1
|
Poudel SP, Behura SK. Relevance of the regulation of the brain-placental axis to the nocturnal bottleneck of mammals. Placenta 2024; 155:11-21. [PMID: 39121583 DOI: 10.1016/j.placenta.2024.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2024] [Revised: 08/02/2024] [Accepted: 08/03/2024] [Indexed: 08/12/2024]
Abstract
INTRODUCTION Evolutionary theory suggests that the ancestors of all placental animals were nocturnal. Visual perceptive function of mammalian brain has evolved extensively, but nearly 70 % of today's mammals are still nocturnal. While placental influence on brain development is known, if placenta plays a role in the visual perceptive function of mammalian brain remains untested. The present study aims to test this hypothesis. METHODS In this study, single-nuclei RNA sequencing was performed to identify genes expressed in the pig placenta and fetal brain, and then compared with the orthologous genes expressed in the placenta and fetal brain cells of mouse. Differential gene expression analysis was performed to identify placental genes regulated differentially between nocturnal and diurnal animals. Phylogenetic modeling was performed to test correlated evolution between placenta type, and the nocturnal or diurnal activity among different mammals. RESULTS The results showed that genes differentially regulated in the fetal brain were related to visual perception whereas the placental genes were related to the nocturnal or diurnal activity in placental animals. Phylogenetic modeling of these genes in thirty-four diverse mammalian species showed evidence for evolutionary link between placenta and the nocturnal/diurnal activity in animals. DISCUSSION The findings of this study suggest that the placenta plays a role in the evolution of visual perceptive function of brain to shape the nocturnal or diurnal activity of placental animals.
Collapse
Affiliation(s)
- Shankar P Poudel
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA
| | - Susanta K Behura
- Division of Animal Sciences, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; MU Institute for Data Science and Informatics, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Reproduction and Health Group, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA; Interdisciplinary Neuroscience Program, University of Missouri, 920 East Campus Drive, Columbia, MO, 65211, USA.
| |
Collapse
|
2
|
van Rosmalen L, Deota S, Maier G, Le HD, Lin T, Ramasamy RK, Hut RA, Panda S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep 2024; 43:113951. [PMID: 38508192 PMCID: PMC11330649 DOI: 10.1016/j.celrep.2024.113951] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geraldine Maier
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Tomotani BM, Timpen F, Spoelstra K. Ingrained city rhythms: flexible activity timing but more persistent circadian pace in urban birds. Proc Biol Sci 2023; 290:20222605. [PMID: 37192668 PMCID: PMC10188242 DOI: 10.1098/rspb.2022.2605] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/31/2022] [Accepted: 04/24/2023] [Indexed: 05/18/2023] Open
Abstract
Urbanization dramatically increases the amount of light at night, which may disrupt avian circadian organization. We measured activity patterns of great tits breeding in the city and forest, and subsequently measured two clock properties of these birds under controlled conditions: tau (endogenous circadian clock speed) and after-effects (history dependency of the clock relative to previous conditions). City and forest birds showed a high repeatability of activity onset (0.60 and 0.41, respectively), with no difference between habitats after controlling for date effects. Activity duration and offset showed more variance, without a difference between birds from the two habitats. Tau did not differ between city and forest birds, however, city birds showed stronger after-effects, taking more days to revert to their endogenous circadian period. Finally, onset of activity was correlated with clocks speed in both habitats. Our results suggest that potential differences in activity timing of city birds is not caused by different clock speeds, but by a direct response to light. Persistence in after-effects suggests a reduced sensitivity of the clock to light at night. Urbanization may select for clock properties that increase the inertia of the endogenous circadian system to improve accuracy of activity rhythms when exposed to noisier lighting cues.
Collapse
Affiliation(s)
- Barbara M. Tomotani
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
- Department of Arctic and Marine Biology, UiT The Arctic University of Norway, Tromsø, Norway
| | - Fabian Timpen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| | - Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), Wageningen, The Netherlands
| |
Collapse
|
4
|
Jakopak RP, Sawyer H, LaSharr TN, Randall J, Dwinnell SP, Fralick GL, Monteith KL. Diel timing of migration is not plastic in a migratory ungulate. Anim Behav 2022. [DOI: 10.1016/j.anbehav.2022.07.008] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/01/2022]
|
5
|
Schoonderwoerd RA, Buck TM, Andriessen CA, Wijnholds J, Hattar S, Meijer JH, Deboer T. Sleep Deprivation Does not Change the Flash Electroretinogram in Wild-type and Opn4-/-Gnat1-/- Mice. J Biol Rhythms 2022; 37:216-221. [PMID: 35132885 PMCID: PMC9008555 DOI: 10.1177/07487304221074995] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/23/2022]
Abstract
Sleep deprivation reduces the response of neuronal activity in the suprachiasmatic nucleus (SCN) and the phase shift in circadian behaviour to phase shifting light pulses, and thus seems to impair the adaptation of the circadian clock to the external light-dark cycle. The question remains where in the pathway of light input to the SCN the response is reduced. We therefore investigated whether the electroretinogram (ERG) changes after sleep deprivation in wild-type mice and in Opn4−/−Gnat1−/− mutant male mice. We found that the ERG is clearly affected by the Opn4−/−Gnat1−/− mutations, but that the ERG after sleep deprivation does not differ from the baseline response. The difference between wild-type and mutant is in accordance with the lack of functional rod and melanopsin in the retina of the mutant mice. We conclude that the decrease in light responsiveness of the SCN after sleep deprivation is probably not caused by changes at the retinal level, but rather at the postsynaptic site within the SCN, reflecting affected neurotransmitter signalling.
Collapse
Affiliation(s)
- Robin A Schoonderwoerd
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Thilo M Buck
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | | | - Jan Wijnholds
- Department of Ophthalmology, Leiden University Medical Center, Leiden, the Netherlands
| | - Samer Hattar
- Section of Light and Circadian Rhythms, National Institutes of Health, Bethesda, Maryland, USA
| | - Johanna H Meijer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| | - Tom Deboer
- Laboratory for Neurophysiology, Department of Cell and Chemical Biology, Leiden University Medical Center, Leiden, the Netherlands
| |
Collapse
|
6
|
Beyond irradiance: Visual signals influencing mammalian circadian function. PROGRESS IN BRAIN RESEARCH 2022; 273:145-169. [DOI: 10.1016/bs.pbr.2022.04.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
7
|
Farsi H, Harti D, Rachid Achaâban M, Piro M, Ouassat M, Challet E, Pévet P, El Allali K. Seasonal variations in locomotor activity rhythm and diurnal activity in the dromedary camel (Camelus dromedarius) under mesic semi-natural conditions. Chronobiol Int 2021; 39:129-150. [PMID: 34965824 DOI: 10.1080/07420528.2021.1984936] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Abstract
The dromedary camel (Camelus dromedarius) is a large ungulate that copes well with the xeric environment of the desert. Its peculiar adaptation to heat and dehydration is well-known. However, its behavior and general activity is far from being completely understood. The present study was carried out to investigate the ecological effect of the various seasons on the locomotor activity (LA) rhythm and diurnal activity of this species. Six adult female camels were maintained under mesic semi-natural conditions of the environment during four periods of 10 days in each season: autumn, winter, spring and summer. In addition, three female camels were used to test the effect of rain on the LA rhythm during a period of 18 days during the winter. The animal's LA was recorded using the locomotion scoring method. Camels displayed a clear 24.0h LA rhythm throughout the four seasons. Activity was intense during Day-time (6-22 fold higher in comparison to night) and dropped or completely disappeared during nighttime. Mean daytime total activity was significantly higher in the summer as compared to winter. Regardless of the season, the active phase in camels coincided with the time of the photophase and thermophase. Furthermore, the daily duration of the time spent active was directly correlated to the seasonal changes of photoperiod. The diurnal activity remained unchanged over the four seasons. For each season, the start and the end of the active phase were synchronized with the onset of sunrise and sunset. At these time periods, temperature remained incredibly stable with a change ranging from 0.002 to 0.210°C; whereas, changes of light intensity were greater and faster with a change from 0.1 to 600 lux representing a variation of 3215-7192 fold in just 25-29 min. Rainfall affected the pattern of the LA rhythm with occurrence of abnormal nocturnal activity during nighttime disturbing nocturnal rest and sleep. Here we show that the dromedary camel exhibits significant seasonal changes of its activity within daylight hours. However, the diurnal pattern remains unchanged regardless of the season; whereas, abnormal nocturnal activity is observed during periods of rain. The activity onset and offset in this species seems to be primarily driven by the changes in light intensity at dusk and dawn.
Collapse
Affiliation(s)
- Hicham Farsi
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Driss Harti
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohamed Rachid Achaâban
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Piro
- Medicine and Surgical Unit of Domestic Animals, Department of Medicine, Surgery and Reproduction, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Mohammed Ouassat
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS and University of Strasbourg, Strasbourg, France
| | | | - Khalid El Allali
- cComparative Anatomy Unit, Department of Biological and Pharmacological Veterinary Sciences, Hassan IInd Agronomy and Veterinary Medicine Institute, Rabat, Morocco
| |
Collapse
|
8
|
From circadian clock mechanism to sleep disorders and jet lag: Insights from a computational approach. Biochem Pharmacol 2021; 191:114482. [DOI: 10.1016/j.bcp.2021.114482] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/15/2021] [Accepted: 02/16/2021] [Indexed: 12/13/2022]
|
9
|
Distinct contribution of cone photoreceptor subtypes to the mammalian biological clock. Proc Natl Acad Sci U S A 2021; 118:2024500118. [PMID: 34050024 PMCID: PMC8179201 DOI: 10.1073/pnas.2024500118] [Citation(s) in RCA: 26] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/02/2022] Open
Abstract
Synchronization of our biological clocks to the environmental day–night cycle critically depends on daily exposure to light. Here, we show that cones transmit distinct photic information to the clock by performing recordings of clock neurons in freely moving mice with cones as their only photoreceptors. This is in contrast to the expectation that exclusively melanopsin and rods fulfil this role. Moreover, we show that especially short-wavelength–sensitive cones as compared to mid-wavelength–sensitive cones are important. The evidence for a role for cones implicates that clocks respond to a broad spectrum of colors rather than to blue light, which can be used to strengthen the clock in humans. Ambient light detection is important for the synchronization of the circadian clock to the external solar cycle. Light signals are sent to the suprachiasmatic nuclei (SCN), the site of the major circadian pacemaker. It has been assumed that cone photoreceptors contribute minimally to synchronization. Here, however, we find that cone photoreceptors are sufficient for mediating entrainment and transmitting photic information to the SCN, as evaluated in mice that have only cones as functional photoreceptors. Using in vivo electrophysiological recordings in the SCN of freely moving cone-only mice, we observed light responses in SCN neuronal activity in response to 60-s pulses of both ultraviolet (UV) (λmax 365 nm) and green (λmax 505 nm) light. Higher irradiances of UV light led to irradiance-dependent enhancements in SCN neuronal activity, whereas higher irradiances of green light led to a reduction in the sustained response with only the transient response remaining. Responses in SCN neuronal activity decayed with a half-max time of ∼9 min for UV light and less than a minute for green light, indicating differential input between short-wavelength–sensitive and mid-wavelength–sensitive cones for the SCN responsiveness. Furthermore, we show that UV light is more effective for photoentrainment than green light. Based on the lack of a full sustained response in cone-only mice, we confirmed that rapidly alternating light levels, rather than slowly alternating light, caused substantial phase shifts. Together, our data provide strong evidence that cone types contribute to photoentrainment and differentially affect the electrical activity levels of the SCN.
