1
|
Pasca L, Quaranta CA, Grumi S, Zanaboni MP, Tagliabue A, Guglielmetti M, Vitali H, Capriglia E, Varesio C, Toni F, Nobili L, Terzaghi M, De Giorgis V. The effects of ketogenic dietary therapies on sleep: A scoping review. J Sleep Res 2024; 33:e14073. [PMID: 37932966 DOI: 10.1111/jsr.14073] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Revised: 09/29/2023] [Accepted: 10/04/2023] [Indexed: 11/08/2023]
Abstract
Sleep problems are common in neurological conditions for which ketogenic dietary therapies (KDTs) are recognised as an effective intervention (drug-resistant epilepsy, autism spectrum disorder, and migraine). Given the composite framework of action of ketogenic dietary therapies, the prevalence of sleep disturbance, and the importance of sleep regulation, the present scoping review aimed at identifying and mapping available evidence of the effects of ketogenic dietary therapies on sleep. A comprehensive web-based literature search was performed retrieving publications published to June 2023 using PubMed and Scopus, yielding to 277 records. Twenty papers were finally selected and included in the review. Data were abstracted by independent coders. High variability was identified in study design and sleep outcome evaluation among the selected studies. Several changes in sleep quality and sleep structure under ketogenic dietary therapies were found, namely an improvement of overall sleep quality, improvement in the difficulty falling asleep and nighttime awakenings, improvement in daytime sleepiness and an increase of REM sleep. The relevance and possible physiological explanations of these changes, clinical recommendations, and future directions in the field are discussed.
Collapse
Affiliation(s)
- Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Carlo Alberto Quaranta
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | | | - Anna Tagliabue
- Human Nutrition and Eating Disorder Research Centre, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Centre, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Helene Vitali
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy
| | - Elena Capriglia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Costanza Varesio
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Federico Toni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Lino Nobili
- Department of Neuroscience, Rehabilitation, Ophthalmology, Genetics, Child and Maternal Health, University of Genova, Genova, Italy
- Child Neuropsychiatry Unit, IRCCS Istituto Giannina Gaslini, Genova, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
- Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| |
Collapse
|
2
|
van Rosmalen L, Deota S, Maier G, Le HD, Lin T, Ramasamy RK, Hut RA, Panda S. Energy balance drives diurnal and nocturnal brain transcriptome rhythms. Cell Rep 2024; 43:113951. [PMID: 38508192 PMCID: PMC11330649 DOI: 10.1016/j.celrep.2024.113951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2023] [Revised: 01/30/2024] [Accepted: 02/26/2024] [Indexed: 03/22/2024] Open
Abstract
Plasticity in daily timing of activity has been observed in many species, yet the underlying mechanisms driving nocturnality and diurnality are unknown. By regulating how much wheel-running activity will be rewarded with a food pellet, we can manipulate energy balance and switch mice to be nocturnal or diurnal. Here, we present the rhythmic transcriptome of 21 tissues, including 17 brain regions, sampled every 4 h over a 24-h period from nocturnal and diurnal male CBA/CaJ mice. Rhythmic gene expression across tissues comprised different sets of genes with minimal overlap between nocturnal and diurnal mice. We show that non-clock genes in the suprachiasmatic nucleus (SCN) change, and the habenula was most affected. Our results indicate that adaptive flexibility in daily timing of behavior is supported by gene expression dynamics in many tissues and brain regions, especially in the habenula, which suggests a crucial role for the observed nocturnal-diurnal switch.
Collapse
Affiliation(s)
- Laura van Rosmalen
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Shaunak Deota
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Geraldine Maier
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Hiep D Le
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Terry Lin
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Ramesh K Ramasamy
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA
| | - Roelof A Hut
- Chronobiology Unit, Groningen Institute for Evolutionary Life Sciences, University of Groningen, 9700 CC Groningen, the Netherlands.
| | - Satchidananda Panda
- Regulatory Biology Laboratory, The Salk Institute for Biological Studies, 10010 North Torrey Pines Road, La Jolla, CA 92037, USA.
| |
Collapse
|
3
|
Engin A. Misalignment of Circadian Rhythms in Diet-Induced Obesity. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2024; 1460:27-71. [PMID: 39287848 DOI: 10.1007/978-3-031-63657-8_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/19/2024]
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronize them with daily cycles. While the central clock in the suprachiasmatic nucleus (SCN) is mainly synchronized by the light/dark cycles, the peripheral clocks react to other stimuli, including the feeding/fasting state, nutrients, sleep-wake cycles, and physical activity. During the disruption of circadian rhythms due to genetic mutations or social and occupational obligations, incorrect arrangement between the internal clock system and environmental rhythms leads to the development of obesity. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition leads to uncoupling of the peripheral clocks from the central pacemaker and to the development of metabolic disorders. The strong coupling of the SCN to the light-dark cycle creates a situation of misalignment when food is ingested during the "wrong" time of day. Food-anticipatory activity is mediated by a self-sustained circadian timing, and its principal component is a food-entrainable oscillator. Modifying the time of feeding alone greatly affects body weight, whereas ketogenic diet (KD) influences circadian biology, through the modulation of clock gene expression. Night-eating behavior is one of the causes of circadian disruption, and night eaters have compulsive and uncontrolled eating with severe obesity. By contrast, time-restricted eating (TRE) restores circadian rhythms through maintaining an appropriate daily rhythm of the eating-fasting cycle. The hypothalamus has a crucial role in the regulation of energy balance rather than food intake. While circadian locomotor output cycles kaput (CLOCK) expression levels increase with high-fat diet-induced obesity, peroxisome proliferator-activated receptor-alpha (PPARα) increases the transcriptional level of brain and muscle aryl hydrocarbon receptor nuclear translocator (ARNT)-like 1 (BMAL1) in obese subjects. In this context, effective timing of chronotherapies aiming to correct SCN-driven rhythms depends on an accurate assessment of the SCN phase. In fact, in a multi-oscillator system, local rhythmicity and its disruption reflects the disruption of either local clocks or central clocks, thus imposing rhythmicity on those local tissues, whereas misalignment of peripheral oscillators is due to exosome-based intercellular communication.Consequently, disruption of clock genes results in dyslipidemia, insulin resistance, and obesity, while light exposure during the daytime, food intake during the daytime, and sleeping during the biological night promote circadian alignment between the central and peripheral clocks. Thus, shift work is associated with an increased risk of obesity, diabetes, and cardiovascular diseases because of unusual eating times as well as unusual light exposure and disruption of the circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
4
|
Pasca L, Toni F, Fassio F, Dogliani S, Genta S, Grumi S, Sammartano A, Vitali H, Capriglia E, Tagliabue A, Guglielmetti M, De Giorgis V, Carpani A, Terzaghi M. Sleep effects of Ketogenic diet in pediatric patients with migraine: Preliminary data of a prospective study. Sleep Med 2024; 113:238-241. [PMID: 38064795 DOI: 10.1016/j.sleep.2023.11.1132] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/30/2023] [Revised: 11/28/2023] [Accepted: 11/30/2023] [Indexed: 01/07/2024]
Abstract
OBJECTIVE/BACKGROUND Ketogenic dietary therapies' effects on sleep have been poorly investigated up to date. Preliminary results of a prospective study aimed at evaluating possible sleep changes in pediatric patients with migraine treated with classic ketogenic diet are presented. PATIENTS/METHODS Included patients were aged 14-18 years and had a diagnosis of chronic migraine. A customized classic ketogenic diet was drawn up for all patients and all participants underwent neurological, nutritional and subjective and objective sleep assessment at baseline and after three months of follow-up (standardized sleep questionnaires, polysomnography, actigraphy). RESULTS The majority of patients reported an improvement in migraine symptoms and quality of life. As far as sleep effects, a possible sleep stabilization was evidenced according to actigraphic data, and polysomnographic data showed a slight increase in total sleep time and sleep efficiency together with a reduction in waking time during night and a trend of NREM stage 1 decrease and REM increase. CONCLUSIONS Future analyses on a broader population are needed to shed light on the ketogenic dietary therapies' effects on sleep and future research should be devoted to identify influence of possible individual and diet characteristics, and biochemical related changes.
