocampus tissues and improve the pathological injury of neurons of epilepsy rats by regulating BDNF gene. Electronic supplementary material The online version of this article (10.1186/s12935-019-0821-2) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Ping Zheng
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - He Bin
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China
| | - Wei Chen
- 1Department of Neurosurgery, Shanghai Pudong New Area People's Hospital, No 490, South Chuanhuan Road, Shanghai, 201299 People's Republic of China.,2Department of Neurosurgery, First affiliated Hospital of Nanchang University, Nanchang, China
| |
Collapse
|
20
|
A meta-analysis of dysregulated miRNAs in coronary heart disease. Life Sci 2018; 215:170-181. [PMID: 30423308 DOI: 10.1016/j.lfs.2018.11.016] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2018] [Revised: 10/24/2018] [Accepted: 11/07/2018] [Indexed: 12/14/2022]
Abstract
AIMS To combine the results of dysregulated miRNAs in individual coronary heart disease (CHD) studies and to identify potential miRNA biomarkers. MAIN METHODS MiRNA profiling studies of CHD were extracted from Pubmed, Embase, Web of Science and China National Knowledge Internet (CNKI) databases if they met the inclusion criteria. The meta-analysis was conducted using a random effects model to identify the effect of each multiple-reported miRNA. We also performed subgroup analysis according to miRNA detecting methods, tissues and subtypes of CHD. Sensitivity analysis was performed on the sample size. Bioinformatic analysis was performed to identify the potential biomatic functions. All results were represented as log10 odds ratios (logORs). KEY FINDINGS A total of 239 miRNAs were reported to be dysregulated in all 25 studies analyzed herein, and meta-analysis identified 48 statistically significant miRNAs. Bioinformatic analysis showed they were closely related with CHD. The most reported up-regulated miRNA was miR-122-5p (logOR: 2.7924, P < 0.001). A total of 7, 6, 4 and 9 miRNAs were detected to be differentially expressed in myocardial infarction (MI), unstable angia (UA), stable angina (SA) and pre-CHD subjects, respectively. 32 miRNAs were dysregulated in blood sample. The dysregulation of miR-133a-3p in whole blood and plasma/serum was contrary. In sensitivity analysis, 37 out of 48 (77.08%) miRNAs were consistently dysregulated. SIGNIFICANCE A total of 48 dysregulated miRNAs were confirmed in this meta-analysis. MiR-122-5p and miR-133a-3p may be valuable biomarkers for CHD.
Collapse
|
21
|
Ferdosi S, Ho TH, Castle EP, Stanton ML, Borges CR. Behavior of blood plasma glycan features in bladder cancer. PLoS One 2018; 13:e0201208. [PMID: 30040854 PMCID: PMC6057681 DOI: 10.1371/journal.pone.0201208] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2018] [Accepted: 07/10/2018] [Indexed: 01/01/2023] Open
Abstract
Despite systemic therapy and cystectomy, bladder cancer is characterized by a high recurrence rate. Serum glycomics represents a promising source of prognostic markers for monitoring patients. Our approach, which we refer to as "glycan node analysis", constitutes the first example of molecularly "bottom-up" glycomics. It is based on a global glycan methylation analysis procedure that is applied to whole blood plasma/serum. The approach detects and quantifies partially methylated alditol acetates arising from unique glycan features such as α2-6 sialylation, β1-4 branching, and core fucosylation that have been pooled together from across all intact glycans within a sample into a single GC-MS chromatographic peak. We applied this method to 122 plasma samples from former and current bladder cancer patients (n = 72 former cancer patients with currently no evidence of disease (NED); n = 38 non-muscle invasive bladder cancer (NMIBC) patients; and n = 12 muscle invasive bladder cancer (MIBC) patients) along with plasma from 30 certifiably healthy living kidney donors. Markers for α2-6 sialylation, β1-4 branching, β1-6 branching, and outer-arm fucosylation were able to separate current and former (NED) cases from certifiably healthy controls (ROC curve c-statistics ~ 0.80); but NED, NMIBC, and MIBC were not distinguished from one another. Based on the unexpectedly high levels of these glycan nodes in the NED patients, we hypothesized that recurrence of this disease could be predicted by some of the elevated glycan features. Indeed, α2-6 sialylation and β1-6 branching were able to predict recurrence from the NED state using a Cox proportional hazards regression model adjusted for age, gender, and time from cancer. The levels of these two glycan features were correlated to C-reactive protein concentration, an inflammation marker and known prognostic indicator for bladder cancer, further strengthening the link between inflammation and abnormal plasma protein glycosylation.
Collapse
Affiliation(s)
- Shadi Ferdosi
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, United States of America
| | - Thai H. Ho
- Division of Hematology and Medical Oncology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Erik P. Castle
- Department of Urology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Melissa L. Stanton
- Department of Laboratory Medicine and Pathology, Mayo Clinic, Phoenix, AZ, United States of America
| | - Chad R. Borges
- School of Molecular Sciences, Arizona State University, Tempe, AZ, United States of America
- Virginia G. Piper Center for Personalized Diagnostics, The Biodesign Institute at Arizona State University, Tempe, AZ, United States of America
| |
Collapse
|
22
|
Wang H, Hu Z, Chen L. Enhanced plasma miR-26a-5p promotes the progression of bladder cancer via targeting PTEN. Oncol Lett 2018; 16:4223-4228. [PMID: 30197668 PMCID: PMC6126335 DOI: 10.3892/ol.2018.9163] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2018] [Accepted: 05/22/2018] [Indexed: 12/17/2022] Open
Abstract
The current study aimed to evaluate the expression and specific role of miR-26a-5p in the progression of bladder cancer (BC). Reverse transcription-quantitative polymerase chain reaction analysis was performed to evaluate the level of miR-26a-5p in BC cancer and healthy controls. The present data showed that plasma miR-26a-5p was significantly increased in BC patients. Furthermore, BC tissues exhibited greater levels of miR-26a-5p compared with adjacent non-neoplastic tissues-26a-5p. Compared with BC patients at Ta-T1 stage, the level of miR-26a-5p was significantly elevated in BC patients ≥T2. BC patients at G3 stage demonstrated a higher plasma miR-26a-5p level compared with those at G1/2 stage. Receiver operating characteristic (ROC) analysis indicated that miR-26a-5p could differentiate BC patients from controls. Additionally, Kaplan-Meier analysis demonstrated that plasma miR-26a-5p negatively correlated with survival of BC patients. Dual luciferase reporter assay indicated that miR-26a-5p significantly suppressed the relative luciferase activity of pmirGLO-PTEN-3′UTR compared with the control. In conclusion, the current study indicated novel data that the levels of plasma miR-26a-5p was significantly increased in BC patients. Furthermore, the present study suggested that determination of plasma miR-26a-5p level could help to distinguish BC patients from healthy controls via targeting PTEN.
Collapse
Affiliation(s)
- Hui Wang
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, Shandong 250014, P.R. China.,Department of Nephrology, The Fourth Hospital of Jinan City, Jinan, Shandong 250031, P.R. China
| | - Zhao Hu
- Department of Nephrology, Qilu Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| | - Li Chen
- Department of Endocrinology, Qilu Hospital, Shandong University, Jinan, Shandong 250014, P.R. China
| |
Collapse
|
23
|
Tölle A, Blobel CC, Jung K. Circulating miRNAs in blood and urine as diagnostic and prognostic biomarkers for bladder cancer: an update in 2017. Biomark Med 2018; 12:667-676. [PMID: 29896971 DOI: 10.2217/bmm-2017-0392] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
Abstract
This study presents a critical appraisal of previously published study data of miRNAs in blood, urine and exosomes as biomarkers of bladder cancer (BC). The evaluation included 39 articles published from the beginning of 2010 until September 2017 and searched in PubMed. The heterogeneity of studies, due to their clinicopathological variability, including insufficient consideration of diagnostic and prognostic biomarker guidelines and missing internal and external validation of data, do not currently allow the recommending of a useful miRNA marker as diagnostic or prognostic tool in BC. Future multi-institutional studies are necessary to overcome the deficiencies in these studies in order to prove the usefulness of circulating miRNAs as robust biomarkers for BC.
