1
|
Polat H, Grande G, Aurangzeb Z, Zhang H, Daghfous G, Dubuc R, Zielinski B. The distribution and chemosensory responses of pharyngeal taste buds in the sea lamprey Petromyzon marinus. J Comp Physiol A Neuroethol Sens Neural Behav Physiol 2025; 211:1-17. [PMID: 39078515 PMCID: PMC11846773 DOI: 10.1007/s00359-024-01708-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 06/07/2024] [Accepted: 06/10/2024] [Indexed: 07/31/2024]
Abstract
Little is known about the chemosensory system of gustation in sea lampreys, basal jawless vertebrates that feed voraciously on live prey. The objective of this study was to investigate taste bud distribution and chemosensory responses along the length of the pharynx in the sea lamprey. Scanning electron microscopy and immunocytochemistry revealed taste buds and associated axons at all six lateral pharyngeal locations between the seven pairs of internal gill pores. The most rostral pharyngeal region contained more and larger taste buds than the most caudal region. Taste receptor cell responses were recorded to sweet, bitter, amino acids and the bile acid taurocholic acid, as well as to adenosine triphosphate. Similar chemosensory responses were observed at all six pharyngeal locations with taste buds. Overall, this study shows prominent taste buds and taste receptor cell activity in the seven pharyngeal regions of the sea lamprey.
Collapse
Affiliation(s)
- Hasan Polat
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Gianfranco Grande
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Zeenat Aurangzeb
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada
| | - Huiming Zhang
- Department of Biomedical Sciences, University of Windsor, Windsor, ON, Canada
| | - Gheylen Daghfous
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Réjean Dubuc
- Groupe de Recherche en Activité Physique Adaptée, Département des Sciences de l'activité physique, Université du Québec à Montréal, Montréal, QC, Canada
- Department of Neurosciences, Université de Montréal, Montréal, QC, Canada
| | - Barbara Zielinski
- Department of Integrative Biology, University of Windsor, Windsor, ON, Canada.
| |
Collapse
|
2
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. Cell Rep 2024; 43:114740. [PMID: 39325616 PMCID: PMC11676005 DOI: 10.1016/j.celrep.2024.114740] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Revised: 07/23/2024] [Accepted: 08/26/2024] [Indexed: 09/28/2024] Open
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here, we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity among intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA; Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA; Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, MN 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, WA 98109, USA.
| |
Collapse
|
3
|
Azuma M, Konno N, Sakata I, Koshimizu TA, Kaiya H. Molecular characterization and distribution of motilin and motilin receptor in the Japanese medaka Oryzias latipes. Cell Tissue Res 2024; 397:61-76. [PMID: 38727755 DOI: 10.1007/s00441-024-03896-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2024] [Accepted: 04/30/2024] [Indexed: 07/09/2024]
Abstract
Motilin (MLN) is a peptide hormone originally isolated from the mucosa of the porcine intestine. Its orthologs have been identified in various vertebrates. Although MLN regulates gastrointestinal motility in tetrapods from amphibians to mammals, recent studies indicate that MLN is not involved in the regulation of isolated intestinal motility in zebrafish, at least in vitro. To determine the unknown function of MLN in teleosts, we examined the expression of MLN and the MLN receptor (MLNR) at the cellular level in Japanese medaka (Oryzias latipes). Quantitative PCR revealed that mln mRNA was limitedly expressed in the gut, whereas mlnr mRNA was not detected in the gut but was expressed in the brain and kidney. By in situ hybridization and immunohistochemistry, mlnr mRNA was detected in the dopaminergic neurons of the area postrema in the brain and the noradrenaline-producing cells in the interrenal gland of the kidney. Furthermore, we observed efferent projections of mlnr-expressing dopaminergic neurons in the lobus vagi (XL) and nucleus motorius nervi vagi (NXm) of the medulla oblongata by establishing a transgenic medaka expressing the enhanced green fluorescence protein driven by the mlnr promoter. The expression of dopamine receptor mRNAs in the XL and cholinergic neurons in NXm was confirmed by in situ hybridization. These results indicate novel sites of MLN activity other than the gastrointestinal tract. MLN may exert central and peripheral actions through the regulation of catecholamine release in medaka.
Collapse
Affiliation(s)
- Morio Azuma
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan.
| | - Norifumi Konno
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
| | - Ichiro Sakata
- Area of Regulatory Biology, Division of Life Science, Graduate School of Science and Engineering, Saitama University, 255 Shimookubo, Saitama, Japan
| | - Taka-Aki Koshimizu
- Division of Molecular Pharmacology, Department of Pharmacology, Jichi Medical University, 3311-1 Yakushiji, Shimotsuke, Tochigi, Japan
| | - Hiroyuki Kaiya
- Department of Biological Science, Graduate School of Science and Engineering, University of Toyama, Gofuku, Toyama, 3190, Japan
- Division of Drug Discovery, Grandsoul Research Institute for Immunology, Inc. 8-1 Utano-Matsui, Uda, Nara, Japan
| |
Collapse
|
4
|
Kaneko T, Boulanger-Weill J, Isabella AJ, Moens CB. Position-independent functional refinement within the vagus motor topographic map. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.09.11.557289. [PMID: 37745606 PMCID: PMC10515832 DOI: 10.1101/2023.09.11.557289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
Motor neurons in the central nervous system often lie in a continuous topographic map, where neurons that innervate different body parts are spatially intermingled. This is the case for the efferent neurons of the vagus nerve, which innervate diverse muscle and organ targets in the head and viscera for brain-body communication. It remains elusive how neighboring motor neurons with different fixed peripheral axon targets develop the separate somatodendritic (input) connectivity they need to generate spatially precise body control. Here we show that vagus motor neurons in the zebrafish indeed generate spatially appropriate peripheral responses to focal sensory stimulation even when they are transplanted into ectopic positions within the topographic map, indicating that circuit refinement occurs after the establishment of coarse topography. Refinement depends on motor neuron synaptic transmission, suggesting that an experience-dependent periphery-to-brain feedback mechanism establishes specific input connectivity amongst intermingled motor populations.
Collapse
Affiliation(s)
- Takuya Kaneko
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
| | - Jonathan Boulanger-Weill
- Department of Molecular and Cellular Biology, Faculty of Arts and Sciences, Harvard University, Cambridge, MA 02138, USA
- Sorbonne Université, Institut National de la Santé et de la Recherche Médicale, Centre National de la Recherche Scientifique, Institut de la Vision, Paris, France
| | - Adam J Isabella
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Department of Genetics, Cell Biology, and Development, University of Minnesota, Minneapolis, Minnesota 55455, USA
| | - Cecilia B Moens
- Division of Basic Sciences, Fred Hutchinson Cancer Center, Seattle, Washington 98109, USA
- Lead contact
| |
Collapse
|
5
|
Gebhardt IC, Hofmann MH. The Diversity of the Brains of Ray-Finned Fishes. BRAIN, BEHAVIOR AND EVOLUTION 2023; 98:171-182. [PMID: 36948163 DOI: 10.1159/000530243] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2022] [Accepted: 03/13/2023] [Indexed: 03/24/2023]
Abstract
Brains are very plastic, both in response to phenotypic diversity and to larger evolutionary trends. Differences between taxa cannot be easily attributed to either factors. Comparative morphological data on higher taxonomic levels are scarce, especially in ray-finned fishes. Here we show the great diversity of brain areas of more than 150 species of ray-finned fishes by volumetric measurements using block-face imaging. We found that differences among families or orders are more likely due to environmental needs than to systematic position. Most notable changes are present in the brain areas processing sensory input (chemosenses and lateral line vs. visual system) between salt- and freshwater species due to fundamental differences in habitat properties. Further, some patterns of brain volumetry are linked to characteristics of body morphology. There is a positive correlation between cerebellum size and body depth, as well as the presence of a swim bladder. Since body morphology is linked to ecotypes and habitat selection, a complex character space of brain and body morphology and ecological factors together could explain better the differentiation of species into their ecological niches and may lead to a better understanding of how animals adapt to their environment.
Collapse
Affiliation(s)
- Isabelle C Gebhardt
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| | - Michael H Hofmann
- Department of Comparative Neuroanatomy, Institute of Zoology, University of Bonn, Bonn, Germany
| |
Collapse
|
6
|
Wang J, Chen G, Yu X, Zhou X, Zhang Y, Wu Y, Tong J. Transcriptome analyses reveal differentially expressed genes associated with development of the palatal organ in bighead carp (Hypophthalmichthys nobilis). COMPARATIVE BIOCHEMISTRY AND PHYSIOLOGY PART D: GENOMICS AND PROTEOMICS 2023; 46:101072. [PMID: 36990038 DOI: 10.1016/j.cbd.2023.101072] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2022] [Revised: 02/12/2023] [Accepted: 03/11/2023] [Indexed: 03/28/2023]
Abstract
The palatal organ is a filter-feeding related organ and occupies a considerable proportion of the head of bighead carp (Hypophthalmichthys nobilis), a large cyprinid fish intensive aquaculture in Asia. In this study, we performed RNA-seq of the palatal organ during growth periods of two (M2), six (M6) and 15 (M15) months of age after hatching. The numbers of differentially expressed genes (DEGs) were 1384, 481 and 1837 for M2 VS M6, M6 VS M15 and M2 VS M15 respectively. The following signaling pathways of energy metabolism and cytoskeleton function were enriched, including ECM-receptor interaction, Cardiac muscle contraction, Steroid biosynthesis and PPAR signaling pathway. Several members of collagen family (col1a1, col2a1, col6a2, col6a3, col9a2), Laminin gamma 1 (lamc1), integrin alpha 1 (itga1), Fatty acid binding protein 2 (fads2) and lipoprotein lipase (lpl), and Protein tyrosine kinase 7 (Ptk7) are candidate genes for growth and development of basic tissues of the palatal organ. Furthermore, taste-related genes such as fgfrl1, fgf8a, fsta and notch1a were also identified, which may be involved in the development of taste buds of the palatal organ. The transcriptome data obtained in this study provide insights into the understanding functions and development mechanisms of palatal organ, and potential candidate genes that may be related to the genetic modulation of head size of bighead carp.