Collapse
Affiliation(s)
- Ludovica Pasca
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy.
| | - Federico Toni
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Federico Fassio
- Department of Public Health, Experimental and Forensic Medicine, Section of Biostatistics and Clinical Epidemiology, University of Pavia, Pavia, Italy
| | - Sara Dogliani
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Simona Genta
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Serena Grumi
- Developmental Psychobiology Lab, IRCCS Mondino Foundation, Pavia, Italy
| | - Alessia Sammartano
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Helene Vitali
- U-VIP: Unit for Visually Impaired People, Istituto Italiano di Tecnologia, Genova, Italy; DIBRIS Department, University of Genova, Italy
| | - Elena Capriglia
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| | - Anna Tagliabue
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Monica Guglielmetti
- Human Nutrition and Eating Disorder Research Center, Department of Public Health, Experimental and Forensic Medicine, University of Pavia, Pavia, Italy
| | - Valentina De Giorgis
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy; Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy
| | - Adriana Carpani
- Department of Child Neurology and Psychiatry, IRCCS Mondino Foundation, Pavia, Italy
| | - Michele Terzaghi
- Department of Brain and Behavioral Sciences, University of Pavia, Pavia, Italy; Unit of Sleep Medicine and Epilepsy, IRCCS Mondino Foundation, Pavia, Italy
| |
Collapse
|
5
|
Kuriyama T, Murata Y, Ohtani R, Yahara R, Nakashima S, Mori M, Ohe K, Mine K, Enjoji M. Modified activity-based anorexia paradigm dampens chronic food restriction-induced hyperadiponectinemia in adolescent female mice. PLoS One 2023; 18:e0289020. [PMID: 37478069 PMCID: PMC10361472 DOI: 10.1371/journal.pone.0289020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Accepted: 07/09/2023] [Indexed: 07/23/2023] Open
Abstract
Anorexia nervosa (AN) is a chronic, life-threatening disease with mental and physical components that include excessive weight loss, persistent food restriction, and altered body image. It is sometimes accompanied by hyperactivity, day-night reversal, and amenorrhea. No medications have been approved specific to the treatment of AN, partially due to its unclear etiopathogenesis. Because adiponectin is an appetite-regulating cytokine released by adipose tissue, we hypothesized that it could be useful as a specific biomarker that reflects the disease state of AN, so we developed a modified AN mouse model to test this hypothesis. Twenty-eight 3-week-old female C57BL/6J mice were randomly assigned to the following groups: 1) no intervention; 2) running wheel access; 3) food restriction (FR); and 4) activity-based anorexia (ABA) that included running wheel access plus FR. After a 10-day cage adaptation period, the mice of the FR and ABA groups were given 40% of their baseline food intake until 30% weight reduction (acute FR), then the body weight was maintained for 2.5 weeks (chronic FR). Running wheel activity and the incidence of the estrous cycle were assessed. Spontaneous food restriction and the plasma adiponectin level were evaluated at the end of the acute and chronic FR phases. An increase in running wheel activity was found in the light phase, and amenorrhea was found solely in the ABA group, which indicates that this is a good model of AN. This group showed a slight decrease in spontaneous food intake accompanied with an attenuated level of normally induced plasma adiponectin at the end of the chronic FR phase. These results indicate that the plasma adiponectin level may be a useful candidate biomarker for the status or stage of AN.
Collapse
Affiliation(s)
- Toru Kuriyama
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Yusuke Murata
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Reika Ohtani
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Rei Yahara
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Soichiro Nakashima
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Masayoshi Mori
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kenji Ohe
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| | - Kazunori Mine
- Faculty of Neurology and Psychiatry, BOOCS Clinic Fukuoka, Fukuoka, Japan
| | - Munechika Enjoji
- Department of Pharmacotherapeutics, Faculty of Pharmaceutical Sciences, Fukuoka University, Fukuoka, Japan
| |
Collapse
|
6
|
Zhuang H, Fujikura Y, Ohkura N, Higo-Yamamoto S, Mishima T, Oishi K. A ketogenic diet containing medium-chain triglycerides reduces REM sleep duration without significant influence on mouse circadian phenotypes. Food Res Int 2023; 169:112852. [PMID: 37254426 DOI: 10.1016/j.foodres.2023.112852] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2022] [Revised: 04/12/2023] [Accepted: 04/14/2023] [Indexed: 06/01/2023]
Abstract
Ketogenic diets (KDs) affect the circadian rhythms of behavior and clock gene expression in experimental animals. However, these diets were designed to simulate a fasting state; thus, whether these effects are caused by diet-induced ketogenesis or persistent starvation is difficult to distinguish. The present study aimed to define the effects of a KD containing medium-chain triglycerides (MCT-KD) that increase blood ketone levels without inducing carbohydrate starvation, on circadian rhythms and sleep regulation. Mice were fed with a normal diet (CTRL) or MCT-KD for 2 weeks. Blood β-hydroxybutyrate levels were significantly increased up to 2 mM by the MCT-KD, whereas body weight gain and blood glucose levels were identical between the groups, suggesting that ketosis accumulated without carbohydrate starvation in the MCT-KD mice. Circadian rhythms of wheel-running activity and core body temperature were almost identical, although wheel-running was slightly reduced in the MCT-KD mice. The circadian expression of the core clock genes, Per1, Per2, Bmal1, and Dbp in the hypothalamus, heart, liver, epididymal adipose tissues, and skeletal muscle were almost identical between the CTRL and MCT-KD mice, whereas the amplitude of hepatic Per2 and adipose Per1 expression was increased in MCT-KD mice. The MCT-KD reduced the duration of rapid-eye-movement (REM) sleep without affecting the duration of non-REM sleep and the duration of wakefulness. These findings suggested that the impact of ketone bodies on circadian systems are limited, although they might reduce locomotor activity and REM sleep duration.
Collapse
Affiliation(s)
- Haotong Zhuang
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan
| | - Yuri Fujikura
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Naoki Ohkura
- Laboratory of Host Defense, School of Pharma-Sciences, Teikyo University, Itabashi, Tokyo, Japan
| | - Sayaka Higo-Yamamoto
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan
| | - Taiga Mishima
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Life Science and Applied Chemistry, Nagoya Institute of Technology, Nagoya, Japan
| | - Katsutaka Oishi
- Healthy Food Science Research Group, Cellular and Molecular Biotechnology Research Institute, National Institute of Advanced Industrial Science and Technology (AIST), Tsukuba, Ibaraki, Japan; Department of Computational Biology and Medical Sciences, Graduate School of Frontier Sciences, The University of Tokyo, Kashiwa, Chiba, Japan; Department of Applied Biological Science, Graduate School of Science and Technology, Tokyo University of Science, Noda, Chiba, Japan; School of Integrative and Global Majors (SIGMA), University of Tsukuba, Tsukuba, Ibaraki, Japan.
| |
Collapse
|
7
|
Grosjean E, Simonneaux V, Challet E. Reciprocal Interactions between Circadian Clocks, Food Intake, and Energy Metabolism. BIOLOGY 2023; 12:biology12040539. [PMID: 37106739 PMCID: PMC10136292 DOI: 10.3390/biology12040539] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2023] [Revised: 03/28/2023] [Accepted: 03/30/2023] [Indexed: 04/05/2023]
Abstract
Like other biological functions, food intake and energy metabolism display daily rhythms controlled by the circadian timing system that comprises a main circadian clock and numerous secondary clocks in the brain and peripheral tissues. Each secondary circadian clock delivers local temporal cues based on intracellular transcriptional and translational feedback loops that are tightly interconnected to intracellular nutrient-sensing pathways. Genetic impairment of molecular clocks and alteration in the rhythmic synchronizing cues, such as ambient light at night or mistimed meals, lead to circadian disruption that, in turn, negatively impacts metabolic health. Not all circadian clocks are sensitive to the same synchronizing signals. The master clock in the suprachiasmatic nuclei of the hypothalamus is mostly synchronized by ambient light and, to a lesser extent, by behavioral cues coupled to arousal and exercise. Secondary clocks are generally phase-shifted by timed metabolic cues associated with feeding, exercise, and changes in temperature. Furthermore, both the master and secondary clocks are modulated by calorie restriction and high-fat feeding. Taking into account the regularity of daily meals, the duration of eating periods, chronotype, and sex, chrononutritional strategies may be useful for improving the robustness of daily rhythmicity and maintaining or even restoring the appropriate energy balance.
Collapse
Affiliation(s)
- Emma Grosjean
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Valérie Simonneaux
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| | - Etienne Challet
- Institute of Cellular and Integrative Neurosciences, CNRS UPR3212, University of Strasbourg, 67000 Strasbourg, France
| |
Collapse
|
8
|
Feeding Behavior of Finishing Pigs under Diurnal Cyclic Heat Stress. Animals (Basel) 2023; 13:ani13050908. [PMID: 36899763 PMCID: PMC10000165 DOI: 10.3390/ani13050908] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2023] [Revised: 02/23/2023] [Accepted: 02/24/2023] [Indexed: 03/06/2023] Open
Abstract
The impact of cyclic heat stress (CHS) and turning the lights on and off on pig feeding behavior (FB) was investigated. The FB of 90 gilts was recorded in real-time under two ambient temperatures (AT): thermoneutrality (TN, 22 °C) or CHS (22/35 °C). The day was divided into four periods: PI (06-08 h); PII (08-18 h); PIII (18-20 h); and PIV (20-06 h). Automatic and Intelligent Precision Feeders recorded each feed event for each pig. An estimated meal criterion (49 min) was used to calculate the FB variables. Feed behavior in both ATs followed a circadian pattern. The CHS reduced the feed intake by 6.9%. The pigs prioritized feed intake during the coolest hours of the day; however, nocturnal cooling did not allow the pigs to compensate for the reduced meal size due to CHS. The highest meal size and most of the meals were observed during the lighting-on period. The pigs reduced their interval between meals during PII and PIII. The lighting program increased the meal size when the lights were switched on and reduced the meal size when the lights were switched off. Thus, the dynamics of the FB were largely influenced by AT, whereas the meal size was affected by the lighting program.