Collapse
|
10
|
Mouland JW, Martial FP, Lucas RJ, Brown TM. Modulations in irradiance directed at melanopsin, but not cone photoreceptors, reliably alter electrophysiological activity in the suprachiasmatic nucleus and circadian behaviour in mice. J Pineal Res 2021; 70:e12735. [PMID: 33793975 DOI: 10.1111/jpi.12735] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Accepted: 03/23/2021] [Indexed: 12/25/2022]
Abstract
Intrinsically photosensitive retinal ganglion cells convey intrinsic, melanopsin-based, photoreceptive signals alongside those produced by rods and cones to the suprachiasmatic nucleus (SCN) circadian clock. To date, experimental data suggest that melanopsin plays a more significant role in measuring ambient light intensity than cone photoreception. Such studies have overwhelmingly used diffuse light stimuli, whereas light intensity in the world around us varies across space and time. Here, we investigated the extent to which melanopsin or cone signals support circadian irradiance measurements in the presence of naturalistic spatiotemporal variations in light intensity. To address this, we first presented high- and low-contrast movies to anaesthetised mice whilst recording extracellular electrophysiological activity from the SCN. Using a mouse line with altered cone sensitivity (Opn1mwR mice) and multispectral light sources we then selectively varied irradiance of the movies for specific photoreceptor classes. We found that steps in melanopic irradiance largely account for the light induced-changes in SCN activity over a range of starting light intensities and in the presence of spatiotemporal modulation. By contrast, cone-directed changes in irradiance only influenced SCN activity when spatiotemporal contrast was low. Consistent with these findings, under housing conditions where we could independently adjust irradiance for melanopsin versus cones, the period lengthening effects of constant light on circadian rhythms in behaviour were reliably determined by melanopic irradiance, regardless of irradiance for cones. These data add to the growing evidence that modulating effective irradiance for melanopsin is an effective strategy for controlling the circadian impact of light.
Collapse
Affiliation(s)
- Josh W Mouland
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Franck P Martial
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Robert J Lucas
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Neuroscience and Experimental Psychology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| | - Timothy M Brown
- Centre for Biological Timing, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
- Division of Diabetes, Endocrinology and Gastroenterology, Faculty of Biology Medicine and Health, University of Manchester, Manchester, UK
| |
Collapse
|
11
|
|
12
|
Sbragaglia V, López-Olmeda JF, Frigato E, Bertolucci C, Arlinghaus R. Size-selective mortality induces evolutionary changes in group risk-taking behaviour and the circadian system in a fish. J Anim Ecol 2020; 90:387-403. [PMID: 33064849 DOI: 10.1111/1365-2656.13372] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2020] [Accepted: 10/05/2020] [Indexed: 12/01/2022]
Abstract
Intensive and trait-selective mortality of fish and wildlife can cause evolutionary changes in a range of life-history and behavioural traits. These changes might in turn alter the circadian system due to co-evolutionary mechanisms or correlated selection responses both at behavioural and molecular levels, with knock-on effects on daily physiological processes and behavioural outputs. We examined the evolutionary impact of size-selective mortality on group risk-taking behaviour and the circadian system in a model fish species. We exposed zebrafish Danio rerio to either large or small size-selective harvesting relative to a control over five generations, followed by eight generations during which harvesting was halted to remove maternal effects. Size-selective mortality affected fine-scale timing of behaviours. In particular, small size-selective mortality, typical of specialized fisheries and gape-limited predators targeting smaller size classes, increased group risk-taking behaviuor during feeding and after simulated predator attacks. Moreover, small size-selective mortality increased early peaks of daily activity as well as extended self-feeding daily activity to the photophase compared to controls. By contrast large size-selective mortality, typical of most wild capture fisheries, only showed an almost significant effect of decreasing group risk-taking behaviour during the habituation phase and no clear changes in fine-scale timing of daily behavioural rhythms compared to controls. We also found changes in the molecular circadian core clockwork in response to both size-selective mortality treatments. These changes disappeared in the clock output pathway because both size-selected lines showed similar transcription profiles. This switch downstream to the molecular circadian core clockwork also resulted in similar overall behavioural rhythms (diurnal swimming and self-feeding in the last hours of darkness) independent of the underlying molecular clock. To conclude, our experimental harvest left an asymmetrical evolutionary legacy in group risk-taking behaviour and in fine-scale daily behavioural rhythms. Yet, the overall timing of activity showed evolutionary resistance probably maintained by a molecular switch. Our experimental findings suggest that size-selective mortality can have consequences for behaviour and physiological processes.
Collapse
Affiliation(s)
- Valerio Sbragaglia
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Department of Marine Renewable Resources, Institute of Marine Sciences (ICM-CSIC), Barcelona, Spain
| | - Jose Fernando López-Olmeda
- Department of Physiology, Faculty of Biology, Regional Campus of International Excellence "Campus Mare Nostrum", University of Murcia, Murcia, Spain
| | - Elena Frigato
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Cristiano Bertolucci
- Department of Life Sciences and Biotechnology, University of Ferrara, Ferrara, Italy
| | - Robert Arlinghaus
- Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin, Germany.,Division of Integrative Fisheries Management, Faculty of Life Sciences & Integrative Research Institute on Transformations of Human-Environment Systems (IRI THESys), Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
13
|
Kumar D, Soni SK, Kronfeld-Schor N, Singaravel M. Wheel-running activity rhythms and masking responses in the diurnal palm squirrel, Funambulus pennantii. Chronobiol Int 2020; 37:1693-1708. [PMID: 33044096 DOI: 10.1080/07420528.2020.1826959] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
Several studies have reported activity patterns of various diurnal species from the order Rodentia, in which most of the species are nocturnal. Most of these studies have been performed under controlled laboratory conditions. These studies found that most of these species change their activity patterns when held under laboratory conditions, have a diverse masking response to light, and their activity pattern is influenced by the presence of a running wheel. Squirrels are reported to be strictly diurnal both in the field as well as in laboratory settings, and, therefore, form an interesting species to study to better understand the switch to diurnality. The aim of the current study is to characterize the masking response and temporal organization of wheel-running activity rhythms in the palm squirrel, Funambulus pennantii, under semi-natural (NLD) and controlled laboratory conditions using different lighting schedules. Squirrels were housed individually in a resting cage with running wheel under NLD (n = 10) and squared 12:12 h of light-dark cycle (LD) (n = 20). After stable entrainment under the LD condition, squirrels were divided into two groups. One group was housed under constant darkness (DD) (n = 10) and another group under constant light (LL) (n = 10). Following the stable free-running rhythm under DD and LL, the LD condition was reinforced. The kinetics of the endogenous pacemaker was studied following a 6 h phase advance or delay of LD cycle. Further, palm squirrels were subjected to a 3.5: 3.5 h LD cycle to evaluate the masking response to light and dark. Squirrels demonstrated stable, clear, robust, and strict diurnal activity rhythm during NLD and LD. In DD and LL, F. pennantii free-ran from the phase of the previous LD cycle, and the free-running period was longer in LL than in DD. The percentage of activity during the light phase was significantly higher in NLD and LD (above 96%) compared to activity during the subjective day in the DD and LL conditions (above 91%). The alpha/rho ratio was significantly higher in the LL compared to other lighting schedules. Further, all ten squirrels re-entrained to both 6 h advance and delay shifts within 11 days. In the ultradian cycle, significant positive masking of light was evident in nine of ten squirrels. These results suggest that the: (i) circadian system of F. pennantii is stable and functional under various lighting conditions; (ii) basic temporal organization in activity pattern remained unaltered even in the presence of a running wheel; (iii) diurnality is the inherent trait of F. pennantii, and (iv) behavioral activity rhythms are governed by both the circadian clock and external masking. Thus, palm squirrels can be used as a suitable diurnal model in circadian biology to study the underlying mechanisms of diurnality and effects of different light schedules, wavelengths, and non-photic cues on physiological and behavioral parameters.
Collapse
Affiliation(s)
- Dhanananajay Kumar
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India.,Department of Pharmaceutical Engineering & Technology, Indian Institute of Technology (Banaras Hindu University) , Varanasi, India
| | - Sanjeev Kumar Soni
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| | - Noga Kronfeld-Schor
- Ecological and Evolutionary Physiology Laboratory, Faculty of Life Sciences, Tel Aviv University , Tel-Aviv, Israel
| | - Muniyandi Singaravel
- Chronobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University , Varanasi, India
| |
Collapse
|
14
|
Gao VD, Morley‐Fletcher S, Maccari S, Vitaterna MH, Turek FW. Resource competition shapes biological rhythms and promotes temporal niche differentiation in a community simulation. Ecol Evol 2020; 10:11322-11334. [PMID: 33144967 PMCID: PMC7593148 DOI: 10.1002/ece3.6770] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2020] [Revised: 08/02/2020] [Accepted: 08/06/2020] [Indexed: 11/16/2022] Open
Abstract
Competition for resources often contributes strongly to defining an organism's ecological niche. Endogenous biological rhythms are important adaptations to the temporal dimension of niches, but how other organisms influence such temporal niches has not been much studied, and the role of competition in particular has been even less examined. We investigated how interspecific competition and intraspecific competition for resources shape an organism's activity rhythms.To do this, we simulated communities of one or two species in an agent-based model. Individuals in the simulation move according to a circadian activity rhythm and compete for limited resources. Probability of reproduction is proportional to an individual's success in obtaining resources. Offspring may have variance in rhythm parameters, which allow for the population to evolve over time.We demonstrate that when organisms are arrhythmic, one species will always be competitively excluded from the environment, but the existence of activity rhythms allows niche differentiation and indefinite coexistence of the two species. Two species which are initially active at the same phase will differentiate their phase angle of entrainment over time to avoid each other. When only one species is present in an environment, competition within the species strongly selects for niche expansion through arrhythmicity, but the addition of an interspecific competitor facilitates evolution of increased rhythmic amplitude when combined with additional adaptations for temporal specialization. Finally, if individuals preferentially mate with others who are active at similar times of day, then disruptive selection by intraspecific competition can split one population into two reproductively isolated groups separated in activity time.These simulations suggest that biological rhythms are an effective method to temporally differentiate ecological niches and that competition is an important ecological pressure promoting the evolution of rhythms and sleep. This is the first study to use ecological modeling to examine biological rhythms.