Collapse
Affiliation(s)
- Junru Wang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Geng Chen
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaomu Yu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Xiaoyu Zhou
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yifan Zhang
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China
| | - Yanhong Wu
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; College of Advanced Agricultural Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Jingou Tong
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Academy of Seed Design, Chinese Academy of Sciences, Wuhan 430072, China; Hubei Hongshan Laboratory, Wuhan 430070, China.
| |
Collapse
|
7
|
Birdal G, D'Gama PP, Jurisch-Yaksi N, Korsching SI. Expression of taste sentinels, T1R, T2R, and PLCβ2, on the passageway for olfactory signals in zebrafish. Chem Senses 2023; 48:bjad040. [PMID: 37843175 DOI: 10.1093/chemse/bjad040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/28/2022] [Indexed: 10/17/2023] Open
Abstract
The senses of taste and smell detect overlapping sets of chemical compounds in fish, e.g. amino acids are detected by both senses. However, so far taste and smell organs appeared morphologically to be very distinct, with a specialized olfactory epithelium for detection of odors and taste buds located in the oral cavity and lip for detection of tastants. Here, we report dense clusters of cells expressing T1R and T2R receptors as well as their signal transduction molecule PLCβ2 in nostrils of zebrafish, i.e. on the entrance funnel through which odor molecules must pass to be detected by olfactory sensory neurons. Quantitative evaluation shows the density of these chemosensory cells in the nostrils to be as high or higher than that in the established taste organs oral cavity and lower lip. Hydrodynamic flow is maximal at the nostril rim enabling high throughput chemosensation in this organ. Taken together, our results suggest a sentinel function for these chemosensory cells in the nostril.
Collapse
Affiliation(s)
- Günes Birdal
- Institute for Genetics, Department of Biology, University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| | - Percival P D'Gama
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Nathalie Jurisch-Yaksi
- Department of Clinical and Molecular Medicine, Norwegian University of Science and Technology, Erling Skjalgsons Gate 1, 7491 Trondheim, Norway
| | - Sigrun I Korsching
- Institute for Genetics, Department of Biology, University of Cologne, Zülpicher Str. 47A, 50674 Cologne, Germany
| |
Collapse
|
8
|
Yagi M, Ono Y, Kawaguchi T. Microplastic pollution in aquatic environments may facilitate misfeeding by fish. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 315:120457. [PMID: 36270564 DOI: 10.1016/j.envpol.2022.120457] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2022] [Revised: 10/06/2022] [Accepted: 10/14/2022] [Indexed: 06/16/2023]
Abstract
Numerous recent studies have documented ingestion of microplastics (MPs) by many aquatic animals, yet an explanation for misfeeding by fish remains unexplained. Here we tested the hypothesis that biofilm (biofouling) on MP surfaces due to exposure in the aquatic environment facilitates misfeeding in fish. Spherical polystyrene (PS) was cultured for 0-22 weeks in a freshwater environment to grow a biofilm on the MPs. Goldfish were employed in a simple feeding experiment with and without provision of genuine food at ecologically relevant MP concentrations. Absorbance (ABS), which is a proxy for biofilm formation, increased exponentially within three weeks of initiation and reached a plateau after approximately five weeks. Although fish did not swallow the MPs, "capture" occurred when food pellets were in the vicinity and significantly increased in probability with aging. Duration of capture also increased significantly with increasing aging. These results suggest that drifting of MPs in aquatic environments may facilitate fish misidentification of MPs as edible prey.
Collapse
Affiliation(s)
- Mitsuharu Yagi
- Faculty of Fisheries, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan; Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan; Institute of Integrated Science and Technology, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan.
| | - Yurika Ono
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| | - Toshiya Kawaguchi
- Graduate School of Fisheries and Environmental Sciences, Nagasaki University, 1-14 Bunkyo, Nagasaki, 852-8521, Japan
| |
Collapse
|
9
|
Fowler BE, Ye J, Humayun S, Lee H, Macpherson LJ. Regional specialization of the tongue revealed by gustatory ganglion imaging. iScience 2022; 25:105700. [PMID: 36582484 PMCID: PMC9792408 DOI: 10.1016/j.isci.2022.105700] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2022] [Revised: 10/12/2022] [Accepted: 11/29/2022] [Indexed: 12/03/2022] Open
Abstract
Gustatory information is relayed from the anterior tongue by geniculate ganglion neurons and from the posterior tongue by neurons of the petrosal portion of the jugular/nodose/petrosal ganglion complex. Here, we use in vivo calcium imaging in mice to compare the encoding of taste information in the geniculate and petrosal ganglia, at single-neuron resolution. Our data support an anterior/posterior specialization of taste information coding from the tongue to the ganglia, with petrosal neurons more responsive to umami or bitter and less responsive to sweet or salty stimuli than geniculate neurons. We found that umami (50 mM MPG + 1 mM IMP) promotes salivation when applied to the posterior, but not anterior, tongue. This suggests a functional taste map of the mammalian tongue where the anterior and posterior taste pathways are differentially responsive to specific taste qualities, and differentially regulate downstream physiological functions of taste, such as promoting salivation.
Collapse
Affiliation(s)
- Bryan E. Fowler
- Department of Neuroscience Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Jiahao Ye
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Saima Humayun
- Department of Neuroscience Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
| | - Hojoon Lee
- Department of Neurobiology, Northwestern University, Evanston, IL, USA
| | - Lindsey J. Macpherson
- Department of Neuroscience Developmental and Regenerative Biology, The University of Texas at San Antonio, San Antonio, TX, USA
- Brain Health Consortium, The University of Texas at San Antonio, San Antonio, TX, USA
- Corresponding author
| |
Collapse
|
10
|
Fritzsch B, Elliott KL, Yamoah EN. Neurosensory development of the four brainstem-projecting sensory systems and their integration in the telencephalon. Front Neural Circuits 2022; 16:913480. [PMID: 36213204 PMCID: PMC9539932 DOI: 10.3389/fncir.2022.913480] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2022] [Accepted: 08/23/2022] [Indexed: 11/18/2022] Open
Abstract
Somatosensory, taste, vestibular, and auditory information is first processed in the brainstem. From the brainstem, the respective information is relayed to specific regions within the cortex, where these inputs are further processed and integrated with other sensory systems to provide a comprehensive sensory experience. We provide the organization, genetics, and various neuronal connections of four sensory systems: trigeminal, taste, vestibular, and auditory systems. The development of trigeminal fibers is comparable to many sensory systems, for they project mostly contralaterally from the brainstem or spinal cord to the telencephalon. Taste bud information is primarily projected ipsilaterally through the thalamus to reach the insula. The vestibular fibers develop bilateral connections that eventually reach multiple areas of the cortex to provide a complex map. The auditory fibers project in a tonotopic contour to the auditory cortex. The spatial and tonotopic organization of trigeminal and auditory neuron projections are distinct from the taste and vestibular systems. The individual sensory projections within the cortex provide multi-sensory integration in the telencephalon that depends on context-dependent tertiary connections to integrate other cortical sensory systems across the four modalities.
