1
|
Embaby EM, Megahed A, Mostafa SA, Samy A, Yousef EH, Dawood AF, Eldesoqui M. L-Citrulline Alleviates Testicular Ischemia/Reperfusion Injury in Rats by Modulating eNOS/iNOS Induced Nitric Oxide Production, Inflammation, and Apoptosis. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART A, ECOLOGICAL AND INTEGRATIVE PHYSIOLOGY 2025; 343:590-607. [PMID: 40059720 DOI: 10.1002/jez.2913] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/20/2025] [Revised: 02/16/2025] [Accepted: 02/24/2025] [Indexed: 05/07/2025]
Abstract
Testicular ischemia/reperfusion injury (TI/RI) is a significant clinical contributor to subfertility and infertility resulting from testicular torsion and subsequent detortion. Insufficient nitric oxide (NO) synthesis in TI/RI can result in endothelial dysfunction, as the vascular endothelium fails to produce sufficient NO to sustain appropriate vasodilation and blood perfusion. Many studies have found that NO plays an important role in the I/RI and its increase or decrease can affect the progression and outcome of I/RI. However, the role of NO in I/RI is controversial and complicated. NO derived by endothelial NO synthase (eNOS) shows a protective role in I/RI, while excessive NO derived by inducible NO synthase (iNOS) accelerates inflammation and increases oxidative stress, further aggravating I/RI. Nevertheless, the overexpression of eNOS may exacerbate I/RI. Here we try to investigate the new progress in the understanding of the roles of NO during I/RI. This study examined the interplay between cytotoxic and cytoprotective mechanisms underpinning NO produced from L-citrulline (L-Cit) on TI/R injured rats. Thirty-two adult Sprague-Dawley albino rats were equally randomized into the following groups: normal control group, sham group, TI/R group (3 h/4 h), and TI/R + L-Cit group (600 mg/kg) orally at 1 h before reperfusion. Compared to the TI/R-operated group, the injection of L-Cit markedly enhanced serum concentrations of reproductive hormones (p < 0.05). Elevated SOD, CAT, and GPx activity, along with reduced MDA and NO concentrations, indicated a diminished oxidative stress. The testicular levels of TNF-α, IL-1β, caspase-3, BAX, eNOS, iNOS, and NF-κB p65 were markedly reduced. Histopathological analysis corroborated the protective effect of L-Cit. The findings confirmed molecular models, demonstrating that L-Cit inhibited eNOS, iNOS, and IKKβ. The results showed that giving torsioned rats NO made from L-Cit protected them against hormonal imbalance, oxidative stress, inflammation, and apoptosis in I/RI. This makes L-Cit even more important for protecting against tissue I/RI during surgery. L-Cit not only promoted NO synthesis through eNOS activation, but it also facilitated the neutralization of iNOS production and its pathogenic NO levels during the reperfusion phase in I/R-injured rats.
Collapse
Affiliation(s)
- Eman M Embaby
- Department of Physiology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Aya Megahed
- Department of Clinical Pathology, Faculty of Veterinary Medicine, Mansoura University, Mansoura, Egypt
| | - Sally Abdallah Mostafa
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| | - Alaa Samy
- Department of Surgery, Anesthesiology, and Radiology, Faculty of Veterinary Medicine, University of Mansoura, Mansoura, Egypt
| | - Eman H Yousef
- Department of Pharmacology and Biochemistry, Faculty of Pharmacy, Horus University-Egypt, Damietta, Egypt
| | - Amal F Dawood
- Department of Basic Medical Sciences, College of Medicine, Princess Nourah bint Abdulrahman University, Riyadh, Saudi Arabia
| | - Mamdouh Eldesoqui
- Department of Basic Medical Sciences, College of Medicine, AlMaarefa University, Riyadh, Saudi Arabia
- Department of Anatomy and Embryology, Faculty of Medicine, Mansoura University, Mansoura, Egypt
| |
Collapse
|
2
|
Cheng L, Yin Z, Liu H, Shi S, Lv L, Wang Y, Zhou M, Li M, Guo T, Guo X, Yang G, Ma J, Yu J, Zhang Y, Duo S, Zhao L, Li R. Inhibition of LncRNA H19 Attenuates Testicular Torsion-Induced Apoptosis and Preserves Blood-Testis Barrier Integrity. Int J Mol Sci 2025; 26:2134. [PMID: 40076761 PMCID: PMC11899958 DOI: 10.3390/ijms26052134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/21/2025] [Revised: 02/19/2025] [Accepted: 02/25/2025] [Indexed: 03/14/2025] Open
Abstract
Testicular torsion is a common emergency in adolescents, and can lead to severe ischemia reperfusion injury (IRI). LncRNA H19 has been shown to increase during ischemia, but its role in testicular IRI remains unknown. Focusing on this research gap, we utilized H19 biallelic mutant mice and Sertoli cell line (TM4) to construct in vivo and in vitro models of ischemia/reperfusion (I/R) and oxygen-glucose deprivation/reperfusion (OGD/R). Compared to WT I/R mice, H19-/- I/R mice showed milder tissue disorganization and cell loss, with a more intact blood-testis barrier (BTB). The cell viability decreased, ROS levels and apoptosis-related factors such as Bax/Bcl-2 increased in TM4 cells after OGD/R, whereas these changes were reversed when H19 was knocked down followed by OGD/R (si-H19+OGD/R). In contrast, over-expression of H19 in TM4 cells exacerbates OGD/R-induced cell apoptosis. Through in-depth analysis of KEGG-enriched pathways, the PI3K/AKT pathway was identified as a potential target of H19 modulation. Western blotting confirmed that, in OGD/R cells, elevated H19 levels were accompanied by the excessive AKT phosphorylation and the tight junction marker ZO-1 degradation; and in si-H19+OGD/R cells, the decreased AKT phosphorylation was recovered and the up-regulated ZO-1 expression was weakened simultaneously via using the AKT activator SC79. These results suggest that inhibiting H19 in OGD/R cells might preserve the integrity of the BTB by reversing the excessive phosphorylation of AKT. Moreover, H19 deficiency in si-H19+OGD/R cells alleviated the disturbances in glycolysis, fatty acid biosynthesis, and amino acid metabolism. Our study indicates that H19 might be a potential therapeutic target for clinic testicular I/R treatment.
Collapse
Affiliation(s)
- Linxin Cheng
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Zhibao Yin
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Han Liu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Sijing Shi
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Limin Lv
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China;
| | - Yixi Wang
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.D.)
| | - Meng Zhou
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Meishuang Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Tianxu Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Xiyun Guo
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Guang Yang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Junjun Ma
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Jinbo Yu
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Yu Zhang
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Shuguang Duo
- Laboratory Animal Center, Institute of Zoology, Chinese Academy of Sciences, Beijing 100101, China; (Y.W.); (S.D.)
| | - Lihua Zhao
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
| | - Rongfeng Li
- Jiangsu Key Laboratory of Xenotransplantation, Nanjing Medical University, Nanjing 211166, China; (L.C.); (Z.Y.); (H.L.); (S.S.); (M.Z.); (M.L.); (T.G.); (X.G.); (G.Y.); (J.M.); (J.Y.); (Y.Z.)
- State Key Laboratory of Reproductive Medicine and Offspring Health, Center for Global Health, School of Public Health, Nanjing Medical University, Nanjing 211166, China
- Key Laboratory of Targeted Intervention of Cardiovascular Disease, Collaborative Innovation Center for Cardiovascular Disease Translational Medicine, Nanjing Medical University, Nanjing 211166, China;
| |
Collapse
|
3
|
Kazak F, Akcakavak G, Alakus I, Alakus H, Kirgiz O, Karatas O, Deveci MZY, Coskun P. Proanthocyanidin alleviates testicular torsion/detorsion-induced ischemia/reperfusion injury in rats. Tissue Cell 2024; 89:102459. [PMID: 39002290 DOI: 10.1016/j.tice.2024.102459] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2024] [Revised: 06/04/2024] [Accepted: 07/01/2024] [Indexed: 07/15/2024]
Abstract
Testicular torsion is an urological emergency and can lead to ischemia damage and testicular loss if not diagnosed in time. Proanthocyanidin is reported to have anti-inflammatory and antioxidant properties. The current study aimed to examine the possible effects of proanthocyanidin (P) on the testis in torsion/detorsion (T/D)-induced testicular ischemia/reperfusion (I/R) injury in rats. Forty rats were divided into four groups (n=10 for each): sham-operated (sham), I/R, I/R + P100 (100 mg/kg, 30 min before torsion), and I/R + P200 (200 mg/kg, 30 min before torsion). Testicular T/D was performed on the left testicle by 3 hours of torsion at 720° clockwise, followed by 3 hours of detorsion. In the I/R group, an increase in malondialdehyde (MDA) levels and a decrease in glutathione (GSH), vitamin C (Vit C), glutathione peroxidase (GPx), glucose-6-phosphate dehydrogenase (G6PD) values were determined compared to the sham group (p<0.001). Moreover, an increase in the expression of cleaved caspase-3 and Bcl2-associated X protein (Bax), a decrease in the expression of B-cell lymphoma 2 (Bcl-2) and proliferating cell nuclear antigen (PCNA) were detected in the I/R group (p<0.001). Histopathologically, it was determined that the Johnsen and Cosentino scores of the testicles were irregular in the I/R group (p<0.001). Proanthocyanidin treatment caused a decrease in MDA, cleaved caspase-3 and Bax levels and an increase in GSH, Vit C, GPx, G6PD, Bcl-2 and PCNA values. Additionally, Johnsen and Cosentino rearranged the scores. The present findings revealed the protective and curative effects of proanthocyanidin in organ damage due to testicular torsion/detorsion-induced ischemia/reperfusion with their antioxidative and antiapoptotic properties.
Collapse
Affiliation(s)
- Filiz Kazak
- Department of Biochemistry, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Gokhan Akcakavak
- Department of Pathology, Faculty of Veterinary Sciences, Aksaray University, Aksaray, Turkey.
| | - Ibrahim Alakus
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Halil Alakus
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Omer Kirgiz
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Ozhan Karatas
- Department of Pathology, Faculty of Veterinary Sciences, Sivas Cumhuriyet University, Sivas, Turkey.
| | - Mehmet Zeki Yilmaz Deveci
- Department of Surgery, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| | - Pınar Coskun
- Department of Biochemistry, Faculty of Veterinary Sciences, Hatay Mustafa Kemal University, Hatay, Turkey.
| |
Collapse
|
4
|
Shipa AME, Kahilo KA, Elshazly SA, Taher ES, Nasr NE, Alotaibi BS, Almadaly EA, Assas M, Abdo W, Abouzed TK, Salem AE, Kirci D, El-Seedi HR, Refaey MS, Rizk NI, Shukry M, Dorghamm DA. Protective effect of Petroselinum crispum methanolic extract against acrylamide-induced reproductive toxicity in male rats through NF-ĸB, kinesin, steroidogenesis pathways. Reprod Toxicol 2024; 126:108586. [PMID: 38614435 DOI: 10.1016/j.reprotox.2024.108586] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/19/2024] [Accepted: 03/29/2024] [Indexed: 04/15/2024]
Abstract
This study examined the protective effects of a Petroselinum crispum (P. crispum) methanolic extract on reproductive dysfunction induced by acrylamide in male rats. A total of 40 rats were divided into four groups (n=10). The control group received distilled water, the acrylamide group received 10 mg/kg of acrylamide, the P. crispum group received 100 mg/kg of P. crispum extract, and the combined group was pretreated with P. crispum for two weeks before co-administration of P. crispum and acrylamide. All administrations were administered orally using a gastric tube for eight weeks. Acrylamide decreased testosterone levels but did not affect levels of FSH or LH. It also increased testicular levels of (MDA) malondialdehyde and reduced activity of (SOD) superoxide dismutase and impairment of sperm parameters. Furthermore, the administration of acrylamide resulted in an elevation of tumor necrosis factor-alpha (TNF-α) levels and a reduction in the levels of steroidogenic acute regulatory protein (STAR) and cytochrome P450scc (P450scc). Acrylamide negatively affected the histopathological outcomes, Johnsen's score, the diameter of seminiferous tubules, and the thickness of the germinal epithelium. It also upregulated the expression of NF-ĸB P65 and downregulated the expression of kinesin motor protein. In contrast, treatment with P. crispum extract restored the levels of antioxidant enzymes, improved sperm parameters, and normalized the gene expression of TNF-α, IL-10, IL-6, iNOS, NF-ĸB, STAR, CYP17A1, 17β-HSD and P450scc. It also recovered testicular histological parameters and immunoexpression of NF-ĸB P65 and kinesin altered by acrylamide. P. crispum showed protective effects against acrylamide-induced reproductive toxicity by suppressing oxidative damage and inflammatory pathways.