Collapse
|
9
|
Kim MH, Park J, Han DH, Noh JY, Ji ES, Lee SH, Kim CJ, Cho S. Alternating mealtimes during pregnancy and weaning triggers behavioral changes in adult offspring. Reproduction 2023; 165:135-146. [PMID: 36322471 DOI: 10.1530/rep-22-0164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2022] [Accepted: 11/02/2022] [Indexed: 11/09/2022]
Abstract
In brief Mealtime changes in pregnant mice revealed impaired neurobehavioral development in mouse offspring. This study is the basis for investigating diseases associated with neurobehavioral development of adult offspring of pregnant shift-working women. Abstract Most organisms on Earth have a biological clock, and their physiological processes are regulated by a 1-day cycle. In modern society, several factors can disturb these biological clocks in humans; in particular, individuals working in shifts are exposed to stark environmental changes that interfere with their biological clock. They have a high risk of various diseases. However, there are scarce experimental approaches to address the reproductive and health consequences of shift work in the offspring of exposed individuals. In this study, considering the fact that shift workers usually have their meals during their adjusted working time, we aimed to examine the effects of a 12-h shift with usual mealtime as a plausible night work model on the neurobehavioral development of adult mouse offspring. In these offspring, early exposure to this mealtime shift differentially affected circadian rhythmic variables and total locomotor activity depending on the timing and duration of restrictive feeding. Moreover, neurobehavioral alterations such as declined short-term memory and depressive-like behavior were observed in adulthood. These results have implications for the health concerns of shift-working women and their children.
Collapse
Affiliation(s)
- Mi-Hee Kim
- Department of Neuroscience, Graduate school, Kyung Hee University, Seoul, Korea
| | - Jihyun Park
- Department of Neuroscience, Graduate school, Kyung Hee University, Seoul, Korea
| | - Dong-Hee Han
- Department of Neuroscience, Graduate school, Kyung Hee University, Seoul, Korea
| | - Jong-Yun Noh
- Department of Neuroscience, Graduate school, Kyung Hee University, Seoul, Korea
| | - Eun-Sang Ji
- Department of Sport & Health Science, College of Natural Science, Sangmyung University, Seoul, Korea
| | - Sung-Ho Lee
- Department of Life Science, Sangmyung University, Seoul, Korea
| | - Chang-Ju Kim
- Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| | - Sehyung Cho
- Department of Neuroscience, Graduate school, Kyung Hee University, Seoul, Korea.,Department of Physiology, Kyung Hee University School of Medicine, Seoul, Korea
| |
Collapse
|
10
|
Inyushkin AN, Mistryugov KA, Ledyaeva OV, Romanova ID, Isakova TS, Inyushkin AA. The Effects of Insulin on Spike Activity of the Suprachiasmatic Nucleus Neurones and Functional State of Afferent Inputs from the Arcuate Nucleus in Rats. J EVOL BIOCHEM PHYS+ 2023. [DOI: 10.1134/s0022093023010210] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2023]
|
11
|
Gabloffsky T, Gill S, Staffeld A, Salomon R, Power Guerra N, Joost S, Hawlitschka A, Kipp M, Frintrop L. Food Restriction in Mice Induces Food-Anticipatory Activity and Circadian-Rhythm-Related Activity Changes. Nutrients 2022; 14:5252. [PMID: 36558413 PMCID: PMC9782400 DOI: 10.3390/nu14245252] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 12/05/2022] [Accepted: 12/06/2022] [Indexed: 12/13/2022] Open
Abstract
Anorexia nervosa (AN) is characterized by emaciation, hyperactivity, and amenorrhea. To what extent AN-related symptoms are due to food restriction or neuronal dysfunction is currently unknown. Thus, we investigated the relevance of food restriction on AN-related symptoms. Disrupted circadian rhythms are hypothesized to contribute to the pathophysiology of AN. Starvation was induced by restricting food access in early adolescent or adolescent mice to 40% of their baseline food intake until a 20% weight reduction was reached (acute starvation). To mimic chronic starvation, the reduced weight was maintained for a further 2 weeks. Locomotor activity was analyzed using running wheel sensors. The circadian-rhythm-related activity was measured using the tracking system Goblotrop. Amenorrhea was determined by histological examination of vaginal smears. All cohorts showed an increase in locomotor activity up to 4 h before food presentation (food-anticipatory activity, FAA). While amenorrhea was present in all groups except in early adolescent acutely starved mice, hyperactivity was exclusively found in chronically starved groups. Adolescent chronically starved mice showed a decrease in circadian-rhythm-related activity at night. Chronic starvation most closely mimics AN-related behavioral changes. It appears that the FAA is a direct consequence of starvation. The circadian activity changes might underlie the pathophysiology of AN.
Collapse
Affiliation(s)
- Theo Gabloffsky
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, 18119 Rostock, Germany
| | - Sadaf Gill
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Anna Staffeld
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Ralf Salomon
- Institute of Applied Microelectronics and Computer Engineering, Faculty of Computer Science and Electrical Engineering, University of Rostock, 18119 Rostock, Germany
| | - Nicole Power Guerra
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Sarah Joost
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | | | - Markus Kipp
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| | - Linda Frintrop
- Institute of Anatomy, Rostock University Medical Center, 18057 Rostock, Germany
| |
Collapse
|
12
|
Chan K, Wong FS, Pearson JA. Circadian rhythms and pancreas physiology: A review. Front Endocrinol (Lausanne) 2022; 13:920261. [PMID: 36034454 PMCID: PMC9399605 DOI: 10.3389/fendo.2022.920261] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/14/2022] [Accepted: 07/21/2022] [Indexed: 11/29/2022] Open
Abstract
Type 2 diabetes mellitus, obesity and metabolic syndrome are becoming more prevalent worldwide and will present an increasingly challenging burden on healthcare systems. These interlinked metabolic abnormalities predispose affected individuals to a plethora of complications and comorbidities. Furthermore, diabetes is estimated by the World Health Organization to have caused 1.5 million deaths in 2019, with this figure projected to rise in coming years. This highlights the need for further research into the management of metabolic diseases and their complications. Studies on circadian rhythms, referring to physiological and behavioral changes which repeat approximately every 24 hours, may provide important insight into managing metabolic disease. Epidemiological studies show that populations who are at risk of circadian disruption such as night shift workers and regular long-haul flyers are also at an elevated risk of metabolic abnormalities such as insulin resistance and obesity. Aberrant expression of circadian genes appears to contribute to the dysregulation of metabolic functions such as insulin secretion, glucose homeostasis and energy expenditure. The potential clinical implications of these findings have been highlighted in animal studies and pilot studies in humans giving rise to the development of circadian interventions strategies including chronotherapy (time-specific therapy), time-restricted feeding, and circadian molecule stabilizers/analogues. Research into these areas will provide insights into the future of circadian medicine in metabolic diseases. In this review, we discuss the physiology of metabolism and the role of circadian timing in regulating these metabolic functions. Also, we review the clinical aspects of circadian physiology and the impact that ongoing and future research may have on the management of metabolic disease.
Collapse
Affiliation(s)
- Karl Chan
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - F. Susan Wong
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
- Systems Immunity Research Institute, School of Medicine, Cardiff University, Cardiff, United Kingdom
| | - James Alexander Pearson
- Diabetes Research Group, Division of Infection and Immunity, School of Medicine, Cardiff University, Cardiff, United Kingdom
| |
Collapse
|
13
|
Ramirez-Plascencia OD, Saderi N, Cárdenas Romero S, Flores Sandoval O, Báez-Ruiz A, Martínez Barajas H, Salgado-Delgado R. Temporal dysregulation of hypothalamic integrative and metabolic nuclei in rats fed during the rest phase. Chronobiol Int 2022; 39:374-385. [PMID: 34906015 DOI: 10.1080/07420528.2021.2002352] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Temporal coordination of organisms according to the daytime allows a better performance of physiological processes. However, modern lifestyle habits, such as food intake during the rest phase, promote internal desynchronization and compromise homeostasis and health. The hypothalamic suprachiasmatic nucleus (SCN) synchronizes body physiology and behavior with the environmental light-dark cycle by transmitting time information to several integrative hypothalamic nuclei, such as the paraventricular nucleus (PVN), dorsomedial hypothalamic nucleus (DMH) and median preoptic area (MnPO). The SCN receives metabolic information mainly via Neuropeptide Y (NPY) inputs from the intergeniculate nucleus of the thalamus (IGL). Nowadays, there is no evidence of the response of the PVN, DMH and MnPO when the animals are subjected to internal desynchronization by restricting food access to the rest phase of the day. To explore this issue, we compared the circadian activity of the SCN, PVN, DMH and MnPO. In addition, we analyzed the daily activity of the satiety centers of the brainstem, the nucleus of the tractus solitarius (NTS) and area postrema (AP), which send metabolic information to the SCN, directly or via the thalamic intergeniculate leaflet (IGL). For that, male Wistar rats were assigned to three meal protocols: fed during the rest phase (Day Fed); fed during the active phase (Night Fed); free access to food (ad libitum). After 21 d, the daily activity patterns of these nuclei were analyzed by c-Fos immunohistochemistry, as well as NPY immunohistochemistry, in the SCN. The results show that eating during the rest period produces a phase advance in the activity of the SCN, changes the daily activity pattern in the MnPO, NTS and AP and flattens the c-Fos rhythm in the PVN and DMH. Altogether, these results validate previous observations of circadian dysregulation that occurs within the central nervous system when meals are consumed during the rest phase, a behavior that is involved in the metabolic alterations described in the literature.