Collapse
Affiliation(s)
- Bernd Fritzsch
- Department of Biology, The University of Iowa, Iowa City, IA, United States
- Department of Otolaryngology, The University of Iowa, Iowa City, IA, United States
- *Correspondence: Bernd Fritzsch,
| | - Karen L. Elliott
- Department of Biology, The University of Iowa, Iowa City, IA, United States
| | - Ebenezer N. Yamoah
- Department of Physiology and Cell Biology, School of Medicine, University of Nevada, Reno, Reno, NV, United States
| |
Collapse
|
11
|
Levina AD, Mikhailova ES, Kasumyan AO. Taste preferences and feeding behaviour in the facultative herbivorous fish, Nile tilapia Oreochromis niloticus. JOURNAL OF FISH BIOLOGY 2021; 98:1385-1400. [PMID: 33448377 DOI: 10.1111/jfb.14675] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2020] [Revised: 01/10/2021] [Accepted: 01/13/2021] [Indexed: 06/12/2023]
Abstract
Taste preferences in fishes are known mainly for carnivorous species, whereas herbivorous consumers were rarely used in such studies. The main goal of the present study was to evaluate the taste preferences in the herbivorous African cichlid fish, Nile tilapia Oreochromis niloticus. In laboratory settings, the palatability of widely used taste substances (four taste substances that are considered to be sweet, sour, bitter and salty for humans - sucrose, citric acid, calcium chloride and sodium chloride; 21 free L-amino acids; 12 sugars and artificial sweetener Na-saccharin; 0.1-0.0001 M) was evaluated. In each trial, a standard agar pellet flavoured with a substance was offered for fish individually. The consumption of pellet, the number of grasps and the retention time before the pellet was finally ingested or rejected were registered. Overall, 21 of 38 substances were palatable, whereas other substances did not shift consumption of pellets in relation to blank pellets. Pellets containing citric acid, L-cysteine, L-norvaline, L-isoleucine, L-valine, Na-saccharin and D-sorbitol were consumed in >85% of trials. Taste attractiveness of amino acids was highly species-specific and was not associated with the trophic category of the 19 species compared. Moreover, it did not correlate with dietary quantitative requirements of Nile tilapia (rs = 0.27; P > 0.05). Palatability of sugars for O. niloticus and their sweetness for humans did not correlate as well (rs = 0.21; P > 0.05); nonetheless, Na-saccharin has the most attractive taste for both O. niloticus and humans. The most palatable amino acids lost their effect if the concentration was lowered to 0.01 M for L-cysteine and 0.001 M for L-norvaline (lower than 242.3 μg and 23.4 μg per a pellet, respectively). Single pellet grasp was characteristic of O. niloticus feeding behaviour (>95% of trials), and this pattern may be related to the social lifestyle of this species. Fish spent 4-8 s on average for orosensory evaluation of pellet edibility. The retention time correlated with the palatability of substances and was significantly longer in trials that ended up with pellet swallowing. It is suggested that prolonged orosensory evaluation of food before swallowing provides a reliable and accurate sensory evaluation, which, in turn, can reduce the probability that inadequate food will be consumed.
Collapse
Affiliation(s)
- Aleksandra D Levina
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Elena S Mikhailova
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| | - Alexander O Kasumyan
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
- Laboratory for Behaviour of Lower Vertebrates, Severtsov Institute of Ecology and Evolution, Russian Academy of Sciences, Moscow, Russia
| |
Collapse
|
12
|
Miroschnikow A, Schlegel P, Pankratz MJ. Making Feeding Decisions in the Drosophila Nervous System. Curr Biol 2020; 30:R831-R840. [DOI: 10.1016/j.cub.2020.06.036] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
13
|
Sobrido-Cameán D, Tostivint H, Mazan S, Rodicio MC, Rodríguez-Moldes I, Candal E, Anadón R, Barreiro-Iglesias A. Differential expression of five prosomatostatin genes in the central nervous system of the catshark Scyliorhinus canicula. J Comp Neurol 2020; 528:2333-2360. [PMID: 32141087 DOI: 10.1002/cne.24898] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 02/06/2020] [Accepted: 03/02/2020] [Indexed: 12/20/2022]
Abstract
Five prosomatostatin genes (PSST1, PSST2, PSST3, PSST5, and PSST6) have been recently identified in elasmobranchs (Tostivint et al., General and Comparative Endocrinology, 2019, 279, 139-147). In order to gain insight into the contribution of each somatostatin to specific nervous systems circuits and behaviors in this important jawed vertebrate group, we studied the distribution of neurons expressing PSST mRNAs in the central nervous system (CNS) of Scyliorhinus canicula using in situ hybridization. Additionally, we combined in situ hybridization with tyrosine hydroxylase (TH) immunochemistry for better characterization of PSST1 and PSST6 expressing populations. We observed differential expression of PSST1 and PSST6, which are the most widely expressed PSST transcripts, in cell populations of many CNS regions, including the pallium, subpallium, hypothalamus, diencephalon, optic tectum, midbrain tegmentum, and rhombencephalon. Interestingly, numerous small pallial neurons express PSST1 and PSST6, although in different populations judging from the colocalization of TH immunoreactivity and PSST6 expression but not with PSST1. We observed expression of PSST1 in cerebrospinal fluid-contacting (CSF-c) neurons of the hypothalamic paraventricular organ and the central canal of the spinal cord. Unlike PSST1 and PSST6, PSST2, and PSST3 are only expressed in cells of the hypothalamus and in some hindbrain lateral reticular neurons, and PSST5 in cells of the region of the entopeduncular nucleus. Comparative data of brain expression of PSST genes indicate that the somatostatinergic system of sharks is the most complex reported in any fish.
Collapse
Affiliation(s)
- Daniel Sobrido-Cameán
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Hervé Tostivint
- Molecular Physiology and Adaptation, CNRS UMR7221, Muséum National d'Histoire Naturelle, Paris, France
| | - Sylvie Mazan
- CNRS, Sorbonne Université, Biologie intégrative des organismes marins (UMR7232-BIOM), Observatoire Océanologique, Banyuls sur Mer, France
| | - María Celina Rodicio
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Isabel Rodríguez-Moldes
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Eva Candal
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Ramón Anadón
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Antón Barreiro-Iglesias
- Department of Functional Biology, CIBUS, Faculty of Biology, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
14
|
York RA, Byrne A, Abdilleh K, Patil C, Streelman T, Finger TE, Fernald RD. Behavioral evolution contributes to hindbrain diversification among Lake Malawi cichlid fish. Sci Rep 2019; 9:19994. [PMID: 31882605 PMCID: PMC6934501 DOI: 10.1038/s41598-019-55894-1] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Accepted: 11/20/2019] [Indexed: 12/30/2022] Open
Abstract
The evolutionary diversification of animal behavior is often associated with changes in the structure and function of nervous systems. Such evolutionary changes arise either through alterations of individual neural components (“mosaically”) or through scaling of the whole brain (“concertedly”). Here we show that the evolution of a courtship behavior in Malawi cichlid fish is associated with rapid, extensive, and specific diversification of orosensory, gustatory centers in the hindbrain. We find that hindbrain volume varies significantly between species that build pit (depression) compared to castle (mound) type bowers and that this trait is evolving rapidly among castle-building species. Molecular analyses of neural activity via immediate early gene expression indicate a functional role for hindbrain structures during bower building. Finally, comparisons of bower building species in neighboring Lake Tanganyika suggest parallel patterns of neural diversification to those in Lake Malawi. Our results suggest that mosaic brain evolution via alterations to individual brain structures is more extensive and predictable than previously appreciated.
Collapse
Affiliation(s)
- Ryan A York
- Department of Biology, Stanford University, Stanford, California, 94305, USA. .,Department of Neurobiology, Stanford University, Stanford, California, 94305, USA.
| | - Allie Byrne
- Department of Biology, Stanford University, Stanford, California, 94305, USA
| | - Kawther Abdilleh
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Chinar Patil
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Todd Streelman
- School of Biological Sciences and Institute of Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, Georgia, 30332, USA
| | - Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, 80045, USA.,Rocky Mountain Taste and Smell Center, University of Colorado Denver, Aurora, CO, 80045, USA
| | - Russell D Fernald
- Department of Biology, Stanford University, Stanford, California, 94305, USA.,Neuroscience Institute, Stanford University, Stanford, California, 94305, USA
| |
Collapse
|
15
|
Kasumyan AO. The taste system in fishes and the effects of environmental variables. JOURNAL OF FISH BIOLOGY 2019; 95:155-178. [PMID: 30793305 DOI: 10.1111/jfb.13940] [Citation(s) in RCA: 25] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/18/2018] [Accepted: 02/20/2019] [Indexed: 06/09/2023]
Abstract
The adaptability of the taste system in fish has led to a large variety in taste bud morphology, abundance and distribution, as well as in taste physiology characteristics in closely related species with different modes of life and feeding ecology. However, the modifications evoked in the sense of taste, or gustation, particularly during ontogeny when fishes are subject to different environmental variables, remain poorly studied. This review paper focusses on current knowledge to show how plastic and resistant the taste system in fishes is to various external factors, linked to other sensory inputs and shifts in physiological state of individuals. Ambient water temperature is fundamental to many aspects of fish biology and taste preferences are stable to many substances, however, the taste-cell turnover rate strongly depends on water temperature. Taste preferences are stable within water salinity, which gives rise to the possibility that the taste system in anadromous and catadromous fishes will only change minimally after their migration to a new environment. Food-taste selectivity is linked to fish diet and to individual feeding experience as well as the motivation to feed evoked by attractive (water extracts of food) and repellent (alarm pheromone) odours. In contrast, starvation leads to loss of aversion to many deterrent substances, which explains the consumption by starving fishes of new objects, previously refused or just occasionally consumed. Food hardness can significantly modify the final feeding decision to swallow or to reject a grasped and highly palatable food item. Heavy metals, detergents, aromatic hydrocarbons and other water contaminants have the strongest and quickest negative effects on structure and function of taste system in fish and depress taste perception and ability of fishes to respond adequately to taste stimuli after short exposures. Owing to phenotypic plasticity, the taste system can proliferate and partially restore the ability of fishes to respond to food odour after a complete loss of olfaction. In general, the taste system, especially its functionality, is regarded as stable over the life of a fish despite any alteration in their environment and such resistance is vital for maintaining physiological homeostasis.