Collapse
Affiliation(s)
- Ahmed M E Shipa
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Khaled A Kahilo
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Samir A Elshazly
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Ehab S Taher
- Department of Basic Medical and Dental Sciences, Faculty of Dentistry, Zarqa University, Zarqa 13110, Jordan
| | - Nasr E Nasr
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Badriyah S Alotaibi
- Department of Pharmaceutical Sciences, College of Pharmacy, Princess Nourah bint Abdulrahman University, P.O. Box 84428, Riyadh 11671, Saudi Arabia.
| | - Essam A Almadaly
- Department of Theriogenology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Mona Assas
- Fish Processing and Biotechnology Department, Faculty of Aquatic and Fisheries Sciences, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| | - Walied Abdo
- Department of Veterinary Pathology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafr El Sheikh 33516, Egypt
| | - Tarek K Abouzed
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt; Faculty of Medicine, Biochemistry Department University of Misrata, Libya
| | | | - Damla Kirci
- Department of Pharmacognosy, Faculty of Pharmacy, Selçuk University, Konya, Turkiye
| | - Hesham R El-Seedi
- Department of Chemistry, Faculty of Science, Islamic University of Madinah, Madinah 42351, Saudi Arabia
| | - Mohamed S Refaey
- Department of Pharmacognosy, Faculty of Pharmacy, University of Sadat City, Sadat City 32897, Egypt
| | - Nermin I Rizk
- Medical Physiology Department, Faculty of Medicine, Menoufia University, Egypt
| | - Mustafa Shukry
- Department of Physiology, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh, Egypt
| | - Doaa A Dorghamm
- Department of Biochemistry, Faculty of Veterinary Medicine, Kafrelsheikh University, Kafrelsheikh 33516, Egypt
| |
Collapse
|
5
|
Akhigbe R, Odetayo A, Akhigbe T, Hamed M, Ashonibare P. Pathophysiology and management of testicular ischemia/reperfusion injury: Lessons from animal models. Heliyon 2024; 10:e27760. [PMID: 38694115 PMCID: PMC11058307 DOI: 10.1016/j.heliyon.2024.e27760] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2023] [Revised: 02/24/2024] [Accepted: 03/06/2024] [Indexed: 05/03/2024] Open
Abstract
Testicular torsion is a urological emergency that involves the twisting of the spermatic cord along its course. Compelling pieces of evidence have implicated oxidative stress-sensitive signaling in pathogenesis of testicular I/R injury. Although, surgical detorsion is the mainstay management; blockade of the pathways involved in the pathogenesis may improve the surgical outcome. Experimental studies using various testicular I/R models have been reported in a bid to explore the mechanisms associated with testicular I/R and evaluate the benefits of potential therapeutic measures; however, most are limited by their shortcomings. Thus, this review was intended to describe the details of the available testicular I/R models as well as their merits and drawbacks, the pathophysiological basis and consequences of testicular I/R, and the pharmacological agents that have being proposed to confer testicular benefits against testicular I/R. This provides an understanding of the pathophysiological events and available models used in studying testicular I/R. In addition, this research provides evidence-based molecules with therapeutic potentials as well as their mechanisms of action in testicular I/R.
Collapse
Affiliation(s)
- R.E. Akhigbe
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| | - A.F. Odetayo
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Physiology, University of Ilorin, Ilorin, Kwara State, Nigeria
| | - T.M. Akhigbe
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Breeding and Plant Genetics Unit, Department of Agronomy, Osun State University, Osun State, Nigeria
| | - M.A. Hamed
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
- Department of Medical Laboratory Science, Afe Babalola University, Ado-Ekiti, Ekiti State, Nigeria
- The Brainwill Laboratory, Osogbo, Osun State, Nigeria
| | - P.J. Ashonibare
- Department of Physiology, Ladoke Akintola University of Technology, Ogbomoso, Oyo State, Nigeria
- Reproductive Biology and Toxicology Research Laboratory, Oasis of Grace Hospital, Osogbo, Osun State, Nigeria
| |
Collapse
|
6
|
Li Y, Feng Y, Chen X, He J, Luo Y, Yu B, Chen D, Huang Z. Dietary short-term supplementation of grape seed proanthocyanidin extract improves pork quality and promotes skeletal muscle fiber type conversion in finishing pigs. Meat Sci 2024; 210:109436. [PMID: 38266434 DOI: 10.1016/j.meatsci.2024.109436] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 12/18/2023] [Accepted: 01/18/2024] [Indexed: 01/26/2024]
Abstract
Plant extracts are commonly used as feed additives to improve pork quality. However, due to their high cost, shortening the duration of supplement use can help reduce production costs. In this study, we aimed to investigate the effects of grape seed proanthocyanidin extract (GSPE) on meat quality and muscle fiber characteristics of finishing pigs during the late stage of fattening, which was 30 days in our experimental design. The results indicated that short-term dietary supplementation of GSPE significantly reduced backfat thickness, but increased loin eye area and improved meat color and tenderness. Moreover, GSPE increased slow myosin heavy chain (MyHC) expression and malate dehydrogenase (MDH) activity, while decreasing fast MyHC expression and lactate dehydrogenase (LDH) activity in the Longissimus thoracis (LT) muscle. Additionally, GSPE increased the expression of Sirt1 and PGC-1α proteins in the LT muscle of finishing pigs and upregulated AMP-activated protein kinase α 1 (AMPKα1), AMPKα2, nuclear respiratory factor 1 (NRF1), and calcium/calmodulin-dependent protein kinase kinase β (CaMKKβ) mRNA expression levels. These findings suggest that even during the late stage of fattening, GSPE treatment can regulate skeletal muscle fiber type transformation through the AMPK signaling pathway, thereby affecting the muscle quality of finishing pigs. Therefore, by incorporating GSPE into the diet of pigs during the late stage of fattening, producers can enhance pork quality while reducing production costs.
Collapse
Affiliation(s)
- Yiqiang Li
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan 611130, PR China.
| |
Collapse
|
7
|
Feng Y, Chen X, Chen D, He J, Zheng P, Luo Y, Yu B, Huang Z. Dietary grape seed proanthocyanidin extract supplementation improves antioxidant capacity and lipid metabolism in finishing pigs. Anim Biotechnol 2023; 34:4021-4031. [PMID: 37647084 DOI: 10.1080/10495398.2023.2252012] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
Abstract
Grape seed proanthocyanidin extract (GSPE) plays a significant role in body health, including improving antioxidant capacity and maintaining lipid metabolism stability. However, whether dietary GSPE supplementation can improve lipid metabolism in finishing pigs remains unclear. Here 18 castrated male Duroc × Landrace × Yorkshire finishing pigs were randomly divided into three groups with six replicates and one pig per replicate. Pigs were fed a basal diet (control), a basal diet supplemented with 100 mg/kg GSPE, or a basal diet supplemented with 200 mg/kg GSPE for 30 days. Antioxidant analysis showed that dietary 200 mg/kg GSPE supplementation increased glutathione, total antioxidant capacity and glutathione peroxidase levels, and reduced malondialdehyde levels in serum, muscle and liver. Dietary 200 mg/kg GSPE supplementation also upregulated the mRNA and protein levels of nuclear-related factor 2 (Nrf2). Lipid metabolism analysis showed that dietary GSPE supplementation increased serum high-density lipoprotein cholesterol levels and reduced serum triglyceride and total cholesterol levels. Besides, GPSE upregulated the mRNA expression of lipolysis- and fatty acid oxidation-related genes downregulated the mRNA expression of lipogenesis-related genes, and activated the AMPK signal in finishing pigs. Together, we provided evidence that dietary GSPE supplementation improved the antioxidant capacity and lipid metabolism in finishing pigs.
Collapse
Affiliation(s)
- Yadi Feng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Xiaoling Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Daiwen Chen
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Jun He
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Ping Zheng
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Yuheng Luo
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Bing Yu
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| | - Zhiqing Huang
- Key Laboratory for Animal Disease-Resistance Nutrition of China Ministry of Education, Institute of Animal Nutrition, Sichuan Agricultural University, Chengdu, Sichuan, P. R. China
| |
Collapse
|
8
|
Akin AT, Toluk A, Ozdamar S, Taheri S, Kaymak E, Mehmetbeyoglu E. Effects of adriamycin on cell differentiation and proliferation in rat testis. Biotech Histochem 2023; 98:523-533. [PMID: 37655584 DOI: 10.1080/10520295.2023.2248880] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/02/2023] Open
Abstract
Although adriamycin (ADR) is used to treat many cancers, it can be toxic to healthy organs including the testis. We investigated the effects of ADR on pluripotency in rat testis. Testicular damage was induced by either cumulative or single dose single dose administration of ADR in Wistar albino rats. Rats were divided randomly into three groups: untreated control, cumulative dose ADR group (2 mg/kg ADR every three days for 30 days) and single dose ADR group (15 mg/kg, single dose ADR). Testicular damage was evaluated and seminiferous tubule diameters were measured using light microscopy. Expression levels of Oct4, Sox2, Klf4, c-Myc, Utf1 and Dazl were assessed by immunohistochemistry and real time PCR. Serum testosterone levels were measured using ELISA assay. Histopathologic scores were lower and mean seminiferous tubule diameters were less compared to the ADR groups. Oct4, Sox2, Klf4 and Utf1 expressions were decreased significantly in spermatogenic cells of both cumulative and single dose ADR groups compared to the control group. We found that c-Myc expression in spermatogenic and Leydig cells were increased significantly in both ADR groups compared to the control group. Dazl expression was decreased in the cumulative adriamycin group compared to the control group, but increased in the single dose ADR group compared to both the control and cumulative ADR groups. Serum testosterone levels were decreased in both ADR groups compared to the control group. Our findings suggest that ADR is detrimental to regulation and maintenance of pluripotency in rat testis.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Ayse Toluk
- Department of Biology, Science Faculty, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embryology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Serpil Taheri
- Medical Biology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embryology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Ecmel Mehmetbeyoglu
- Betul-Ziya Eren Genome and Stem Cell Center, Medical Faculty, Erciyes University, Kayseri, Turkey
| |
Collapse
|
9
|
Minas A, Mahmoudabadi S, Gamchi NS, Antoniassi MP, Alizadeh A, Bertolla RP. Testicular torsion in vivo models: Mechanisms and treatments. Andrology 2023; 11:1267-1285. [PMID: 36825607 DOI: 10.1111/andr.13418] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Revised: 02/13/2023] [Accepted: 02/20/2023] [Indexed: 02/25/2023]
Abstract
BACKGROUND Testicular torsion is a condition in which a testis rotates around its longitudinal axis and twists the spermatic cord. This in turn results in a significant decrease in blood flow and perfusion of testicular tissue. During Testicular torsion, the testicular tissue is affected by ischemia, heat stress, hypoxia, and oxidative and nitrosative stress. The testicular torsion should be considered an emergency condition and surgical intervention (testicular detorsion ) as the sole treatment option in viable cases involves counter-rotation on twisted testes associated, when possible, to orchipexy, in order to avoid recurrence. Possible testicular detorsion side-effects occur due to reperfusion and endothelial cells injury, microcirculation disturbances, and intense germ cells loss. OBJECTIVES To discuss testicular torsion surgery-based methods, different time frames for testicular torsion induction, and the associated pathophysiology by emphasizing cellular and molecular events as well as different therapeutic agent applications for testicular torsion. MATERIALS AND METHODS We reviewed all original research and epidemiological papers related to testicular torsion condition. RESULTS Testicular torsion causes germ cell necrosis, arrested spermatogenesis, and diminished testosterone levels, with consequent infertility. Among different involved pathophysiological impacts, testicular torsion/detorsion-induced ischemia seems to play the key role by leading the tissue toward other series of events in testis. Numerous studies have used adjuvant antioxidants, calcium channel blockers, anti-inflammatory agents, or vasodilating agents in order to decrease these effects. DISCUSSION AND CONCLUSION To the best of our knowledge, no previously conducted study examined therapeutical agents' beneficial effects post clinical I/R condition in humans. Different agents targeting different pathophysiological conditions were used to ameliorate the ischemia/reperfusion-induced condition in animal models, however, none of the administrated agents were tested in human cases. Although considering testicular detorsion surgery is still the golden method to reverse the testicular torsion condition and the surgical approach is undeniable, the evaluated agents with beneficial effects, need to be investigated furthermore in clinical conditions. Thus, furthermore clinical studies and case reports are required to approve the animal models proposed agents' beneficial impacts.