Collapse
Affiliation(s)
- Angelika Tölle
- Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany.,CONGEN Biotechnology GmbH, 13125 Berlin, Germany
| | - Conrad C Blobel
- Department of Urology, Charité - Universitätsmedizin Berlin, 10117 Berlin, Germany
| | - Klaus Jung
- Berlin Institute for Urologic Research, 10117 Berlin, Germany
| |
Collapse
|
24
|
Chen X, Lou N, Ruan A, Qiu B, Yan Y, Wang X, Du Q, Ruan H, Han W, Wei H, Yang H, Zhang X. miR-224/miR-141 ratio as a novel diagnostic biomarker in renal cell carcinoma. Oncol Lett 2018; 16:1666-1674. [PMID: 30008851 PMCID: PMC6036413 DOI: 10.3892/ol.2018.8874] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2017] [Accepted: 04/13/2018] [Indexed: 12/26/2022] Open
Abstract
Biomarkers to guide the clinical treatment of patients with renal cell carcinoma (RCC) are not yet routinely available. MicroRNAs (miRNAs) have been demonstrated to serve as biomarkers for a number of types of cancer. Based on a previous study by this group, we hypothesize that several highly differentially expressed miRNAs may serve as tissue and plasma biomarkers in patients with RCC. The expression levels of miR-210, miR-224 and miR-141 were analyzed in tissue samples from the same cohort of 78 patients with RCC, in paired pre- and post-operative plasma samples from 66 patients with clear cell RCC (ccRCC) and in 67 healthy controls by reverse transcription-quantitative polymerase chain reaction. Receiver operating characteristic (ROC) was used to evaluate the diagnostic accuracy associated with the expression of miR-210, miR-224 and miR-141. ROC curves revealed that the diagnostic accuracy (area under the curve) of tissue miR-210, miR-224, the ratio of miR-210/miR-141 (miR210/141), miR-224/miR-141 (miR224/141) and miR-210× miR-224/miR-141 (miR210×224/141) in ccRCC was 0.8329, 0.8511, 0.9412, 0.9898 and 0.9771, respectively. Notably, miR224/141 demonstrated the highest accuracy among these miRNAs for discriminating ccRCC tissues from normal tissues, with a sensitivity of 97.06% and a specificity of 98.53%. The expression levels of plasma miR-210 and miR-224 were significantly increased in patients compared with healthy control patients, and were reduced postoperatively (P<0.05). The diagnostic accuracy of plasma miR-210 and miR-224 were 0.6775 (89.55% sensitivity and 48.48% specificity) and 0.6056 (88.06% sensitivity and 40.91% specificity), respectively. The present study indicated that the tissue miR-224/miR-141 ratio is a potentially powerful tool for detecting ccRCC. However, plasma miR-210 and miR-224 may not be associated with diagnosis of ccRCC.
Collapse
Affiliation(s)
- Xuanyu Chen
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China.,Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China.,Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Ning Lou
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Anming Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Bin Qiu
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Yun Yan
- Department of Gastroenterology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Xuegang Wang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Quansheng Du
- Department of Neuroscience and Regenerative Medicine, Medical College of Georgia, Augusta University, Augusta, GA 30912, USA
| | - Hailong Ruan
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Weiwei Han
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| | - Haibin Wei
- Department of Urology, Zhejiang Provincial People's Hospital, Hangzhou, Zhejiang 310014, P.R. China
| | - Hongmei Yang
- Department of Pathogen Biology, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430030, P.R. China
| | - Xiaoping Zhang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, Hubei 430022, P.R. China
| |
Collapse
|
25
|
eNOS expression and NO release during hypoxia is inhibited by miR-200b in human endothelial cells. Angiogenesis 2018; 21:711-724. [PMID: 29737439 PMCID: PMC6208887 DOI: 10.1007/s10456-018-9620-y] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 05/03/2018] [Indexed: 02/07/2023]
Abstract
The nitric oxide (NO) secreted by vascular endothelium is required for the maintenance of cardiovascular homeostasis. Diminished release of NO generated by endothelial NO synthase contributes to endothelial dysfunction. Hypoxia and ischemia reduce endothelial eNOS expression via posttranscriptional mechanisms that result in NOS3 transcript destabilization. Here, we examine whether microRNAs contribute to this mechanism. We followed the kinetics of hypoxia-induced changes in NOS3 mRNA and eNOS protein levels in primary human umbilical vein endothelial cells (HUVECs). Utilizing in silico predictive protocols to identify potential miRNAs that regulate eNOS expression, we identified miR-200b as a candidate. We established the functional miR-200b target sequence within the NOS3 3′UTR, and demonstrated that manipulation of the miRNA levels during hypoxia using miR-200b mimics and antagomirs regulates eNOS levels, and established that miR-200b physiologically limits eNOS expression during hypoxia. Furthermore, we demonstrated that the specific ablation of the hypoxic induction of miR-200b in HUVECs restored eNOS-driven hypoxic NO release to the normoxic levels. To determine whether miR-200b might be the only miRNA that had this effect, we utilized Next Generation Sequencing (NGS) to follow hypoxia-induced changes in the miRNA levels in HUVECS and found 83 novel hypoxamiRs, with two candidate miRNAs besides miR-200b that could potentially influence eNOS levels. Taken together, the data establish miR-200b-eNOS regulation as a first hypoxamiR-based mechanism that limits NO bioavailability during hypoxia in endothelial cells, and show that hypoxamiRs could become useful therapeutic targets for cardiovascular diseases and other hypoxic-related diseases including various types of cancer.
Collapse
|
26
|
Wu Y, Sun W, Kong Y, Liu B, Zeng M, Wang W. Restoration of microRNA-130b expression suppresses osteosarcoma cell malignant behavior in vitro. Oncol Lett 2018; 16:97-104. [PMID: 29928390 PMCID: PMC6006480 DOI: 10.3892/ol.2018.8643] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2015] [Accepted: 01/26/2018] [Indexed: 12/25/2022] Open
Abstract
The alteration of microRNA (miR)-130b expression has been associated with promoting or suppressing numerous types of human cancer. A previous study evaluated the expression level of miR-130b in osteosarcoma tissues, and subsequently investigated the effects of miR-130b on the regulation of osteosarcoma cells malignant behavior in vitro. The study revealed that miR-130b expression levels were significantly reduced in osteosarcoma tissues and cell lines, compared with in adjacent tissues or normal cell lines. The expression of miR-130b inhibited the proliferation of osteosarcoma U-2OS and Saos-2 cells and impaired their ability to migrate, invade and form colonies. Furthermore, analysis using TargetScan and a dual-luciferase reporter assay demonstrated that miR-130b directly interacted with the 3′-untranslated region of transforming growth factor α (TGFA) and suppressed TGFA expression. TGFA and miR-130b were also inversely expressed in osteosarcoma tissues. In addition, expression of TGFA was able to alter miR-130-regulated osteosarcoma cell proliferation, migration and invasion. Thus, the present study demonstrated that miR-130b was downregulated in osteosarcoma tissues and cell lines, whereas the expression of miR-130b suppressed osteosarcoma cell malignant behavior. At the gene level, miR-130 directly targets and inhibits TGFA expression, in addition to phosphorylated protein kinase B and epidermal growth factor receptor expression levels. Further study is required to evaluate miR-130b antitumor activity in osteosarcoma.