Collapse
Affiliation(s)
- Oscar D Ramirez-Plascencia
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico.,Department of Neurology, Beth Israel Deaconess Medical Center and Harvard Medical School, Boston, Massachusetts, USA
| | - Nadia Saderi
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | - Omar Flores Sandoval
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | - Adrián Báez-Ruiz
- Facultad de Ciencias, Universidad Autónoma de San Luis Potosí, San Luis Potosí, Mexico
| | | | | |
Collapse
|
14
|
Tacad DKM, Tovar AP, Richardson CE, Horn WF, Keim NL, Krishnan GP, Krishnan S. Satiety Associated with Calorie Restriction and Time-Restricted Feeding: Central Neuroendocrine Integration. Adv Nutr 2022; 13:758-791. [PMID: 35134815 PMCID: PMC9156369 DOI: 10.1093/advances/nmac011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/12/2021] [Revised: 12/08/2021] [Accepted: 02/02/2022] [Indexed: 02/06/2023] Open
Abstract
This review focuses on summarizing current knowledge on how time-restricted feeding (TRF) and continuous caloric restriction (CR) affect central neuroendocrine systems involved in regulating satiety. Several interconnected regions of the hypothalamus, brainstem, and cortical areas of the brain are involved in the regulation of satiety. Following CR and TRF, the increase in hunger and reduction in satiety signals of the melanocortin system [neuropeptide Y (NPY), proopiomelanocortin (POMC), and agouti-related peptide (AgRP)] appear similar between CR and TRF protocols, as do the dopaminergic responses in the mesocorticolimbic circuit. However, ghrelin and leptin signaling via the melanocortin system appears to improve energy balance signals and reduce hyperphagia following TRF, which has not been reported in CR. In addition to satiety systems, CR and TRF also influence circadian rhythms. CR influences the suprachiasmatic nucleus (SCN) or the primary circadian clock as seen by increased clock gene expression. In contrast, TRF appears to affect both the SCN and the peripheral clocks, as seen by phasic changes in the non-SCN (potentially the elusive food entrainable oscillator) and metabolic clocks. The peripheral clocks are influenced by the primary circadian clock but are also entrained by food timing, sleep timing, and other lifestyle parameters, which can supersede the metabolic processes that are regulated by the primary circadian clock. Taken together, TRF influences hunger/satiety, energy balance systems, and circadian rhythms, suggesting a role for adherence to CR in the long run if implemented using the TRF approach. However, these suggestions are based on only a few studies, and future investigations that use standardized protocols for the evaluation of the effect of these diet patterns (time, duration, meal composition, sufficiently powered) are necessary to verify these preliminary observations.
Collapse
Affiliation(s)
- Debra K M Tacad
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Ashley P Tovar
- Department of Nutrition, University of California, Davis, Davis, CA, USA
| | | | - William F Horn
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA
| | - Nancy L Keim
- Obesity and Metabolism Research Unit, USDA–Western Human Nutrition Research Center, Davis, CA, USA,Department of Nutrition, University of California, Davis, Davis, CA, USA
| | - Giri P Krishnan
- Department of Medicine, School of Medicine, University of California, San Diego, San Diego, CA, USA
| | | |
Collapse
|
15
|
Fernández-Pérez A, Sanz-Magro A, Moratalla R, Vallejo M. Restricting feeding to dark phase fails to entrain circadian activity and energy expenditure oscillations in Pitx3-mutant Aphakia mice. Cell Rep 2022; 38:110241. [PMID: 35021074 DOI: 10.1016/j.celrep.2021.110241] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2021] [Revised: 11/19/2021] [Accepted: 12/16/2021] [Indexed: 01/01/2023] Open
Abstract
Metabolic homeostasis is under circadian regulation to adapt energy requirements to light-dark cycles. Feeding cycles are regulated by photic stimuli reaching the suprachiasmatic nucleus via retinohypothalamic axons and by nutritional information involving dopaminergic neurotransmission. Previously, we reported that Pitx3-mutant Aphakia mice with altered development of the retinohypothalamic tract and the dopaminergic neurons projecting to the striatum, are resistant to locomotor and metabolic entrainment by time-restricted feeding. In their Matters Arising article, Scarpa et al. (2022) challenge this conclusion using mice from the same strain but following a different experimental paradigm involving calorie restriction. Here, we address their concerns by extending the analyses of our previous data, by identifying important differences in the experimental design between both studies and by presenting additional results on the dopaminergic deficit in the brain of Aphakia mice. This Matters Arising Response article addresses the Matters Arising article by Scarpa et al. (2022), published concurrently in Cell Reports.
Collapse
Affiliation(s)
- Antonio Fernández-Pérez
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain
| | - Adrián Sanz-Magro
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Rosario Moratalla
- Instituto Cajal, Consejo Superior de Investigaciones Científicas (CSIC), Madrid, and CIBERNED, Instituto de Salud Carlos III, 28002 Madrid, Spain
| | - Mario Vallejo
- Instituto de Investigaciones Biomédicas Alberto Sols, Consejo Superior de Investigaciones Científicas /Universidad Autónoma de Madrid, Calle Arturo Duperier 4, 28029 Madrid, Spain; Centro de Investigación Biomédica en Red de Diabetes y Enfermedades Metabólicas Asociadas CIBERDEM, Madrid, Spain.
| |
Collapse
|
16
|
Chaix A. Time-Restricted Feeding and Caloric Restriction: Two Feeding Regimens at the Crossroad of Metabolic and Circadian Regulation. Methods Mol Biol 2022; 2482:329-340. [PMID: 35610437 PMCID: PMC9254535 DOI: 10.1007/978-1-0716-2249-0_22] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
In addition to diet quality and quantity, the "timing" of food intake recently emerged as a third key parameter in nutritional and metabolic health. The link between nutrition timing and metabolic homeostasis is in part due to the regulation of daily feeding:fasting cycles and metabolic pathways by the circadian clock. Preclinical feeding regimen studies in rodents are invaluable to further define the modalities of this relationship and get a better understanding of its mechanistic underpinnings. Time-restricted feeding (TRF) and caloric restriction (CR) are examples of feeding regimen at the crossroads of metabolic and circadian regulation. Here we propose methods to implement TRF and CR highlighting the parameters that are relevant to the study of circadian and metabolic health. We also provide methods to determine their impact on the output of the circadian clock by analyzing diurnal expression profiles using 24 h time-series collection as well as their impact on metabolic homeostasis using a glucose tolerance test (GTT).
Collapse
Affiliation(s)
- Amandine Chaix
- Department of Nutrition and Integrative Physiology, University of Utah, Salt Lake City, UT, USA.
| |
Collapse
|
17
|
Abstract
PURPOSE OF REVIEW The goal of this review is to describe how emerging technological developments in pre-clinical animal research can be harnessed to accelerate research in anorexia nervosa (AN). RECENT FINDINGS The activity-based anorexia (ABA) paradigm, the best characterized animal model of AN, combines restricted feeding, excessive exercise, and weight loss. A growing body of evidence supports the idea that pathophysiological weight loss in this model is due to cognitive inflexibility, a clinical feature of AN. Targeted manipulations that recapitulate brain changes reported in AN - hyperdopaminergia or hyperactivity of cortical inputs to the nucleus accumbens - exacerbate weight loss in the ABA paradigm, providing the first evidence of causality. The power of preclinical research lies in the ability to assess the consequences of targeted manipulations of neuronal circuits that have been implicated in clinical research. Additional paradigms are needed to capture other features of AN that are not seen in ABA.
Collapse
Affiliation(s)
- Marie François
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA
| | - Lori M Zeltser
- Division of Molecular Genetics, Naomi Berrie Diabetes Center, Columbia University Irving Medical Center, New York, USA.
- Department of Pathology and Cell Biology, Columbia University Irving Medical Center, New York, USA.
| |
Collapse
|
18
|
Beeler JA, Mourra D, Zanca RM, Kalmbach A, Gellman C, Klein BY, Ravenelle R, Serrano P, Moore H, Rayport S, Mingote S, Burghardt NS. Vulnerable and Resilient Phenotypes in a Mouse Model of Anorexia Nervosa. Biol Psychiatry 2021; 90:829-842. [PMID: 32950210 PMCID: PMC7855473 DOI: 10.1016/j.biopsych.2020.06.030] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/08/2019] [Revised: 06/26/2020] [Accepted: 06/30/2020] [Indexed: 02/03/2023]
Abstract
BACKGROUND Increased physical activity is a common feature of anorexia nervosa (AN). Although high activity levels are associated with greater risk of developing AN, particularly when combined with dieting, most individuals who diet and exercise maintain a healthy body weight. It is unclear why some individuals develop AN while most do not. A rodent model of resilience and vulnerability to AN would be valuable to research. Dopamine, which is believed to play a crucial role in AN, regulates both reward and activity and may modulate vulnerability. METHODS Adolescent and young adult female C57BL/6N mice were tested in the activity-based anorexia (ABA) model, with an extended period of food restriction in adult mice. ABA was also tested in dopamine transporter knockdown mice and wild-type littermates. Mice that adapted to conditions and maintained a stable body weight were characterized as resilient. RESULTS In adults, vulnerable and resilient phenotypes emerged in both the ABA and food-restricted mice without wheels. Vulnerable mice exhibited a pronounced increase in running throughout the light cycle, which dramatically peaked prior to requiring removal from the experiment. Resilient mice exhibited an adaptive decrease in total running, appropriate food anticipatory activity, and increased consumption, thereby achieving stable body weight. Hyperdopaminergia accelerated progression of the vulnerable phenotype. CONCLUSIONS Our demonstration of distinct resilient and vulnerable phenotypes in mouse ABA significantly advances the utility of the model for identifying genes and neural substrates mediating AN risk and resilience. Modulation of dopamine may play a central role in the underlying circuit.