Collapse
Affiliation(s)
- Aram Minas
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Sina Mahmoudabadi
- Department of Clinical Sciences, Faculty of Veterinary Medicine, Shahid Chamran University of Ahvaz, Ahvaz, Iran
| | - Naeimeh Shamsi Gamchi
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Mariana Pereira Antoniassi
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| | - Arash Alizadeh
- Division of Pharmacology and Toxicology, Department of Basic Science, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran
| | - Ricardo Pimenta Bertolla
- Department of Surgery, Division of Urology, Human Reproduction Section, São Paulo Federal University, São Paulo, Brazil
| |
Collapse
|
10
|
Phytomedicinal therapeutics for male infertility: critical insights and scientific updates. J Nat Med 2022; 76:546-573. [PMID: 35377028 DOI: 10.1007/s11418-022-01619-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Accepted: 03/11/2022] [Indexed: 10/18/2022]
Abstract
Infertility is a significant cause of anxiety, depression, and social stigma among couples and families. In such cases, male reproductive factors contribute widely to the extent of 20-70%. Male infertility is a multifactorial disease with several complications contributing to its diagnosis. Although its management encompasses both modern and traditional medicine arenas, the first line of treatment, adopted by most males, focuses on the reasonably successful medicinal plant-based conventional therapies. Phyto-therapeutics, which relies on active ingredients from traditionally known herbs, influences sexual behavior and male fertility factors. The potency of these phyto-actives depends on their preparation methods and forms of consumption, including decoctions, extracts, semi-purified compounds, etc., as inferred from in vitro and in vivo (laboratory animal models and human) studies. The mechanisms of action therein involve the testosterone pathway for stimulation of spermatogenesis, reduction of oxidative stress, inhibition of inflammation, activation of signaling pathways in the testes [extracellular-regulated kinase (ERK)/protein kinase B(PKB)/transformation of growth factor-beta 1(TGF-β1)/nuclear factor kappa-light-chain-enhancer of activated B cells NF-kB signaling pathways] and mediation of sexual behavior. This review critically focuses on the medicinal plants and their potent actives, along with the biochemical and molecular mechanisms that modulate vital pathways associated with the successful management of male infertility. Such intrinsic knowledge will significantly further studies on medicinal plants that improve male reproductive health.
Collapse
|
11
|
Akin AT, Kaymak E, Ceylan T, Ozturk E, Basaran KE, Karabulut D, Ozdamar S, Yakan B. Chloroquine attenuates chronic hypoxia-induced testicular damage via suppressing endoplasmic reticulum stress and apoptosis in experimental rat model. Clin Exp Pharmacol Physiol 2022; 49:813-823. [PMID: 35579513 DOI: 10.1111/1440-1681.13669] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 04/28/2022] [Accepted: 05/09/2022] [Indexed: 11/30/2022]
Abstract
Chronic hypoxia negatively affects male fertility by causing pathological changes in male reproductive system. However, underlying mechanisms of this damage are unknown. Chloroquine (CLQ) is an anti-inflammatory agent which is widely used in the treatment of inflammation-related diseases such as malaria and rheumatoid arthritis. This study aimed to investigate the therapeutic effects of CLQ in the hypoxia-induced testicular damage via assessment of hypoxic response, endoplasmic reticulum stress and apoptosis. For this purpose, 32 Wistar albino rats were divided into 4 groups as Control (given %20-21 O2 , no treatment), CLQ (given 50 mg/kg and %20-21 O2 for 28 days), HX (given %10 O2 for 28 days) and HX + CLQ (given 50 mg/kg and %10 O2 for 28 days). After experiment, blood samples and testicular tissues were taken. Histopathological evaluation was performed on testicular tissues and HIF1-α, HSP70, HSP90 and GADD153 expression levels were detected via immunohistochemistry. Moreover, apoptotic cells were detected via TUNEL staining and serum testosterone levels were determined by ELISA assay. Histopathological changes, apoptotic cell numbers and HIF1-α, HSP70, HSP90 and GADD153 expressions significantly increased in HX group (p < 0.05). Moreover, serum testosterone levels decreased in this group (p > 0.05). However, CLQ exerted a strong ameliorative effect on all parameters in HX + CLQ group. According to our results, we suggested that CLQ can be considered as an alternative protective agent for eliminating the negative effects of hypoxic conditions on male fertility. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Ali Tugrul Akin
- Biology Department, Faculty of Science, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Histology-Embriology Department, Faculty of Medicine, Yozgat Bozok University, Yozgat, Turkey
| | - Tayfun Ceylan
- Program of Pathology Laboratory Techniques, Kapadokya Vocational High School, Kapadokya University, Nevsehir, Turkey
| | - Emel Ozturk
- Histology-Embriology Department, Faculty of Medicine, Harran University, Sanliurfa, Turkey
| | - Kemal Erdem Basaran
- Physiology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Derya Karabulut
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Saim Ozdamar
- Histology-Embriology Department, Faculty of Medicine, Pamukkale University, Denizli, Turkey
| | - Birkan Yakan
- Histology-Embriology Department, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
12
|
Malik J, Choudhary S, Mandal SC, Sarup P, Pahuja S. Oxidative Stress and Male Infertility: Role of Herbal Drugs. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1391:137-159. [PMID: 36472821 DOI: 10.1007/978-3-031-12966-7_9] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Infertility is a universal health problem affecting 15% of couples, out of which 20-30% cases are due to male infertility. The leading causes of male infertility include hormonal defects, physical reasons, sexual problems, hazardous environment, stressful lifestyle, genetic factors, epigenetic factors, and oxidative stress. Various physiological functions involve reactive oxygen species (ROS) and nitrogen species at appropriate levels for proper smooth functioning. ROS control critical reproductive processes such as capacitation, acrosomal reaction, hyperactivation, egg penetration, and sperm head decondensation. The excessive free radicals or imbalance between ROS and endogenous antioxidant enzymes damages sperm membrane by inducing lipid peroxidation causing mitochondrial dysfunction and DNA damage that eventually lead to male infertility. Numerous synthetic products are available in the market to treat infertility problems, largely ending in side effects and repressing symptoms. Ayurveda contains a particular group of Rasayana herbs, called vajikarana, that deals with nourishment and stimulation of sexual tissues, improves male reproductive vitality, and deals with oxidative stress via antioxidant mechanism. The present study aims to describe oxidative stress and the role of herbal drugs in treating male infertility.
Collapse
Affiliation(s)
- Jai Malik
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India.
| | - Sunayna Choudhary
- University Institute of Pharmaceutical Sciences - UGC Centre of Advanced Study, Panjab University, Chandigarh, India
| | - Subhash C Mandal
- Pharmacognosy and Phytotherapy Research Laboratory, Department of Pharmaceutical Technology, Faculty of Engineering & Technology, Jadavpur University, Kolkata, West Bengal, India
| | - Prerna Sarup
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| | - Sonia Pahuja
- Swami Vivekanand College of Pharmacy, Patiala, Punjab, India
| |
Collapse
|
13
|
Kizilay G, Bayram S, Ersoy O, Cerkezkayabekir A, Sapmaz-Metin M, Karaca T. Role of JNK, TGF-β1, Akt, IL-1β and INSL-3 in proanthocyanidin protection against apoptosis in diabetic rat testis. Biotech Histochem 2021; 97:363-371. [PMID: 34789048 DOI: 10.1080/10520295.2021.2002931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022] Open
Abstract
We investigated how proanthocyanidin treatment altered c-Jun N-terminal kinases, transforming growth factor beta 1, serine/threonine-specific protein kinase, interleukin 1 beta and insulin-like 3 expression in the testis of diabetic rats. We used 24 Wistar albino male rats divided into four groups. Group 1 was untreated control. Group 2 was treated with 40 mg/kg streptozotocin (STZ) for 5 days. Group 3 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin once daily for six weeks. Group 4 was treated with 40 mg/kg STZ + 250 mg/kg proanthocyanidin. Superoxide dismutase activity was reduced in groups 3 and 4 compared to group 2. Glutathione peroxidase activity was increased significantly in groups 3 and 4 compared to groups 1 and 2. Catalase activity was decreased in group 4 compared to group 2. We found that proanthocyanidin increased cell proliferation in diabetic testis. Phospho-JNK and TGF-β1 immunostaining was decreased groups 3 and 4 compared to group 2, while p-Akt immunostaining was increased in groups 3 and 4. The number of IL-1β immunostained cells in groups 3 and 4 was decreased compared to group 2. INSL-3 immunostaining was increased significantly in group 3 compared to group 2. Our findings indicate that proanthocyanidin ameliorated diabetes related testicular dysfunction. Proanthocyanidin contributes to a balanced oxidant-antioxidant status, and balanced proliferation and apoptosis activity in the germinal cells.
Collapse
Affiliation(s)
- Gulnur Kizilay
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Sinasi Bayram
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | - Onur Ersoy
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | | - Melike Sapmaz-Metin
- Department of Histology and Embryology, School of Medicine, Trakya University, Edirne, Turkey
| | | |
Collapse
|
14
|
Investigation of the Therapeutic Effects of Chloroquine in Adriamycin-Induced Hepatotoxicity. EUROBIOTECH JOURNAL 2021. [DOI: 10.2478/ebtj-2021-0003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
Abstract
The aim of this study is to investigate the therapeutic effects of Chloroquine (CLQ) against Adriamycin (ADR) induced hepatotoxicity. ADR is a chemotherapeutic agent used in the treatment of many cancer types, but it causes hepatotoxicity. CLQ is used as an anti-inflammatory drug in the treatment of malaria, rheumatoid arthritis, and pneumonia caused by Covid-19. Rats were divided into four groups: Control group, ADR group (2 mg/kg Adriamycin, one in three days for 30 days, i.p.), CLQ group (50 mg/kg Chloroquine, per day for 30 days, i.p.), ADR+CLQ (2 mg/kg Adriamycin, one in three days for 30 days, i.p. and 50 mg/ kg Chloroquine, per day for 30 days, i.p.). Animals were sacrificed, and liver tissues were extracted for further examinations. Histopathological changes in liver tissues were scored and IL-17 immunostaining was performed to determine the expression levels among experimental groups. Bodyweights in the ADR group decreased significantly compared to the Control group and CLQ group. Furthermore, bodyweight in ADR+CLQ group was significantly higher compared to ADR group. The histopathological score was significantly higher in ADR group when compared to Control and CLQ group while CLQ administrations reduced the damage induced by ADR in the ADR+CLQ group. IL-17 immunoreactivity was considerably increased in the ADR group. On the other hand, IL-17 expressions of ADR+CLQ were substantially less compared to ADR group. We suggest that CLQ can be used as a therapeutic agent to reduce the detrimental effects of ADR, thanks to its anti-inflammatory properties.