Collapse
Affiliation(s)
- Alexander O Kasumyan
- Department of Ichthyology, Faculty of Biology, Lomonosov Moscow State University, Moscow, Russia
| |
Collapse
|
16
|
The Role of Developmental Integration and Historical Contingency in the Origin and Evolution of Cypriniform Trophic Novelties. Integr Comp Biol 2019; 59:473-488. [DOI: 10.1093/icb/icz056] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022] Open
Abstract
AbstractWhile functional morphologists have long studied the evolution of anatomical structures, the origin of morphological novelties has received less attention. When such novelties first originate they must become incorporated into an integrated system to be rendered fully functional. Thus, developmental integration is key at the origin of morphological novelties. However, given enough evolutionary time such integration may be broken, allowing for a division of labor that is facilitated by subsequent decoupling of structures. Cypriniformes represent a diverse group of freshwater fishes characterized by several trophic novelties that include: kinethmoid-mediated premaxillary protrusion, a muscular palatal and post-lingual organ, hypertrophied lower pharyngeal jaws that masticate against the base of the neurocranium, novel pharyngeal musculature controlling movement of the hypertrophied lower pharyngeal jaws, and in a few species an incredibly complex epibranchial organ used to aggregate filtered phytoplankton. Here, we use the wealth of such trophic novelties in different cypriniform fishes to present case studies in which developmental integration allowed for the origin of morphological innovations. As proposed in case studies 1 and 2 trophic innovations may be associated with both morphological and lineage diversification. Alternatively, case studies 3 and 4 represent a situation where ecological niche was expanded but with no concomitant increase in species diversity.
Collapse
|
17
|
Abstract
This chapter summarizes the available data about taste receptor functions and their role in perception of food with emphasis on the human system. In addition we illuminate the widespread presence of these receptors throughout the body and discuss some of their extraoral functions. Finally, we describe clinical aspects where taste receptor signaling could be relevant.
Collapse
Affiliation(s)
- Jonas C Töle
- Department of Molecular Genetics, German Institute of Human Nutrition Potsdam-Rehbruecke, Nuthetal, Germany
| | - Maik Behrens
- Leibniz-Institute for Food Systems Biology at the Technical University of Munich, Freising, Germany
| | - Wolfgang Meyerhof
- Center for Integrative Physiology and Molecular Medicine, Saarland University, Homburg, Germany.
| |
Collapse
|
18
|
Cohen KE, Hernandez LP. The complex trophic anatomy of silver carp, Hypophthalmichthys molitrix
, highlighting a novel type of epibranchial organ. J Morphol 2018; 279:1615-1628. [DOI: 10.1002/jmor.20891] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/02/2018] [Revised: 08/05/2018] [Accepted: 08/10/2018] [Indexed: 11/09/2022]
Affiliation(s)
- Karly Elizabeth Cohen
- Department of Biological Sciences; The George Washington University, Science and Engineering Hall; Washington DC
| | - L. Patricia Hernandez
- Department of Biological Sciences; The George Washington University, Science and Engineering Hall; Washington DC
| |
Collapse
|
19
|
Abstract
The six-layered neocortex of the mammalian pallium has no clear homolog in birds or non-avian reptiles. Recent research indicates that although these extant amniotes possess a variety of divergent and nonhomologous pallial structures, they share a conserved set of neuronal cell types and circuitries. These findings suggest a principle of brain evolution: that natural selection preferentially preserves the integrity of information-processing pathways, whereas other levels of biological organization, such as the three-dimensional architectures of neuronal assemblies, are less constrained. We review the similarities of pallial neuronal cell types in amniotes, delineate candidate gene regulatory networks for their cellular identities, and propose a model of developmental evolution for the divergence of amniote pallial structures.
Collapse
Affiliation(s)
- Steven D Briscoe
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Clifton W Ragsdale
- Department of Neurobiology, University of Chicago, Chicago, IL, USA
- Department of Organismal Biology and Anatomy, University of Chicago, Chicago, IL, USA
| |
Collapse
|
20
|
Finucci B, Gallus L, Amaroli A, Candiani S, Rottigni M, Masini MA, Ferrando S. Vacchi's palatal organ: a widespread trait in Holocephali. JOURNAL OF FISH BIOLOGY 2018; 92:1177-1182. [PMID: 29465164 DOI: 10.1111/jfb.13553] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
A palatal organ, possibly used for food sorting and processing, has previously been identified among the vomerine toothplates of the chimaeroid Chimaera monstrosa. In this study, the palatal organ was described in six additional species, confirming it is a widespread trait among holocephalans. It is proposed that this palatal structure, which appears to differ in shape according to each chimaeroid's degree of durophagy and is not homologous to the palatal structure described in teleosts, be hereby referred to as Vacchi's organ.
Collapse
Affiliation(s)
- B Finucci
- School of Biological Sciences, Victoria University of Wellington, PO Box 600, Wellington, 6140, New Zealand
| | - L Gallus
- Department of Earth, Environmental, and Life Science (DISTAV), University of Genoa, Corso Europa 26, I-16132, Genoa, Italy
| | - A Amaroli
- Department of Earth, Environmental, and Life Science (DISTAV), University of Genoa, Corso Europa 26, I-16132, Genoa, Italy
- Department of Surgery (DISC), University of Genoa, Largo Rosanna Benzi 8, I-16132, Genoa, Italy
| | - S Candiani
- Department of Earth, Environmental, and Life Science (DISTAV), University of Genoa, Corso Europa 26, I-16132, Genoa, Italy
| | - M Rottigni
- Department of Earth, Environmental, and Life Science (DISTAV), University of Genoa, Corso Europa 26, I-16132, Genoa, Italy
| | - M A Masini
- Department of Sciences and Technological Innovation (DISIT), University of Eastern Piedmont, Viale Teresa Michel 11, I-15121, Alessandria, Italy
| | - S Ferrando
- Department of Earth, Environmental, and Life Science (DISTAV), University of Genoa, Corso Europa 26, I-16132, Genoa, Italy
| |
Collapse
|
21
|
Tebbett SB, Goatley CHR, Huertas V, Mihalitsis M, Bellwood DR. A functional evaluation of feeding in the surgeonfish Ctenochaetus striatus: the role of soft tissues. ROYAL SOCIETY OPEN SCIENCE 2018; 5:171111. [PMID: 29410825 PMCID: PMC5792902 DOI: 10.1098/rsos.171111] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/10/2017] [Accepted: 01/02/2018] [Indexed: 06/08/2023]
Abstract
Ctenochaetus striatus is one of the most abundant surgeonfishes on Indo-Pacific coral reefs, yet the functional role and feeding ecology of this species remain unclear. This species is reported to possess a rigid structure in its palate that is used for scraping, but some authors have reported that this element is comprised of soft tissue. To resolve the nature and role of this structure in the feeding ecology of C. striatus we examined evidence from anatomical observations, scanning electron microscopy, histology, X-ray micro-computed tomography scanning, high-speed video and field observations. We found that C. striatus from the Great Barrier Reef possess a retention plate (RP) on their palates immediately posterior to the premaxillary teeth which is soft, covered in a thin veneer of keratin with a papillate surface. This RP appears to be used during feeding, but does not appear to be responsible for the removal of material, which is achieved primarily by a fast closure of the lower jaw. We infer that the RP acts primarily as a 'dustpan', in a 'dustpan and brush' feeding mechanism, to facilitate the collection of particulate material from algal turfs.
Collapse
Affiliation(s)
- Sterling B. Tebbett
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Christopher H. R. Goatley
- Function, Evolution and Anatomy Research (FEAR) Lab and Palaeoscience Research Centre, School of Environmental and Rural Science, University of New England, Armidale, New South Wales 2351, Australia
| | - Víctor Huertas
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - Michalis Mihalitsis
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| | - David R. Bellwood
- ARC Centre of Excellence for Coral Reef Studies, James Cook University, Townsville, Queensland 4811, Australia
- College of Science and Engineering, James Cook University, Townsville, Queensland 4811, Australia
| |
Collapse
|
22
|
Claus AW, Sorensen PW. Chemical Cues which Include Amino Acids Mediate Species-Specific Feeding Behavior in Invasive Filter-Feeding Bigheaded Carps. J Chem Ecol 2017; 43:374-384. [PMID: 28299588 DOI: 10.1007/s10886-017-0833-0] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2016] [Revised: 02/18/2017] [Accepted: 02/27/2017] [Indexed: 10/20/2022]
Abstract
This study tested whether and how dissolved chemicals might assist food recognition in two filter-feeding fishes, the silver (Hypophthalmichthys molitrix) and the bighead carp (H. nobilis). These species evolved in Asia, are now invasive in the Mississippi River, and feed voraciously on microparticles including plankton. The food habits and biology of these carps are broadly similar to many filter-feeding fish, none of whose chemical ecology has been examined. We conducted five experiments. First, we demonstrated that buccal-pharngeal pumping (BPP), a behavior in which fish pump water into their buccal cavities, is responsible for sampling food: BPP activity in both silver and bighead carps was low and increased nearly 25-fold after exposure to a filtrate of a planktonic food mixture (P < 0.01) and over 35-fold when planktonic food was added (P < 0.001). Next, we showed that of nine food filtrates, the one containing chemicals released by spirulina, a type of cyanobacterium, was the most potent planktonic component for both species. The potency of filtrates varied between species in ways that reflected their different chemical compositions. While L-amino acids could explain about half of the activity of food filtrate, other unknown chemical stimuli were also implicated. Finally, occlusion experiments showed the olfactory sense has a very important, but not exclusive, role in bigheaded carp feeding behaviors and this might be exploited in both their control and culture.