Collapse
Affiliation(s)
- Vance Difan Gao
- UMR 8576 Unité de Glycobiologie Structurale et FonctionnelleCNRSUniversity of LilleLilleFrance
- Center for Sleep and Circadian BiologyNorthwestern UniversityEvanstonILUSA
| | - Sara Morley‐Fletcher
- UMR 8576 Unité de Glycobiologie Structurale et FonctionnelleCNRSUniversity of LilleLilleFrance
- International Associated Laboratory (LIA) “Perinatal Stress and Neurodegenerative Diseases”University of LilleLilleFrance
| | - Stefania Maccari
- UMR 8576 Unité de Glycobiologie Structurale et FonctionnelleCNRSUniversity of LilleLilleFrance
- International Associated Laboratory (LIA) “Perinatal Stress and Neurodegenerative Diseases”University of LilleLilleFrance
- Department of Medico‐Surgical Sciences and BiotechnologiesUniversity Sapienza of RomeRomeItaly
| | | | - Fred W. Turek
- Center for Sleep and Circadian BiologyNorthwestern UniversityEvanstonILUSA
| |
Collapse
|
15
|
Spoelstra K, Verhagen I, Meijer D, Visser ME. Artificial light at night shifts daily activity patterns but not the internal clock in the great tit ( Parus major). Proc Biol Sci 2019; 285:rspb.2017.2751. [PMID: 29593108 DOI: 10.1098/rspb.2017.2751] [Citation(s) in RCA: 27] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Accepted: 03/08/2018] [Indexed: 01/13/2023] Open
Abstract
Artificial light at night has shown a dramatic increase over the last decades and continues to increase. Light at night can have strong effects on the behaviour and physiology of species, which includes changes in the daily timing of activity; a clear example is the advance in dawn song onset in songbirds by low levels of light at night. Although such effects are often referred to as changes in circadian timing, i.e. changes to the internal clock, two alternative mechanisms are possible. First, light at night can change the timing of clock controlled activity, without any change to the clock itself; e.g. by a change in the phase relation between the circadian clock and expression of activity. Second, changes in daily activity can be a direct response to light ('masking'), without any involvement of the circadian system. Here, we studied whether the advance in onset of activity by dim light at night in great tits (Parus major) is indeed attributable to a phase shift of the internal clock. We entrained birds to a normal light/dark (LD) cycle with bright light during daytime and darkness at night, and to a comparable (LDim) schedule with dim light at night. The dim light at night strongly advanced the onset of activity of the birds. After at least six days in LD or LDim, we kept birds in constant darkness (DD) by leaving off all lights so birds would revert to their endogenous, circadian system controlled timing of activity. We found that the timing of onset in DD was not dependent on whether the birds were kept at LD or LDim before the measurement. Thus, the advance of activity under light at night is caused by a direct effect of light rather than a phase shift of the internal clock. This demonstrates that birds are capable of changing their daily activity to low levels of light at night directly, without the need to alter their internal clock.
Collapse
Affiliation(s)
- Kamiel Spoelstra
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands .,Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Irene Verhagen
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| | - Davy Meijer
- Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, 6700 AA Wageningen, The Netherlands
| | - Marcel E Visser
- Department of Animal Ecology, Netherlands Institute of Ecology (NIOO-KNAW), PO Box 50, 6700 AB Wageningen, The Netherlands
| |
Collapse
|
16
|
Ota W, Nakane Y, Kashio M, Suzuki Y, Nakamura K, Mori Y, Tominaga M, Yoshimura T. Involvement of TRPM2 and TRPM8 in temperature-dependent masking behavior. Sci Rep 2019; 9:3706. [PMID: 30842533 PMCID: PMC6403366 DOI: 10.1038/s41598-019-40067-x] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2018] [Accepted: 02/07/2019] [Indexed: 12/20/2022] Open
Abstract
Masking is a direct behavioral response to environmental changes and plays an important role in the temporal distribution of activity. However, the mechanisms responsible for masking remain unclear. Here we identify thermosensors and a possible neural circuit regulating temperature-dependent masking behavior in mice. Analysis of mice lacking thermosensitive transient receptor potential (TRP) channels (Trpv1/3/4 and Trpm2/8) reveals that temperature-dependent masking is impaired in Trpm2- and Trpm8-null mice. Several brain regions are activated during temperature-dependent masking, including the preoptic area (POA), known as the thermoregulatory center, the suprachiasmatic nucleus (SCN), which is the primary circadian pacemaker, the paraventricular nucleus of the thalamus (PVT), and the nucleus accumbens (NAc). The POA, SCN, PVT are interconnected, and the PVT sends dense projections to the NAc, a key brain region involved in wheel-running activity. Partial chemical lesion of the PVT attenuates masking, suggesting the involvement of the PVT in temperature-dependent masking behavior.
Collapse
Affiliation(s)
- Wataru Ota
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Yusuke Nakane
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan.,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | - Makiko Kashio
- Department of Physiology, Aichi Medical University, 1-1 Yazakokarimata, Nagakute, 480-1195, Japan
| | - Yoshiro Suzuki
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Kazuhiro Nakamura
- Department of Integrative Physiology, Nagoya University Graduate School of Medicine, 65 Tsurumai-cho, Showa-ku, Nagoya, 466-8550, Japan
| | - Yasuo Mori
- Department of Synthetic Chemistry and Biological Chemistry, Graduate School of Engineering, Kyoto University, Nishikyo-ku, Kyoto, 615-8510, Japan
| | - Makoto Tominaga
- Division of Cell Signaling, National Institute for Physiological Sciences, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan.,Thermal Biology Group, Exploratory Research Center on Life and Living Systems, National Institutes of Natural Sciences, 5-1 Higashiyama, Myodaiji, Okazaki, 444-8787, Japan
| | - Takashi Yoshimura
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. .,Laboratory of Animal Integrative Physiology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. .,Avian Bioscience Research Center, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan. .,Division of Seasonal Biology, National Institute for Basic Biology, National Institutes of Natural Sciences, 38 Nishigonaka, Myodaiji, Okazaki, 444-8585, Japan.
| |
Collapse
|
17
|
Refinetti R, Earle G, Kenagy G. Exploring determinants of behavioral chronotype in a diurnal-rodent model of human physiology. Physiol Behav 2019; 199:146-153. [DOI: 10.1016/j.physbeh.2018.11.019] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2018] [Revised: 10/20/2018] [Accepted: 11/14/2018] [Indexed: 12/26/2022]
|
18
|
Joschinski J, Kiess T, Krauss J. Day length constrains the time budget of aphid predators. INSECT SCIENCE 2019; 26:164-170. [PMID: 28726267 DOI: 10.1111/1744-7917.12507] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2017] [Revised: 06/29/2017] [Accepted: 07/03/2017] [Indexed: 06/07/2023]
Abstract
Phenology shifts and range expansions cause organisms to experience novel day length - temperature correlations. Depending on the temporal niche, organisms may benefit or suffer from changes in day length, thus potentially affecting phenological adaptation. We assessed the impact of day length changes on larvae of Chrysoperla carnea (Stephens) and Episyrphus balteatus (De Geer), both of which prey on aphids. Larvae of E. balteatus are night-active, whereas those of C. carnea appear to be crepuscular. We subjected both species in climate chambers to day lengths of 16 : 8 L : D and, to circumvent diapause responses, 20 : 4 L : D. We recorded development times and predation rates of both species. E. balteatus grew 13% faster in the 16 : 8 L : D treatment and preyed on significantly more aphids. In contrast, C. carnea grew 13% faster in the 20 : 4 L : D treatment and higher predation rates in 20 : 4 L : D were marginally significant. Our results show that day length affects development and predation, but that the direction depends on species. Such differences in the use of day length may alter the efficiency of biocontrol agents in a changing climate.
Collapse
Affiliation(s)
- Jens Joschinski
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Tim Kiess
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| | - Jochen Krauss
- Department of Animal Ecology and Tropical Biology, Biocentre, University of Würzburg, Würzburg, Germany
| |
Collapse
|
19
|
Hayter EA, Brown TM. Additive contributions of melanopsin and both cone types provide broadband sensitivity to mouse pupil control. BMC Biol 2018; 16:83. [PMID: 30064443 PMCID: PMC6066930 DOI: 10.1186/s12915-018-0552-1] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Accepted: 07/20/2018] [Indexed: 01/13/2023] Open
Abstract
Background Intrinsically photosensitive retinal ganglion cells (ipRGCs) drive an array of non-image-forming (NIF) visual responses including circadian photoentrainment and the pupil light reflex. ipRGCs integrate extrinsic (rod/cone) and intrinsic (melanopsin) photoreceptive signals, but the contribution of cones to ipRGC-dependent responses remains incompletely understood. Given recent data revealing that cone-derived colour signals influence mouse circadian timing and pupil responses in humans, here we set out to investigate the role of colour information in pupil control in mice. Results We first recorded electrophysiological activity from the pretectal olivary nucleus (PON) of anaesthetised mice with a red-shifted cone population (Opn1mwR) and mice lacking functional cones (Cnga3−/−) or melanopsin (Opn1mwR; Opn4−/−). Using multispectral stimuli to selectively modulate the activity of individual opsin classes, we show that PON cells which receive ipRGC input also exhibit robust S- and/or L-cone opsin-driven activity. This population includes many cells where the two cone opsins drive opponent responses (most commonly excitatory/ON responses to S-opsin stimulation and inhibitory/OFF responses to L-opsin stimulation). These cone inputs reliably tracked even slow (0.025 Hz) changes in illuminance/colour under photopic conditions with melanopsin contributions becoming increasingly dominant for higher-contrast/lower temporal frequency stimuli. We also evaluated consensual pupil responses in awake animals and show that, surprisingly, this aspect of physiology is insensitive to chromatic signals originating with cones. Instead, by contrast with the situation in humans, signals from melanopsin and both cone opsins combine in a purely additive manner to drive pupil constriction in mice. Conclusion Our data reveal a key difference in the sensory control of the mouse pupil relative to another major target of ipRGCs—the circadian clock. Whereas the latter uses colour information to help estimate time of day, the mouse pupil instead sums signals across cone opsin classes to provide broadband spectral sensitivity to changes in illumination. As such, while the widespread co-occurrence of chromatic responses and melanopsin input in the PON supports a close association between colour discrimination mechanisms and NIF visual processing, our data suggest that colour opponent PON cells in the mouse contribute to functions other than pupil control. Electronic supplementary material The online version of this article (10.1186/s12915-018-0552-1) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Edward A Hayter
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK
| | - Timothy M Brown
- Faculty of Biology, Medicine and Health, University of Manchester, AV Hill Building, Oxford Road, Manchester, M13 9PT, UK.