Collapse
|
15
|
Ahmed MAE, Ahmed AAE, El Morsy EM. Acetyl-11-keto-β-boswellic acid prevents testicular torsion/detorsion injury in rats by modulating 5-LOX/LTB4 and p38-MAPK/JNK/Bax/Caspase-3 pathways. Life Sci 2020; 260:118472. [PMID: 32971106 DOI: 10.1016/j.lfs.2020.118472] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/08/2020] [Accepted: 09/16/2020] [Indexed: 02/06/2023]
Abstract
AIMS Testicular torsion/detorsion (T/D) is a critical medical condition that necessitates prompt surgical intervention to avoid testicular atrophy and infertility. The use of natural compounds may protect against the associated detrimental oxidative stress and inflammatory responses. Interestingly, acetyl-11-keto-β-boswellic acid (AKBA), the main active constituent of Boswellia resin, has shown potent inhibitory effect on 5-lipoxygenase enzyme which converts arachidonic acid into inflammatory mediators. Therefore, this study was conducted to assess the protective mechanisms by which AKBA may protect against testicular T/D injury in rats. MAIN METHODS Male rats were randomly distributed into five groups: Sham, AKBA (50 mg/kg, p.o.), unilateral testicular T/D, AKBA at two dose levels (25 or 50 mg/kg for 15 successive days) followed by T/D. Histological examination and Johnsen's score were performed to assess testicular injury and perturbations in spermatogenesis. Biochemical parameters included markers of testicular function (serum testosterone), oxidant/antioxidant status (malondialdehyde, glutathione), inflammation (5-lipoxygenase, leukotriene-B4, myeloperoxidase, interleukin-1β, interleukin-6), apoptosis (Bax, Bcl2, caspase-3), DNA integrity (quantitative DNA fragmentation, DNA laddering, PARP-1), energy production (ATP), in addition to p38 MAPK and JNK protein expression. KEY FINDINGS In a dose dependent manner, AKBA significantly inhibited testicular T/D-induced upregulation of 5-LOX/LTB4 and p38-MAPK/JNK/Bax pathways and their associated downstream inflammatory and apoptotic cascades. These effects were accompanied with ATP replenishment and DNA preservation, resulting ultimately in salvage of the testis. SIGNIFICANCE Unprecedentedly, the present mechanistic study revealed the pathways by which AKBA may inhibit testicular T/D injury and offered a novel protective approach that may attenuate the severity of this condition.
Collapse
Affiliation(s)
- Maha A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmaceutical Sciences and Drug Manufacturing, Misr University for Science and Technology (MUST), 6th of October City, Giza, Egypt.
| | - Amany A E Ahmed
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| | - Engy M El Morsy
- Department of Pharmacology and Toxicology, Faculty of Pharmacy, Helwan University, Ein Helwan, Cairo, Egypt
| |
Collapse
|
16
|
Karabulut D, Sonmez MF. Effects of diabetes on nitric oxide synthase in rat uterus. Biotech Histochem 2020; 96:331-338. [DOI: 10.1080/10520295.2020.1788161] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023] Open
Affiliation(s)
- Derya Karabulut
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mehmet Fatih Sonmez
- Department of Histology-Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
17
|
Chen LJ, Ning JZ, Cheng F, Rao T, Yu WM, Ruan Y, Wu JF, Li RG, Geng RX. Comparison of Intraperitoneal and Intratesticular GYY4137 Therapy for the Treatment of Testicular Ischemia Reperfusion Injury in Rats. Curr Med Sci 2020; 40:332-338. [DOI: 10.1007/s11596-020-2180-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 04/05/2020] [Indexed: 10/24/2022]
|
18
|
Investigating the sperm parameters, oxidative stress and histopathological effects of salvia miltiorrhiza hydroalcoholic extract in the prevention of testicular ischemia reperfusion damage in rats. Theriogenology 2020; 144:98-106. [DOI: 10.1016/j.theriogenology.2020.01.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 12/22/2019] [Accepted: 01/01/2020] [Indexed: 12/19/2022]
|
19
|
Bai Z, Ren T, Han Y, Rahman MM, Hu Y, Li Z, Jiang Z. Influences of dietary selenomethionine exposure on tissue accumulation, blood biochemical profiles, gene expression and intestinal microbiota of Carassius auratus. Comp Biochem Physiol C Toxicol Pharmacol 2019; 218:21-29. [PMID: 30528703 DOI: 10.1016/j.cbpc.2018.12.001] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2018] [Revised: 11/30/2018] [Accepted: 12/02/2018] [Indexed: 01/08/2023]
Abstract
A 30-days feeding trail was conducted to determine the sensitivity of Carassius auratus to the toxicological effects of elevated dietary Selenomethionine (Se-Met). C. auratus averaging 23.56 ± 1.82 g were exposed to four Se-Met concentrations (mg Se/kg): 0 (Se-Met0), 5 (Se-Met5), 10 (Se-Met10) and 20 (Se-Met20) to estimate the effects on tissue selenium (Se) accumulation, blood biochemical profiles, transcript expression and intestinal microbiota. Se accumulated in the kidney, liver and muscle in a dose-dependent manner and followed this order: kidney > liver > muscle, the highest accumulation were obtained in kidney of Se-Met20 diet after 30 days of feeding. Serum contents of alanine transaminase (ALT), aspartate transaminase (AST) and alkaline phosphatase (ALP) in fish exposed to Se-Met20 group was significantly highest among Se-Met exposure groups. Hydrogen peroxide (H2O2) concentrations in liver were affected by dietary Se-Met exposures. Liver contents of total antioxidant capacity (TAC), catalase (CAT), glutathione peroxidase (GPx) and malondialdehyde (MDA) in fish exposure to Se-Met5 group was significantly highest among Se-Met exposure groups. Growth hormone receptor (GHR), insulin-like growth factor 1 (IGF-1) and antioxidant enzyme related genes including glutathione peroxidase (GPx), catalase (CAT) and glutathione S-transferase (GST) expression in liver were down-regulated with the concentration of Se-Met exposure groups. The results of high-throughput sequencing showed that gut microbial communities and hierarchy cluster heatmap analysis were significantly affected by Se-Met exposure. The abundances of Cetobacterium and Vibrio increased while fish exposed to Se-Met20 group. The abundance of Ralstonia increased when the Se-Met exposure dose reached 10 mg Se kg-1. The results suggested that the exposure to elevated dietary Se-Met may result toxic effects in C. auratus.
Collapse
Affiliation(s)
- Zhuoan Bai
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Md Mostafizur Rahman
- College of Marine Technology and Environment, Dalian Ocean University, No.52 Heishijiao Street, Shahekou District, Dalian 116023, China
| | - Yanan Hu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zequn Li
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| |
Collapse
|
20
|
Talebi H, Farahpour MR. Testicular torsion and reperfusion: Germ cell DNA damage and development. Andrologia 2019; 51:e13243. [DOI: 10.1111/and.13243] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2018] [Revised: 12/22/2018] [Accepted: 12/27/2018] [Indexed: 01/05/2023] Open
Affiliation(s)
- Hatef Talebi
- Faculty of Veterinary Medicine, Department of Basic Sciences, Urmia Branch Islamic Azad University Urmia Iran
| | - Mohammad Reza Farahpour
- Faculty of Veterinary Medicine, Department of Clinical Sciences, Urmia Branch Islamic Azad University Urmia Iran
| |
Collapse
|
21
|
Luo B, Shi H, Zhang K, Wei Q, Niu J, Wang J, Hammond SK, Liu S. Cold stress provokes lung injury in rats co-exposed to fine particulate matter and lipopolysaccharide. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 168:9-16. [PMID: 30384172 DOI: 10.1016/j.ecoenv.2018.10.064] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2018] [Revised: 10/11/2018] [Accepted: 10/16/2018] [Indexed: 06/08/2023]
Abstract
Cold exposure aggravates respiratory diseases, which are also influenced by the exposures to particulate matter and endotoxin in the air. The aim of this study was to investigate the potential interactions among cold stress, fine particulate matter (PM2.5, particles with aerodynamic diameter of 2.5 µm or less) and lipopolysaccharide (LPS, pure chemical form of endotoxin) on rat lung and to explore the related possible mechanisms of the interactions. Wistar rats were randomly grouped to be exposed to, 1) normal saline (0.9% NaCl), 2) PM2.5, 3) LPS, and 4) PM2.5 and LPS (PM2.5 + LPS) through intratracheal instillation under cold stress (0 °C) and normal temperature (20 °C). Lung function, lung tissue histology, inflammatory response and oxidative stress levels were measured to examine the lung injury and to investigate the potential mechanisms. Exposure to PM2.5 or LPS substantially changed pulmonary function [indicated by peak inspiratory flow (PIF) and peak expiratory flow (PEF)], inflammatory cytokine levels [indicated by interleukin-6 (IL-6) and tumor necrosis factor-α (TNF-α)] and lung histology, compared to the non-exposed groups. Exposure to PM2.5 + LPS under cold stress induced the most significant changes, including the increases of IL-6, TNF-α and thiobarbituric acid-reactive substances (TBARS), the decreases of PIF and PEF and more severe lung injury, among all exposure scenarios. Glutathione peroxidase activity and, nuclear factor erythroid 2-related factor 2 (Nrf2) and heme oxygenase-1 (HO-1) were found to be suppressed under cold stress, whereas Nrf2 and HO-1 levels were observed to be upregulated by exposure to PM2.5 or LPS under normal temperature. In conclusion, cold stress may aggravate the lung injury in rats induced by simultaneous exposure to PM2.5 and LPS. The progress may involve the suppressing of Nrf2/HO-1 signal pathway.
Collapse
Affiliation(s)
- Bin Luo
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China; Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA.
| | - Hongxia Shi
- Health Management Center, Lanzhou University the Second Hospital, Lanzhou 730030, China
| | - Kai Zhang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Qiaozhen Wei
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Jingping Niu
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Junling Wang
- Institute of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, China
| | - Sally Katharine Hammond
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA
| | - Sa Liu
- Division of Environmental Health Sciences, School of Public Health, University of California, Berkeley 94720, USA; Environmental & Occupational Health Sciences, School of Health Sciences, Purdue University, West Lafayette 47907, USA.
| |
Collapse
|
22
|
Ilçe F, Gök G, Pandir D. Acute effects of lipopolysaccharide (LPS) in kidney of rats and preventive role of vitamin E and sodium selenite. Hum Exp Toxicol 2019; 38:547-560. [PMID: 30630368 DOI: 10.1177/0960327118817106] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Abstract
Lipopolysaccharide (LPS) as an endotoxin forms part of the cell wall of gram-negative bacteria and is responsible for initiating an acute inflammation after entering the living tissue. In this study, male rats were divided into eight groups: control group, vitamin E (VE) treatment group (200 mg/kg body weight (b.w.)), sodium selenite (SS) treatment (0.35 mg/kg b.w.) group, VE + SS treatment group (200 + 0.35 mg/kg b.w.), LPS treatment group (10 mg/kg b.w.), LPS + VE (10+200 mg/kg b.w.), LPS + SS treatment (10 + 0.35 mg/kg b.w.), and LPS + SS + VE treatment (10 + 0.35 + 200 mg/kg b.w.) group. Oxidative stress parameters, pathological changes, immunohistochemical analyses, terminal deoxynucleotidyl transferase deoxyuridine triphosphate nick end-labeling (TUNEL) assay, and changes in DNA structure with comet assay of the kidney were investigated at the end 6 h comparatively with the control group. When LPS-treated group was compared with the control group, antioxidant enzyme activities were decreased and malondialdehyde (MDA) levels, changes in histological and DNA structure and apoptosis were increased significantly at the end of 6 h. However, when LPS + SS and/or VE-treated group were compared with the LPS-treated group, superoxide dismutase, catalase, glutathione peroxidase, and glutathione- S-transferase activities were increased and MDA levels were decreased significantly at the end of the treatment period. Light investigations figured out pathological changes in kidneys of LPS- and LPS + SS and/or VE-treated groups. There was a decrease in the number of proliferating cell nuclear antigen-positive cells and an increase in the number of TUNEL-positive apoptotic cells in the wall of the distal and proximal tubules. As a result, it was observed that the combined use of antioxidants was more protective than their use alone against LPS.