Collapse
Affiliation(s)
- Aaron W Claus
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN, 55108, USA
| | - Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology, University of Minnesota, Saint Paul, MN, 55108, USA.
| |
Collapse
|
23
|
|
24
|
|
25
|
Yáñez J, Souto Y, Piñeiro L, Folgueira M, Anadón R. Gustatory and general visceral centers and their connections in the brain of adult zebrafish: a carbocyanine dye tract-tracing study. J Comp Neurol 2016; 525:333-362. [PMID: 27343143 DOI: 10.1002/cne.24068] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2015] [Revised: 06/21/2016] [Accepted: 06/22/2016] [Indexed: 02/04/2023]
Abstract
The central connections of the gustatory/general visceral system of the adult zebrafish (Danio rerio) were examined by means of carbocyanine dye tracing. Main primary gustatory centers (facial and vagal lobes) received sensory projections from the facial and vagal nerves, respectively. The vagal nerve also projects to the commissural nucleus of Cajal, a general visceral sensory center. These primary centers mainly project on a prominent secondary gustatory and general visceral nucleus (SGN/V) located in the isthmic region. Secondary projections on the SGN/V were topographically organized, those of the facial lobe mainly ending medially to those of the vagal lobe, and those from the commissural nucleus ventrolaterally. Descending facial lobe projections to the medial funicular nucleus were also noted. Ascending fibers originating from the SGN/V mainly projected to the posterior thalamic nucleus and the lateral hypothalamus (lateral torus, lateral recess nucleus, hypothalamic inferior lobe diffuse nucleus) and an intermediate cell- and fiber-rich region termed here the tertiary gustatory nucleus proper, but not to a nucleus formerly considered as the zebrafish tertiary gustatory nucleus. The posterior thalamic nucleus, tertiary gustatory nucleus proper, and nucleus of the lateral recess gave rise to descending projections to the SGN/V and the vagal lobe. The connectivity between diencephalic gustatory centers and the telencephalon was also investigated. The present results showed that the gustatory connections of the adult zebrafish are rather similar to those reported in other cyprinids, excepting the tertiary gustatory nucleus. Similarities between the gustatory systems of zebrafish and other fishes are also discussed. J. Comp. Neurol. 525:333-362, 2017. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Julián Yáñez
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Yara Souto
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Laura Piñeiro
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain
| | - Mónica Folgueira
- Department of Cell and Molecular Biology, Faculty of Sciences, University of A Coruña, A Coruña, Spain.,Neurover Group, Centro de Investigaciones Científicas Avanzadas (CICA), University of A Coruña, A Coruña, Spain
| | - Ramón Anadón
- Department of Cell Biology and Ecology, Faculty of Biology, University of Santiago de Compostela, Santiago de Compostela, Spain
| |
Collapse
|
26
|
Blanco AM, Sánchez-Bretaño A, Delgado MJ, Valenciano AI. Brain Mapping of Ghrelin O-Acyltransferase in Goldfish (Carassius Auratus): Novel Roles for the Ghrelinergic System in Fish? Anat Rec (Hoboken) 2016; 299:748-58. [PMID: 27064922 DOI: 10.1002/ar.23346] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2016] [Revised: 02/16/2016] [Accepted: 02/22/2016] [Indexed: 12/19/2022]
Abstract
Ghrelin O-acyltransferase (GOAT) is the enzyme responsible for acylation of ghrelin, a gut-brain hormone with important roles in many physiological functions in vertebrates. Many aspects of GOAT remain to be elucidated, especially in fish, and particularly its anatomical distribution within the different brain areas has never been reported to date. The present study aimed to characterize the brain mapping of GOAT using RT-qPCR and immunohistochemistry in a teleost, the goldfish (Carassius auratus). Results show that goat transcripts are expressed in different brain areas of the goldfish, with the highest levels in the vagal lobe. Using immunohistochemistry, we also report the presence of GOAT immunoreactive cells in different encephalic areas, including the telencephalon, some hypothalamic nuclei, pineal gland, optic tectum and cerebellum, although they are especially abundant in the hindbrain. Particularly, an important signal is observed in the vagal lobe and some fiber tracts of the brainstem, such as the medial longitudinal fasciculus, Mauthneri fasciculus, secondary gustatory tract and spinothalamic tract. Most of the forebrain areas where GOAT is detected, particularly the hypothalamic nuclei, also express the ghs-r1a ghrelin receptor and other appetite-regulating hormones (e.g., orexin and NPY), supporting the role of ghrelin as a modulator of food intake and energy balance in fish. Present results are the first report on the presence of GOAT in the brain using imaging techniques. The high presence of GOAT in the hindbrain is a novelty, and point to possible new functions for the ghrelinergic system in fish. Anat Rec, 299:748-758, 2016. © 2016 Wiley Periodicals, Inc.
Collapse
Affiliation(s)
- Ayelén M Blanco
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Aída Sánchez-Bretaño
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - María J Delgado
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| | - Ana I Valenciano
- Department of Animal Physiology II, Faculty of Biology, Complutense University, Madrid, 28040, Spain
| |
Collapse
|
27
|
Juntti SA, Hilliard AT, Kent KR, Kumar A, Nguyen A, Jimenez MA, Loveland JL, Mourrain P, Fernald RD. A Neural Basis for Control of Cichlid Female Reproductive Behavior by Prostaglandin F2α. Curr Biol 2016; 26:943-9. [PMID: 26996507 DOI: 10.1016/j.cub.2016.01.067] [Citation(s) in RCA: 62] [Impact Index Per Article: 6.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2015] [Revised: 01/22/2016] [Accepted: 01/27/2016] [Indexed: 01/08/2023]
Abstract
In most species, females time reproduction to coincide with fertility. Thus, identifying factors that signal fertility to the brain can provide access to neural circuits that control sexual behaviors. In vertebrates, levels of key signaling molecules rise at the time of fertility to prime the brain for reproductive behavior [1-11], but how and where they regulate neural circuits is not known [12, 13]. Specifically, 17α,20β-dihydroxyprogesterone (DHP) and prostaglandin F2α (PGF2α) levels rise in teleost fish around the time of ovulation [10, 14, 15]. In an African cichlid fish, Astatotilapia burtoni, fertile females select a mate and perform a stereotyped spawning routine, offering quantifiable behavioral outputs of neural circuits. We show that, within minutes, PGF2α injection activates a naturalistic pattern of sexual behavior in female A. burtoni. We also identify cells in the brain that transduce the prostaglandin signal to mate and show that the gonadal steroid DHP modulates mRNA levels of the putative receptor for PGF2α (Ptgfr). We use CRISPR/Cas9 to generate the first targeted gene mutation in A. burtoni and show that Ptgfr is necessary for the initiation of sexual behavior, uncoupling sexual behavior from reproductive status. Our findings are consistent with a model in which PGF2α communicates fertility status via Ptgfr to circuits in the brain that drive female sexual behavior. Our targeted genome modification in a cichlid fish shows that dissection of gene function can reveal basic control mechanisms for behaviors in this large family of species with diverse and fascinating social systems [16, 17].
Collapse
Affiliation(s)
- Scott A Juntti
- Department of Biology, Stanford University, Stanford, CA 94305, USA.
| | | | - Kai R Kent
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Anusha Kumar
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | - Andrew Nguyen
- Department of Biology, Stanford University, Stanford, CA 94305, USA
| | | | | | - Philippe Mourrain
- Department of Psychiatry and Behavioral Sciences, Center for Sleep Sciences, Stanford University, Stanford, CA 94305, USA
| | | |
Collapse
|
28
|
Ferrando S, Gallus L, Gambardella C, Croce D, Damiano G, Mazzarino C, Vacchi M. First Description of a Palatal Organ in Chimaera monstrosa (Chondrichthyes, Holocephali). Anat Rec (Hoboken) 2015; 299:118-31. [PMID: 26474720 DOI: 10.1002/ar.23280] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 04/08/2015] [Accepted: 09/18/2015] [Indexed: 11/10/2022]
Abstract
Chimaeroid fishes are the only extant Holocephali, a subclass of Chondrichthyes. We describe for the first time a well evidenced structure localized in the palate of the chimaeroid Chimaera monstrosa, here named a palatal organ (PO). Attention has been paid to the holocephalan head morphology, but there has been no mention of this particular organ in the literature. The PO is a soft-tissue mass located within a slight hollow in between the two vomerine toothplates, and it protrudes into the oral cavity, resembling the mammalian incisive papilla. It is characterized by dense connective tissue with abundant collagen and elastic fibers and no muscular tissue. The robust innervation but low density of taste buds suggest a role in gustation for the PO, but primary utility in general mechanical sensitivity likely implicated in food sorting. The presence of numerous multicellular serous glands in the anterior/dorsal part of the PO is quite surprising because, in gnathostome fish, the presence of multicellular glands within the mouth has been reported in only the rare case of teeth-associated venom glands. Hypothesized roles for these glands could include food lubrication, digestion and defense against pathogens. In the literature, the presence of a PO has been demonstrated in many published images of chimaeroid fishes, but has gone unnoticed. This trait could represent a peculiar characteristic of all or a subset of holocephalans.