Collapse
Affiliation(s)
- Jeff A. Beeler
- Dept. of Psychology, Queens College and The Graduate Center, CUNY, Flushing, NY, 11367 USA
| | - Devry Mourra
- Dept. of Psychology, Queens College and The Graduate Center, CUNY, Flushing, NY, 11367 USA
| | - Roseanna M. Zanca
- Dept. of Psychology, Hunter College and The Graduate Center, CUNY, New York, NY, 10065 USA
| | - Abigail Kalmbach
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA
| | - Celia Gellman
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA,Dept. of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032 USA
| | - Benjamin Y. Klein
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA,Dept. of Developmental Neuroscience, NYS Psychiatric Institute, New York, NY 10031 USA,Dept. of Microbiology and Molecular Genetics, Hebrew University, Jerusalem, Israel
| | | | - Peter Serrano
- Dept. of Psychology, Hunter College and The Graduate Center, CUNY, New York, NY, 10065 USA
| | - Holly Moore
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA,Dept. of Systems Neuroscience, NYS Psychiatric Institute, New York, NY 10032 USA,National Institute on Drug Abuse, Bethesda, MD
| | - Stephen Rayport
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA,Dept. of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032 USA
| | - Susana Mingote
- Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA,Dept. of Molecular Therapeutics, NYS Psychiatric Institute, New York, NY 10032 USA,Advanced Science Research Center, The Graduate Center, CUNY, New York, NY 10031 USA
| | - Nesha S. Burghardt
- Dept. of Psychology, Hunter College and The Graduate Center, CUNY, New York, NY, 10065 USA,Dept. of Psychiatry, Columbia University, New York, NY, 10032 USA
| |
Collapse
|
19
|
Lin HY, Huang RC. Glycolytic metabolism and activation of Na + pumping contribute to extracellular acidification in the central clock of the suprachiasmatic nucleus: Differential glucose sensitivity and utilization between oxidative and non-oxidative glycolytic pathways. Biomed J 2021; 45:143-154. [PMID: 35341719 PMCID: PMC9133309 DOI: 10.1016/j.bj.2021.02.004] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2020] [Revised: 02/02/2021] [Accepted: 02/07/2021] [Indexed: 12/14/2022] Open
Abstract
BACKGROUND The central clock of the suprachiasmatic nucleus (SCN) controls the metabolism of glucose and is sensitive to glucose shortage. However, it is only beginning to be understood how metabolic signals such as glucose availability regulate the SCN physiology. We previously showed that the ATP-sensitive K+ channel plays a glucose-sensing role in regulating SCN neuronal firing at times of glucose shortage. Nevertheless, it is unknown whether the energy-demanding Na+/K+-ATPase (NKA) is also sensitive to glucose availability. Furthermore, we recently showed that the metabolically active SCN constantly extrudes H+ to acidify extracellular pH (pHe). This study investigated whether the standing acidification is associated with Na+ pumping activity, energy metabolism, and glucose utilization, and whether glycolysis- and mitochondria-fueled NKAs may be differentially sensitive to glucose shortage. METHODS Double-barreled pH-selective microelectrodes were used to determine the pHe in the SCN in hypothalamic slices. RESULTS NKA inhibition with K+-free (0-K+) solution rapidly and reversibly alkalinized the pHe, an effect abolished by ouabain. Mitochondrial inhibition with cyanide acidified the pHe but did not inhibit 0-K+-induced alkalinization. Glycolytic inhibition with iodoacetate alkalinized the pHe, completely blocked cyanide-induced acidification, and nearly completely blocked 0-K+-induced alkalinization. The results indicate that glycolytic metabolism and activation of Na+ pumping contribute to the standing acidification. Glucoprivation also alkalinized the pHe, nearly completely eliminated cyanide-induced acidification, but only partially reduced 0-K+-induced alkalinization. In contrast, hypoglycemia preferentially and partially blocked cyanide-induced acidification. The result indicates sensitivity to glucose shortage for the mitochondria-associated oxidative glycolytic pathway. CONCLUSION Glycolytic metabolism and activation of glycolysis-fueled NKA Na+ pumping activity contribute to the standing acidification in the SCN. Furthermore, the oxidative and non-oxidative glycolytic pathways differ in their glucose sensitivity and utilization, with the oxidative glycolytic pathway susceptible to glucose shortage, and the non-oxidative glycolytic pathway able to maintain Na+ pumping even in glucoprivation.
Collapse
Affiliation(s)
- Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Taoyuan, Taiwan; Healthy Aging Research Center, Chang Gung University, Taoyuan, Taiwan; Neuroscience Research Center, Chang Gung Memorial Hospital at Linkou, Taoyuan, Taiwan.
| |
Collapse
|
20
|
Jha PK, Bouâouda H, Kalsbeek A, Challet E. Distinct feedback actions of behavioural arousal to the master circadian clock in nocturnal and diurnal mammals. Neurosci Biobehav Rev 2021; 123:48-60. [PMID: 33440199 DOI: 10.1016/j.neubiorev.2020.12.011] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2020] [Revised: 09/16/2020] [Accepted: 12/10/2020] [Indexed: 12/20/2022]
Abstract
The master clock in the suprachiasmatic nucleus (SCN) of the hypothalamus provides a temporal pattern of sleep and wake that - like many other behavioural and physiological rhythms - is oppositely phased in nocturnal and diurnal animals. The SCN primarily uses environmental light, perceived through the retina, to synchronize its endogenous circadian rhythms with the exact 24 h light/dark cycle of the outside world. The light responsiveness of the SCN is maximal during the night in both nocturnal and diurnal species. Behavioural arousal during the resting period not only perturbs sleep homeostasis, but also acts as a potent non-photic synchronizing cue. The feedback action of arousal on the SCN is mediated by processes involving several brain nuclei and neurotransmitters, which ultimately change the molecular functions of SCN pacemaker cells. Arousing stimuli during the sleeping period differentially affect the circadian system of nocturnal and diurnal species, as evidenced by the different circadian windows of sensitivity to behavioural arousal. In addition, arousing stimuli reduce and increase light resetting in nocturnal and diurnal species, respectively. It is important to address further question of circadian impairments associated with shift work and trans-meridian travel not only in the standard nocturnal laboratory animals but also in diurnal animal models.
Collapse
Affiliation(s)
- Pawan Kumar Jha
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France; Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands.
| | - Hanan Bouâouda
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| | - Andries Kalsbeek
- Department of Endocrinology and Metabolism, Amsterdam University Medical Center (AUMC), University of Amsterdam, the Netherlands; Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience, Amsterdam, the Netherlands
| | - Etienne Challet
- Circadian Clocks and Metabolism Team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, France
| |
Collapse
|
21
|
Gopalakrishnan S, Kannan NN. Only time will tell: the interplay between circadian clock and metabolism. Chronobiol Int 2020; 38:149-167. [PMID: 33345624 DOI: 10.1080/07420528.2020.1842436] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
In most organisms ranging from cyanobacteria to humans, the endogenous timekeeping system temporally coordinates the behavioral, physiological, and metabolic processes with a periodicity close to 24 h. The timing of these daily rhythms is orchestrated by the synchronized oscillations of both the central pacemaker in the brain and the peripheral clocks located across multiple organs and tissues. A growing body of evidence suggests that the central circadian clock and peripheral clocks residing in the metabolically active tissues are incredibly well coordinated to confer coherent metabolic homeostasis. The interplay between nutrient metabolism and circadian rhythms can occur at various levels supported by the molecular clock network, multiple systemic mechanisms, and the neuroendocrine signaling pathways. While studies suggest the reciprocal regulation between circadian clock and metabolism, it is important to understand the precise mechanisms and the underlying pathways involved in the cross-talk among circadian oscillators and diverse metabolic networks. In addition to the internal synchronization of the metabolic rhythms, feeding time is considered as a potential external synchronization cue that fine tunes the timing of the circadian rhythms in metabolic peripheral clocks. A deeper understanding of how the timing of food intake and the diet composition drive the tissue-specific metabolic rhythms across the body is concomitantly important to develop novel therapeutic strategies for the metabolic disorders arising from circadian misalignment. This review summarizes the recent advancements in the circadian clock regulation of nutrient metabolism and discusses the current understanding of the metabolic feedback signals that link energy metabolism with the circadian clock.
Collapse
Affiliation(s)
- Swetha Gopalakrishnan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| | - Nisha N Kannan
- Chronobiology Laboratory, School of Biology, Indian Institute of Science Education and Research (IISER) , Thiruvananthapuram, India
| |
Collapse
|
22
|
García-Gaytán AC, Miranda-Anaya M, Turrubiate I, López-De Portugal L, Bocanegra-Botello GN, López-Islas A, Díaz-Muñoz M, Méndez I. Synchronization of the circadian clock by time-restricted feeding with progressive increasing calorie intake. Resemblances and differences regarding a sustained hypocaloric restriction. Sci Rep 2020; 10:10036. [PMID: 32572063 PMCID: PMC7308331 DOI: 10.1038/s41598-020-66538-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 05/20/2020] [Indexed: 02/08/2023] Open
Abstract
Circadian rhythms are the product of the interaction of molecular clocks and environmental signals, such as light-dark cycles and eating-fasting cycles. Several studies have demonstrated that the circadian rhythm of peripheral clocks, and behavioural and metabolic mediators are re-synchronized in rodents fed under metabolic challenges, such as hyper- or hypocaloric diets and subjected to time-restricted feeding protocols. Despite the metabolic challenge, these approaches improve the metabolic status, raising the enquiry whether removing progressively the hypocaloric challenge in a time-restricted feeding protocol leads to metabolic benefits by the synchronizing effect. To address this issue, we compared the effects of two time-restricted feeding protocols, one involved hypocaloric intake during the entire protocol (HCT) and the other implied a progressive intake accomplishing a normocaloric intake at the end of the protocol (NCT) on several behavioural, metabolic, and molecular rhythmic parameters. We observed that the food anticipatory activity (FAA) was driven and maintained in both HCT and NCT. Resynchronization of hepatic molecular clock, free fatty acids (FFAs), and FGF21 was elicited closely by HCT and NCT. We further observed that the fasting cycles involved in both protocols promoted ketone body production, preferentially beta-hydroxybutyrate in HCT, whereas acetoacetate was favoured in NCT before access to food. These findings demonstrate that time-restricted feeding does not require a sustained calorie restriction for promoting and maintaining the synchronization of the metabolic and behavioural circadian clock, and suggest that metabolic modulators, such as FFAs and FGF21, could contribute to FAA expression.