Collapse
Affiliation(s)
- Yi Wu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China.,Department of Surgery, Changsha Medicine College, Changsha, Hunan 410023, P.R. China
| | - Wei Sun
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ying Kong
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Bo Liu
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Ming Zeng
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| | - Wanchun Wang
- Department of Orthopedics, The Second Xiangya Hospital of Central South University, Changsha, Hunan 410011, P.R. China
| |
Collapse
|
27
|
The role of circulating tumour cells and nucleic acids in blood for the detection of bladder cancer: A systematic review. Cancer Treat Rev 2018; 66:56-63. [PMID: 29684744 DOI: 10.1016/j.ctrv.2018.03.007] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2018] [Revised: 02/27/2018] [Accepted: 03/01/2018] [Indexed: 12/17/2022]
Abstract
BACKGROUND Blood-based biomarkers are a neglected resource in bladder cancer, where the mainstay of focus has been on urinary biomarkers. However, blood-based biomarkers are gaining popularity in other solid cancers, particularly circulating tumour cells (CTCs) and circulating nucleic acids. In this systematic review, we identify and discuss the diagnostic value of CTC, cell-free DNA and RNA based biomarkers in bladder cancer. METHODS A MEDLINE/Pubmed systematic search was performed using the following keywords: (bladder cancer) AND (blood OR plasma OR serum) AND biomarker AND (DNA OR RNA OR cfDNA OR cell-free DNA OR RNA OR CTC). All studies including blood-based biomarkers based on DNA, RNA and CTCs were reviewed. Of the included studies, studies reporting sensitivity, specificity and/or AUC/ROC values were further described. RESULTS Systematic searched yielded 47 studies that were eligible, of which 21, 19 and 3 studies reported DNA, RNA and CTC biomarkers respectively. 15 of these studies included sensitivity, specificity and/or AUC/ROC values. Biomarkers sensitivity and specificity ranged widely at 2.4-97.6% and 43.3-100% respectively. Median number of patients recruited in the studies was 56 (IQR 41-90). Only 3 studies included an independent validation cohort. The highest sensitivity and specificity pairing achieved in the validation cohort was 80.0% and 89.1% respectively. CONCLUSIONS This systematic review provides a comprehensive overview of the blood-based CTC and nucleic acid biomarkers that have been investigated. An overlap in interest of targets between studies suggests that these could be promising biomarkers, but few biomarkers achieve high sensitivity and specificity, and fewer still have been validated independently.
Collapse
|
28
|
Pardini B, Cordero F, Naccarati A, Viberti C, Birolo G, Oderda M, Di Gaetano C, Arigoni M, Martina F, Calogero RA, Sacerdote C, Gontero P, Vineis P, Matullo G. microRNA profiles in urine by next-generation sequencing can stratify bladder cancer subtypes. Oncotarget 2018; 9:20658-20669. [PMID: 29755679 PMCID: PMC5945522 DOI: 10.18632/oncotarget.25057] [Citation(s) in RCA: 65] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2017] [Accepted: 03/18/2018] [Indexed: 12/31/2022] Open
Abstract
Bladder cancer (BC) is the most frequent malignancy of the urinary tract with a high incidence in men and smokers. Currently, there are no non-invasive markers useful for BC diagnosis and subtypes classification that could overcome invasive procedures such as cystoscopy. Dysregulated miRNA profiles have been associated with numerous cancers, including BC. Cell-free miRNAs are abundantly present in a variety of biofluids including urine and make them promising candidates in cancer biomarker discovery. In the present study, the identification of miRNA fingerprints associated with different BC status was performed by next-generation sequencing on urine samples from 66 BC and 48 controls. Three signatures based on dysregulated miRNAs have been identified by regression models, assessing the power to discriminate different BC subtypes. Altered miRNAs according to invasiveness and grade were validated by qPCR on 112 cases and 65 controls (among which 46 cases and 16 controls were an independent group of subjects while the rest were replica samples). The area under the curve (AUC) computed including three miRNAs (miR-30a-5p, let-7c-5p and miR-486-5p) altered in all BC subtypes showed a significantly increased accuracy in the discrimination of cases and controls (AUC model = 0.70; p-value = 0.01). In conclusions, the non-invasive detection in urine of a selected number of miRNAs altered in different BC subtypes could lead to an accurate early diagnosis of cancer and stratification of patients.
Collapse
Affiliation(s)
- Barbara Pardini
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | | | | | - Clara Viberti
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Birolo
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Marco Oderda
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
| | - Cornelia Di Gaetano
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| | - Maddalena Arigoni
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | - Federica Martina
- Department of Computer Science, University of Turin, Turin, Italy
| | - Raffaele A Calogero
- Molecular Biotechnology Center, Department of Biotechnology and Health Sciences, University of Turin, Turin, Italy
| | | | - Paolo Gontero
- Department of Surgical Sciences, University of Turin and Città della Salute e della Scienza, Turin, Italy
| | - Paolo Vineis
- Italian Institute for Genomic Medicine, Turin, Italy.,MRC-HPA Centre for Environment and Health, School of Public Health, Imperial College London, London, United Kingdom
| | - Giuseppe Matullo
- Italian Institute for Genomic Medicine, Turin, Italy.,Department of Medical Sciences, University of Turin, Turin, Italy
| |
Collapse
|
29
|
Lian J, Lin SH, Ye Y, Chang DW, Huang M, Dinney CP, Wu X. Serum microRNAs as predictors of risk for non-muscle invasive bladder cancer. Oncotarget 2018; 9:14895-14908. [PMID: 29599914 PMCID: PMC5871085 DOI: 10.18632/oncotarget.24473] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2017] [Accepted: 01/13/2018] [Indexed: 12/17/2022] Open
Abstract
MicroRNAs (miRNAs) are implicated in the development of nearly all cancers and may function as promising biomarkers for early detection, diagnosis and prognosis. We sought to investigate the role of serum miRNAs as potential diagnostic biomarkers or biomarkers of risk for early-stage bladder cancer. First, we profiled global serum miRNAs in a pilot set of 10 non-muscle invasive bladder cancer (NMIBC) cases and 10 healthy controls matched on age, gender and smoking status. Eighty nine stably detectable miRNAs were selected for further testing and quantification by high-throughput Taqman analysis using the Fluidigm BioMark HD System to assess their association with NMIBC risk in both discovery and validation sets totaling 280 cases and 278 controls. We found miR-409-3p and six miRNAs expression ratios were significantly associated with risk of bladder cancer in both discovery and validation sets. Interestingly, we identified expression of miR-409-3p and miR-342-3p inversely correlated with age and age of onset of NMIBC. A risk score was generated based on the combination of three miRNA ratios (miR-29a-3p/miR-222-3p, miR-150-5p/miR-331-3p, miR-409-3p/miR-423-5p). In dichotomized analysis, we found individuals with high risk score showed increased risk of bladder cancer in the discovery, validation, and combined sets. Pathway enrichment analyses suggested altered miRNAs and cognate target genes are linked to the retinoid acid receptor (RAR) signaling pathway. Overall, these results suggested specific serum miRNA signatures may serve as noninvasive predictors of NMIBC risk. Biological insights underlying bladder cancer development based on the pathway enrichment analysis may reveal novel therapeutic targets for personalized medicine.