Collapse
Affiliation(s)
- Sara Ferrando
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Lorenzo Gallus
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Gambardella
- Institute of Marine Sciences (ISMAR), National Research Council, Genoa, Italy
| | - Daniel Croce
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Giulia Damiano
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Chiara Mazzarino
- Department of Environmental, Earth and Life Science (DISTAV), University of Genoa, Genoa, Italy
| | - Marino Vacchi
- Institute for Environmental Protection and Research (ISPRA) C/O Institute of Marine Sciences (ISMAR), National Research Council, Genoa, Italy
| |
Collapse
|
29
|
Ikegami T, Takemura A, Choi E, Suda A, Tomonaga S, Badruzzaman M, Furuse M. Increase in telencephalic dopamine and cerebellar norepinephrine contents by hydrostatic pressure in goldfish: the possible involvement in hydrostatic pressure-related locomotion. FISH PHYSIOLOGY AND BIOCHEMISTRY 2015; 41:1105-1115. [PMID: 25975379 DOI: 10.1007/s10695-015-0072-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2014] [Accepted: 05/11/2015] [Indexed: 06/04/2023]
Abstract
Fish are faced with a wide range of hydrostatic pressure (HP) in their natural habitats. Additionally, freshwater fish are occasionally exposed to rapid changes in HP due to heavy rainfall, flood and/or dam release. Accordingly, variations in HP are one of the most important environmental cues for fish. However, little information is available on how HP information is perceived and transmitted in the central nervous system of fish. The present study examined the effect of HP (water depth of 1.3 m) on the quantities of monoamines and their metabolites in the telencephalon, optic tectum, diencephalon, cerebellum (including partial mesencephalon) and vagal lobe (including medulla oblongata) of the goldfish, Carassius auratus, using high-performance liquid chromatography. HP affected monoamine and metabolite contents in restricted brain regions, including the telencephalon, cerebellum and vagal lobe. In particular, HP significantly increased the levels of dopamine (DA) in the telencephalon at 15 min and that of norepinephrine (NE) in the cerebellum at 30 min. In addition, HP also significantly increased locomotor activity at 15 and 30 min after HP treatment. It is possible that HP indirectly induces locomotion in goldfish via telencephalic DA and cerebellar NE neuronal activity.
Collapse
Affiliation(s)
- Taro Ikegami
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan.
- Department of Otorhinolaryngology, Head and Neck Surgery, Graduate School of Medicine, University of the Ryukyus, Nishihara, Okinawa, 903-0215, Japan.
| | - Akihiro Takemura
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Eunjung Choi
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Atsushi Suda
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| | - Shozo Tomonaga
- Laboratory of Nutritional Science for Animals, Graduate School of Agriculture, Kyoto University, Kyoto, 606-8502, Japan
| | - Muhammad Badruzzaman
- Department of Chemistry, Biology, and Marine Science, Faculty of Science, University of the Ryukyus, Senbaru 1, Nishihara, Okinawa, 903-0213, Japan
| | - Mitsuhiro Furuse
- Laboratory of Regulation in Metabolism and Behavior, Graduate School of Bioresource and Bioenvironmental Sciences, Kyushu University, Fukuoka, 812-8581, Japan
| |
Collapse
|
30
|
Abstract
Zebrafish larva is a unique model for whole-brain functional imaging and to study sensory-motor integration in the vertebrate brain. To take full advantage of this system, one needs to design sensory environments that can mimic the complex spatiotemporal stimulus patterns experienced by the animal in natural conditions. We report on a novel open-ended microfluidic device that delivers pulses of chemical stimuli to agarose-restrained larvae with near-millisecond switching rate and unprecedented spatial and concentration accuracy and reproducibility. In combination with two-photon calcium imaging and recordings of tail movements, we found that stimuli of opposite hedonic values induced different circuit activity patterns. Moreover, by precisely controlling the duration of the stimulus (50-500 ms), we found that the probability of generating a gustatory-induced behavior is encoded by the number of neurons activated. This device may open new ways to dissect the neural-circuit principles underlying chemosensory perception.
Collapse
|
31
|
Hernandez LP, Staab KL. Bottom Feeding and Beyond: How the Premaxillary Protrusion of Cypriniforms Allowed for a Novel Kind of Suction Feeding. Integr Comp Biol 2015; 55:74-84. [PMID: 25976909 DOI: 10.1093/icb/icv038] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
While much of the functional work on suction feeding has involved members of Acanthopterygii, an earlier cypriniform radiation led to over 3200 species filling nearly every freshwater trophic niche. Within the great majority of acanthomorph clades that have been investigated suction feeding and the underlying morphology responsible for the generation of rapid suction have been largely conserved. This conserved feeding-apparatus is often associated with increasing the force experienced by the prey item, thus making a strike on elusive prey more effective. Cypriniforms' trophic anatomy is comprised of a number of novelties used for benthic feeding, which characterized early members of this clade. The modified cypriniform structure of the oral jaws represents a situation in which a particular type of suction feeding allowed for probing the benthos with a more functionally maneuverable anatomy. Requisite evolutionary modifications included origin and elongation of a median kinethmoid, duplications of certain divisions of the muscles of the adductor mandibulae, and origin of a dorsal, intra-buccal muscular palatal organ used in winnowing detritus. The elongated kinethmoid (coupled with modified adductor muscles) allowed for a type of premaxillary protrusion that decoupled the upper and lower jaws, enabled premaxillary protrusions with a closed mouth, and facilitated benthic feeding by increasing functional flexibility. The resultant flow of fluid generated by cypriniforms is also quite flexible, with multiple instances of peak flow in a single feeding event. This greatly modified morphology allowed for a degree of kinematic maneuverability not seen within most acanthomorphs. Later cypriniform radiations into piscivorous, insectivorous, or planktivorous feeding guilds were associated with shortening of the kinethmoid and with simplified morphology of the adductor, likely involving an emphasis on ram feeding. Although this suite of morphological novelties seemingly originated within the context of benthic feeding, with minimal modifications these anatomical features were later coopted during radiations into different functional niches.
Collapse
Affiliation(s)
- L Patricia Hernandez
- *Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA; Department of Biology, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| | - Katie Lynn Staab
- *Department of Biological Sciences, The George Washington University, Science and Engineering Hall, 800 22nd Street NW, Suite 6000, Washington, DC 20052, USA; Department of Biology, McDaniel College, 2 College Hill, Westminster, MD 21157, USA
| |
Collapse
|
32
|
Taste preferences and taste thresholds to classical taste substances in the carnivorous fish, kutum Rutilus frisii kutum (Teleostei: Cyprinidae). Physiol Behav 2015; 140:111-7. [DOI: 10.1016/j.physbeh.2014.12.022] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2014] [Revised: 12/05/2014] [Accepted: 12/08/2014] [Indexed: 11/23/2022]
|
33
|
Gilland E, Straka H, Wong TW, Baker R, Zottoli SJ. A hindbrain segmental scaffold specifying neuronal location in the adult goldfish, Carassius auratus. J Comp Neurol 2014; 522:2446-64. [PMID: 24452830 DOI: 10.1002/cne.23544] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2013] [Revised: 01/15/2014] [Accepted: 01/17/2014] [Indexed: 12/18/2022]
Abstract
The vertebrate hindbrain develops as a series of well-defined neuroepithelial segments or rhombomeres. While rhombomeres are visible in all vertebrate embryos, generally there is not any visible segmental anatomy in the brains of adults. Teleost fish are exceptional in retaining a rhombomeric pattern of reticulospinal neurons through embryonic, larval, and adult periods. We use this feature to map more precisely the segmental imprint in the reticular and motor basal hindbrain of adult goldfish. Analysis of serial sections cut in three planes and computer reconstructions of retrogradely labeled reticulospinal neurons yielded a segmental framework compatible with previous reports and more amenable to correlation with surrounding neuronal features. Cranial nerve motoneurons and octavolateral efferent neurons were aligned to the reticulospinal scaffold by mapping neurons immunopositive for choline acetyltransferase or retrogradely labeled from cranial nerve roots. The mapping corresponded well with the known ontogeny of these neurons and helps confirm the segmental territories defined by reticulospinal anatomy. Because both the reticulospinal and the motoneuronal segmental patterns persist in the hindbrain of adult goldfish, we hypothesize that a permanent "hindbrain framework" may be a general property that is retained in adult vertebrates. The establishment of a relationship between individual segments and neuronal phenotypes provides a convenient method for future studies that combine form, physiology, and function in adult vertebrates.
Collapse
Affiliation(s)
- E Gilland
- Department of Physiology and Neuroscience, New York University Medical Center, New York, New York, 10016; Marine Biological Laboratory, Woods Hole, Massachusetts, 02543; Department of Anatomy, Howard University College of Medicine, Washington, DC, 20059
| | | | | | | | | |
Collapse
|
34
|
Uezono S, Yamada Y, Kato T, Abe H, Yamamoto N. Connections of the commissural nucleus of Cajal in the goldfish, with special reference to the topographic organization of ascending visceral sensory pathways. J Comp Neurol 2014; 523:209-25. [PMID: 25209308 DOI: 10.1002/cne.23675] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2014] [Revised: 09/05/2014] [Accepted: 09/05/2014] [Indexed: 11/09/2022]
Abstract
The primary general visceral nucleus of teleosts is called the commissural nucleus of Cajal (NCC). The NCC of goldfish has been divided into the medial (NCCm) and lateral (NCCl) subnuclei that receive inputs from subdiaphragmatic gastrointestinal tract and the posterior pharynx, respectively. Fiber connections of the NCC were examined by tract-tracing methods in the goldfish Carassius auratus. Tracer injections into the NCC suggested that the NCC projects directly not only to the secondary visceral sensory region in the rhombencephalic isthmus and other brain stem centers, but also to the forebrain, similar to the situations in mammals, birds, and the Nile tilapia. Although fiber connections of the NCCm and NCCl were basically similar, the NCCm was the more important source of ascending general visceral fibers to the forebrain. Topographic organization was recognized regarding projections to the isthmic secondary visceral sensory zone; input from the NCCm is represented in the secondary general visceral sensory nucleus, while input from the NCCl in the lateral edge of the secondary gustatory nucleus. Moreover, specific injections into different regions of the vagal lobe revealed that the dorsomedio-ventrolateral axis of the lobe is represented in the lateromedial axis of the secondary gustatory nucleus. These observations suggest fine topographic organization of ascending visceral sensory pathways to the isthmic secondary centers. It should also be noted that the reception of primary afferents from the posterior pharynx and projections to the secondary gustatory nucleus suggest that the NCCl may be regarded as a gustatory rather than a general visceral sensory structure.