Collapse
Affiliation(s)
- Ana Cristina García-Gaytán
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | - Manuel Miranda-Anaya
- Unidad Multidisciplinaria de Docencia e Investigación, Facultad de Ciencias, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | - Isaías Turrubiate
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | - Leonardo López-De Portugal
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | | | - Amairani López-Islas
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | - Mauricio Díaz-Muñoz
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México
| | - Isabel Méndez
- Instituto de Neurobiología, Universidad Nacional Autónoma de México (UNAM), Campus UNAM-Juriquilla, Querétaro, 76230, México.
| |
Collapse
|
23
|
García-Gaytán AC, Miranda-Anaya M, Turrubiate I, López-De Portugal L, Bocanegra-Botello GN, López-Islas A, Díaz-Muñoz M, Méndez I. Synchronization of the circadian clock by time-restricted feeding with progressive increasing calorie intake. Resemblances and differences regarding a sustained hypocaloric restriction. Sci Rep 2020. [DOI: https:/doi.org/10.1038/s41598-020-66538-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023] Open
Abstract
AbstractCircadian rhythms are the product of the interaction of molecular clocks and environmental signals, such as light-dark cycles and eating-fasting cycles. Several studies have demonstrated that the circadian rhythm of peripheral clocks, and behavioural and metabolic mediators are re-synchronized in rodents fed under metabolic challenges, such as hyper- or hypocaloric diets and subjected to time-restricted feeding protocols. Despite the metabolic challenge, these approaches improve the metabolic status, raising the enquiry whether removing progressively the hypocaloric challenge in a time-restricted feeding protocol leads to metabolic benefits by the synchronizing effect. To address this issue, we compared the effects of two time-restricted feeding protocols, one involved hypocaloric intake during the entire protocol (HCT) and the other implied a progressive intake accomplishing a normocaloric intake at the end of the protocol (NCT) on several behavioural, metabolic, and molecular rhythmic parameters. We observed that the food anticipatory activity (FAA) was driven and maintained in both HCT and NCT. Resynchronization of hepatic molecular clock, free fatty acids (FFAs), and FGF21 was elicited closely by HCT and NCT. We further observed that the fasting cycles involved in both protocols promoted ketone body production, preferentially beta-hydroxybutyrate in HCT, whereas acetoacetate was favoured in NCT before access to food. These findings demonstrate that time-restricted feeding does not require a sustained calorie restriction for promoting and maintaining the synchronization of the metabolic and behavioural circadian clock, and suggest that metabolic modulators, such as FFAs and FGF21, could contribute to FAA expression.
Collapse
|
24
|
Zheng D, Ratiner K, Elinav E. Circadian Influences of Diet on the Microbiome and Immunity. Trends Immunol 2020; 41:512-530. [DOI: 10.1016/j.it.2020.04.005] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2020] [Revised: 04/05/2020] [Accepted: 04/06/2020] [Indexed: 02/08/2023]
|
25
|
The Homeodomain Transcription Factors Vax1 and Six6 Are Required for SCN Development and Function. Mol Neurobiol 2019; 57:1217-1232. [PMID: 31705443 DOI: 10.1007/s12035-019-01781-9] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/02/2019] [Accepted: 09/12/2019] [Indexed: 12/13/2022]
Abstract
The brain's primary circadian pacemaker, the suprachiasmatic nucleus (SCN), is required to translate day-length and circadian rhythms into neuronal, hormonal, and behavioral rhythms. Here, we identify the homeodomain transcription factor ventral anterior homeobox 1 (Vax1) as required for SCN development, vasoactive intestinal peptide expression, and SCN output. Previous work has shown that VAX1 is required for gonadotropin-releasing hormone (GnRH/LHRH) neuron development, a neuronal population controlling reproductive status. Surprisingly, the ectopic expression of a Gnrh-Cre allele (Gnrhcre) in the SCN confirmed the requirement of both VAX1 (Vax1flox/flox:Gnrhcre, Vax1Gnrh-cre) and sine oculis homeobox protein 6 (Six6flox/flox:Gnrhcre, Six6Gnrh-cre) in SCN function in adulthood. To dissociate the role of Vax1 and Six6 in GnRH neuron and SCN function, we used another Gnrh-cre allele that targets GnRH neurons, but not the SCN (Lhrhcre). Both Six6Lhrh-cre and Vax1Lhrh-cre were infertile, and in contrast to Vax1Gnrh-cre and Six6Gnrh-cre mice, Six6Lhrh-cre and Vax1Lhrh-cre had normal circadian behavior. Unexpectedly, ~ 1/4 of the Six6Gnrh-cre mice were unable to entrain to light, showing that ectopic expression of Gnrhcre impaired function of the retino-hypothalamic tract that relays light information to the brain. This study identifies VAX1, and confirms SIX6, as transcription factors required for SCN development and function and demonstrates the importance of understanding how ectopic CRE expression can impact the results.
Collapse
|
26
|
Role of Intracellular Na + in the Regulation of [Ca 2+] i in the Rat Suprachiasmatic Nucleus Neurons. Int J Mol Sci 2019; 20:ijms20194868. [PMID: 31575032 PMCID: PMC6801571 DOI: 10.3390/ijms20194868] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/05/2019] [Accepted: 09/28/2019] [Indexed: 12/17/2022] Open
Abstract
Transmembrane Ca2+ influx is essential to the proper functioning of the central clock in the suprachiasmatic nucleus (SCN). In the rat SCN neurons, the clearance of somatic Ca2+ following depolarization-induced Ca2+ transients involves Ca2+ extrusion via Na+/Ca2+ exchanger (NCX) and mitochondrial Ca2+ buffering. Here we show an important role of intracellular Na+ in the regulation of [Ca2+]i in these neurons. The effect of Na+ loading on [Ca2+]i was determined with the Na+ ionophore monensin and the cardiac glycoside ouabain to block Na+/K+-ATPase (NKA). Ratiometric Na+ and Ca2+ imaging was used to measure the change in [Na+]i and [Ca2+]i, and cell-attached recordings to investigate the effects of monensin and ouabain on spontaneous firing. Our results show that in spite of opposite effects on spontaneous firing and basal [Ca2+], both monensin and ouabain induced Na+ loading, and increased the peak amplitude, slowed the fast decay rate, and enhanced the slow decay phase of 20 mM K+-evoked Ca2+ transients. Furthermore, both ouabain and monensin preferentially enhanced nimodipine-insensitive Ca2+ transients. Together, our results indicate that in the SCN neurons the NKA plays an important role in regulating [Ca2+]i, in particular, associated with nimodipine-insensitive Ca2+ channels.
Collapse
|
27
|
Verra DM, Sajdak BS, Merriman DK, Hicks D. Diurnal rodents as pertinent animal models of human retinal physiology and pathology. Prog Retin Eye Res 2019; 74:100776. [PMID: 31499165 DOI: 10.1016/j.preteyeres.2019.100776] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2019] [Revised: 08/27/2019] [Accepted: 08/31/2019] [Indexed: 12/12/2022]
Abstract
This presentation will survey the retinal architecture, advantages, and limitations of several lesser-known rodent species that provide a useful diurnal complement to rats and mice. These diurnal rodents also possess unusually cone-rich photoreceptor mosaics that facilitate the study of cone cells and pathways. Species to be presented include principally the Sudanian Unstriped Grass Rat and Nile Rat (Arvicanthis spp.), the Fat Sand Rat (Psammomys obesus), the degu (Octodon degus) and the 13-lined ground squirrel (Ictidomys tridecemlineatus). The retina and optic nerve in several of these species demonstrate unusual resilience in the face of neuronal injury, itself an interesting phenomenon with potential translational value.