Collapse
Affiliation(s)
- Jie Lian
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Shu-Hong Lin
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Yuanqing Ye
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - David W. Chang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Maosheng Huang
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Colin P. Dinney
- Department of Urology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| | - Xifeng Wu
- Department of Epidemiology, The University of Texas MD Anderson Cancer Center, Houston, TX 77030, USA
| |
Collapse
|
30
|
Raza U, Saatci Ö, Uhlmann S, Ansari SA, Eyüpoğlu E, Yurdusev E, Mutlu M, Ersan PG, Altundağ MK, Zhang JD, Doğan HT, Güler G, Şahin Ö. The miR-644a/CTBP1/p53 axis suppresses drug resistance by simultaneous inhibition of cell survival and epithelial-mesenchymal transition in breast cancer. Oncotarget 2018; 7:49859-49877. [PMID: 27409664 PMCID: PMC5226553 DOI: 10.18632/oncotarget.10489] [Citation(s) in RCA: 45] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2016] [Accepted: 06/26/2016] [Indexed: 12/16/2022] Open
Abstract
Tumor cells develop drug resistance which leads to recurrence and distant metastasis. MicroRNAs are key regulators of tumor pathogenesis; however, little is known whether they can sensitize cells and block metastasis simultaneously. Here, we report miR-644a as a novel inhibitor of both cell survival and EMT whereby acting as pleiotropic therapy-sensitizer in breast cancer. We showed that both miR-644a expression and its gene signature are associated with tumor progression and distant metastasis-free survival. Mechanistically, miR-644a directly targets the transcriptional co-repressor C-Terminal Binding Protein 1 (CTBP1) whose knock-outs by the CRISPR-Cas9 system inhibit tumor growth, metastasis, and drug resistance, mimicking the phenotypes induced by miR-644a. Furthermore, downregulation of CTBP1 by miR-644a upregulates wild type- or mutant-p53 which acts as a 'molecular switch' between G1-arrest and apoptosis by inducing cyclin-dependent kinase inhibitor 1 (p21, CDKN1A, CIP1) or pro-apoptotic phorbol-12-myristate-13-acetate-induced protein 1 (Noxa, PMAIP1), respectively. Interestingly, an increase in mutant-p53 by either overexpression of miR-644a or downregulation of CTBP1 was enough to shift this balance in favor of apoptosis through upregulation of Noxa. Notably, p53-mutant patients, but not p53-wild type ones, with high CTBP1 have a shorter survival suggesting that CTBP1 could be a potential prognostic factor for breast cancer patients with p53 mutations. Overall, re-activation of the miR-644a/CTBP1/p53 axis may represent a new strategy for overcoming both therapy resistance and metastasis.
Collapse
Affiliation(s)
- Umar Raza
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Özge Saatci
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Stefan Uhlmann
- Friedrich Miescher Institute for Biomedical Research, Maulbeerstrasse 66, 4058 Basel, Switzerland
| | - Suhail A Ansari
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Erol Eyüpoğlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Emre Yurdusev
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Merve Mutlu
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Pelin Gülizar Ersan
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| | - Mustafa Kadri Altundağ
- Department of Medical Oncology, Hacettepe University Cancer Institute, 06410 Ankara, Turkey
| | | | | | - Gülnur Güler
- Department of Pathology, Hacettepe University, 06410 Ankara, Turkey
| | - Özgür Şahin
- Department of Molecular Biology and Genetics, Faculty of Science, Bilkent University, 06800 Ankara, Turkey
| |
Collapse
|
31
|
Plasma miR-324-3p and miR-1285 as diagnostic and prognostic biomarkers for early stage lung squamous cell carcinoma. Oncotarget 2018; 7:59664-59675. [PMID: 27517633 PMCID: PMC5312339 DOI: 10.18632/oncotarget.11198] [Citation(s) in RCA: 41] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2016] [Accepted: 06/30/2016] [Indexed: 11/25/2022] Open
Abstract
BACKGROUND Specific biomarkers for early detection and outcome prediction of lung squamous cell carcinoma (LSCC) are still lacking. This study assessed the differentially expressed miRNAs as potential biomarkers for early stage LSCC. RESULTS Base on the results of multi-phase study, we found that miR-324-3p was significantly up-regulated, whereas mir-1285 was significantly down-regulated in plasma of stage I LSCC patients compared to healthy controls. ROC analysis showed that AUC of miR-324-3p and miR-1285 were 0.79 and 0.85, respectively. The combination of these two miRNAs could further improve the diagnostic accuracy (AUC = 0.89). The multivariate analysis revealed that plasma miR-324-3p level was an independent prognostic predictor for early stage LSCC. METHODS 395 patients and 195 healthy controls were enrolled in this study. We screened the differentially expressed plasma miRNAs using TaqMan Low Density Arrays (TLDA) followed by three-phase qRT-PCR validation. We also evaluated the association of candidate miRNAs with overall survival of early stage LSCC patients. Finally, the target genes of the candidate miRNAs were analyzed using public available databases and bioinformatics methods. CONCLUSIONS The current study suggests that plasma miR-324-3p and miR-1285 levels could serve as LSCC early detection markers while miR-324-3p may serve as a prognostic marker for LSCC patients.
Collapse
|
32
|
Gao JM, Huang LZ, Huang ZG, He RQ. Clinical value and potential pathways of miR-183-5p in bladder cancer: A study based on miRNA-seq data and bioinformatics analysis. Oncol Lett 2018; 15:5056-5070. [PMID: 29616090 DOI: 10.3892/ol.2018.7967] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/13/2017] [Accepted: 01/29/2018] [Indexed: 02/06/2023] Open
Abstract
The clinicopathological value and exploration of the potential molecular mechanism of microRNA-183-5p (miR-183-5p) have been investigated in various cancers; however, to the best of the author's knowledge, no similar research has been reported for bladder cancer. In the present study, it was revealed that the expression level of miR-183-5p was notably increased in bladder cancer tissues compared with adjacent non-cancerous tissues (P=0.001) and was markedly increased in the tissue samples of papillary, pathological T stage (T0-T2) and pathological stage (I-II) compared with tissue samples of their counterparts (P=0.05), according to data from The Cancer Genome Atlas. Receiver operating characteristic analysis revealed the robust diagnostic value of miR-183-5p for distinguishing bladder cancer from non-cancerous bladder tissues (area under curve=0.948; 95% confidence interval: 0.919-0.977). Amplification and deep deletion of miR-183-5p were indicated by cBioPortal, accounting for 1% (4/412) of bladder cancer cases. Data from YM500v3 demonstrated that compared with other cancers, bladder cancer exhibited high expression levels of miR-183-5p, and miR-183-5p expression in primary solid tumors was much higher compared with solid normal tissues. A meta-analysis indicated that miR-183-5p was more highly expressed in bladder cancer samples compared with normal counterparts. A total of 88 potential target genes of miR-183-5p were identified, 13 of which were discerned as hub genes by protein-protein interaction. The epithelial-to-mesenchymal transition pathway was the most significantly enriched pathway by FunRich (P=0.0001). In summary, miR-183-5p may participate in the tumorigenesis and development of bladder cancer via certain signaling pathways, particularly the epithelial-to-mesenchymal transition pathway. However, the exact molecular mechanism of miR-183-5p in bladder cancer must be validated by in vitro and in vivo experiments.
Collapse
Affiliation(s)
- Jia-Min Gao
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Lin-Zhen Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Zhi-Guang Huang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Biomedicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| | - Rong-Quan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Collaborative Innovation Center for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Department of Biochemistry, Guangxi Medical University, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China.,Guangxi Key Laboratory for Genomic and Personalized Medicine, Nanning, Guangxi Zhuang Autonomous Region 530021, P.R. China
| |
Collapse
|
33
|
miR-130b, an onco-miRNA in bladder cancer, is directly regulated by NF-κB and sustains NF-κB activation by decreasing Cylindromatosis expression. Oncotarget 2018; 7:48547-48561. [PMID: 27391066 PMCID: PMC5217037 DOI: 10.18632/oncotarget.10423] [Citation(s) in RCA: 31] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2016] [Accepted: 05/22/2016] [Indexed: 02/02/2023] Open
Abstract
Persistent activation of NF-κB signaling is closely related to chronic inflammation and tumorigenesis. Commonly, NF-κB signaling is tightly controlled by multiple feedback loops and regulators, such as the deubiquitinases (DUBs). However, in cancer cells, NF-κB may override these feedbacks through special pathways and lead to the sustained activation. In the present study, we demonstrate that in transitional cell carcinoma (TCC) of bladder, miR-130b plays an oncogenesis role, it enhanced proliferation, invasion and migration of TCC cell, and was highly correlated with tumor progression. On the other hand, NF-κB directly regulated the transcription of miR-130b by binding with its promoter region. Importantly, we verify that, through deceasing the expression of Cylindromatosis (CYLD), a K63-specific DUB and endogenous blocker of NF-κB signaling, miR-130b can in return sustain the persistent activation of NF-κB, which may promote the malignant progression of TCC. Thus, the present study uncovers a potential signaling transduction in which NF-κB is continuously activated, and may provide a novel therapeutic approach for the clinical management of TCC.