Collapse
Affiliation(s)
- Shiori Uezono
- Laboratory of Fish Biology, Graduate School of Bioagricultural Sciences, Nagoya University, Furo-cho, Chikusa-ku, Nagoya, 464-8601, Japan
| | | | | | | | | |
Collapse
|
35
|
Hansen A, Ghosal R, Caprio J, Claus AW, Sorensen PW. Anatomical and physiological studies of bigheaded carps demonstrate that the epibranchial organ functions as a pharyngeal taste organ. ACTA ACUST UNITED AC 2014; 217:3945-54. [PMID: 25214490 DOI: 10.1242/jeb.107870] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
The epibranchial organ (EO) is an enigmatic tubular organ found in the pharyngeal cavity of many filter-feeding fishes. We investigated whether it might function as a taste organ that mediates aggregation and ingestion of planktonic food within the buccal cavity. The EO and associated structures of bighead and silver carps, two successful and invasive planktivorous fishes, were examined using histological and electrophysiological techniques. Both species possess finely structured gill rakers that extend directly via a series of protrusions into each of the four blind canals which are organized as the muscular EO, suggesting that the gill rakers and EO probably function in an integrated manner. Both the interior and exterior surfaces of the EOs of both species are covered with high densities of taste buds and solitary chemosensory cells (SCCs) as well as mucous cells. Conversely, taste buds are scarce in both the buccal cavities and external portions of the head and mouth of both species. Electrophysiological recordings from a caudal branch of the vagus nerve (cranial nerve X) found to innervate the EO showed it to be sensitive to chemicals found in a planktonic diet. l-Amino acids accounted for some, but not all of the neural activity. We conclude that taste buds and SCCs located on the EO and gill rakers probably serve to chemically detect food particles, which the EO then aggregates by mucus secretion before eventually expelling them onto the floor of the pharynx for ingestion. This specialized, pharyngeal chemosensory structure may explain the feeding success of these, and perhaps other planktivorous, filter-feeding fishes.
Collapse
Affiliation(s)
- Anne Hansen
- Department of Cell & Developmental Biology, University of Colorado AMC, Aurora, CO 80262, USA
| | - Ratna Ghosal
- Department of Fisheries, Wildlife and Conservation Biology and the Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St Paul, MN 55108, USA
| | - John Caprio
- Department of Biological Sciences, Louisiana State University, Baton Rouge, LA 70803, USA
| | - Aaron W Claus
- Department of Fisheries, Wildlife and Conservation Biology and the Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St Paul, MN 55108, USA
| | - Peter W Sorensen
- Department of Fisheries, Wildlife and Conservation Biology and the Minnesota Aquatic Invasive Species Research Center, University of Minnesota, St Paul, MN 55108, USA
| |
Collapse
|
36
|
Schluessel V. Who would have thought that 'Jaws' also has brains? Cognitive functions in elasmobranchs. Anim Cogn 2014; 18:19-37. [PMID: 24889655 DOI: 10.1007/s10071-014-0762-z] [Citation(s) in RCA: 38] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2014] [Revised: 05/20/2014] [Accepted: 05/20/2014] [Indexed: 11/24/2022]
Abstract
Adaptation of brain structures, function and higher cognitive abilities most likely have contributed significantly to the evolutionary success of elasmobranchs, but these traits remain poorly studied when compared to other vertebrates, specifically mammals. While the pallium of non-mammalian vertebrates lacks the mammalian neocortical organization responsible for all cognitive abilities of mammals, several behavioural and neuroanatomical studies in recent years have clearly demonstrated that elasmobranchs, just like teleosts and other non-mammalian vertebrates, can nonetheless solve a multitude of cognitive tasks. Sharks and rays can learn and habituate, possess spatial memory; can orient according to different orientation strategies, remember spatial and discrimination tasks for extended periods of time, use tools; can imitate and learn from others, distinguish between conspecifics and heterospecifics, discriminate between either visual objects or electrical fields; can categorize visual objects and perceive illusory contours as well as bilateral symmetry. At least some neural correlates seem to be located in the telencephalon, with some pallial regions matching potentially homologous areas in other vertebrates where similar functions are being processed. Results of these studies indicate that the assessed cognitive abilities in elasmobranchs are as well developed as in teleosts or other vertebrates, aiding them in fundamental activities such as food retrieval, predator avoidance, mate choice and habitat selection.
Collapse
Affiliation(s)
- V Schluessel
- Institute of Zoology, Rheinische-Friedrich-Wilhelm Universität Bonn, Poppelsdorfer Schloss, Meckenheimer Allee 169, 53115, Bonn, Germany,
| |
Collapse
|
37
|
Coppola E, D'autréaux F, Nomaksteinsky M, Brunet JF. Phox2b expression in the taste centers of fish. J Comp Neurol 2013; 520:3633-49. [PMID: 22473338 DOI: 10.1002/cne.23117] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
The homeodomain transcription factor Phox2b controls the formation of the sensory-motor reflex circuits of the viscera in vertebrates. Among Phox2b-dependent structures characterized in rodents is the nucleus of the solitary tract, the first relay for visceral sensory input, including taste. Here we show that Phox2b is expressed throughout the primary taste centers of two cyprinid fish, Danio rerio and Carassius auratus, i.e., in their vagal, glossopharyngeal, and facial lobes, providing the first molecular evidence for their homology with the nucleus of the solitary tract of mammals and suggesting that a single ancestral Phox2b-positive neuronal type evolved to give rise to both fish and mammalian structures. In zebrafish larvae, the distribution of Phox2b²⁺ neurons, combined with the expression pattern of Olig4 (a homologue of Olig3, determinant of the nucleus of the solitary tract in mice), reveals that the superficial position and sheet-like architecture of the viscerosensory column in cyprinid fish, ideally suited for the somatotopic representation of oropharyngeal and bodily surfaces, arise by radial migration from a dorsal progenitor domain, in contrast to the tangential migration observed in amniotes.
Collapse
Affiliation(s)
- Eva Coppola
- École Normale Supérieure, Institut de Biologie de l'École Normale Supérieure, Paris F-75005, France
| | | | | | | |
Collapse
|
38
|
Giassi AC, Harvey-Girard E, Valsamis B, Maler L. Organization of the gymnotiform fish pallium in relation to learning and memory: I. Cytoarchitectonics and cellular morphology. J Comp Neurol 2012; 520:3314-37. [DOI: 10.1002/cne.23097] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
39
|
Nannini MA, Wahl DH, Philipp DP, Cooke SJ. The influence of selection for vulnerability to angling on foraging ecology in largemouth bass Micropterus salmoides. JOURNAL OF FISH BIOLOGY 2011; 79:1017-1028. [PMID: 21967587 DOI: 10.1111/j.1095-8649.2011.03079.x] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/31/2023]
Abstract
Several traits related to foraging behaviour were assessed in young-of-the-year produced from largemouth bass Micropterus salmoides that had been exposed to four generations of artificial selection for vulnerability to angling. As recreational angling may target foraging ability, this study tested the hypothesis that selection for vulnerability to angling would affect behaviours associated with foraging ecology and prey capture success. Fish selected for low vulnerability to angling captured more prey and attempted more captures than high vulnerability fish. The higher capture attempts, however, ultimately resulted in a lower capture success for low vulnerability fish. Low vulnerability fish also had higher prey rejection rates, marginally shorter reactive distance and were more efficient at converting prey consumed into growth than their high vulnerability counterparts. Selection due to recreational fishing has the potential to affect many aspects of the foraging ecology of the targeted population and highlights the importance of understanding evolutionary effects and how these need to be considered when managing populations.