| |
Collapse
|
20
|
Davimes JG, Alagaili AN, Bhagwandin A, Bertelsen MF, Mohammed OB, Bennett NC, Manger PR, Gravett N. Seasonal variations in sleep of free-ranging Arabian oryx (Oryx leucoryx) under natural hyperarid conditions. Sleep 2018; 41:4883370. [DOI: 10.1093/sleep/zsy038] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2017] [Indexed: 11/13/2022] Open
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Abdulaziz N Alagaili
- Department of Zoology, KSU Mammals Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Adhil Bhagwandin
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Osama B Mohammed
- Department of Zoology, KSU Mammals Research Chair, College of Science, King Saud University, Riyadh, Saudi Arabia
| | - Nigel C Bennett
- South African Research Chair of Mammal Behavioural Ecology and Physiology, University of Pretoria, Pretoria, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, Parktown, Johannesburg, Republic of South Africa
| |
Collapse
|
21
|
Plano SA, Casiraghi LP, García Moro P, Paladino N, Golombek DA, Chiesa JJ. Circadian and Metabolic Effects of Light: Implications in Weight Homeostasis and Health. Front Neurol 2017; 8:558. [PMID: 29097992 PMCID: PMC5653694 DOI: 10.3389/fneur.2017.00558] [Citation(s) in RCA: 57] [Impact Index Per Article: 7.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2017] [Accepted: 10/04/2017] [Indexed: 12/21/2022] Open
Abstract
Daily interactions between the hypothalamic circadian clock at the suprachiasmatic nucleus (SCN) and peripheral circadian oscillators regulate physiology and metabolism to set temporal variations in homeostatic regulation. Phase coherence of these circadian oscillators is achieved by the entrainment of the SCN to the environmental 24-h light:dark (LD) cycle, coupled through downstream neural, neuroendocrine, and autonomic outputs. The SCN coordinate activity and feeding rhythms, thus setting the timing of food intake, energy expenditure, thermogenesis, and active and basal metabolism. In this work, we will discuss evidences exploring the impact of different photic entrainment conditions on energy metabolism. The steady-state interaction between the LD cycle and the SCN is essential for health and wellbeing, as its chronic misalignment disrupts the circadian organization at different levels. For instance, in nocturnal rodents, non-24 h protocols (i.e., LD cycles of different durations, or chronic jet-lag simulations) might generate forced desynchronization of oscillators from the behavioral to the metabolic level. Even seemingly subtle photic manipulations, as the exposure to a “dim light” scotophase, might lead to similar alterations. The daily amount of light integrated by the clock (i.e., the photophase duration) strongly regulates energy metabolism in photoperiodic species. Removing LD cycles under either constant light or darkness, which are routine protocols in chronobiology, can also affect metabolism, and the same happens with disrupted LD cycles (like shiftwork of jetlag) and artificial light at night in humans. A profound knowledge of the photic and metabolic inputs to the clock, as well as its endocrine and autonomic outputs to peripheral oscillators driving energy metabolism, will help us to understand and alleviate circadian health alterations including cardiometabolic diseases, diabetes, and obesity.
Collapse
Affiliation(s)
- Santiago A Plano
- Chronophysiology Laboratory, Institute for Biomedical Research (BIOMED - CONICET), School of Medical Sciences, Universidad Católica Argentina (UCA), Buenos Aires, Argentina.,Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Leandro P Casiraghi
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Paula García Moro
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Natalia Paladino
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Diego A Golombek
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| | - Juan J Chiesa
- Laboratorio de Cronobiología, Universidad Nacional de Quilmes - CONICET, Buenos Aires, Argentina
| |
Collapse
|
22
|
Brown TM. Using light to tell the time of day: sensory coding in the mammalian circadian visual network. ACTA ACUST UNITED AC 2017; 219:1779-92. [PMID: 27307539 PMCID: PMC4920240 DOI: 10.1242/jeb.132167] [Citation(s) in RCA: 42] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2016] [Accepted: 05/09/2016] [Indexed: 12/31/2022]
Abstract
Circadian clocks are a near-ubiquitous feature of biology, allowing organisms to optimise their physiology to make the most efficient use of resources and adjust behaviour to maximise survival over the solar day. To fulfil this role, circadian clocks require information about time in the external world. This is most reliably obtained by measuring the pronounced changes in illumination associated with the earth's rotation. In mammals, these changes are exclusively detected in the retina and are relayed by direct and indirect neural pathways to the master circadian clock in the hypothalamic suprachiasmatic nuclei. Recent work reveals a surprising level of complexity in this sensory control of the circadian system, including the participation of multiple photoreceptive pathways conveying distinct aspects of visual and/or time-of-day information. In this Review, I summarise these important recent advances, present hypotheses as to the functions and neural origins of these sensory signals, highlight key challenges for future research and discuss the implications of our current knowledge for animals and humans in the modern world.
Collapse
Affiliation(s)
- Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester M13 9PT, UK
| |
Collapse
|
23
|
Davimes JG, Alagaili AN, Bertelsen MF, Mohammed OB, Hemingway J, Bennett NC, Manger PR, Gravett N. Temporal niche switching in Arabian oryx (Oryx leucoryx): Seasonal plasticity of 24h activity patterns in a large desert mammal. Physiol Behav 2017; 177:148-154. [PMID: 28431978 DOI: 10.1016/j.physbeh.2017.04.014] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2017] [Revised: 04/13/2017] [Accepted: 04/14/2017] [Indexed: 11/19/2022]
Abstract
The Arabian oryx, a moderately large mammal that inhabits a harsh desert environment, has been shown to exhibit seasonal variations in activity and inactivity patterns. Here we analyzed the continuous year-round activity patterns of twelve free-roaming Arabian oryx under natural conditions from two varying desert environments in Saudi Arabia using abdominally implanted activity meters. We simultaneously recorded weather parameters at both sites to determine whether environmental factors are responsible for temporal niche switching as well as the seasonal structuring and timing of this behavioural plasticity. Our results demonstrate that Arabian oryx undergo temporal niche switching of 24h activity patterns at a seasonal level and exhibit distinct nocturnal/crepuscular activity during summer, diurnal activity during winter and intermittent patterns of behaviour during the transitional seasons of autumn and spring. In addition, the oryx exhibited inter- and intra-seasonal variations in the temporal budgeting of 24h activity patterns. Strong relationships with both photoperiod and ambient temperatures were found and in some instances suggested that increasing ambient temperatures are a primary driving force behind seasonal shifts in activity patterns. These adaptive patterns may be dictated by the availability of food and water, which in turn are strongly influenced by seasonal climate variations. Overall, the adaptive responses of free-roaming Arabian oryx in such harsh and non-laboratorial conditions provide a framework for comparing wild populations as well as aiding conservation efforts.
Collapse
Affiliation(s)
- Joshua G Davimes
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Abdulaziz N Alagaili
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Mads F Bertelsen
- Centre for Zoo and Wild Animal Health, Copenhagen Zoo, Frederiksberg, Denmark
| | - Osama B Mohammed
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Jason Hemingway
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Nigel C Bennett
- KSU Mammals Research Chair, Department of Zoology, College of Science, King Saud University, Riyadh 11451, Saudi Arabia; South African Research Chair of Mammal Behavioural Ecology and Physiology, University of Pretoria, Pretoria 0002, South Africa
| | - Paul R Manger
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa
| | - Nadine Gravett
- School of Anatomical Sciences, Faculty of Health Sciences, University of the Witwatersrand, 7 York Road, Parktown, 2193 Johannesburg, South Africa.
| |
Collapse
|
24
|
Keenan WT, Rupp AC, Ross RA, Somasundaram P, Hiriyanna S, Wu Z, Badea TC, Robinson PR, Lowell BB, Hattar SS. A visual circuit uses complementary mechanisms to support transient and sustained pupil constriction. eLife 2016; 5:e15392. [PMID: 27669145 PMCID: PMC5079752 DOI: 10.7554/elife.15392] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2016] [Accepted: 09/22/2016] [Indexed: 12/22/2022] Open
Abstract
Rapid and stable control of pupil size in response to light is critical for vision, but the neural coding mechanisms remain unclear. Here, we investigated the neural basis of pupil control by monitoring pupil size across time while manipulating each photoreceptor input or neurotransmitter output of intrinsically photosensitive retinal ganglion cells (ipRGCs), a critical relay in the control of pupil size. We show that transient and sustained pupil responses are mediated by distinct photoreceptors and neurotransmitters. Transient responses utilize input from rod photoreceptors and output by the classical neurotransmitter glutamate, but adapt within minutes. In contrast, sustained responses are dominated by non-conventional signaling mechanisms: melanopsin phototransduction in ipRGCs and output by the neuropeptide PACAP, which provide stable pupil maintenance across the day. These results highlight a temporal switch in the coding mechanisms of a neural circuit to support proper behavioral dynamics.