Collapse
|
34
|
Xu T, Du XW, Hu JB, Zhu YF, Wu HL, Dai GP, Shu YM, Ouyang J. Anticancer effect of miR-96 inhibitor in bladder cancer cell lines. Oncol Lett 2018; 15:3814-3819. [PMID: 29467898 DOI: 10.3892/ol.2018.7745] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2016] [Accepted: 10/03/2017] [Indexed: 12/12/2022] Open
Abstract
The present study aimed to investigate the role of microRNA-96 (miR-96) in the proliferation, invasion and apoptosis of bladder cancer cell lines, and the associated mechanisms. The expression of miR-96 and human ether-à-go-go-related (HERG1) potassium channel in the normal uroepithelium SV-HUC-1 cell line, and bladder cancer T24 and 5637 cell lines were examined using reverse transcription-polymerase chain reaction or/and western blotting. Transfection with miR-96 inhibitor or scrambled control (SC) was used to study the biological activities of miR-96 in bladder cancer cell lines. MTT, flow cytometric and Transwell assays were applied to detect cell viability, apoptosis and invasion, respectively. A dual-luciferase reporter assay was applied to determine the association between miR-96 and HERG1 expression. As demonstrated, miR-96 was highly expressed in the two bladder cancer cell lines, particularly in T24 cells. Following transfection with miR-96 inhibitor, miR-96 expression was significantly reduced in the T24 cell line, compared with SC. The miR-96 inhibitor suppressed cell proliferation and invasion, promoted apoptosis and arrested the cell cycle at the G1 phase. Consistently, HERG1 was also highly expressed in the two bladder cancer cell lines at the mRNA and protein level, but not in the normal uroepithelium cell line. The miR-96 inhibitor also significantly decreased HERG1 expression compared with SC. The results of the dual-luciferase reporter assay indicated that miR-96 directly targeted wild-type HERG1. In conclusion, miR-96 inhibitor exhibited anticancer effects on bladder cancer cells by inhibiting proliferation and invasion of cells, and promoting their apoptosis. HERG1 was an important target of miR-96. These results provided experimental evidence supporting miR-96 as a therapeutic target for patients with bladder cancer.
Collapse
Affiliation(s)
- Ting Xu
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China.,Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| | - Xiao-Wen Du
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jun-Biao Hu
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Yong-Feng Zhu
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Hui-Ling Wu
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Guo-Ping Dai
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Yao-Min Shu
- Department of Urology, Jinhua People's Hospital, Jinhua, Zhejiang 321000, P.R. China
| | - Jun Ouyang
- Department of Urology, The First Affiliated Hospital of Soochow University, Suzhou, Jiangsu 215006, P.R. China
| |
Collapse
|
35
|
Gu JJ, Fan KC, Zhang JH, Chen HJ, Wang SS. Suppression of microRNA-130b inhibits glioma cell proliferation and invasion, and induces apoptosis by PTEN/AKT signaling. Int J Mol Med 2017; 41:284-292. [PMID: 29115407 PMCID: PMC5746316 DOI: 10.3892/ijmm.2017.3233] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2016] [Accepted: 10/24/2017] [Indexed: 12/29/2022] Open
Abstract
Glioblastoma is the most common malignant brain tumor in adults and is characterized by extensive proliferation and the diffused invasion of tumor cells. Due to the intricate signaling pathways involved in glioma progression, more effective targeted therapies and prognostic biomarkers in clinical practice are required. The suppression of proto-oncogene function or recovery of tumor suppressor gene function remains one of the primary approaches in gene therapy. The close association between the abnormal expression or mutation of microRNA (miRNA) and the tumorigenesis, progression and staging in glioma have been demonstrated previously. However, the expression pattern and specific role of microRNA‑130b (miR‑130b) in the tumor occurrence and progression of glioma are unclear. In the present study, quantitative polymerase chain reaction was performed to determine the expression level of miR-130b in 30 brain glioma patients and 3 glioma cell lines. An miR‑130b inhibitor was transfected into U87 cells to downregulate the expression of miR-130b, and assessments of cell proliferation, cell cycle, apoptosis, cell invasion and migration in vitro and nude mouse tumorigenicity in vivo were conducted. Western blotting and luciferase reporter gene technology were used to verify the downstream target gene of miR-130b, namely phosphatase and tensin homolog (PTEN). The results demonstrated that miR-130b expression was increased in glioma tissues and cell lines in comparison with non-glioma tissues or cells. The downregulated expression of miR-130b inhibited the proliferation and invasion of glioma cells, induced apoptosis of the cells in vitro and inhibited their tumorigenicity in vivo. Western blotting and luciferase reporter assays demonstrated that the PTEN gene is a direct target of miR‑130b. Western blotting revealed that the miR-130b inhibitor upregulated the expression of PTEN, inhibited AKT pathway activation, upregulated the tumor suppressor gene p27, and suppressed cyclin D1, matrix metalloproteinase 2 and 9 expression. These results suggest that the miR-130b inhibitor suppressed glioma cell proliferation and invasion via the PTEN/AKT pathway. Therefore, miR‑130b is suggested to be an effective therapeutic target for glioma.
Collapse
Affiliation(s)
- Jian-Jun Gu
- Stroke Center, Zhengzhou University People's Hospital, Henan Provincial People's Hospital, Zhengzhou, Henan 450000, P.R. China
| | - Kai-Chun Fan
- Department of Gastroenterology, Chinese PLA General Hospital, Beijing 100853, P.R. China
| | - Jian-He Zhang
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Hong-Jie Chen
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| | - Shou-Sen Wang
- Department of Neurosurgery, Fuzhou General Hospital, Fuzhou, Fujian 350025, P.R. China
| |
Collapse
|
36
|
Liu X, Liu X, Wu Y, Wu Q, Wang Q, Yang Z, Li L. MicroRNAs in biofluids are novel tools for bladder cancer screening. Oncotarget 2017; 8:32370-32379. [PMID: 28423688 PMCID: PMC5458291 DOI: 10.18632/oncotarget.16026] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2017] [Accepted: 02/17/2017] [Indexed: 02/06/2023] Open
Abstract
MicroRNAs (miRNAs) are short non-coding RNAs that play important roles in basic cellular processes, including differentiation, proliferation, apoptosis and autophagy. They are also involved in various stages of tumorigenesis and play key roles in bladder cancer initiation and progression. Notably, the altered expression of miRNAs in the tumors is reflected in body fluids, including blood and urine, which opens avenues for non-invasive diagnosis and prognosis. Many studies have demonstrated that epigenetic changes extensively alter tumoral microRNA expression. The high reproducibility, specificity and sensitivity of miRNA levels in body fluids suggest their potential use as biomarkers for cancer screening and diagnosis. For example, recent technological advances have made it possible to detect miRNAs in urine for bladder cancer screening. In this review, we focus mainly on the current knowledge and future challenges for incorporating miRNAs in body fluids, like urine and blood, for making clinical diagnoses and assessing prognoses in bladder cancer.