Collapse
Affiliation(s)
- F Ilçe
- 1 Department of Biology, Graduate School of Natural and Applied Sciences, Bozok University, Divanliyolu/Yozgat, Turkey
| | - G Gök
- 2 Department of Biology, Faculty of Arts and Science, Bozok University, Divanliyolu/Yozgat, Turkey
| | - D Pandir
- 2 Department of Biology, Faculty of Arts and Science, Bozok University, Divanliyolu/Yozgat, Turkey
| |
Collapse
|
23
|
Ebselen can Protect Male Reproductive Organs and Male Fertility from Manganese Toxicity: Structural and Bioanalytical Approach in a Rat Model. Biomed Pharmacother 2018; 102:739-748. [PMID: 29604593 DOI: 10.1016/j.biopha.2018.03.086] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2017] [Revised: 03/14/2018] [Accepted: 03/14/2018] [Indexed: 11/20/2022] Open
Abstract
Ebselen (EBS) is a versatile compound that can protect the cellular components from oxidative and free radical-mediated damage. In the present study, we investigated the protective effect of EBS against manganese (Mn) toxicity on male reproductive organs. Thirty-two male rats were assigned into four groups, namely, negative control, EBS (15 mg/kg body weight (bw), as a single protective IP injection), MnCl2 (50 mg/kg bw, orally for 30 consecutive days), and EBS + MnCl2 (as mentioned before). The results showed that EBS ameliorated the alterations caused by MnCl2 in the testicular, epididymal, and seminal vesicle tissues. MnCl2 increased the sperm abnormalities, decreased gonadosomatic index (GSI), sperm motility, and sperm count. Further, it reduced the serum levels of testosterone (T) and luteinizing hormone (LH). The elevated levels of malondialdehyde (MDA), nitric oxide (NO), and 8-OH-2'-deoxyguanosine (8-OHdG) and decreased the levels of superoxide dismutase (SOD), glutathione (GSH), and catalase (CAT) upon exposure to MnCl2 indicated a disturbance in the activities of the testicular antioxidant enzymes and indices. Histologically, MnCl2 decreased the diameter of seminiferous tubules (ST), the height of germinal epithelium, number of spermatogonia/ST, spermatocytes/ST, spermatids/ST, and Leydig cells/intertubular area (IA). Chemoprotection with EBS successfully mitigated most of the above-mentioned parameters concluding that EBS could be used as a useful prophylactic therapy whenever Mn toxicity is involved.
Collapse
|
24
|
Makary S, Abdo M, Fekry E. Oxidative stress burden inhibits spermatogenesis in adult male rats: testosterone protective effect. Can J Physiol Pharmacol 2018; 96:372-381. [DOI: 10.1139/cjpp-2017-0459] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/31/2022]
Abstract
In this study, we aimed to investigate the protective effects of androgens, using letrozole (LET; an aromatase inhibitor), grape seed extract (GSE; a naturally occurring aromatase inhibitor and antioxidant), and testosterone propionate (Tp), against methotrexate (MTX)-induced testicular toxicity in adult male rats. MTX has been shown to induce oxidative stress and exhibit antiproliferative effects in the testes. Adult male rats received oral saline gavage (control group with no treatment), the potential protective agents (LET, GSE, or Tp) alone, MTX alone, or a combination of one of the potential protective agents and MTX. The testicular levels of oxidative stress markers and cytokines (tumor necrosis factor-α and interleukin-1β) were measured. Spermatogenesis and sperm viability were microscopically evaluated. Administration of LET and GSE 7 days before MTX improved spermatogenesis and sperm viability, as well as reduced the levels of oxidative stress markers and cellular cytokines. Exogenous testosterone exhibited anti-inflammatory and antioxidant activities, similar to GSE and LET. We also showed that enhancing the endogenous androgenic activity by LET and GSE protected spermatogenesis against MTX-induced testicular toxicity via reduction of inflammation and oxidative stress in the testes. Our data suggest that testosterone protected spermatogenesis owing to its antioxidant and anti-inflammatory properties.
Collapse
Affiliation(s)
- Samy Makary
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Mohamed Abdo
- Department of Physiology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| | - Ereny Fekry
- Department of Histology, Faculty of Medicine, Suez Canal University, Ismailia, Egypt
| |
Collapse
|
25
|
Sohrabi M, Hosseini M, Inan S, Alizadeh Z, Vahabian M, Vahidinia AA, Lahoutian H. Effect of Antioxidants on Testicular iNOS and eNOS after High-Fat Diet in Rat. Pak J Biol Sci 2017; 20:289-297. [PMID: 29023053 DOI: 10.3923/pjbs.2017.289.297] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
BACKGROUND AND OBJECTIVE Spermatogenesis is a process by which germ cells produce spermatozoa and can be disturbed at every level. Nitric Oxide Synthases (NOS), implicate in interactions with Oxidative Stress (OS) which is one of the main factors in the etiology of male infertility. The High Fat Diet (HFD) is a major factor of obesity which in turn is important for enhancing OS. Antioxidants and garlic could attenuate or reverse effects of HFD. The aim of the study was to investigate the effects of dietary antioxidants and garlic on testicular inducible NOS (iNOS) and endothelial NOS (eNOS) in Wistar albino rats fed on HFD. MATERIALS AND METHODS Groups (each n = 8) were: SD (100% access to standard diet), F-HFD, (100% access to HFD) and R-HFD (70% access to HFD), F-HFD +antioxidants, F-HFD+garlic and R-HFD+antioxidants. The HFD consisted of a 60% fatty diet in 3 forms: Without antioxidants, with antioxidants and with garlic. The testicular iNOS and eNOS were studied by immunohistochemical (IHC) method. Also used ANOVA, repeated measures ANOVA, t-tests and Tukey's test (where necessary) to analyze the data (p<0.05). RESULTS The iNOS increased in the F-HFD and R-HFD+antioxidants groups. The eNOS increased in R-HFD,F-HFD and F-HFD+garlic groups. The H-E evaluation in R-HFD group showed a decrease in spermatogenesis score count and seminiferous tubules diameters (μm) in comparison with the SD and F-HFD groups. R-HFD+antioxidants group had lower score than F-HFD+antioxidants and F-HFD+garlic groups. CONCLUSION Restricted fat diet consumption causes increase in weight and impairs spermatogenesis. Results of this study reveal that adding the antioxidants can't improve histological changes of testis. The iNOS expression in seminiferous tubules in restricted fat diet along with antioxidants, suggest a potential role of iNOS in spermatogenesis and male infertility.
Collapse
Affiliation(s)
- Maryam Sohrabi
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736 Hamadan, Iran
| | - Mahnaz Hosseini
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736 Hamadan, Iran
| | - Sevinc Inan
- Department of Histology and Embryology, Faculty of Medicine, Celal Bayar University, Manisa, Turkey
| | - Zohreh Alizadeh
- Endometrium and Endometriosis Research Center, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736 Hamadan, Iran
| | - Mehrangiz Vahabian
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736 Hamadan, Iran
| | - Ali Asghar Vahidinia
- Department of Biochemistry and Nutrition, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736
| | - Hosein Lahoutian
- Department of Anatomical Sciences, Faculty of Medicine, Hamadan University of Medical Sciences, Shahid Fahmideh Street, 65178-3-8736 Hamadan, Iran
| |
Collapse
|
26
|
Vaos G, Zavras N. Antioxidants in experimental ischemia-reperfusion injury of the testis: Where are we heading towards? World J Methodol 2017; 7:37-45. [PMID: 28706858 PMCID: PMC5489422 DOI: 10.5662/wjm.v7.i2.37] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/28/2017] [Revised: 04/07/2017] [Accepted: 05/15/2017] [Indexed: 02/06/2023] Open
Abstract
Testicular torsion (TT) is a medical emergency that primary affects newborns and young adolescents. It causes testicular injury due to the torsion of the spermatic cord and its components, initially in the venous blood flow and finally in the arterial blood flow. Prompt diagnosis and early surgical management are necessary in managing this urgent situation. The process of the pathophysiological events in ischemia-reperfusion is multifactorial and deals with the perception of the oxidative stress responsible for the consequences of ischemia/reperfusion (I/R) stress following TT. Duration and severity of torsion also play a significant role in the oxidative stress. A detrimental result of the defense system of the testes takes place resulting finally in testicular atrophy and impaired function. Antioxidant factors have been experimentally studied in an effort to front this state. They have been classified as endogenous or exogenous antioxidants. Endogenous antioxidants comprise a structure of enzymic enzymatic and non-enzymic enzymatic particles presented within cytoplasm and numerous other subunits in the cells. Exogenous antioxidants include a variety of natural and pharmaceutical agents that may prevent or ameliorate the harmful effects of I/R injury. In this study we review those factors and their ability to enhance the oxidative status of the testis. A feature insight into where we are heading is attempted.
Collapse
|
27
|
Okur MH, Arslan S, Aydogdu B, Zeytun H, Basuguy E, Arslan MS, Ibiloglu I, Kaplan I. Protective Effect of Cordycepin on Experimental Testicular Ischemia/Reperfusion Injury in Rats. J INVEST SURG 2017; 31:1-8. [DOI: 10.1080/08941939.2016.1246629] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Mehmet Hanifi Okur
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Serkan Arslan
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Bahattin Aydogdu
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Hikmet Zeytun
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Erol Basuguy
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Mehmet Serif Arslan
- Department of Pediatric Surgery, Medical Faculty of Dicle University, Diyarbakir, Turkey
| | - Ibrahim Ibiloglu
- Department of Pathology, Dicle University Medical School Diyarbakir, Turkey
| | - Ibrahim Kaplan
- Department of Biochemistry, Dicle University Medical School Diyarbakir, Turkey
| |
Collapse
|
28
|
Adewoyin M, Ibrahim M, Roszaman R, Isa MLM, Alewi NAM, Rafa AAA, Anuar MNN. Male Infertility: The Effect of Natural Antioxidants and Phytocompounds on Seminal Oxidative Stress. Diseases 2017; 5:E9. [PMID: 28933362 PMCID: PMC5456340 DOI: 10.3390/diseases5010009] [Citation(s) in RCA: 113] [Impact Index Per Article: 14.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/10/2016] [Accepted: 02/22/2017] [Indexed: 12/18/2022] Open
Abstract
Defective sperm function has been identified as the most common cause of infertility. The objective of this study was to review recent findings on the effects of various antioxidants on male fertility. High amounts of poly unsaturated fatty acid are found in the mammalian spermatozoa membranes, thereby making them susceptible to lipid peroxidation. Although, free radicals and reactive oxygen species (ROS) play major roles in reproduction, they are strongly associated with oxidative stress. Furthermore, factors such as obesity, inflammation, pollutants and cigarette smoking are negatively correlated with spermatogenesis. Endogenous antioxidants system exists to mediate these damages. In a normal physiological state, the seminal plasma contains antioxidant enzyme mechanism that is capable of quenching these ROS as well as protecting the spermatozoa against any likely damage. However, high level of ROS triggered by inflammatory cells and oxidation of fatty acid in obese subjects may down play antioxidant mechanism resulting in oxidative stress. Evaluation of such oxidative stress is the first step in the treatment of male infertility through administration of suitable antioxidant. Notably, antioxidant such as vitamin E and C, carotenoids and carnitine have been found beneficial in restoring a balance between ROS generation and scavenging activities. There are emerging evidences that herbal products can also boost male reproductive functions. Nonetheless, a good lifestyle, regular exercise, avoidance of stress and observing safety rules at work are habits that can reverse male infertility.