Collapse
Affiliation(s)
| | - Alan C Rupp
- Department of Biology, Johns Hopkins University, Baltimore, United States
| | - Rachel A Ross
- Department of Psychiatry, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Psychiatry, Massachusetts General Hospital, Boston, United States
| | - Preethi Somasundaram
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Suja Hiriyanna
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Zhijian Wu
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Tudor C Badea
- National Eye Institute, National Institutes of Health, Bethesda, United States
| | - Phyllis R Robinson
- Department of Biological Sciences, University of Marlyand, Baltimore, United States
| | - Bradford B Lowell
- Division of Endocrinology, Diabetes, and Metabolism, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Department of Medicine, Beth Israel Deaconess Medical Center, Harvard Medical School, Boston, United States
- Program in Neuroscience, Harvard Medical School, Boston, United States
| | - Samer S Hattar
- Department of Biology, Johns Hopkins University, Baltimore, United States
- Department of Neuroscience, Johns Hopkins University, Baltimore, United States
| |
Collapse
|
25
|
Abstract
Using a targeted chemogenetic approach, a new study provides evidence for a unique pathway for neural processing of light information from melanopsin ganglion cells. These results suggest how light can have both alerting and sleep-promoting effects in mice.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Departments of Ophthalmology and Biological Structure, University of Washington School of Medicine, Seattle, WA 981104, USA.
| |
Collapse
|
26
|
Abstract
Circadian rhythms are self-sustained, approximately 24-h rhythms of physiology and behavior. These rhythms are entrained to an exactly 24-h period by the daily light-dark cycle. Remarkably, mice lacking all rod and cone photoreceptors still demonstrate photic entrainment, an effect mediated by intrinsically photosensitive retinal ganglion cells (ipRGCs). These cells utilize melanopsin (OPN4) as their photopigment. Distinct from the ciliary rod and cone opsins, melanopsin appears to function as a stable photopigment utilizing sequential photon absorption for its photocycle; this photocycle, in turn, confers properties on ipRGCs such as sustained signaling and resistance from photic bleaching critical for an irradiance detection system. The retina itself also functions as a circadian pacemaker that can be autonomously entrained to light-dark cycles. Recent experiments have demonstrated that another novel opsin, neuropsin (OPN5), is required for this entrainment, which appears to be mediated by a separate population of ipRGCs. Surprisingly, the circadian clock of the mammalian cornea is also light entrainable and is also neuropsin-dependent for this effect. The retina thus utilizes a surprisingly broad array of opsins for mediation of different light-detection tasks.
Collapse
Affiliation(s)
- Russell N Van Gelder
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109.,Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195.,Department of Biological Structure, University of Washington School of Medicine, Seattle, Washington 98195;
| | - Ethan D Buhr
- Department of Ophthalmology, University of Washington School of Medicine, Seattle, Washington 98109
| |
Collapse
|
27
|
Oosthuizen MK, Bennett NC. The effect of ambient temperature on locomotor activity patterns in reproductive and non-reproductive female Damaraland mole-rats. J Zool (1987) 2015. [DOI: 10.1111/jzo.12254] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- M. K. Oosthuizen
- Department of Zoology and Entomology; University of Pretoria; Pretoria South Africa
| | - N. C. Bennett
- Department of Zoology and Entomology; University of Pretoria; Pretoria South Africa
| |
Collapse
|
28
|
Ho Mien I, Chua ECP, Lau P, Tan LC, Lee ITG, Yeo SC, Tan SS, Gooley JJ. Effects of exposure to intermittent versus continuous red light on human circadian rhythms, melatonin suppression, and pupillary constriction. PLoS One 2014; 9:e96532. [PMID: 24797245 PMCID: PMC4010506 DOI: 10.1371/journal.pone.0096532] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2014] [Accepted: 04/09/2014] [Indexed: 11/26/2022] Open
Abstract
Exposure to light is a major determinant of sleep timing and hormonal rhythms. The role of retinal cones in regulating circadian physiology remains unclear, however, as most studies have used light exposures that also activate the photopigment melanopsin. Here, we tested the hypothesis that exposure to alternating red light and darkness can enhance circadian resetting responses in humans by repeatedly activating cone photoreceptors. In a between-subjects study, healthy volunteers (n = 24, 21–28 yr) lived individually in a laboratory for 6 consecutive days. Circadian rhythms of melatonin, cortisol, body temperature, and heart rate were assessed before and after exposure to 6 h of continuous red light (631 nm, 13 log photons cm−2 s−1), intermittent red light (1 min on/off), or bright white light (2,500 lux) near the onset of nocturnal melatonin secretion (n = 8 in each group). Melatonin suppression and pupillary constriction were also assessed during light exposure. We found that circadian resetting responses were similar for exposure to continuous versus intermittent red light (P = 0.69), with an average phase delay shift of almost an hour. Surprisingly, 2 subjects who were exposed to red light exhibited circadian responses similar in magnitude to those who were exposed to bright white light. Red light also elicited prolonged pupillary constriction, but did not suppress melatonin levels. These findings suggest that, for red light stimuli outside the range of sensitivity for melanopsin, cone photoreceptors can mediate circadian phase resetting of physiologic rhythms in some individuals. Our results also show that sensitivity thresholds differ across non-visual light responses, suggesting that cones may contribute differentially to circadian resetting, melatonin suppression, and the pupillary light reflex during exposure to continuous light.
Collapse
Affiliation(s)
- Ivan Ho Mien
- Graduate School for Integrative Sciences and Engineering, National University of Singapore, Singapore, Singapore
| | - Eric Chern-Pin Chua
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Pauline Lau
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Luuan-Chin Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Ivan Tian-Guang Lee
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sing-Chen Yeo
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Sara Shuhui Tan
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
| | - Joshua J. Gooley
- Program in Neuroscience and Behavioral Disorders, Duke-NUS Graduate Medical School, Singapore, Singapore
- Division of Sleep and Circadian Disorders, Departments of Medicine and Neurology, Brigham and Women's Hospital, Boston, Massachusetts, United States of America
- Division of Sleep Medicine, Harvard Medical School, Boston, Massachusetts, United States of America
- * E-mail:
| |
Collapse
|
29
|
Silver R, Kriegsfeld LJ. Circadian rhythms have broad implications for understanding brain and behavior. Eur J Neurosci 2014; 39:1866-80. [PMID: 24799154 DOI: 10.1111/ejn.12593] [Citation(s) in RCA: 54] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 03/14/2014] [Accepted: 03/19/2014] [Indexed: 12/28/2022]
Abstract
Circadian rhythms are generated by an endogenously organized timing system that drives daily rhythms in behavior, physiology and metabolism. In mammals, the suprachiasmatic nucleus (SCN) of the hypothalamus is the locus of a master circadian clock. The SCN is synchronized to environmental changes in the light:dark cycle by direct, monosynaptic innervation via the retino-hypothalamic tract. In turn, the SCN coordinates the rhythmic activities of innumerable subordinate clocks in virtually all bodily tissues and organs. The core molecular clockwork is composed of a transcriptional/post-translational feedback loop in which clock genes and their protein products periodically suppress their own transcription. This primary loop connects to downstream output genes by additional, interlocked transcriptional feedback loops to create tissue-specific 'circadian transcriptomes'. Signals from peripheral tissues inform the SCN of the internal state of the organism and the brain's master clock is modified accordingly. A consequence of this hierarchical, multilevel feedback system is that there are ubiquitous effects of circadian timing on genetic and metabolic responses throughout the body. This overview examines landmark studies in the history of the study of circadian timing system, and highlights our current understanding of the operation of circadian clocks with a focus on topics of interest to the neuroscience community.
Collapse
Affiliation(s)
- Rae Silver
- Department of Psychology, Barnard College, Columbia University, New York, NY, USA; Department of Psychology, Columbia University, Mail Code 5501, 1190 Amsterdam Avenue, New York, NY, 10027, USA; Department of Pathology and Cell Biology, Columbia University Health Sciences, New York, NY, USA
| | | |
Collapse
|
30
|
Webb JK, Letnic M, Jessop TS, Dempster T. Behavioural flexibility allows an invasive vertebrate to survive in a semi-arid environment. Biol Lett 2014; 10:20131014. [PMID: 24573152 DOI: 10.1098/rsbl.2013.1014] [Citation(s) in RCA: 30] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Plasticity or evolution in behavioural responses are key attributes of successful animal invasions. In northern Australia, the invasive cane toad (Rhinella marina) recently invaded semi-arid regions. Here, cane toads endure repeated daily bouts of severe desiccation and thermal stress during the long dry season (April-October). We investigated whether cane toads have shifted their ancestral nocturnal rehydration behaviour to one that exploits water resources during the day. Such a shift in hydration behaviour could increase the fitness of individual toads by reducing exposure to desiccation and thermal stress suffered during the day even within terrestrial shelters. We used a novel method (acoustic tags) to monitor the daily hydration behaviour of 20 toads at two artificial reservoirs on Camfield station, Northern Territory. Remarkably, cane toads visited reservoirs to rehydrate during daylight hours, with peaks in activity between 9.00 and 17.00. This diurnal pattern of rehydration activity contrasts with nocturnal rehydration behaviour exhibited by adult toads in their native geographical range and more mesic parts of Australia. Our results demonstrate that cane toads phase shift a key behaviour to survive in a harsh semi-arid landscape. Behavioural phase shifts have rarely been reported in invasive species but could facilitate ongoing invasion success.
Collapse
Affiliation(s)
- Jonathan K Webb
- School of the Environment, University of Technology Sydney, , Broadway, New South Wales 2007, Australia
| | | | | | | |
Collapse
|
31
|
Mammalian rest/activity patterns explained by physiologically based modeling. PLoS Comput Biol 2013; 9:e1003213. [PMID: 24039566 PMCID: PMC3764015 DOI: 10.1371/journal.pcbi.1003213] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2013] [Accepted: 07/23/2013] [Indexed: 12/15/2022] Open
Abstract
Circadian rhythms are fundamental to life. In mammals, these rhythms are generated by pacemaker neurons in the suprachiasmatic nucleus (SCN) of the hypothalamus. The SCN is remarkably consistent in structure and function between species, yet mammalian rest/activity patterns are extremely diverse, including diurnal, nocturnal, and crepuscular behaviors. Two mechanisms have been proposed to account for this diversity: (i) modulation of SCN output by downstream nuclei, and (ii) direct effects of light on activity. These two mechanisms are difficult to disentangle experimentally and their respective roles remain unknown. To address this, we developed a computational model to simulate the two mechanisms and their influence on temporal niche. In our model, SCN output is relayed via the subparaventricular zone (SPZ) to the dorsomedial hypothalamus (DMH), and thence to ventrolateral preoptic nuclei (VLPO) and lateral hypothalamus (LHA). Using this model, we generated rich phenotypes that closely resemble experimental data. Modulation of SCN output at the SPZ was found to generate a full spectrum of diurnal-to-nocturnal phenotypes. Intriguingly, we also uncovered a novel mechanism for crepuscular behavior: if DMH/VLPO and DMH/LHA projections act cooperatively, daily activity is unimodal, but if they act competitively, activity can become bimodal. In addition, we successfully reproduced diurnal/nocturnal switching in the rodent Octodon degu using coordinated inversions in both masking and circadian modulation. Finally, the model correctly predicted the SCN lesion phenotype in squirrel monkeys: loss of circadian rhythmicity and emergence of ∼4-h sleep/wake cycles. In capturing these diverse phenotypes, the model provides a powerful new framework for understanding rest/activity patterns and relating them to underlying physiology. Given the ubiquitous effects of temporal organization on all aspects of animal behavior and physiology, this study sheds light on the physiological changes required to orchestrate adaptation to various temporal niches.