Collapse
Affiliation(s)
- Xiaobing Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Xin Liu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Yuqi Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingjian Wu
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Qingqing Wang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Zhenxing Yang
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| | - Longkun Li
- Department of Urology, Second Affiliated Hospital, Third Military Medical University, Chongqing, China
| |
Collapse
|
37
|
Baumgart S, Hölters S, Ohlmann CH, Bohle R, Stöckle M, Ostenfeld MS, Dyrskjøt L, Junker K, Heinzelmann J. Exosomes of invasive urothelial carcinoma cells are characterized by a specific miRNA expression signature. Oncotarget 2017; 8:58278-58291. [PMID: 28938555 PMCID: PMC5601651 DOI: 10.18632/oncotarget.17619] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2016] [Accepted: 04/20/2017] [Indexed: 11/30/2022] Open
Abstract
Muscle-invasive bladder cancer (MIBC) represents a highly aggressive tumor type compared to non-muscle-invasive tumors. MIBC is characterized by specific molecular alterations, which may also modulate extracellular tumorigenic effects. Tumor-associated exosomes, especially exosomal miRNAs, are important regulators in the interaction between tumor cells and tumor microenvironment by affecting tumor-promoting processes in target cells. It is important to analyze whether their exosomal patterns also reflect the specific molecular characteristics of MIBC. The aim of this study was to compare the miRNA expression in secreted exosomes from urinary bladder cancer cells (UBC) with different degrees of invasiveness. By electron microscopy, nanotracking analysis and western blot we proofed a high quality of isolated exosomes. Microarray analysis identified an invasion-associated signature of 15 miRNAs, which is significantly altered in exosomes of invasive UBC compared to non-invasive counterparts. Therefrom, 9 miRNAs are consistent differently expressed in both, invasive cells and their secreted exosomes. The remaining 6 exosome-specific miRNAs are only deregulated in exosomes but not in their parental cells. MiRNA alterations were verified by qPCR in cell culture and urinary exosomes. In conclusion, we showed that exosomes from invasive UBC cells are characterized by a specific miRNA signature. Further analyses have to clarify the functional relevance of exosomal miRNAs secreted by invasive bladder cancer cells for modification of the tumor microenvironment and their putative role as molecular markers in liquid biopsies.
Collapse
Affiliation(s)
- Sophie Baumgart
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Sebastian Hölters
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Carsten-Henning Ohlmann
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Rainer Bohle
- Institute of Pathology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Michael Stöckle
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | | | - Lars Dyrskjøt
- Department of Molecular Medicine, Aarhus University Hospital, 8200 Aarhus, Denmark
| | - Kerstin Junker
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| | - Joana Heinzelmann
- Department of Urology and Pediatric Urology, Saarland University Medical Center, 66424 Homburg, Germany
| |
Collapse
|
38
|
Wang Q, Liu S, Zhao X, Wang Y, Tian D, Jiang W. MiR-372-3p promotes cell growth and metastasis by targeting FGF9 in lung squamous cell carcinoma. Cancer Med 2017; 6:1323-1330. [PMID: 28440022 PMCID: PMC5463061 DOI: 10.1002/cam4.1026] [Citation(s) in RCA: 51] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2016] [Revised: 12/26/2016] [Accepted: 01/06/2017] [Indexed: 01/04/2023] Open
Abstract
The aim of this study was to study the role of miR‐372‐3p in lung squamous cell carcinoma (LSCC) cell proliferation and invasion by suppressing FGF9. RT‐PCR was used to determine miR‐372‐3p and FGF9 mRNA expression in tissues and cells. Western blot was used to determine FGF9 expression in tissues and NCI‐H520 cell line. Dual luciferase reporter gene assay was conducted to confirm that FGF9 can be directly targeted by miR‐372‐3p. MTT, colony formation assays were conducted to investigate the effects of ectopic miR‐372‐3p and FGF9 expression on NCI‐H520 cell growth. Flow cytometry was used to analyze the influence of miR‐372‐3p and FGF9 expression on cell cycle distribution and apoptosis. Transwell assay was also conducted to see the effects of miR‐372‐3p and FGF9 expression on NCI‐H520 cell invasiveness. MiR‐372‐3p was found significantly overexpressed in both LSCC tissues and cell lines, whereas FGF9 mRNA was found underexpressed in LSCC tissues. MiR‐372‐3p directly bound to wild‐type FGF9 mRNA 3′UTR, therefore led to the reduction in FGF9 expression. The upregulation of FGF9 or the downregulation of miR‐372‐3p substantially retarded LSCC cell growth, mitosis, and invasion. MiR‐372‐3p enhanced LSCC cell proliferation and invasion through inhibiting FGF9.
Collapse
Affiliation(s)
- Qing Wang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Siyang Liu
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Xitong Zhao
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Yuan Wang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Dali Tian
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| | - Wenjun Jiang
- Department of Thoracic Surgery, The Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning, 110032, China
| |
Collapse
|
39
|
Zhu M, Huang Z, Zhu D, Zhou X, Shan X, Qi LW, Wu L, Cheng W, Zhu J, Zhang L, Zhang H, Chen Y, Zhu W, Wang T, Liu P. A panel of microRNA signature in serum for colorectal cancer diagnosis. Oncotarget 2017; 8:17081-17091. [PMID: 28177881 PMCID: PMC5370024 DOI: 10.18632/oncotarget.15059] [Citation(s) in RCA: 101] [Impact Index Per Article: 12.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Accepted: 01/10/2017] [Indexed: 12/13/2022] Open
Abstract
Dysregulated expression of specific microRNAs (miRNAs) in serum has been recognised as promising diagnostic biomarkers for colorectal cancer (CRC). In the initial screening phase, a total of 32 differentially expressed miRNAs were selected by quantitative reverse transcription polymerase chain reaction (qRT-PCR) based Exiqon panel with 3 CRC pool samples and 1 normal control (NC) pool. Using qRT-PCR, selected serum miRNAs were further confirmed in training (30 CRC VS. 30 NCs) and testing stages (136 CRC VS. 90 NCs). We identified that serum levels of miR-19a-3p, miR-21-5p and miR-425-5p were significantly higher in patients with CRC than in NCs. The areas under the receiver operating characteristic (ROC) curve of the three-miRNA panel were 0.86, 0.74 and 0.87 for the training, testing and the external validation stages (30 CRC VS. 18 NCs), respectively. Significantly, elevated expression of the three miRNAs was also observed in CRC tissues (n = 24). Furthermore, the expression levels of the three miRNAs were significantly elevated in exosomes from CRC serum samples (n = 10). In conclusion, we identified a serum three-miRNA panel for the diagnosis of CRC.
Collapse
Affiliation(s)
- Mingxia Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Department of Radiation Oncology, The First Affiliated Hospital of Soochow University, Suzhou 215006, China
| | - Zebo Huang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Danxia Zhu
- Department of Oncology, The Third Affiliated Hospital of Soochow University, Changzhou 213003, China
| | - Xin Zhou
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Xia Shan
- Department of Respiration, The Affiliated Jiangning Hospital of Nanjing Medical University, Nanjing 210009, China
| | - Lian-wen Qi
- State Key Laboratory of Natural Medicines and Department of Pharmacognosy, China Pharmaceutical University, Nanjing, 210009, China
| | - Lirong Wu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Wenfang Cheng
- Department of Gastroenterology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Jun Zhu
- Department of Radiation Oncology, Jiangsu Cancer Hospital, Nanjing 210009, China
| | - Lan Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Huo Zhang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Yan Chen
- Department of Emergency, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Wei Zhu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Tongshan Wang
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
| | - Ping Liu
- Department of Oncology, The First Affiliated Hospital of Nanjing Medical University, Nanjing 210029, China
- Cancer Center of Nanjing Medical University, Nanjing 210029, China
| |
Collapse
|
40
|
Ramraj SK, Aravindan S, Somasundaram DB, Herman TS, Natarajan M, Aravindan N. Serum-circulating miRNAs predict neuroblastoma progression in mouse model of high-risk metastatic disease. Oncotarget 2017; 7:18605-19. [PMID: 26921195 PMCID: PMC4951313 DOI: 10.18632/oncotarget.7615] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2015] [Accepted: 01/19/2016] [Indexed: 01/03/2023] Open
Abstract
Background Circulating miRNAs have momentous clinical relevance as prognostic biomarkers and in the progression of solid tumors. Recognizing novel candidates of neuroblastoma-specific circulating miRNAs would allow us to identify potential prognostic biomarkers that could predict the switch from favorable to high-risk metastatic neuroblastoma (HR-NB). Results Utilizing mouse models of favorable and HR-NB and whole miRnome profiling, we identified high serum levels of 34 and low levels of 46 miRNAs in animals with HR-NB. Preferential sequence homology exclusion of mouse miRNAs identified 25 (11 increased; 14 decreased) human-specific prognostic marker candidates, of which, 21 were unique to HR-NB. miRNA QPCR validated miRnome profile. Target analysis defined the candidate miRNAs' signal transduction flow-through and demonstrated their converged roles in tumor progression. miRNA silencing studies verified the function of select miRNAs on the translation of at least 14 target proteins. Expressions of critical targets that correlate tumor progression in tissue of multifarious organs identify the orchestration of HR-NB. Significant (>10 fold) increase in serum levels of miR-381, miR-548h, and miR-580 identify them as potential prognostic markers for neuroblastoma progression. Conclusion For the first time, we identified serum-circulating miRNAs that predict the switch from favorable to HR-NB and, further imply that these miRNAs could play a functional role in tumor progression.