Collapse
Affiliation(s)
- Daniela M Verra
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France
| | | | - Dana K Merriman
- Department of Biology, University of Wisconsin Oshkosh, Oshkosh, WI, USA
| | - David Hicks
- Department of Neurobiology of Rhythms, Institut des Neurosciences Cellulaires et Intégratives (INCI), CNRS UPR 3212, Strasbourg, France.
| |
Collapse
|
28
|
Asghari Hanjani N, Zamaninour N, Najibi N, Hosseini AF, Rastegar T, Vafa MR. The role of time of food intake on upcoming liver disease in male Wistar rat. BIOL RHYTHM RES 2019. [DOI: 10.1080/09291016.2018.1478635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/14/2022]
Affiliation(s)
- Nazanin Asghari Hanjani
- Research Center of Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Negar Zamaninour
- Minimally Invasive Surgery Research Center, Iran University of Medical Sciences (IUMS), Tehran, Iran
| | - Narjes Najibi
- Research Center of Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| | - Agha Fatemeh Hosseini
- Department of Statistics and Mathematics, School of Health Management and Information Science, Iran University of Medical Sciences, Tehran, Iran
| | - Tayebeh Rastegar
- Faculty of Medicine, Department of Anatomy Sciences, Tehran University of Medical Sciences, Tehran, Iran
| | - Mohammad Reza Vafa
- Research Center of Prevention of Cardiovascular Diseases, Institute of Endocrinology and Metabolism, Iran University of Medical Sciences, Tehran, Iran
| |
Collapse
|
29
|
Abstract
Feeding, which is essential for all animals, is regulated by homeostatic mechanisms. In addition, food consumption is temporally coordinated by the brain over the circadian (~24 h) cycle. A network of circadian clocks set daily windows during which food consumption can occur. These daily windows mostly overlap with the active phase. Brain clocks that ensure the circadian control of food intake include a master light-entrainable clock in the suprachiasmatic nuclei of the hypothalamus and secondary clocks in hypothalamic and brainstem regions. Metabolic hormones, circulating nutrients and visceral neural inputs transmit rhythmic cues that permit (via close and reciprocal molecular interactions that link metabolic processes and circadian clockwork) brain and peripheral organs to be synchronized to feeding time. As a consequence of these complex interactions, growing evidence shows that chronodisruption and mistimed eating have deleterious effects on metabolic health. Conversely, eating, even eating an unbalanced diet, during the normal active phase reduces metabolic disturbances. Therefore, in addition to energy intake and dietary composition, appropriately timed meal patterns are critical to prevent circadian desynchronization and limit metabolic risks. This Review provides insight into the dual modulation of food intake by homeostatic and circadian processes, describes the mechanisms regulating feeding time and highlights the beneficial effects of correctly timed eating, as opposed to the negative metabolic consequences of mistimed eating.
Collapse
Affiliation(s)
- Etienne Challet
- Circadian clocks and metabolism team, Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France.
| |
Collapse
|
30
|
Cheng PC, Lin HY, Chen YS, Cheng RC, Su HC, Huang RC. The Na +/H +-Exchanger NHE1 Regulates Extra- and Intracellular pH and Nimodipine-sensitive [Ca 2+] i in the Suprachiasmatic Nucleus. Sci Rep 2019; 9:6430. [PMID: 31015514 PMCID: PMC6478949 DOI: 10.1038/s41598-019-42872-w] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/02/2019] [Accepted: 04/10/2019] [Indexed: 02/06/2023] Open
Abstract
The central clock in the suprachiasmatic nucleus (SCN) has higher metabolic activity than extra-SCN areas in the anterior hypothalamus. Here we investigated whether the Na+/H+ exchanger (NHE) may regulate extracellular pH (pHe), intracellular pH (pHi) and [Ca2+]i in the SCN. In hypothalamic slices bathed in HEPES-buffered solution a standing acidification of ~0.3 pH units was recorded with pH-sensitive microelectrodes in the SCN but not extra-SCN areas. The NHE blocker amiloride alkalinised the pHe. RT-PCR revealed mRNA for plasmalemmal-type NHE1, NHE4, and NHE5 isoforms, whereas the NHE1-specific antagonist cariporide alkalinised the pHe. Real-time PCR and western blotting failed to detect day-night variation in NHE1 mRNA and protein levels. Cariporide induced intracellular acidosis, increased basal [Ca2+]i, and decreased depolarisation-induced Ca2+ rise, with the latter two effects being abolished with nimodipine blocking the L-type Ca2+ channels. Immunofluorescent staining revealed high levels of punctate colocalisation of NHE1 with serotonin transporter (SERT) or CaV1.2, as well as triple staining of NHE1, CaV1.2, and SERT or the presynaptic marker Bassoon. Our results indicate that NHE1 actively extrudes H+ to regulate pHi and nimodipine-sensitive [Ca2+]i in the soma, and along with CaV1.2 may also regulate presynaptic Ca2+ levels and, perhaps at least serotonergic, neurotransmission in the SCN.
Collapse
Affiliation(s)
- Pi-Cheng Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hsin-Yi Lin
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ya-Shuan Chen
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Ruo-Ciao Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Hung-Che Su
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Tao-Yuan, 33302, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, 33305, Taiwan.
| |
Collapse
|
31
|
Pavlovski I, Evans JA, Mistlberger RE. Feeding Time Entrains the Olfactory Bulb Circadian Clock in Anosmic PER2::LUC Mice. Neuroscience 2018; 393:175-184. [DOI: 10.1016/j.neuroscience.2018.10.009] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2018] [Revised: 09/30/2018] [Accepted: 10/08/2018] [Indexed: 02/08/2023]
|
32
|
Pendergast JS, Yamazaki S. The Mysterious Food-Entrainable Oscillator: Insights from Mutant and Engineered Mouse Models. J Biol Rhythms 2018; 33:458-474. [PMID: 30033846 DOI: 10.1177/0748730418789043] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/25/2022]
Abstract
The food-entrainable oscillator (FEO) is a mysterious circadian clock because its anatomical location(s) and molecular timekeeping mechanism are unknown. Food anticipatory activity (FAA), which is defined as the output of the FEO, emerges during temporally restricted feeding. FAA disappears immediately during ad libitum feeding and reappears during subsequent fasting. A free-running FAA rhythm has been observed only in rare circumstances when food was provided with a period outside the range of entrainment. Therefore, it is difficult to study the circadian properties of the FEO. Numerous studies have attempted to identify the critical molecular components of the FEO using mutant and genetically engineered mouse models. Herein we critically review the experimental protocols and findings of these studies in mouse models. Several themes emerge from these studies. First, there is little consistency in restricted feeding protocols between studies. Moreover, the protocols were sometimes not optimal, resulting in erroneous conclusions that FAA was absent in some mouse models. Second, circadian genes are not necessary for FEO timekeeping. Thus, another noncanonical timekeeping mechanism must exist in the FEO. Third, studies of mouse models have shown that signaling pathways involved in circadian timekeeping, reward (dopaminergic), and feeding and energy homeostasis can modulate, but are not necessary for, the expression of FAA. In sum, the approaches to date have been largely unsuccessful in discovering the timekeeping mechanism of the FEO. Moving forward, we propose the use of standardized and optimized experimental protocols that focus on identifying genes that alter the period of FAA in mutant and engineered mouse models. This approach is likely to permit discovery of molecular components of the FEO timekeeping mechanism.
Collapse
Affiliation(s)
| | - Shin Yamazaki
- Department of Neuroscience, UT Southwestern Medical Center, Dallas, Texas
| |
Collapse
|
33
|
Ben-Hamouda N, Poirel VJ, Dispersyn G, Pévet P, Challet E, Pain L. Short-term propofol anaesthesia down-regulates clock genes expression in the master clock. Chronobiol Int 2018; 35:1735-1741. [DOI: 10.1080/07420528.2018.1499107] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/28/2022]
Affiliation(s)
- Nawfel Ben-Hamouda
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Adult intensive Care Medicine and Burns, Centre Hospitalier Universitaire Vaudois, Lausanne, Switzerland
| | - Vincent-Joseph Poirel
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Garance Dispersyn
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Institut de recherche biomedicale des armees, Bretigny-sur-Orge, France
| | - Paul Pévet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Etienne Challet
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
| | - Laure Pain
- Institut des neurosciences cellulaires et integratives, Neurobiology of Rhythms, CNRS (UPR3212), Université de Strasbourg, Strasbourg, France
- Anesthesiology, Hopitaux universitaires de Strasbourg, Strasbourg, France
| |
Collapse
|
34
|
Touati H, Ouali-Hassenaoui S, Dekar-Madoui A, Challet E, Pévet P, Vuillez P. Diet-induced insulin resistance state disturbs brain clock processes and alters tuning of clock outputs in the Sand rat, Psammomys obesus. Brain Res 2017; 1679:116-124. [PMID: 29196219 DOI: 10.1016/j.brainres.2017.11.018] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 11/16/2017] [Accepted: 11/18/2017] [Indexed: 01/16/2023]
Abstract
Reciprocal interactions closely connect energy metabolism with circadian rhythmicity. Altered clockwork and circadian desynchronization are often linked with impaired energy regulation. Conversely, metabolic disturbances have been associated with altered autonomic and hormonal rhythms. The effects of high-energy (HE) diet on the master clock in the suprachiasmatic nuclei (SCN) remain unclear.This question was addressed in the Sand rat (Psammomys obesus), a non-insulin-dependent diabetes mellitus (NIDDM) animal model. The aim of this work was to determine whether enriched diet in Psammomys affects locomotor activity rhythm, as well as daily oscillations in the master clock of the SCN and in an extra-SCN brain oscillator, the piriform cortex. Sand rats were fed during 3 months with either low or HE diet. Vasoactive intestinal peptide (VIP), vasopressin (AVP) and CLOCK protein cycling were studied by immunohistochemistry and running wheel protocol was used for behavioral analysis. High energy feeding dietary triggered hyperinsulinemia, impaired insulin/glucose ratio and disruption in pancreatic hormonal rhythms. Circadian disturbances in hyper-insulinemic animals include a lengthened rest/activity rhythm in constant darkness, as well as disappearance of daily rhythmicity of VIP, AVP and the circadian transcription factor CLOCK within the suprachiasmatic clock. In addition, daily rhythmicity of VIP and CLOCK was abolished by HE diet in a secondary brain oscillator, the piriform cortex. Our findings highlight a major impact of diabetogenic diet on central and peripheral rhythmicity. The Psammomys model will be instrumental to better understand the functional links between circadian clocks, glucose intolerance and insulin resistance state.