Collapse
|
32
|
Karnas D, Hicks D, Mordel J, Pévet P, Meissl H. Intrinsic photosensitive retinal ganglion cells in the diurnal rodent, Arvicanthis ansorgei. PLoS One 2013; 8:e73343. [PMID: 23951350 PMCID: PMC3739746 DOI: 10.1371/journal.pone.0073343] [Citation(s) in RCA: 20] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2013] [Accepted: 07/29/2013] [Indexed: 01/15/2023] Open
Abstract
Intrinsically photosensitive retinal ganglion cells (ipRGCs) represent a new class of photoreceptors which support a variety of non-image forming physiological functions, such as circadian photoentrainment, pupillary light reflex and masking responses to light. In view of the recently proposed role of retinal inputs for the regulation of diurnal and nocturnal behavior, we performed the first deep analysis of the ipRGC system in a diurnal rodent model, Arvicanthisansorgei, and compared the anatomical and physiological properties of ipRGCs with those of nocturnal mice. Based on somata location, stratification pattern and melanopsin expression, we identified two main ipRGC types in the retina of Arvicanthis: M1, constituting 74% of all ipRGCs and non-M1 (consisting mainly of the M2 type) constituting the following 25%. The displaced ipRGCs were rarely encountered. Phenotypical staining patterns of ganglion cell markers showed a preferential expression of Brn3 and neurofilaments in non-M1 ipRGCs. In general, the anatomical properties and molecular phenotyping of ipRGCs in Arvicanthis resemble ipRGCs of the mouse retina, however the percentage of M1 cells is considerably higher in the diurnal animal. Multi-electrode array recordings (MEA) identified in newborn retinas of Arvicanthis three response types of ipRGCs (type I, II and III) which are distinguished by their light sensitivity, response strength, latency and duration. Type I ipRGCs exhibited a high sensitivity to short light flashes and showed, contrary to mouse type I ipRGCs, robust light responses to 10 ms flashes. The morphological, molecular and physiological analysis reveals very few differences between mouse and Arvicanthis ipRGCs. These data imply that the influence of retinal inputs in defining the temporal niche could be related to a stronger cone input into ipRGCs in the cone-rich Arvicanthis retina, and to the higher sensitivity of type I ipRGCs and elevated proportion of M1 cells.
Collapse
Affiliation(s)
- Diana Karnas
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - David Hicks
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
- * E-mail: (HM); (DH)
| | - Jérôme Mordel
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - Paul Pévet
- Institute for Cellular and Integrative Neuroscience, CNRS UPR-3212 Strasbourg University, Strasbourg, France
| | - Hilmar Meissl
- Neuroanatomical Department, Max Planck Institute for Brain Research, Frankfurt/M, Germany
- * E-mail: (HM); (DH)
| |
Collapse
|
33
|
Martín-Robles ÁJ, Whitmore D, Pendón C, Muñoz-Cueto JA. Differential effects of transient constant light-dark conditions on daily rhythms ofPeriodandClocktranscripts during Senegalese sole metamorphosis. Chronobiol Int 2013; 30:699-710. [PMID: 23713834 DOI: 10.3109/07420528.2013.782313] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Águeda J Martín-Robles
- Departamento de Biología, Facultad de Ciencias del Mar y Ambientales, Universidad de Cádiz, Campus de Excelencia Internacional del Mar (CEIMAR), Puerto Real, Spain
| | | | | | | |
Collapse
|
34
|
Katoh E, Sbragaglia V, Aguzzi J, Breithaupt T. Sensory biology and behaviour of Nephrops norvegicus. ADVANCES IN MARINE BIOLOGY 2013; 64:65-106. [PMID: 23668588 DOI: 10.1016/b978-0-12-410466-2.00003-0] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/02/2023]
Abstract
The Norway lobster is one of the most important commercial crustaceans in Europe. A detailed knowledge of the behaviour of this species is crucial in order to optimize fishery yields, improve sustainability of fisheries, and identify man-made environmental threats. Due to the cryptic life-style in burrows, the great depth and low-light condition of their habitat, studies of the behaviour of this species in its natural environment are challenging. Here, we first provide an overview of the sensory modalities (vision, chemoreception, and mechanoreception) of Nephrops norvegicus. We focus particularly on the role of the chemical and mechanical senses in eliciting and steering spatial orientation behaviours. We then concentrate on recent research in social behaviour and biological rhythms of Nephrops. A combination of laboratory approaches and newly developed tracking technologies has led to a better understanding of aggressive interactions, reproductive behaviours, activity cycles, and burrow-related behaviours. Gaps in our knowledge are identified and suggestions for future research are provided.
Collapse
Affiliation(s)
- Emi Katoh
- School of Biological, Biomedical and Environmental Sciences, University of Hull, Hull, UK
| | | | | | | |
Collapse
|
35
|
Todd WD, Gall AJ, Weiner JA, Blumberg MS. Distinct retinohypothalamic innervation patterns predict the developmental emergence of species-typical circadian phase preference in nocturnal Norway rats and diurnal nile grass rats. J Comp Neurol 2012; 520:3277-92. [PMID: 22431036 PMCID: PMC3676184 DOI: 10.1002/cne.23098] [Citation(s) in RCA: 24] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
How does the brain develop differently to support nocturnality in some mammals, but diurnality in others? To answer this question, one might look to the suprachiasmatic nucleus (SCN), which is entrained by light via the retinohypothalamic tract (RHT). However, because the SCN is more active during the day in all mammals studied thus far, it alone cannot determine circadian phase preference. In adult Norway rats (Rattus norvegicus), which are nocturnal, the RHT also projects to the ventral subparaventricular zone (vSPVZ), an adjacent region that expresses an in-phase pattern of SCN-vSPVZ neuronal activity. In contrast, in adult Nile grass rats (Arvicanthis niloticus), which are diurnal, an anti-phase pattern of SCN-vSPVZ neuronal activity is expressed. We hypothesized that these species differences result in part from a weak or absent RHT-to-vSPVZ projection in grass rats. Here, using a developmental comparative approach, we assessed species differences in behavior, hypothalamic activity, and RHT anatomy. We report that a robust retina-to-vSPVZ projection develops in Norway rats around the end of the second postnatal week when nocturnal wakefulness and the in-phase pattern of neuronal activity emerge. In grass rats, however, such a projection does not develop and the emergence of the anti-phase pattern during the second postnatal week is accompanied by increased diurnal wakefulness. When considered within the context of previously published reports on RHT projections in a variety of species, the current findings suggest that how and when the retina connects to the hypothalamus differentially shapes brain and behavior to produce animals that occupy opposing temporal niches.
Collapse
Affiliation(s)
- William D. Todd
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| | - Andrew J. Gall
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| | - Joshua A. Weiner
- Department of Biology, University of Iowa, Iowa City, IA, 52242, USA
| | - Mark S. Blumberg
- Program in Behavioral and Cognitive Neuroscience, Department of Psychology, University of Iowa, Iowa City, IA, 52242, USA
| |
Collapse
|
36
|
Tomotani BM, Flores DEFL, Tachinardi P, Paliza JD, Oda GA, Valentinuzzi VS. Field and laboratory studies provide insights into the meaning of day-time activity in a subterranean rodent (Ctenomys aff. knighti), the tuco-tuco. PLoS One 2012; 7:e37918. [PMID: 22649565 PMCID: PMC3359304 DOI: 10.1371/journal.pone.0037918] [Citation(s) in RCA: 52] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2011] [Accepted: 04/29/2012] [Indexed: 01/24/2023] Open
Abstract
South American subterranean rodents (Ctenomys aff. knighti), commonly known as tuco-tucos, display nocturnal, wheel-running behavior under light-dark (LD) conditions, and free-running periods >24 h in constant darkness (DD). However, several reports in the field suggested that a substantial amount of activity occurs during daylight hours, leading us to question whether circadian entrainment in the laboratory accurately reflects behavior in natural conditions. We compared circadian patterns of locomotor activity in DD of animals previously entrained to full laboratory LD cycles (LD12:12) with those of animals that were trapped directly from the field. In both cases, activity onsets in DD immediately reflected the previous dark onset or sundown. Furthermore, freerunning periods upon release into DD were close to 24 h indicating aftereffects of prior entrainment, similarly in both conditions. No difference was detected in the phase of activity measured with and without access to a running wheel. However, when individuals were observed continuously during daylight hours in a semi-natural enclosure, they emerged above-ground on a daily basis. These day-time activities consisted of foraging and burrow maintenance, suggesting that the designation of this species as nocturnal might be inaccurate in the field. Our study of a solitary subterranean species suggests that the circadian clock is entrained similarly under field and laboratory conditions and that day-time activity expressed only in the field is required for foraging and may not be time-dictated by the circadian pacemaker.
Collapse
Affiliation(s)
- Barbara M. Tomotani
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Danilo E. F. L. Flores
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Patrícia Tachinardi
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - José D. Paliza
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR), Anillaco, La Rioja, Argentina
| | - Gisele A. Oda
- Departamento de Fisiologia, Instituto de Biociências, Universidade de São Paulo, São Paulo, São Paulo, Brazil
| | - Verônica S. Valentinuzzi
- Centro Regional de Investigaciones Científicas y Transferencia Tecnológica (CRILAR), Anillaco, La Rioja, Argentina
| |
Collapse
|
37
|
Moore AF, Menaker M. Photic resetting of the circadian clock is correlated with photic habitat in Anolis lizards. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2012; 198:375-87. [PMID: 22350678 DOI: 10.1007/s00359-012-0715-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2011] [Revised: 01/18/2012] [Accepted: 01/25/2012] [Indexed: 11/26/2022]
Abstract
Circadian rhythms are regulated by an internal clock, which is itself synchronized to environmental cues such as light and temperature. It is widely assumed that the circadian system is adapted to local cues, which vary enormously across habitats, yet the comparative data necessary for testing this idea are lacking. We examined photic and thermal resetting of the circadian clock in five species of Anolis lizards whose microhabitats differ in the amounts of sun and shade. The primary circadian oscillator in Anolis is the pineal gland, which produces the hormone melatonin. A flow-through culture system was employed to measure rhythmic melatonin output from individually cultured pineal glands. All species showed temperature-compensated circadian rhythms of pineal melatonin. Light caused significant phase delays of the melatonin rhythm, and this effect varied among species. Controlling for phylogenetic differences, the results indicate that the pineal glands of shade-dwelling species are more sensitive to photic resetting than species living in more brightly illuminated habitats. The differences were not due to variation in free-running period, but may be due to variation in oscillator phase and/or robustness. Surprisingly, thermal resetting was not statistically significant. Overall, the results suggest that the Anolis circadian system is adapted to photic habitat.