Collapse
Affiliation(s)
- M A Nannini
- Sam Parr Biological Station, Illinois Natural History Survey, 6401 Meacham Rd, Kinmundy, IL 62854, USA.
| | | | | | | |
Collapse
|
40
|
Kato T, Yamada Y, Yamamoto N. General visceral and gustatory connections of the posterior thalamic nucleus of goldfish. J Comp Neurol 2011; 519:3102-23. [DOI: 10.1002/cne.22669] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
41
|
Abstract
The great number of species of teleosts permits highly specialized forms to evolve to occupy particular niches. This diversity allows for extreme variations in brain structure according to particular sensory or motor adaptations. In the case of the taste system, goldfish (Carassius auratus L., 1758) and some carps have evolved a specialized intraoral food-sorting apparatus along with corresponding specializations of gustatory centers in the brainstem. A comparison of circuitry within the complex vagal lobe of goldfish, and of the simpler gustatory lobes in catfish (Ictalurus punctatus Rafinesque, 1818) shows numerous similarities in organization and neurotransmitters. Double labeling studies using horseradish peroxidase and biotinylated dextran amine in catfish shows a direct projection from the vagal lobe to the motoneurons of nucleus ambiguous which innervate oropharyngeal musculature. Therefore, a three neuron reflex arc connects gustatory input to motor output. In the vagal lobe of goldfish, a similar three neuron arc can be identified: from primary gustatory afferent, to vagal lobe interneuron, thence to dendrites of the vagal motoneurons that innervate the pharyngeal muscles. Therefore, despite large differences in the gross appearance of the vagal gustatory systems in the brains of catfish and goldfish, the essential connectivity and circuitry is similar. This suggests that evolutionary change in the central nervous system largely proceeds by rearrangement and elaboration of existing systems, rather than by addition of new structures or circuits.
Collapse
Affiliation(s)
- Thomas E Finger
- Department of Cell and Developmental Biology, University of Colorado Denver, Aurora, CO, USA.
| |
Collapse
|
42
|
Ikenaga T, Ogura T, Finger TE. Vagal gustatory reflex circuits for intraoral food sorting behavior in the goldfish: cellular organization and neurotransmitters. J Comp Neurol 2009; 516:213-25. [PMID: 19598285 DOI: 10.1002/cne.22097] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
The sense of taste is crucial in an animal's determination as to what is edible and what is not. This gustatory function is especially important in goldfish, who utilize a sophisticated oropharyngeal sorting mechanism to separate food from substrate material. The computational aspects of this detection are carried out by the medullary vagal lobe, which is a large, laminated structure combining elements of both the gustatory nucleus of the solitary tract and the nucleus ambiguus. The sensory layers of the vagal lobe are coupled to the motor layers via a simple reflex arc. Details of this reflex circuit were investigated with histology and calcium imaging. Biocytin injections into the motor layer labeled vagal reflex interneurons that have radially directed dendrites ramifying within the layers of primary afferent terminals. Axons of reflex interneurons extend radially inward to terminate onto both vagal motoneurons and small, GABAergic interneurons in the motor layer. Functional imaging shows increases in intracellular Ca++ of vagal motoneurons following electrical stimulation in the sensory layer. These responses were suppressed under Ca(++)-free conditions and by interruption of the axons bridging between the sensory and motor layers. Pharmacological experiments showed that glutamate acting via (+/-)-alpha-amino-3-hydroxy- 5-ethylisoxazole-4-propioinc acid (AMPA)/kainate and N-methyl-D-aspartic acid (NMDA) receptors mediate neurotransmission between reflex interneurons and vagal motoneurons. Thus, the vagal gustatory portion of the viscerosensory complex is linked to branchiomotor neurons of the pharynx via a glutamatergic interneuronal system.
Collapse
Affiliation(s)
- Takanori Ikenaga
- Rocky Mountain Taste & Smell Center, Department of Cell and Developmental Biology, University of Colorado Denver School of Medicine, Aurora, Colorado 80045, USA
| | | | | |
Collapse
|
43
|
Hallock RM, Martyniuk CJ, Finger TE. Group III metabotropic glutamate receptors (mGluRs) modulate transmission of gustatory inputs in the brain stem. J Neurophysiol 2009; 102:192-202. [PMID: 19369363 DOI: 10.1152/jn.00135.2009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
Glutamate is the principal neurotransmitter at the primary sensory afferent synapse in the medulla for the taste system. At this synapse, glutamate activates N-methyl-D-aspartate (NMDA) and non-NMDA (alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid [AMPA] and kainate) ionotropic receptors to effect a response in the second-order neurons. The current experiment is the first to examine the role of metabotropic glutamate receptors (mGluRs) in the transmission of taste information. In an in vitro slice preparation of the primary vagal gustatory nucleus in goldfish, primary gustatory afferent fibers were stimulated electrically, whereas evoked dendritic field potentials were recorded in the sensory layers. Recordings were made before, during, and after bath application of mGluR agonists for various mGluR groups and subtypes. Whereas L-AP4, a group III agonist, reduced the field potential, group I and group II agonists had no effect. Furthermore, the selective mGluR4 agonist ACPT-III and mGluR8 agonist PPG were effective at reducing the field potential, whereas agonists selective for mGluR6 and 7 were not. MAP4, a group III mGluR antagonist, attenuated frequency-dependent depression, indicating that endogenous glutamate binds to presynaptic mGluRs under normal conditions. Furthermore, polymerase chain reaction showed that mRNA for mGluR4 and 8 is expressed in the vagal ganglia, a prerequisite if those receptors are expressed presynaptically in the vagal lobe. Collectively, these experiments indicate that mGluR4 and 8 are presynaptic at the primary gustatory afferent synapse and that their activation inhibits glutamatergic release.
Collapse
Affiliation(s)
- Robert M Hallock
- Rocky Mountain Taste and Smell Center, Department of Cell and Developmental Biology, Room L18-11403-G, RC-1, 12801 E. 17th Ave., MS 8108, P.O. Box 6511, Aurora, CO 80045-6511, USA.
| | | | | |
Collapse
|
44
|
Døving KB, Sandvig K, Kasumyan A. Ligand-specific induction of endocytosis in taste receptor cells. J Exp Biol 2009; 212:42-9. [DOI: 10.1242/jeb.025700] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022]
Abstract
SUMMARYWe demonstrate a ligand-specific induction of endocytosis in cells of juvenile brown trout taste buds. The process is fast, massive and selective,as only a few cells in each taste buds are stained by exposure of the oral cavity to the taste stimulant l-cysteine together with a dye at 20°C. Low temperature (+2°C) and disruption of microtubules with nocodazole caused a substantial reduction in the number of taste cells stained, indicating endocytic uptake of dye and transport towards the cell soma in vesicles. As endocytosis is evoked by the presence of ligands, it is most likely that the stained cells are the so-called receptor cells, which have taste receptors and the molecular machinery for downstream processing. The number of stained taste cells and taste buds containing stained taste cells increased with the concentration of l-cysteine. Control experiments with different dyes revealed great variability in the ability to induce staining on their own. In particular, Texas Red dextran was efficient and stained many cells within each taste bud. Behavioural experiments demonstrated that Texas Red dextran is a deterrent taste substance for brown trout. In fish first exposed to the stimulant l-cysteine plus a dye and subsequently to a deterrent, either Texas Red, or glycine, the majority of stained cells were found in separate taste receptor cells, indicating that the majority of taste receptors for stimulants and deterrents are expressed in separate taste buds. These results also strengthen the assumption that the stained cells take part in the initiation of taste processes that are related to perception. The functional implication of the induced endocytosis is discussed.
Collapse
Affiliation(s)
- Kjell B. Døving
- Physiology Program, Department of Molecular Bioscience, PO Box 1041,University of Oslo, 0316 Oslo, Norway
| | - Kirsten Sandvig
- Centre for Cancer Biomedicine, University of Oslo and Department of Biochemistry, Institute for Cancer Research, Norwegian Radium Hospital,Rikshospitalet University Hospital, Montebello, 0310 Oslo, Norway
| | - Alexander Kasumyan
- Department of Ichthyology, Faculty of Biology, Moscow State University,119991, Moscow, Russia
| |
Collapse
|
45
|
Derby CD, Sorensen PW. Neural processing, perception, and behavioral responses to natural chemical stimuli by fish and crustaceans. J Chem Ecol 2008; 34:898-914. [PMID: 18521679 DOI: 10.1007/s10886-008-9489-0] [Citation(s) in RCA: 98] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2008] [Revised: 04/22/2008] [Accepted: 04/28/2008] [Indexed: 12/19/2022]
Abstract
This manuscript reviews the chemical ecology of two of the major aquatic animal models, fish and crustaceans, in the study of chemoreception. By necessity, it is restricted in scope, with most emphasis placed on teleost fish and decapod crustaceans. First, we describe the nature of the chemical world perceived by fish and crustaceans, giving examples of the abilities of these animals to analyze complex natural odors. Fish and crustaceans share the same environments and have evolved some similar chemosensory features: the ability to detect and discern mixtures of small metabolites in highly variable backgrounds and to use this information to identify food, mates, predators, and habitat. Next, we give examples of the molecular nature of some of these natural products, including a description of methodologies used to identify them. Both fish and crustaceans use their olfactory and gustatory systems to detect amino acids, amines, and nucleotides, among many other compounds, while fish olfactory systems also detect mixtures of sex steroids and prostaglandins with high specificity and sensitivity. Third, we discuss the importance of plasticity in chemical sensing by fish and crustaceans. Finally, we conclude with a description of how natural chemical stimuli are processed by chemosensory systems. In both fishes and crustaceans, the olfactory system is especially adept at mixture discrimination, while gustation is well suited to facilitate precise localization and ingestion of food. The behaviors of both fish and crustaceans can be defined by the chemical worlds in which they live and the abilities of their nervous systems to detect and identify specific features in their domains. An understanding of these worlds and the sensory systems that provide the animals with information about them provides insight into the chemical ecology of these species.
Collapse
Affiliation(s)
- Charles D Derby
- Center for Behavioral Neuroscience, Department of Biology, Georgia State University, Atlanta, GA, USA.
| | | |
Collapse
|