Collapse
Affiliation(s)
- Satish Kumar Ramraj
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | | | - Dinesh Babu Somasundaram
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| | - Terence S Herman
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA.,Stephenson Cancer Center, Oklahoma City, OK, USA
| | - Mohan Natarajan
- Department of Pathology, University of Texas Health Sciences Center at San Antonio, San Antonio, TX, USA
| | - Natarajan Aravindan
- Department of Radiation Oncology, University of Oklahoma Health Sciences Center, Oklahoma City, OK, USA
| |
Collapse
|
41
|
[Identification of miR-639 expression in myelodysplastic syndrome and its target gene prediction]. ZHONGHUA XUE YE XUE ZA ZHI = ZHONGHUA XUEYEXUE ZAZHI 2017; 38:157-159. [PMID: 28279042 PMCID: PMC7354176 DOI: 10.3760/cma.j.issn.0253-2727.2017.02.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
|
42
|
Eisenberg I, Nahmias N, Novoselsky Persky M, Greenfield C, Goldman-Wohl D, Hurwitz A, Haimov-Kochman R, Yagel S, Imbar T. Elevated circulating micro-ribonucleic acid (miRNA)-200b and miRNA-429 levels in anovulatory women. Fertil Steril 2017; 107:269-275. [DOI: 10.1016/j.fertnstert.2016.10.003] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2016] [Revised: 09/20/2016] [Accepted: 10/04/2016] [Indexed: 12/30/2022]
|
43
|
Zhang Y, Dai J, Tang J, Zhou L, Zhou M. MicroRNA-649 promotes HSV-1 replication by directly targeting MALT1. J Med Virol 2016; 89:1069-1079. [DOI: 10.1002/jmv.24728] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 11/01/2016] [Indexed: 12/12/2022]
Affiliation(s)
- Yi Zhang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Jun Dai
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Jinfeng Tang
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| | - Li Zhou
- ABSL-III Laboratory at Center for Animal Experiment, State Key Laboratory of Virology; Wuhan University School of Medicine; Wuhan China
| | - Mengzhou Zhou
- Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, College of Food and Pharmaceutical Engineering; Hubei University of Technology; Wuhan China
| |
Collapse
|
44
|
Nientiedt M, Deng M, Schmidt D, Perner S, Müller SC, Ellinger J. Identification of aberrant tRNA-halves expression patterns in clear cell renal cell carcinoma. Sci Rep 2016; 6:37158. [PMID: 27883021 PMCID: PMC5121638 DOI: 10.1038/srep37158] [Citation(s) in RCA: 58] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2016] [Accepted: 10/25/2016] [Indexed: 02/06/2023] Open
Abstract
Small non-coding RNAs (sncRNA; <200 nt) regulate various cellular processes and modify gene expression. Under nutritional, biological or physiochemical stress some mature sncRNAs (e.g. tRNAs) are cleaved into halves (30–50 nt) and smaller fragments (18–22 nt); the significance and functional role of these tRNA fragments is unknown, but their existence has been linked to carcinogenesis. We used small RNA sequencing to determine the expression of sncRNAs. Subsequently the findings were validated for miR-122-5p, miR-142-3p and 5'tRNA4-Val-AAC using qPCR. We identified differential expression of 132 miRNAs (upregulated: 61, downregulated: 71) and 32 tRNAs (upregulated: 13, downregulated: 19). Read length analysis showed that miRNAs mapped in the 20–24 nt fraction, whereas tRNA reads mapped in the 30–36 nt fraction instead the expected size of 73–95 nt thereby indicating cleavage of tRNAs. Overexpression of miR-122-5p and miR-142-3p as well as downregulation of 5'tRNA4-Val-AAC was validated in an independent cohort of 118 ccRCC and 74 normal renal tissues. Furthermore, staging and grading was inversely correlated with the 5'tRNA4-Val-AAC expression. Serum levels of miR-122-5p, miR-142-3p and 5'tRNA4-Val-AAC did not differ in ccRCC and control subjects. In conclusion, 5′ cleavage of tRNAs occurs in ccRCC, but the exact functional implication of tRNA-halve deregulation remains to be clarified.
Collapse
Affiliation(s)
- Malin Nientiedt
- University Hospital Bonn, Department of Urology, Bonn, Germany
| | - Mario Deng
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Doris Schmidt
- University Hospital Bonn, Department of Urology, Bonn, Germany
| | - Sven Perner
- Pathology of the University Medical Center Schleswig-Holstein, Campus Luebeck, Luebeck, Germany.,Research Center Borstel, Leibniz Center for Medicine and Biosciences, Borstel, Germany
| | - Stefan C Müller
- University Hospital Bonn, Department of Urology, Bonn, Germany
| | - Jörg Ellinger
- University Hospital Bonn, Department of Urology, Bonn, Germany
| |
Collapse
|
45
|
Fendler A, Stephan C, Yousef GM, Kristiansen G, Jung K. The translational potential of microRNAs as biofluid markers of urological tumours. Nat Rev Urol 2016; 13:734-752. [DOI: 10.1038/nrurol.2016.193] [Citation(s) in RCA: 101] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022]
|
46
|
Andreu Z, Otta Oshiro R, Redruello A, López-Martín S, Gutiérrez-Vázquez C, Morato E, Marina AI, Olivier Gómez C, Yáñez-Mó M. Extracellular vesicles as a source for non-invasive biomarkers in bladder cancer progression. Eur J Pharm Sci 2016; 98:70-79. [PMID: 27751843 DOI: 10.1016/j.ejps.2016.10.008] [Citation(s) in RCA: 78] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2016] [Revised: 09/15/2016] [Accepted: 10/04/2016] [Indexed: 12/18/2022]
Abstract
Bladder cancer is the second most frequent malignancy of the urinary tract after prostate cancer. Current diagnostic techniques, such as cystoscopy and biopsies are highly invasive and accompanied of undesirable side effects. Moreover, there are no suitable biomarkers for relapse or progression prognosis. We analysed whether the specific composition of microRNAs (miRNAs) and proteins of extracellular vesicles (EVs) that urothelial tumour cells of bladder mucosa release into the urine, could reflect their pathologic condition. For this purpose, urinary EVs were isolated and their protein and miRNA composition evaluated in healthy donors and low or high-grade bladder cancer patients. Using a microarray platform containing probes for 851 human miRNAs we found 26 deregulated miRNAs in high-grade bladder cancer urine EVs, from which 23 were downregulated and 3 upregulated. Real-time PCR analysis pointed to miR-375 as a biomarker for high-grade bladder cancer while miR-146a could identify low-grade patients. Finally, several protein markers were also deregulated in EVs from tumour patients. Our data suggest that the presence of ApoB in the 100,000 pellet is a clear marker for malignancy.