Collapse
Affiliation(s)
- Ashli F Moore
- Department of Biology, University of Virginia, PO Box 400328, Charlottesville, VA 22904-4328, USA
| | | |
Collapse
|
38
|
Helm B, Gwinner E, Koolhaas A, Battley P, Schwabl I, Dekinga A, Piersma T. Avian migration: Temporal multitasking and a case study of melatonin cycles in waders. PROGRESS IN BRAIN RESEARCH 2012; 199:457-479. [DOI: 10.1016/b978-0-444-59427-3.00026-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/11/2023]
|
39
|
Lucas RJ, Lall GS, Allen AE, Brown TM. How rod, cone, and melanopsin photoreceptors come together to enlighten the mammalian circadian clock. PROGRESS IN BRAIN RESEARCH 2012; 199:1-18. [PMID: 22877656 DOI: 10.1016/b978-0-444-59427-3.00001-0] [Citation(s) in RCA: 110] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/27/2023]
Abstract
In mammals, a small number of retinal ganglion cells express melanopsin, an opsin photopigment, allowing them to be directly photoreceptive. A major function of these so-called intrinsically photosensitive retinal ganglion cells (ipRGCs) is to synchronize (entrain) endogenous circadian clocks to the external light:dark cycle. Thanks to their intrinsic light response, ipRGCs can support photoentrainment even when the other retinal photoreceptors (rods and cones) are absent or inactive. However, in the intact retina the ipRGC light response is a composite of extrinsic (rod/cone) and intrinsic (melanopsin) influences. As a result all three photoreceptor classes contribute to the retinal pathways providing light information to the clock. Here, we consider what each photoreceptor type contributes to the clock light response. We review electrophysiological and behavioral data pertinent to this question, primarily from laboratory rodents, drawing them together to provide a conceptual model in which each photoreceptor class plays a distinct role in encoding the light environment. We finally use this model to highlight some of the important outstanding questions in this field.
Collapse
Affiliation(s)
- Robert J Lucas
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom.
| | - Gurprit S Lall
- Medway School of Pharmacy, University of Kent, Chatham, United Kingdom
| | - Annette E Allen
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| | - Timothy M Brown
- Faculty of Life Sciences, University of Manchester, Manchester, United Kingdom
| |
Collapse
|
40
|
|
41
|
Wiater MF, Mukherjee S, Li AJ, Dinh TT, Rooney EM, Simasko SM, Ritter S. Circadian integration of sleep-wake and feeding requires NPY receptor-expressing neurons in the mediobasal hypothalamus. Am J Physiol Regul Integr Comp Physiol 2011; 301:R1569-83. [PMID: 21880863 DOI: 10.1152/ajpregu.00168.2011] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
Sleep and feeding rhythms are highly coordinated across the circadian cycle, but the brain sites responsible for this coordination are unknown. We examined the role of neuropeptide Y (NPY) receptor-expressing neurons in the mediobasal hypothalamus (MBH) in this process by injecting the targeted toxin, NPY-saporin (NPY-SAP), into the arcuate nucleus (Arc). NPY-SAP-lesioned rats were initially hyperphagic, became obese, exhibited sustained disruption of circadian feeding patterns, and had abnormal circadian distribution of sleep-wake patterns. Total amounts of rapid eye movement sleep (REMS) and non-REMS (NREMS) were not altered by NPY-SAP lesions, but a peak amount of REMS was permanently displaced to the dark period, and circadian variation in NREMS was eliminated. The phase reversal of REMS to the dark period by the lesion suggests that REMS timing is independently linked to the function of MBH NPY receptor-expressing neurons and is not dependent on NREMS pattern, which was altered but not phase reversed by the lesion. Sleep-wake patterns were altered in controls by restricting feeding to the light period, but were not altered in NPY-SAP rats by restricting feeding to either the light or dark period, indicating that disturbed sleep-wake patterns in lesioned rats were not secondary to changes in food intake. Sleep abnormalities persisted even after hyperphagia abated during the static phase of the lesion. Results suggest that the MBH is required for the essential task of integrating sleep-wake and feeding rhythms, a function that allows animals to accommodate changeable patterns of food availability. NPY receptor-expressing neurons are key components of this integrative function.
Collapse
Affiliation(s)
- M F Wiater
- Programs in Neuroscience, Dept. of Veterinary and Comparative Anatomy, Physiology and Pharmacology, Washington State Univ., Pullman, WA 99164-6520, USA.
| | | | | | | | | | | | | |
Collapse
|
42
|
Chiesa JJ, Aguzzi J, García JA, Sardà F, de la Iglesia HO. Light intensity determines temporal niche switching of behavioral activity in deep-water Nephrops norvegicus (Crustacea: Decapoda). J Biol Rhythms 2010; 25:277-87. [PMID: 20679497 DOI: 10.1177/0748730410376159] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
Abstract
The temporal distribution of behavioral programs throughout the 24-h day, known as temporal niche of a species, is determined by ecological factors that directly affect the adaptive value of the timing of specific behaviors. Temporal niche switching has been described in several species and is likely adaptive in habitats where the daily timing of those factors changes. Benthic species whose habitats span a wide range of water depths are exposed to considerable depth-dependent environmental changes. Temporally scheduled trawl surveys of the Norway lobster, Nephrops norvegicus, reveal that animals emerge from burrows at night on the shallow shelf (10-50 m deep), at crepuscular hours on the lower shelf (50-200 m), and at daytime on the slope (200-400 m). The mechanisms underlying nocturnality/diurnality switches are chiefly unknown, and Nephrops offers a unique model for their study. The depth-dependent decrease in luminance is a likely candidate determining the temporal distribution of behavior. The authors explored this possibility in the laboratory by exposing Nephrops to light:dark (LD) cycles of 470-nm monochromatic lighting that mimic conditions at the 100-m-deep shelf (10 lux) or the 300-m slope (0.1 lux). Two groups of animals were respectively exposed to each light intensity according to the following protocol: an initial 12:12 LD stage followed by constant darkness (DD), followed in turn by a second 12:12 LD stage. Activity at the burrow opening (door-keeping = DK), as well as full emergence (E), was continuously monitored. Under 10-lux LD cycles, most animals showed nocturnal DK activity-with some being crepuscular or diurnal-and all animals showed nocturnal E activity. In contrast, both behaviors were clearly diurnal in animals under 0.1-lux LD cycles. The phase of the nocturnal and diurnal DK rhythms detected respectively at 10 and 0.1 lux upon release into DD revealed that these rhythms are entrained circadian rhythms. The present data indicate that nocturnality/diurnality switches in Nephrops in its natural habitat, evidenced by captures at different depths, are likely determined by light intensity. This temporal niche switching involves different patterns of photic entrainment, leading to bona fide circadian diurnal or nocturnal phenotypes, as well as exogenous masking of behavioral outputs.
Collapse
Affiliation(s)
- Juan José Chiesa
- Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes-CONICET, Bernal, Argentina.
| | | | | | | | | |
Collapse
|
43
|
Zubidat AE, Nelson RJ, Haim A. Differential effects of photophase irradiance on metabolic and urinary stress hormone concentrations in blind and sighted rodents. Chronobiol Int 2010; 27:487-516. [PMID: 20524797 DOI: 10.3109/07420521003678577] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Abstract
The effects of different photophase irradiance levels on the daily rhythms of energy expenditure (DEE, calculated from oxygen consumption, VO(2)) and urinary metabolites of stress hormones in sighted (Microtus socialis) and blind (Spalax ehrenbergi) rodents were compared. Five groups of each species were exposed to different irradiance levels (73, 147, 293, 366, and 498 microW/cm(2)) under short photoperiod (8L:16D) condition with constant ambient temperature 25 +/- 2 degrees C for 21 days before assessments. As light intensity increased from 73 microW/cm(2), both species reduced DEE, especially among M. socialis. Cosinor analysis revealed significant ultradian rhythms in VO(2) of M. socialis with period length being inversely related to irradiance level. Conversely, in S. ehrenbergi, robust 24 h VO(2) rhythms were detected at all irradiances. In M. socialis, significant 24 h rhythms in urinary output of adrenaline were detected only at 293 microW/cm(2), whereas for cortisol, unambiguous rhythms were detected at 73 and 147 microW/cm(2). Distinct adrenaline daily rhythms of S. ehrenbergi were observed at 73 and 293 microW/cm(2), whereas this species exhibited significant rhythms in cortisol at 147 and 293 microW/cm(2). Changes in photophase irradiance levels affected stress hormone concentrations in a dose-dependent manner. There were significant negative and positive correlations of M. socialis and S. ehrenbergi stress hormones, respectively, with increasing irradiance. Our results indicate photophase light intensity is another environmental factor that can significantly affect entrainment of mammalian daily rhythms. Both low and high irradiance conditions can trigger stress responses, depending on the species' natural habitat.
Collapse
Affiliation(s)
- Abed E Zubidat
- Department of Evolution and Environmental Biology, University of Haifa, Haifa, Israel.
| | | | | |
Collapse
|
44
|
Fernández-Duque E, de la Iglesia H, Erkert HG. Moonstruck primates: owl monkeys (Aotus) need moonlight for nocturnal activity in their natural environment. PLoS One 2010; 5:e12572. [PMID: 20838447 PMCID: PMC2933241 DOI: 10.1371/journal.pone.0012572] [Citation(s) in RCA: 81] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2010] [Accepted: 07/29/2010] [Indexed: 11/21/2022] Open
Abstract
Primates show activity patterns ranging from nocturnality to diurnality, with a few species showing activity both during day and night. Among anthropoids (monkeys, apes and humans), nocturnality is only present in the Central and South American owl monkey genus Aotus. Unlike other tropical Aotus species, the Azara's owl monkeys (A. azarai) of the subtropics have switched their activity pattern from strict nocturnality to one that also includes regular diurnal activity. Harsher climate, food availability, and the lack of predators or diurnal competitors, have all been proposed as factors favoring evolutionary switches in primate activity patterns. However, the observational nature of most field studies has limited an understanding of the mechanisms responsible for this switch in activity patterns. The goal of our study was to evaluate the hypothesis that masking, namely the stimulatory and/or inhibitory/disinhibitory effects of environmental factors on synchronized circadian locomotor activity, is a key determinant of the unusual activity pattern of Azara's owl monkeys. We use continuous long-term (6-18 months) 5-min-binned activity records obtained with actimeter collars fitted to wild owl monkeys (n = 10 individuals) to show that this different pattern results from strong masking of activity by the inhibiting and enhancing effects of ambient luminance and temperature. Conclusive evidence for the direct masking effect of light is provided by data showing that locomotor activity was almost completely inhibited when moonlight was shadowed during three lunar eclipses. Temperature also negatively masked locomotor activity, and this masking was manifested even under optimal light conditions. Our results highlight the importance of the masking of circadian rhythmicity as a determinant of nocturnality in wild owl monkeys and suggest that the stimulatory effects of dim light in nocturnal primates may have been selected as an adaptive response to moonlight. Furthermore, our data indicate that changes in sensitivity to specific environmental stimuli may have been an essential key for evolutionary switches between diurnal and nocturnal habits in primates.