Collapse
Affiliation(s)
- Malik Adewoyin
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Muhammad Ibrahim
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Ramli Roszaman
- Department of Obstetrics and Gynaecology, Kulliyyah of Medicine, International Islamic University Malaysia, Bandar Indera Mahkota, Jalan, 25200 Kuantan, Pahang, Malaysia.
| | - Muhammad Lokman Md Isa
- Department of Basic Medical Sciences, Kulliyyah of Nursing, International Islamic University Malaysia, Jalan Hospital Campus, 25100 Kuantan, Pahang, Malaysia.
| | - Nur Aizura Mat Alewi
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Ainin Azwani Abdul Rafa
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| | - Mohd Nur Nasyriq Anuar
- Department of Nutrition Sciences, Kulliyyah of Allied Health Sciences, International Islamic University Malaysia (IIUM), Bandar Indera Mahkota, 25200 Kuantan, Pahang, Malaysia.
| |
Collapse
|
29
|
Sönmez MF, Ozdemir Ş, Guzel M, Kaymak E. The ameliorative effects of vinpocetine on apoptosis and HSP-70 expression in testicular torsion in rats. Biotech Histochem 2017; 92:92-99. [DOI: 10.1080/10520295.2016.1259499] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022] Open
Affiliation(s)
- MF Sönmez
- Departments of Histology and Embryology
| | - Ş Ozdemir
- Departments of Histology and Embryology
| | - M Guzel
- Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - E Kaymak
- Departments of Histology and Embryology
| |
Collapse
|
30
|
Kose M, Bastug O, Sonmez MF, Per S, Ozdemir A, Kaymak E, Yahşi H, Ozturk MA. Protective effect of vitamin D against hyperoxia-induced lung injury in newborn rats. Pediatr Pulmonol 2017; 52:69-76. [PMID: 27291304 DOI: 10.1002/ppul.23500] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/15/2016] [Revised: 05/20/2016] [Accepted: 05/23/2016] [Indexed: 12/13/2022]
Abstract
INTRODUCTION Preterm infants have risks of developing vitamin D deficiency. Thus we aimed to investigate the effect of vitamin D on hyperoxia-induced lung injury in newborn rats. METHODS Full term rat pups were included in the study 12-24 hr after delivery. The pups were randomly divided into eight groups as follows: normoxia control group (NC), normoxia plus vitamin D group (ND1, 1 ng/gr/day vitamin D), normoxia plus vitamin D group (ND2, 3 ng/gr/day vitamin D), normoxia plus vitamin D group (ND3, 5 ng/gr/day vitamin D), hyperoxia control group (HC), hyperoxia plus vitamin D group (HD1, 1 ng/gr/day vitamin D), hyperoxia plus Vitamin D group (HD2, 3 ng/gr/day vitamin D), hyperoxia plus vitamin D group (HD3, 5 ng/gr/day vitamin D). The histopathological effects of vitamin D were assessed by alveolar surface area (with mean linear intercept (MLI) method), apoptosis index and proliferating cell nuclear antigen (PCNA) index. RESULTS MLI values were significantly lower among three groups (HD1: 83.93 ± 1.95 μm, HD2: 81.76 ± 1.68 μm, and HD3: 82.33 ± 1.87 μm) when compared with HC group (92.98 ± 2.09 μm) (P = 0.001, P = 0.0004, P = 0.002, respectively). Apoptotic cell index were significantly lower among three treatment groups (HD1: 1.455 ± 0.153, HD2: 0.575 ± 0.079, and HD3: 0.700 ± 0.105) when compared with HC group (2.500 ± 0.263) (P = 0.001, P = 0.001, P = 0.001, respectively). Although PCNA positive cell index did not change in HD1 group (0.132 ± 0.008) (P > 0.05), there were significant increases in HD2 (0.277 ± 0.026) and HD3 (0.266 ± 0.018) group when compared with HC group (0.142 ± 0.010) (HD2 P = 0.001, HD3 P = 0.001). CONCLUSION Vitamin D seems to protect hyperoxia-induced lung injury in newborn rats. Pediatr Pulmonol. 2017;52:69-76. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Mehmet Kose
- Division of Pediatric Pulmonology Unit, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Osman Bastug
- Division of Neonatology, Department of Pediatrics, Kayseri Training and Research Hospital, Kayseri, Turkey
| | | | - Sedat Per
- Department of Biology, Bozok University, Yozgat, Turkey
| | - Ahmet Ozdemir
- Division of Neonatology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| | - Emin Kaymak
- Department of Histology, Erciyes University, Kayseri, Turkey
| | - Hande Yahşi
- Department of Histology, Erciyes University, Kayseri, Turkey
| | - Mehmet Adnan Ozturk
- Division of Neonatology, Department of Pediatrics, Erciyes University, Kayseri, Turkey
| |
Collapse
|
31
|
Chi KK, Zhang WH, Wang GC, Chen Z, He W, Wang SG, Cui Y, Lu P, Wang XJ, Chen H. Comparison of Intraperitoneal and Intraepididymal Quercetin for the Prevention of Testicular Torsion/Detorsion-induced Injury. Urology 2017; 99:106-111. [DOI: 10.1016/j.urology.2016.09.017] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 08/24/2016] [Accepted: 09/12/2016] [Indexed: 01/20/2023]
|
32
|
El-Tarras AES, Attia HF, Soliman MM, El Awady MA, Amin AA. Neuroprotective effect of grape seed extract against cadmium toxicity in male albino rats. Int J Immunopathol Pharmacol 2016; 29:398-407. [PMID: 27271977 PMCID: PMC5806757 DOI: 10.1177/0394632016651447] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2015] [Accepted: 05/03/2016] [Indexed: 11/15/2022] Open
Abstract
Cadmium toxicity can disturb brain chemistry leading to depression, anxiety, and weakened immunity. Cadmium disturbs the neurotransmitter dopamine, resulting in low energy, lack of motivation, and depression, which are predisposing factors for violence. The purpose of this study was to evaluate the ameliorative effect of grape seed extract (GSE) on the brain of 40 male albino rats after exposure to cadmium chloride (Cd) toxicity. The rats were separated into either the control group, the Cd group, the GSE group, or the GSE and Cd mixture (treated) group. The cerebrum showed evidence of degeneration of some nerve fibers and cells. Fibrosis, vacuolations, and congestion in the blood vessels were demonstrated. Satelletosis was located in the capsular cells. Immunohistochemical expression of Bax was strongly positive in the Cd group and decreased in the treated group. These histopathological changes were decreased in the brain tissue of the treated group, but a few blood vessels still had evidence of congestion. Cadmium administration increased the level of MDA and decreased MAO-A, acetylcholinesterase, and glutathione reductase (GR), while the treatment with GSE affected the alterations in these parameters. In addition, cadmium downregulated the mRNA expression levels of GST and GPx, while GSE treatment normalized the transcript levels. The expression of both dopamine and 5-hydroxytryptamine transporter was downregulated in the rats administered cadmium and the addition of GSE normalized the expression of these aggression associated genes.
Collapse
Affiliation(s)
- Adel El-Sayed El-Tarras
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Biotechnology and Genetic Engineering Unit, Scientific Research Deanship, Taif University, Kingdom of Saudi Arabia Genetics Dep., Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Hossam Fouad Attia
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Medical Laboratories Department Faculty of Applied Medical Science, Taif University, Kingdom of Saudi Arabia Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohammed Mohamed Soliman
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Medical Laboratories Department Faculty of Applied Medical Science, Taif University, Kingdom of Saudi Arabia Faculty of Veterinary Medicine, Benha University, Benha, Egypt
| | - Mohammed Abdelhamid El Awady
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia Biotechnology and Genetic Engineering Unit, Scientific Research Deanship, Taif University, Kingdom of Saudi Arabia Genetics Dep., Faculty of Agriculture, Cairo University, Cairo, Egypt
| | - Adnan Abelghani Amin
- Al-Saedan Research Chair for Genetic Behavioral Disorders, Taif University, Kingdom of Saudi Arabia College of Medicine, Taif University, Kingdom of Saudi Arabia
| |
Collapse
|
33
|
Çilenk KT, Öztürk İ, Sönmez MF. Ameliorative effect of propolis on the cadmium-induced reproductive toxicity in male albino rats. Exp Mol Pathol 2016; 101:207-213. [PMID: 27587086 DOI: 10.1016/j.yexmp.2016.08.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2016] [Revised: 07/22/2016] [Accepted: 08/27/2016] [Indexed: 10/21/2022]
Abstract
Propolis is a potent antioxidant and a free radical scavenger. The present study aimed to investigate protective effects of propolis extract on cadmium-induced testicular damage, apoptosis, HIF-1α expression and toxicity in rat's testis tissue. A total of 32 male rats were equally divided into four study groups namely, control, Cd (1mg/kg/day), Cd+propolis (50mg/kg/day) and propolis. The rats were decapitated under ketamine anesthesia and their testes tissues were removed. Serum testosterone, tissue malondialdehyde and HIF-1α levels, HIF-1α expression, apoptosis and histopathological damage scores were then compared. In the Cd group, the diameters of seminiferous tubules, tubular biopsy score of Johnsen and serum testosterone levels were decreased compared control group, but tissue HIF-1α and tissue MDA levels was higher than control group. The immunoreactivity of HIF-1α and the number of apoptotic cells were increased in Cd group. Furthermore, the propolis treated group showed an improved histological appearance in the Cd group. Thus, the results suggest that propolis acts as a potent protective agent against Cd-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Kübra Tuğçe Çilenk
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey
| | - İsmet Öztürk
- Erciyes University, Faculty of Engineering, Department of Food Engineering, Kayseri, Turkey
| | - Mehmet Fatih Sönmez
- Erciyes University, Faculty of Medicine, Department of Histology and Embryology, Kayseri, Turkey.
| |
Collapse
|
34
|
Güzel M, Sönmez MF, Baştuğ O, Aras NF, Öztürk AB, Küçükaydın M, Turan C. Effectiveness of lycopene on experimental testicular torsion. J Pediatr Surg 2016; 51:1187-91. [PMID: 26703432 DOI: 10.1016/j.jpedsurg.2015.11.008] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2015] [Revised: 11/13/2015] [Accepted: 11/16/2015] [Indexed: 12/21/2022]
Abstract
AIM We aimed to demonstrate the long term effectiveness of lycopene, a precursor of vitamin A, on the testes for ischemia-reperfusion injury. MATERIALS AND METHODS Seventy male Wistar albino rats were used for this experiment. The rats were divided into seven groups. Group 1 served as the control group; group 2 was sham-operated; group 3 received 20mg/kg/day lycopene (intraperitoneally); in group 4, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for three days; in group 5, the right testes of rats were kept torted for 2hours and then were detorted and the animals lived for ten days; in group 6, the right testes of the rats were kept torted for 2hours and then detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for three days; in group 7, the right testes of the rats were kept torted for 2hours and then were detorted and the animals received 20mg/kg/day lycopene (intraperitoneally) for ten days. Lycopene was used intraperitoneally. Some of the testes tissues were used for biochemical analyses and the other tissues were used for histological procedures. The Johnsen's score was used for seminiferous tubule deterioration. The TUNEL method was utilized to show apoptosis of testicular tissue. Testosterone levels were measured from blood samples and SOD, MDA, TNF-α, IL-1β and IL-6 measurements were recorded from tissue samples. The results were analyzed statistically. RESULTS In groups 1, 2 and 3 there was normal testicular structure. Rats in groups 4 and 5 had damaged testicular tissues. In groups 6 and 7, in which we used lycopene, the testes were not better than those in groups 4 and 5. The MSTD and JTBS values were better in group 6, but not in group 7 among the torsion groups. As a result, MDA, SOD, TNF-α and IL-1β were increased and serum testosterone and IL-6 levels were decreased in groups 4 and 5 compared to group 1. There was no improvement in the groups treated with lycopene for therapeutic purposes. CONCLUSION It was shown that lycopene, as an antioxidant agent, is not effective for testicular torsion in the long term. This study can be considered as a preliminary study showing the need for further researches using different antioxidant agents to determine their long term effects in ischemia-reperfusion injuries in an appropriate experimental design.