Collapse
Affiliation(s)
- Zoraida Andreu
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Renan Otta Oshiro
- Servicio de Urología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Spain
| | - Alberto Redruello
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Soraya López-Martín
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain
| | - Cristina Gutiérrez-Vázquez
- Servicio de Inmunología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP); Centro Nacional de Investigaciones Cardiovasculares Carlos III (CNIC), Madrid, Spain; Unidad de Proteómica, CBM-SO, Madrid, Spain; Departamento de Biología Molecular, UAM/CBM-SO, Madrid, Spain
| | | | | | - Carlos Olivier Gómez
- Servicio de Urología, Hospital Universitario de La Princesa, Instituto de Investigación Sanitaria Princesa (IIS-IP), Spain
| | - María Yáñez-Mó
- Unidad de Investigación, Hospital Santa Cristina, Instituto de Investigación Sanitaria Princesa (IIS-IP), Madrid, Spain; Departamento de Biología Molecular, UAM/CBM-SO, Madrid, Spain.
| |
Collapse
|
47
|
Sun L, Jiang R, Li J, Wang B, Ma C, Lv Y, Mu N. MicoRNA-425-5p is a potential prognostic biomarker for cervical cancer. Ann Clin Biochem 2016; 54:127-133. [PMID: 27166306 DOI: 10.1177/0004563216649377] [Citation(s) in RCA: 48] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
Abstract
Background MicroRNAs have been implicated in many biological pathways involved in tumourigenesis and can serve as prognostic biomarkers in many cancer types. The present study aims at evaluating the prognostic significance of miR-425-5p in cervical cancer. Methods Real-time polymerase chain reaction was performed to assess the expression levels of miR-425-5p in 35 pairs of cervical cancer tissues and their matched normal tissues as well as serum samples from 40 cervical cancer patients, 13 benign cervical disease patients and 32 healthy controls. The association between miR-425-5p expression levels in tissue and serum, and clinicopathological factors was examined. The correlation between serum miR-425-5p expression levels and overall survival of cervical cancer patients was assessed by Kaplan–Meier analysis and Cox proportional hazards model. Results MiR-425-5p expression levels were significantly increased in cervical cancer tissues compared with matched non-cancerous tissues. Higher expression of miR-425-5p was positively associated with high tumour stage ( P = 0.0003) and positive lymph node metastasis ( P = 0.0107). Serum concentrations of miR-425-5p in cervical cancer patients were significantly higher compared with benign cervical disease and healthy controls. Moreover, the up-regulation of serum miR-425-5p occurred more frequently in cervical cancer patients with high TNM stage ( P = 0.0003) and positive lymph node metastasis ( P = 0.0037). Kaplan–Meier analysis showed that high serum miR-425-5p expression levels predicted poor survival ( P = 0.0571). Cox proportional hazards risk analysis demonstrated that miR-425-5p was an independent prognostic factor for cervical cancer. Conclusion Our study suggests that miR-425-5p is up-regulated in cervical cancer and serum miR-425-5p may serve as a potential prognostic biomarker for cervical cancer.
Collapse
Affiliation(s)
- Liwei Sun
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Rong Jiang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Jinduo Li
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Bin Wang
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Chunhua Ma
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Yuan Lv
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| | - Ning Mu
- Tianjin Key Laboratory of Cerebral Vascular and Neurodegenerative Disease, Department of Intervention, Tianjin Huanhu Hospital, Tianjin, P.R. China
| |
Collapse
|
48
|
Ellinger J, Gevensleben H, Müller SC, Dietrich D. The emerging role of non-coding circulating RNA as a biomarker in renal cell carcinoma. Expert Rev Mol Diagn 2016; 16:1059-1065. [PMID: 27649770 DOI: 10.1080/14737159.2016.1239531] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
INTRODUCTION Bodily fluids like serum and plasma contain significant amounts of tumor-derived circulating cell-free RNA, which holds the potential to serve as diagnostic biomarker. Consequently, liquid biopsies comprising circulating cell-free RNA might help to facilitate personalized treatment strategies for patients with renal cell carcinoma (RCC). Areas covered: The present review provides a summary of the literature obtained by a PubMed search and covers the current knowledge on circulating non-coding cell-free RNA in patients with RCC. Expert commentary: Altered circulating microRNA and long non-coding RNAs signatures allow for the discrimination of patients with RCC and healthy individuals. On the other hand, little is known about non-coding RNA expression in benign tumors. Cell-free microRNA expression levels may help to identify patients at risk for disease recurrence. However, accurate determination of cell-free RNAs is methodologically challenging and currently no biomarker candidate has reached a sufficient level of clinical validation. Thus, short-term implementation of cell-free circulating microRNA into clinical routine seems unlikely.
Collapse
Affiliation(s)
- Jörg Ellinger
- a Department of Urology , University Hospital Bonn , Bonn , Germany
| | | | - Stefan C Müller
- a Department of Urology , University Hospital Bonn , Bonn , Germany
| | - Dimo Dietrich
- b Institute of Pathology , University Hospital Bonn , Bonn , Germany.,c Department of Otolaryngology, Head and Neck Surgery , University Hospital Bonn , Bonn , Germany
| |
Collapse
|
49
|
Ohno R, Uozaki H, Kikuchi Y, Kumagai A, Aso T, Watanabe M, Watabe S, Muto S, Yamaguchi R. Both cancerous miR-21 and stromal miR-21 in urothelial carcinoma are related to tumour progression. Histopathology 2016; 69:993-999. [DOI: 10.1111/his.13032] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2016] [Accepted: 07/05/2016] [Indexed: 12/17/2022]
Affiliation(s)
- Rena Ohno
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Hiroshi Uozaki
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Yoshinao Kikuchi
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Arisa Kumagai
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Tatsuya Aso
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Masato Watanabe
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Shiori Watabe
- Department of Pathology; Teikyo University School of Medicine; Tokyo Japan
| | - Satoru Muto
- Department of Urology; Teikyo University School of Medicine; Tokyo Japan
| | - Raizo Yamaguchi
- Department of Urology; Teikyo University School of Medicine; Tokyo Japan
| |
Collapse
|
50
|
Wei Y, He R, Wu Y, Gan B, Wu P, Qiu X, Lan A, Chen G, Wang Q, Lin X, Chen Y, Mo Z. Comprehensive investigation of aberrant microRNA profiling in bladder cancer tissues. Tumour Biol 2016; 37:12555-12569. [PMID: 27350368 DOI: 10.1007/s13277-016-5121-z] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2016] [Accepted: 06/13/2016] [Indexed: 12/19/2022] Open
Abstract
There has been accumulative evidence that microRNAs (miRNAs) play essential roles in the tumorigenesis and progression of bladder cancer. However, individual studies and small sample size caused discrepant outcomes. Thus, the current study focused on a comprehensive profiling of all differentially expressed miRNAs in a total of 519 bladder cancer tissue samples, based on miRNA microarray data. Altogether, 11 prioritized miRNAs stated by 21 published microarray datasets, including five down-regulated (miR-133a-3p, miR-1-3p, miR-99a-5p, miR-490-5p, and miR-133b) and six up-regulated candidate miRNAs (miR-182-5p, miR-935, miR-518e-3p, miR-573, miR-100-3p, and miR-3171) were analyzed with vote-counting strategy and a Robust Rank Aggregation method. Subsequently, miRNA in silico target prediction and potential pathway enrichment analysis were performed to investigate the prospective molecular mechanism of miRNAs in the tumorigenesis of bladder cancer. We found that most of the relative pathways of the aberrantly expressed miRNAs found in the current study were closely correlated with different biological processes, cellular components, molecular functions, cancer pathogeneses, and some cell signalings, such as Wnt signaling, insulin/IGF, PI3 kinase, and FGF signaling pathways. Hence, a comprehensive overview on the miRNA expression pattern in bladder cancer tissues was gained by the current study. These miRNAs might be involved in the tumorigenesis and deterioration of bladder cancer.
Collapse
Affiliation(s)
- Yanping Wei
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Rongquan He
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Yuzhuang Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Binliang Gan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Peirong Wu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xiaohui Qiu
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Aihua Lan
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Gang Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- Department of Pathology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Qiuyan Wang
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| | - Xinggu Lin
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Yingchun Chen
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China.
| | - Zengnan Mo
- Center for Genomic and Personalized Medicine, Guangxi Medical University, 22 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
- Department of Urology, First Affiliated Hospital of Guangxi Medical University, 6 Shuangyong Road, Nanning, Guangxi Zhuang Autonomous Region, 530021, China
| |
Collapse
|