Collapse
Affiliation(s)
- Eduardo Fernández-Duque
- Department of Anthropology, University of Pennsylvania, Philadelphia, Pennsylvania, United States of America.
| | | | | |
Collapse
|
45
|
Altimus C, Güler A, Alam N, Arman A, Prusky G, Sampath A, Hattar S. Rod photoreceptors drive circadian photoentrainment across a wide range of light intensities. Nat Neurosci 2010; 13:1107-12. [PMID: 20711184 PMCID: PMC2928860 DOI: 10.1038/nn.2617] [Citation(s) in RCA: 188] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2010] [Accepted: 07/19/2010] [Indexed: 11/29/2022]
Abstract
In mammals, synchronization of the circadian pacemaker in the hypothalamus is achieved through direct input from the eyes conveyed by intrinsically photosensitive retinal ganglion cells (ipRGCs). Circadian photoentrainment can be maintained by rod and cone photoreceptors, but their functional contributions and their retinal circuits that impinge on ipRGCs are not well understood. Using mice that lack functional rods or in which rods are the only functional photoreceptors, we found that rods were solely responsible for photoentrainment at scotopic light intensities. Rods were also capable of driving circadian photoentrainment at photopic intensities at which they were incapable of supporting a visually guided behavior. Using mice in which cone photoreceptors were ablated, we found that rods signal through cones at high light intensities, but not at low light intensities. Thus, rods use two distinct retinal circuits to drive ipRGC function to support circadian photoentrainment across a wide range of light intensities.
Collapse
Affiliation(s)
- C.M. Altimus
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - A.D. Güler
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - N.M. Alam
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065
| | - A.C. Arman
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA 90089
| | - G.T. Prusky
- Department of Physiology and Biophysics, Weill Medical College of Cornell University, New York, NY 10065
| | - A.P. Sampath
- Department of Physiology and Biophysics, Zilkha Neurogenetic Institute, University of Southern California Keck School of Medicine, Los Angeles, CA 90089
| | - S Hattar
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Neuroscience, Johns Hopkins University–School of Medicine, Baltimore MD
| |
Collapse
|
46
|
Abstract
Mammalian circadian rhythms are controlled by endogenous biological oscillators, including a master clock located in the hypothalamic suprachiasmatic nuclei (SCN). Since the period of this oscillation is of approximately 24 h, to keep synchrony with the environment, circadian rhythms need to be entrained daily by means of Zeitgeber ("time giver") signals, such as the light-dark cycle. Recent advances in the neurophysiology and molecular biology of circadian rhythmicity allow a better understanding of synchronization. In this review we cover several aspects of the mechanisms for photic entrainment of mammalian circadian rhythms, including retinal sensitivity to light by means of novel photopigments as well as circadian variations in the retina that contribute to the regulation of retinal physiology. Downstream from the retina, we examine retinohypothalamic communication through neurotransmitter (glutamate, aspartate, pituitary adenylate cyclase-activating polypeptide) interaction with SCN receptors and the resulting signal transduction pathways in suprachiasmatic neurons, as well as putative neuron-glia interactions. Finally, we describe and analyze clock gene expression and its importance in entrainment mechanisms, as well as circadian disorders or retinal diseases related to entrainment deficits, including experimental and clinical treatments.
Collapse
Affiliation(s)
- Diego A Golombek
- Laboratory of Chronobiology, Department of Science and Technology, University of Quilmes/Consejo Nacional de Investigaciones Científicas y Tecnológicas (CONICET), Quilmes, Argentina.
| | | |
Collapse
|
47
|
Dollet A, Albrecht U, Cooper HM, Dkhissi-Benyahya O. CONES ARE REQUIRED FOR NORMAL TEMPORAL RESPONSES TO LIGHT OF PHASE SHIFTS AND CLOCK GENE EXPRESSION. Chronobiol Int 2010; 27:768-81. [PMID: 20560710 DOI: 10.3109/07420521003695704] [Citation(s) in RCA: 22] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
Affiliation(s)
- Anna Dollet
- INSERM, U846, Stem Cell and Brain Research Institute, Department of Chronobiology, Bron, France
| | | | | | | |
Collapse
|
48
|
Vivanco P, Rol MÁ, Madrid JA. TEMPERATURE CYCLES TRIGGER NOCTURNALISM IN THE DIURNAL HOMEOTHERMOCTODON DEGUS. Chronobiol Int 2010; 27:517-34. [DOI: 10.3109/07420521003743660] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022]
|
49
|
Lall GS, Revell VL, Momiji H, Al Enezi J, Altimus CM, Güler AD, Aguilar C, Cameron MA, Allender S, Hankins MW, Lucas RJ. Distinct contributions of rod, cone, and melanopsin photoreceptors to encoding irradiance. Neuron 2010; 66:417-28. [PMID: 20471354 PMCID: PMC2875410 DOI: 10.1016/j.neuron.2010.04.037] [Citation(s) in RCA: 209] [Impact Index Per Article: 13.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/19/2010] [Indexed: 12/04/2022]
Abstract
Photoreceptive, melanopsin-expressing retinal ganglion cells (mRGCs) encode ambient light (irradiance) for the circadian clock, the pupillomotor system, and other influential behavioral/physiological responses. mRGCs are activated both by their intrinsic phototransduction cascade and by the rods and cones. However, the individual contribution of each photoreceptor class to irradiance responses remains unclear. We address this deficit using mice expressing human red cone opsin, in which rod-, cone-, and melanopsin-dependent responses can be identified by their distinct spectral sensitivity. Our data reveal an unexpectedly important role for rods. These photoreceptors define circadian responses at very dim “scotopic” light levels but also at irradiances at which pattern vision relies heavily on cones. By contrast, cone input to irradiance responses dissipates following light adaptation to the extent that these receptors make a very limited contribution to circadian and pupillary light responses under these conditions. Our data provide new insight into retinal circuitry upstream of mRGCs and optimal stimuli for eliciting irradiance responses.
Collapse
Affiliation(s)
- Gurprit S Lall
- Faculty of Life Sciences, AV Hill Building, University of Manchester, Manchester M13 9PT, UK
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
50
|
Kawaguchi C, Isojima Y, Shintani N, Hatanaka M, Guo X, Okumura N, Nagai K, Hashimoto H, Baba A. PACAP-deficient mice exhibit light parameter-dependent abnormalities on nonvisual photoreception and early activity onset. PLoS One 2010; 5:e9286. [PMID: 20174586 PMCID: PMC2823792 DOI: 10.1371/journal.pone.0009286] [Citation(s) in RCA: 29] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2009] [Accepted: 01/28/2010] [Indexed: 01/10/2023] Open
Abstract
Background The photopigment melanopsin has been suggested to act as a dominant photoreceptor in nonvisual photoreception including resetting of the circadian clock (entrainment), direct tuning or masking of vital status (activity, sleep/wake cycles, etc.), and the pupillary light reflex (PLR). Pituitary adenylate cyclase-activating polypeptide (PACAP) is exclusively coexpressed with melanopsin in a small subset of retinal ganglion cells and is predicted to be involved extensively in these responses; however, there were inconsistencies in the previous reports, and its functional role has not been well understood. Methodology/Principal Findings Here we show that PACAP-deficient mice exhibited severe dysfunctions of entrainment in a time-dependent manner. The abnormalities in the mutant mice were intensity-dependent in phase delay and duration-dependent in phase advance. The knockout mice also displayed blunted masking, which was dependent on lighting conditions, but not completely lost. The dysfunctions of masking in the mutant mice were recovered by infusion of PACAP-38. By contrast, these mutant mice show a normal PLR. We examined the retinal morphology and innervations in the mutant mice, and no apparent changes were observed in melanopsin-immunoreactive cells. These data suggest that the dysfunctions of entrainment and masking were caused by the loss of PACAP, not by the loss of light input itself. Moreover, PACAP-deficient mice express an unusually early onset of activities, from approximately four hours before the dark period, without influencing the phase of the endogenous circadian clock. Conclusions/Significance Although some groups including us reported the abnormalities in photic entrainments in PACAP- and PAC1-knockout mice, there were inconsistencies in their results [1], [2], [3], [4]. The time-dependent dysfunctions of photic entrainment in the PACAP-knockout mice described in this paper can integrate the incompatible data in previous reports. The recovery of impaired masking by infusion of PACAP-38 in the mutant mice is the first direct evidence of the relationship between PACAP and masking. These results indicate that PACAP regulates particular nonvisual light responses by conveying parametric light information—that is, intensity and duration. The “early-bird” phenotype in the mutant mice originally reported in this paper supposed that PACAP also has a critical role in daily behavioral patterns, especially during the light-to-dark transition period.
Collapse
Affiliation(s)
- Chihiro Kawaguchi
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Yasushi Isojima
- Institute for Protein Research, Osaka University, Osaka, Japan
- Genomic Science Center, RIKEN, Yokohama, Japan
- * E-mail:
| | - Norihito Shintani
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | | | - Xiaohong Guo
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| | - Nobuaki Okumura
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Katsuya Nagai
- Institute for Protein Research, Osaka University, Osaka, Japan
| | - Hitoshi Hashimoto
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
- The Osaka-Hamamatsu Joint Research Center for Child Mental Development, Osaka University, Osaka, Japan
- United Graduate School of Child Development, Osaka University, Kanazawa University, and Hamamatsu University School of Medicine, Osaka, Japan
| | - Akemichi Baba
- Graduate School of Pharmaceutical Sciences, Osaka University, Osaka, Japan
| |
Collapse
|