Collapse
Affiliation(s)
- Mahmut Güzel
- Department of Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey.
| | - Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Osman Baştuğ
- Department of Neonatology, Training and Research Hospital, Kayseri, Turkey
| | - Necip Fazıl Aras
- Department of Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Ayşe Betül Öztürk
- Department of Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Mustafa Küçükaydın
- Department of Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Cüneyt Turan
- Department of Pediatric Surgery, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
35
|
Wang J, Ren T, Wang F, Han Y, Liao M, Jiang Z, Liu H. Effects of dietary cadmium on growth, antioxidants and bioaccumulation of sea cucumber (Apostichopus japonicus) and influence of dietary vitamin C supplementation. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2016; 129:145-153. [PMID: 27032071 DOI: 10.1016/j.ecoenv.2016.01.029] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Revised: 01/29/2016] [Accepted: 01/29/2016] [Indexed: 06/05/2023]
Abstract
The effects of dietary cadmium (Cd) supplementation on growth, antioxidant capacity and accumulation of Cd in tissues (body wall, digestive tracts, and respiratory tree) of sea cucumber, Apostichopus japonicus, exposed to sub-chronic concentrations (0, 10, 50, 100, and 500mg Cd/kg dry weight) of Cd were investigated. In addition, the potential protective effects of vitamin C (L-ascorbic acid, AsA) against the effects of Cd on sea cucumbers were investigated. Sea cucumbers were exposed to dietary Cd for 30 days, after which another group of healthy sea cucumbers was supplied diet supplemented with mixed Cd and AsA for another 30 days. Cd exposure for 30 days resulted in increased Cd accumulation in tissues of sea cucumbers with exposure time and concentration. The order of Cd accumulation in organs was digestive tracts>respiratory tree>body wall. On day 30, the body weight gain (BWG) and specific growth rate (SGR) decreased significantly (P<0.05) in the 500mg Cd/kg treatment. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity and catalase (CAT) activity in the coelomic fluid of sea cucumbers decreased with increasing dietary Cd concentration, but malondialdehyde (MDA) content in the coelomic fluid increased. Providing diet supplemented with Cd and AsA indicated that although sea cucumbers exhibited signs of Cd toxicity, no death occurred in response to 50mg Cd/kg for 30 days. Based on these findings, five treatments were provided: 50mg Cd/kg+0mg AsA/kg, 50mg Cd/kg+ 3000mg AsA/kg, 50mg Cd/kg+ 5000mg AsA/kg, 50mg Cd/kg+10,000mg AsA/kg, and 50mg Cd/kg+15,000mg AsA/kg. The BWG and SGR of sea cucumbers fed the AsA supplemented diet mixed with Cd increased. Additionally, MDA levels in coelomic fluid were negatively correlated with dietary AsA levels, while antioxidant capacities (SOD, GSH-Px and CAT) were positively correlated with dietary AsA levels. Moreover, Cd accumulation in tissues decreased in response to dietary AsA supplementation of treatments. Overall, antioxidant capacity and bioaccumulation in sea cucumber was found to decrease and be induced in response to Cd, but vitamin C mitigated these effects, with 5000mg AsA/kg providing the optimum protection against 50mg/kg Cd.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Fuqiang Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Mingling Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Haiying Liu
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
36
|
Shimizu S, Tsounapi P, Dimitriadis F, Higashi Y, Shimizu T, Saito M. Testicular torsion-detorsion and potential therapeutic treatments: A possible role for ischemic postconditioning. Int J Urol 2016; 23:454-63. [DOI: 10.1111/iju.13110] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Accepted: 03/29/2016] [Indexed: 01/30/2023]
Affiliation(s)
- Shogo Shimizu
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Panagiota Tsounapi
- Division of Urology; Tottori University School of Medicine; Yonago Tottori Japan
| | - Fotios Dimitriadis
- Department of Urology; School of Medicine; Ioannina University; Ioannina Greece
| | - Youichirou Higashi
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Takahiro Shimizu
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| | - Motoaki Saito
- Department of Pharmacology; Kochi Medical School; Kochi University; Nankoku Kochi Japan
| |
Collapse
|
37
|
Fouad AA, Qutub HO, Jresat I. Dose-dependent protective effect of baicalin against testicular torsion-detorsion in rats. Andrologia 2016; 49. [DOI: 10.1111/and.12580] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 01/30/2016] [Indexed: 01/08/2023] Open
Affiliation(s)
- A. A. Fouad
- Department of Biomedical Sciences; Pharmacology Division; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| | - H. O. Qutub
- Department of Internal Medicine; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| | - I. Jresat
- Department of Biomedical Sciences; Pathology Division; College of Medicine; King Faisal University; Al-Ahsa Saudi Arabia
| |
Collapse
|
38
|
Rutin Attenuates Hepatotoxicity in High-Cholesterol-Diet-Fed Rats. OXIDATIVE MEDICINE AND CELLULAR LONGEVITY 2016; 2016:5436745. [PMID: 27239252 PMCID: PMC4863108 DOI: 10.1155/2016/5436745] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2015] [Revised: 02/29/2016] [Accepted: 03/10/2016] [Indexed: 01/06/2023]
Abstract
Background and Objective. High-cholesterol diet (HCD) intends to increase the oxidative stress in liver tissues inducing hepatotoxicity. Rutin is a natural flavonoid (vitamin p) which is known to have antioxidative properties. The aim of the present study was to investigate the potential effects of Rutin on hypercholesterolemia-induced hepatotoxicity in rats. Materials and Methods. Male Wistar rats were divided into four groups: G-I control, G-II Rutin, G-III HCD, and G-IV Rutin + HCD. The liver functions and lipid profile were used to evaluate the HCD-induced hepatotoxicity. Quantitative real time-PCR was carried out to evaluate the expression levels of genes in TGF-β/Smad signaling pathway. Results. Rutin in combination with HCD showed a significant protective effect against hepatotoxicity. HCD caused significant increase in the mRNA expression of transforming growth factor beta (TGF-β), Mothers Against Decapentaplegic Homolog 2 (Smad-2), Mothers Against Decapentaplegic Homolog 4 (Smad-4), Bcl-2-binding component 3 (Bbc3), caspase-3, P53 and Interleukin-6 (IL-6) and decrease in the expression levels of Cyclin depended kinase inhibitor (P21) and Interleukin-3 (IL-3) in hepatic cells. Conclusion. TGF-β/Smad signaling pathway is involved in HCD-induced hepatotoxicity and Rutin inhibits the hepatotoxicity via suppressing this pathway. Therefore, Rutin might be considered as a protective agent for hepatotoxicity.
Collapse
|
39
|
Hajizadeh Z, Soleimani Mehranjani M, Najafi G, Shariatzadeh SMA, Shalizar Jalali A. Black Grape Seed Extract Modulates Fluoxetine-Induced Oxidative Stress and Cytotoxicity in the Mouse Testis. Jundishapur J Nat Pharm Prod 2016. [DOI: 10.17795/jjnpp-27512] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
40
|
Ulusoy HB, Öztürk İ, Sönmez MF. Protective effect of propolis on methotrexate-induced kidney injury in the rat. Ren Fail 2016; 38:744-50. [PMID: 26981953 DOI: 10.3109/0886022x.2016.1158070] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
Objectives Propolis is a potent antioxidant and a free radical scavenger. Pharmacological induction of heat shock proteins (HSPs) has been investigated for restoring normal cellular function following an injury. In this study, effect of propolis on HSP-70 expression in methotrexate-induced nephrotoxicity and direct preventive effect of propolis in this toxicity were investigated. Material and methods A total of 40 male Wistar albino rats were divided into four groups: Group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20 mg/kg. Groups 3 and 4 received 100 mg/kg/day propolis (by oral gavage) for 15 d by the first day of the experimental protocol. Then the rats were decapitated under ketamine esthesia and their kidney tissues were removed. HSP-70 expression, apoptosis, and histopathological damage scores were then compared. Results MTX caused epithelial desquamation into the lumen of the tubules, dilatation, and congestion of the peritubular vessels and renal corpuscles with obscure Bowman's space. The number of apoptotic cells (p = 0.000) and HSP-70 (p = 0.002) expression were increased in group 2. Propolis prevented the rise in number of apoptotic cells (p = 0.017), HSP-70 (p = 0.000) expression, and improved kidney morphology. Conclusions It was found that methotrexate gives rise to serious damage in the kidney and propolis is a potent antioxidant agent in preventing kidney injury.
Collapse
Affiliation(s)
- Hasan Basri Ulusoy
- a Department of Pharmacology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| | - İsmet Öztürk
- b Department of Food Engineering, Faculty of Engineering , Erciyes University , Kayseri , Turkey
| | - Mehmet Fatih Sönmez
- c Department of Histology and Embryology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| |
Collapse
|
41
|
Sönmez MF, Dündar M. Ameliorative effects of pentoxifylline on NOS induced by diabetes in rat kidney. Ren Fail 2016; 38:605-13. [PMID: 26905686 DOI: 10.3109/0886022x.2016.1149688] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
OBJECTIVES Diabetic nephropathy (DN) is the leading cause of end-stage renal disease worldwide. The NO system has been implicated in the pathogenesis of DN. In this study, we aimed to evaluate the healing effect of pentoxifylline on NOS in STZ-induced diabetic rat's kidney. MATERIAL AND METHODS In this study, 50 Wistar albino male rats were used. The rats were divided into five groups; Group C control; Group D only diabetes; Group D + PI and D + PII diabetes + pentoxifylline; Group P only pentoxifylline. Group DPI rats received just pentoxifylline from the beginning of the experiments. However, Group DPII rats received saline in the first month and 50 mg/kg/day of pentoxifylline for the following month. At the end of two months, NOS expressions in kidney tissue were assessed using qRT-PCR and immunohistochemistry analysis. RESULTS At the end of the experiments, desquamation of the epithelial cells of the tubules, clear glycogen-filled distal tubules and increased number of apoptotic cells were seen in Group D. Diabetic rats' nNOS immunoreactivity had increased and eNOS and iNOS immunoreactivity had decreased; nNOS, iNOS and eNOS mRNA levels tended to decrease compared to the control group. PTX ameliorated eNOS, iNOS and nNOS protein levels and apoptotic cells, but did not affect mRNA levels. CONCLUSION In conclusion, PTX has a healing effect on this damage by affecting NOS expression.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- a Department of Histology and Embryology, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| | - Munis Dündar
- b Department of Medical Genetics, Faculty of Medicine , Erciyes University , Kayseri , Turkey
| |
Collapse
|
42
|
Protective effects of propolis on methotrexate-induced testis injury in rat. Biomed Pharmacother 2016; 79:44-51. [PMID: 27044811 DOI: 10.1016/j.biopha.2016.02.002] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2015] [Revised: 02/02/2016] [Accepted: 02/02/2016] [Indexed: 11/24/2022] Open
Abstract
Propolis is an adhesive substance which is collected and used by honeybees. Propolis is a potent antioxidant and a free radical scavenger. This study was designed to determine whether propolis could protect against dysfunction and oxidative stress induced by methotrexate-induced injury in rat testis. A total of 40 male Wistar albino rats were divided into four groups: group 1 was the untreated control. On the eighth day of the experiment, groups 2 and 3 received single intraperitoneal injections of methotrexate (MTX) at 20mg/kg. Groups 3 and 4 received 100mg/kg/day propolis (by oral gavage) for 15 days by the first day of the experimental protocol. Then the rats were decapitated under anesthesia, and their testes were removed. The histopathological and biochemical analysis along with apoptosis assessment of testis tissues were compared. Immunohistochemical analysis of Heat shock protein-70 (HSP-70) and Proliferating Cell Nuclear Antigen (PCNA) were performed. The phenolic characterization of propolis was performed by Liquid chromatography-mass spectrometry (LC-MS/MS). Methotrexate caused tended to increase in malondialdehyde level and in the number of apoptotic cells; it also caused a decrease in MSTD and JTBS, PCNA and HSP-70 expression and xanthine oxidase levels in group 2. Propolis prevented the rise in malondialdehyde, xanthine oxidase levels and HSP-70 expression and improved testicular morphology and JTBS. It was found that, methorexate gives rise to serious damage in the testes and propolis is a potent antioxidant agent in preventing testicular injury.
Collapse
|
43
|
Sönmez MF, Kılıç E, Karabulut D, Çilenk K, Deligönül E, Dündar M. Nitric oxide synthase in diabetic rat testicular tissue and the effects of pentoxifylline therapy. Syst Biol Reprod Med 2015; 62:22-30. [PMID: 26566682 DOI: 10.3109/19396368.2015.1085605] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
Diabetes is known to be associated with erectile dysfunction, retrograde ejaculation, level of testicular hormone, and a decrease in semen quality, respectively. In this project, we aimed to investigate at the molecular level, the effects of NOS on testes pathology in diabetes and examine the effects of pentoxifylline on healing. A total of 50 Wistar albino male rats were divided into five groups: Group I control; Group II only diabetes; Group III and IV diabetes + pentoxifylline; Group V only pentoxifylline. Group III rats received 50 mg/kg/day pentoxifylline during two months. In comparison, Group IV rats received saline in the first month followed by 50 mg/kg/day of pentoxifylline for the following month. NOS expression in testicular tissue was assessed using qRT-PCR, western blot, and immunohistochemistry. The mean seminiferous tubule diameter, Johnsen's testicular biopsy score, and serum testosterone levels decreased compared to controls. In contrast, the number of apoptotic cells, the levels of nNOS, iNOS and eNOS mRNA, and protein increased when compared to the control. Upon pentoxifylline therapy NOS decreased suggesting that it contributes to this damage and treatment with pentoxifylline may be effective in reversing this damage.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- a Department of Histology and Embryology , Faculty of Medicine, Erciyes University
| | - Eser Kılıç
- b Department of Medical Biochemistry , Kayseri , Turkey
| | - Derya Karabulut
- a Department of Histology and Embryology , Faculty of Medicine, Erciyes University
| | - KübraTugce Çilenk
- a Department of Histology and Embryology , Faculty of Medicine, Erciyes University
| | - Erkan Deligönül
- c FatihUniversity , Faculty of Medicine, Department of Histology and Embryology , Istanbul , Turkey , and
| | - Munis Dündar
- d Erciyes University , Faculty of Medicine, Department of Medical Genetics , Kayseri , Turkey
| |
Collapse
|
44
|
Wang J, Ren T, Han Y, Zhao Y, Liao M, Wang F, Jiang Z. The effects of dietary lead on growth, bioaccumulation and antioxidant capacity in sea cucumber, Apostichopus japonicus. ENVIRONMENTAL TOXICOLOGY AND PHARMACOLOGY 2015; 40:535-540. [PMID: 26318566 DOI: 10.1016/j.etap.2015.08.012] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2015] [Revised: 08/07/2015] [Accepted: 08/08/2015] [Indexed: 06/04/2023]
Abstract
Three different diets amended with lead nitrate [Pb(NO3)2] (100, 500 and 1000mg Pb/kg dry weight) and a Pb-free control diet (1.03mg Pb/kg dry weight) were fed to sea cucumber (Apostichopus japonicus) for 30 days. The patterns of Pb accumulation over time were determined in various tissues (body wall, intestine and respiratory tree), as well as growth performance and antioxidant enzymes activities. Pb accumulation in body wall and intestine increased with time in all dietary Pb treatments. When fed the highest Pb diet, the body wall exhibited the greatest Pb burden (16.37mg Pb/kg tissue wet weight), while Pb content in the intestine (2.68mg Pb/kg tissue wet weight) and the respiratory tree (1.78mg Pb/kg tissue wet weight) were lower than Pb content in the body wall by day 30. The body weight gain (BWG), specific growth rate (SGR) and survival rate (SR) had not been affected by 30 days oral administration of Pb supplemented diet. However, the antioxidant enzymes activities [superoxide dismutase (SOD) and glutathione peroxidase (GSH-Px)] of test groups were lower than control group in body wall and malondialdehyde (MDA) concentration in the body wall was opposite after 30 days in sea cucumbers. In summary, this work reports toxic effects in sea cucumber, A. japonicus, after dietary exposure to Pb.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Yang Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Mingling Liao
- State Key Laboratory of Marine Environmental Science, Xiamen University, Xiamen 361000, China
| | - Fuqiang Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
45
|
Wang J, Ren T, Han Y, Zhao Y, Liao M, Wang F, Jiang Z. Effects of dietary vitamin C supplementation on lead-treated sea cucumbers, Apostichopus japonicus. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2015; 118:21-26. [PMID: 25890051 DOI: 10.1016/j.ecoenv.2015.04.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2014] [Revised: 04/06/2015] [Accepted: 04/09/2015] [Indexed: 06/04/2023]
Abstract
This study aimed to determine the effects of dietary supplementation with vitamin C (l-ascorbic acid, AsA) on lead (Pb) accumulation and toxicity in sea cucumber, Apostichopus japonicus. Three hundred sea cucumbers (10.02±0.02g) fed a basal diet containing 100mg Pb/kg were subjected to 5 levels of l-ascorbate-2-polyphosphate (LAPP) supplementation to achieve 5 AsA treatment levels of 0, 2727, 4630, 9171, 13,893mg AsA/kg. After 30 days, specific growth rate (SGR) and body weight gain (BWG) of supplementation groups were significantly (P<0.05) higher than the control group. Pb contents of the intestine significantly (P<0.05) decreased from 20 days to 30 days in all supplementation groups. Pb contents of the respiratory tree in sea cucumbers in the 2727 and 4630mg AsA/kg treatment groups significantly (P<0.05) decreased from 10 days to 30 days. Superoxide dismutase (SOD) activity, glutathione peroxidase (GSH-Px) activity and total antioxidant capacity (T-AOC) of the sea cucumber body wall in supplementation groups increased after 30 days. Malondialdehyde (MDA) content of the body wall significantly (P<0.05) declined with increasing AsA level. Therefore, it can be demonstrated that vitamin C could mitigate the effects of Pb on sea cucumber and the optimum levels ranged from 2727mg AsA/kg to 4630mg AsA/kg when Pb levels were 100mg/kg.
Collapse
Affiliation(s)
- Jing Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Tongjun Ren
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China.
| | - Yuzhe Han
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Yang Zhao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Mingling Liao
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Fuqiang Wang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| | - Zhiqiang Jiang
- Key Laboratory of Mariculture & Stock Enhancement in North China's Sea, Ministry of Agriculture, Dalian Ocean University, Dalian 116023, China
| |
Collapse
|
46
|
Karabulut D, Ulusoy HB, Kaymak E, Sönmez MF. Therapeutic effects of pentoxifylline on diabetic heart tissue via NOS. Anatol J Cardiol 2015; 16:310-5. [PMID: 26488377 PMCID: PMC5336777 DOI: 10.5152/akd.2015.6252] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/12/2023] Open
Abstract
Objective: Diabetes mellitus causes a decrease in cardiac output, arterial blood pressure, and heart rate. In this study, we aimed to investigate, at the molecular level, the effect of nitric oxide synthase (NOS) on heart pathology in type 1 diabetes and look at the therapeutic effect of pentoxifylline on this pathology. Methods: In this experimental study, 50 Wistar albino male rats were used. The rats were divided into 5 groups: group C, control; group D, only diabetes; group D+PI and D+PII, diabetes + pentoxifylline; group P, only pentoxifylline. Group D+PI rats received 50 mg/kg/day pentoxifylline over two months. However, group D+PII rats received saline in the first month and 50 mg/kg/day of pentoxifylline over the following month. At the end of two months, NOS expressions in heart tissue were assessed through immunohistochemistry analysis. The data were compared by one-way ANOVA. Results: At the end of the experiments, there was increased cytoplasmic vacuolization, myofibrillar loss, cytoplasmic eosinophilia, and degeneration of cardiomyocytes; nNOS and iNOS expressions in group D decreased compared with that in group C. In group D+PI and group D+PII, nNOS and iNOS expressions improved compared with group D. Conclusion: As a result, we found that diabetes, a known chronic disease, causes serious damage in heart tissue. NOS plays a role in this damage, and pentoxifylline aided in improving nNOS and iNOS expression in this damage.
Collapse
Affiliation(s)
- Derya Karabulut
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University; Kayseri-Turkey.
| | | | | | | |
Collapse
|
47
|
Sönmez MF, Tascioglu S. Protective effects of grape seed extract on cadmium-induced testicular damage, apoptosis, and endothelial nitric oxide synthases expression in rats. Toxicol Ind Health 2015; 32:1486-1494. [PMID: 25614582 DOI: 10.1177/0748233714566874] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This study aims to evaluate the protective effect of grape seed proanthocyanidin extract (GSPE) on cadmium (Cd)-induced testicular apoptosis, endothelial nitric oxide synthases (eNOS) expression, and toxicity in rats. A total of 24 male Wistar rats were divided into four groups, namely, control, Cd (2.5 mg/kg), Cd + GSPE (100 mg/kg/day), and GSPE. Spermatogenesis and mean seminiferous tubule diameter were significantly decreased in the Cd groups. Furthermore, the GSPE-treated animals showed an improved histological appearance in the Cd group. The immunoreactivity of eNOS and the number of apoptotic cells were increased in Cd group. Our data indicate a significant reduction of terminal deoxynucleotide transferase-mediated 2'-deoxyuridine 5'-triphosphate nick end-labeling staining and a decrease in the expression of eNOS in the testes tissue of the Cd group treated with GSPE therapy. Therefore, our results suggest that GSPE acts as a potent protective agent against Cd-induced testicular toxicity in rats.
Collapse
Affiliation(s)
- Mehmet Fatih Sönmez
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| | - Simge Tascioglu
- Department of Histology and Embryology, Faculty of Medicine, Erciyes University, Kayseri, Turkey
| |
Collapse
|
48
|
Yonguc GN, Dodurga Y, Adiguzel E, Gundogdu G, Kucukatay V, Ozbal S, Yilmaz I, Cankurt U, Yilmaz Y, Akdogan I. Grape seed extract has superior beneficial effects than vitamin E on oxidative stress and apoptosis in the hippocampus of streptozotocin induced diabetic rats. Gene 2014; 555:119-26. [PMID: 25445279 DOI: 10.1016/j.gene.2014.10.052] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Revised: 10/24/2014] [Accepted: 10/28/2014] [Indexed: 01/16/2023]
Abstract
We aimed to investigate the effects of grape seed extract (GSE) and vitamin E (Vit E) on oxidative stress and apoptosis in the hippocampus of streptozotocin-induced diabetic rats. In Control, Diabetic, and Diabetic treated with GSE (Diabetic+GSE) and vitamin E (Diabetic+Vit E) groups, oxidative stress index (OSI), TUNEL staining and Bcl-2, Bcl-XL, Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were evaluated. OSI was significantly increased in the plasma and hippocampus of the Diabetic compared to Control group and decreased in Diabetic+GSE and Diabetic+Vit E groups compared to Diabetic. TUNEL positive neurons significantly increased in the hippocampus of the Diabetic group compared to Control and decreased in Diabetic+GSE (more prominently) and Diabetic+Vit E groups compared to Diabetic. In the hippocampus of the Diabetic group, Bcl-2 and Bcl-XL gene expressions were significantly decreased; Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB gene expressions were significantly increased compared to Control. In Diabetic+GSE and Diabetic+Vit E groups, Bcl-2 gene expressions were significantly increased; Bcl-XL gene expressions did not differ compared to the Diabetic group. The expression of Bax, caspase-3, -9, and -8, Cyt-c, TNF-α, and NF-κB genes in the Diabetic+GSE group and the expression of caspase-3 and -9, TNF-α, and NF-κB genes in the Diabetic+Vit E group were significantly decreased compared to Diabetic. In conclusion, GSE (more prominently) and vitamin E decreased oxidative stress and neuronal apoptosis occurring in the hippocampus of diabetic rats.
Collapse
Affiliation(s)
| | - Yavuz Dodurga
- Pamukkale University School of Medicine, Department of Medical Biology, Denizli, Turkey.
| | - Esat Adiguzel
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| | - Gulsah Gundogdu
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Vural Kucukatay
- Pamukkale University School of Medicine, Department of Physiology, Denizli, Turkey
| | - Seda Ozbal
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Ismail Yilmaz
- Izmir Bozyaka Training and Research Hospital, Department of Pharmacology, Izmir, Turkey
| | - Ulker Cankurt
- Dokuz Eylul University School of Medicine, Department of Histology and Embryology, Izmir, Turkey
| | - Yusuf Yilmaz
- Mehmet Akif Ersoy University Faculty of Engineering and Architecture, Department of Food Engineering, Burdur, Turkey
| | - Ilgaz Akdogan
- Pamukkale University School of Medicine, Department of Anatomy, Denizli, Turkey
| |
Collapse
|
49
|
Rifaioglu MM, Motor S, Davarci I, Tuzcu K, Sefil F, Davarci M, Nacar A. Protective effect of ebselen on experimental testicular torsion and detorsion injury. Andrologia 2013; 46:1134-40. [DOI: 10.1111/and.12204] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/07/2013] [Indexed: 12/24/2022] Open
Affiliation(s)
- M. M. Rifaioglu
- Department of Urology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - S. Motor
- Department of Biochemistry; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - I. Davarci
- Department of Anesthesiology and Reanimation; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - K. Tuzcu
- Department of Anesthesiology and Reanimation; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - F. Sefil
- Department of Physiology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - M. Davarci
- Department of Urology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| | - A. Nacar
- Department of Histology; Medical Faculty; Mustafa Kemal University; Hatay Turkey
| |
Collapse
|