Collapse
Affiliation(s)
- Hanane Touati
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France; USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Saliha Ouali-Hassenaoui
- USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Aicha Dekar-Madoui
- USTHB, Faculty of Biological Sciences, Laboratory of Biology and Physiology of Organisms, Neurobiology Team, BP 32, El Alia, 16111 Bab Ezzouar, Algiers, Algeria.
| | - Etienne Challet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| | - Paul Pévet
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| | - Patrick Vuillez
- Regulation of Circadian Clocks Team, Institute of Cellular and Integrative Neurosciences, UPR3212, CNRS, University of Strasbourg, Strasbourg, France.
| |
Collapse
|
35
|
Molina-Aguilar C, Guerrero-Carrillo MDJ, Espinosa-Aguirre JJ, Olguin-Reyes S, Castro-Belio T, Vázquez-Martínez O, Rivera-Zavala JB, Díaz-Muñoz M. Time-caloric restriction inhibits the neoplastic transformation of cirrhotic liver in rats treated with diethylnitrosamine. Carcinogenesis 2017; 38:847-858. [PMID: 28535183 DOI: 10.1093/carcin/bgx052] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2016] [Accepted: 05/17/2017] [Indexed: 01/27/2023] Open
Abstract
Hepatocellular cancer is the most common type of primary liver cancer. Cirrhosis is the main risk factor that generates this malady. It has been proven that caloric restriction protocols and restricted feeding schedules are protective in experimental carcinogenic models. We tested the influence of a time-caloric restriction protocol (2 h of food access during the daytime for 18 weeks) in an experimental model of cirrhosis-hepatocarcinoma produced by weekly administration of diethylnitrosamine. Our results indicate that time-caloric restriction reduced hepatomegaly and prevented the increase in blood leukocytes promoted by diethylnitrosamine. Strikingly, time-caloric restriction preserved functional and histological characteristics of the liver in fibrotic areas compared to the cirrhotic areas of the Ad Libitum-fed group. Tumoural masses in the restricted group were well differentiated; consider a neoplastic or early stage of HCC. However, time-caloric restriction enhanced collagen deposits. With regard to the cancerous process, food restriction prevented systemic inflammation and an increase in carcinoembryonic antigen, and it favoured the occurrence of diffuse multinodular tumours. Histologically, it prevented hepatocyte inflammation response, the regenerative process, and neoplastic transformation. Time-caloric restriction stimulated circadian synchronization in fibrotic and cancerous liver sections, and it increased BMAL1 clock protein levels. We conclude that time-caloric restriction prevents fibrosis from progressing into cirrhosis, thus avoiding chronic inflammation and regenerative processes. It also prevents, probably through circadian entrainment and caloric restriction, the neoplastic transformation of tumoural lesions induced by diethylnitrosamine.
Collapse
Affiliation(s)
- Christian Molina-Aguilar
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | | | - Jesús Javier Espinosa-Aguirre
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Sitlali Olguin-Reyes
- Departamento de Medicina Genómica y Toxicología Ambiental, Instituto de Investigaciones Biomédicas, Universidad Nacional Autónoma de México, Ciudad de México, México
| | - Thania Castro-Belio
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Olivia Vázquez-Martínez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Julieta Berenice Rivera-Zavala
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, México
| |
Collapse
|
36
|
Xie K, Neff F, Markert A, Rozman J, Aguilar-Pimentel JA, Amarie OV, Becker L, Brommage R, Garrett L, Henzel KS, Hölter SM, Janik D, Lehmann I, Moreth K, Pearson BL, Racz I, Rathkolb B, Ryan DP, Schröder S, Treise I, Bekeredjian R, Busch DH, Graw J, Ehninger G, Klingenspor M, Klopstock T, Ollert M, Sandholzer M, Schmidt-Weber C, Weiergräber M, Wolf E, Wurst W, Zimmer A, Gailus-Durner V, Fuchs H, Hrabě de Angelis M, Ehninger D. Every-other-day feeding extends lifespan but fails to delay many symptoms of aging in mice. Nat Commun 2017; 8:155. [PMID: 28761067 PMCID: PMC5537224 DOI: 10.1038/s41467-017-00178-3] [Citation(s) in RCA: 84] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2016] [Accepted: 06/08/2017] [Indexed: 01/28/2023] Open
Abstract
Dietary restriction regimes extend lifespan in various animal models. Here we show that longevity in male C57BL/6J mice subjected to every-other-day feeding is associated with a delayed onset of neoplastic disease that naturally limits lifespan in these animals. We compare more than 200 phenotypes in over 20 tissues in aged animals fed with a lifelong every-other-day feeding or ad libitum access to food diet to determine whether molecular, cellular, physiological and histopathological aging features develop more slowly in every-other-day feeding mice than in controls. We also analyze the effects of every-other-day feeding on young mice on shorter-term every-other-day feeding or ad libitum to account for possible aging-independent restriction effects. Our large-scale analysis reveals overall only limited evidence for a retardation of the aging rate in every-other-day feeding mice. The data indicate that every-other-day feeding-induced longevity is sufficiently explained by delays in life-limiting neoplastic disorders and is not associated with a more general slowing of the aging process in mice. Dietary restriction can extend the life of various model organisms. Here, Xie et al. show that intermittent periods of fasting achieved through every-other-day feeding protect mice against neoplastic disease but do not broadly delay organismal aging in animals.
Collapse
Affiliation(s)
- Kan Xie
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Frauke Neff
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Astrid Markert
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Jan Rozman
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, München-Neuherberg, Germany
| | - Juan Antonio Aguilar-Pimentel
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Division of Environmental Dermatology and Allergy, Technische Universität München/Helmholtz Zentrum München, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Oana Veronica Amarie
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Lore Becker
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Robert Brommage
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Lillian Garrett
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Kristin S Henzel
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Sabine M Hölter
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Dirk Janik
- Institute of Pathology, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Isabelle Lehmann
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Kristin Moreth
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Brandon L Pearson
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Ildiko Racz
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Birgit Rathkolb
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, München-Neuherberg, Germany.,Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen-Straße 25, 81377, Munich, Germany
| | - Devon P Ryan
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Susanne Schröder
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany
| | - Irina Treise
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Institute for Medical Microbiology, Immunology, and Hygiene, Trogerstraße 30, Technische Universität München, 81675, Munich, Germany
| | - Raffi Bekeredjian
- Department of Medicine III, Division of Cardiology, University of Heidelberg, Im Neuenheimer Feld 410, 69120, Heidelberg, Germany
| | - Dirk H Busch
- Institute for Medical Microbiology, Immunology, and Hygiene, Trogerstraße 30, Technische Universität München, 81675, Munich, Germany
| | - Jochen Graw
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Gerhard Ehninger
- Department of Internal Medicine I, University Hospital Carl Gustav Carus, Technical University Dresden, Fetscherstraße 74, 01307, Dresden, Germany
| | - Martin Klingenspor
- Molecular Nutritional Medicine, Else Kröner-Fresenius Center, Technische Universität München, Gregor-Mendel-Straße 2, 85350, Freising-Weihenstephan, Germany
| | - Thomas Klopstock
- Friedrich-Baur-Institut, Department of Neurology, Ludwig-Maximilians-Universität München, Ziemssenstraße 1a, 80336, Munich, Germany.,German Center for Vertigo and Balance Disorders, University Hospital Munich, Campus Grosshadern, Marchioninistraße 15, 81377, Munich, Germany.,DZNE, German Center for Neurodegenerative Diseases, Schillerstraße 44, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany
| | - Markus Ollert
- Department of Infection and Immunity, Luxembourg Institute of Health, Esch-sur-Alzette, Luxembourg.,Department of Dermatology and Allergy Center, Odense Research Center for Anaphylaxis, University of Southern Denmark, Odense, Denmark
| | - Michael Sandholzer
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Comprehensive Pneumology Center, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Carsten Schmidt-Weber
- Center of Allergy & Environment (ZAUM), Technische Universität München and Helmholtz Zentrum München, Biedersteiner Str. 29, 80802, Munich, Germany.,Member of the German Center for Lung Research (DZL), Aulweg 130, 35392, Gießen, Germany
| | - Marco Weiergräber
- Research Group Experimental Neuropsychopharmacology, Federal Institute for Drugs and Medical Devices, Kurt-Georg-Kiesinger-Allee 3, 53175, Bonn, Germany
| | - Eckhard Wolf
- Chair of Molecular Animal Breeding and Biotechnology, Gene Center, Ludwig-Maximilians-Universität München, Feodor Lynen-Straße 25, 81377, Munich, Germany
| | - Wolfgang Wurst
- Institute of Developmental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,DZNE, German Center for Neurodegenerative Diseases, Schillerstraße 44, 80336, Munich, Germany.,Munich Cluster for Systems Neurology (SyNergy), 80336, Munich, Germany.,Chair of Developmental Genetics, Technische Universität München, c/o Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Andreas Zimmer
- Institute of Molecular Psychiatry, Medical Faculty, University of Bonn, Sigmund-Freud-Straße 25, 53105, Bonn, Germany
| | - Valerie Gailus-Durner
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Helmut Fuchs
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany
| | - Martin Hrabě de Angelis
- German Mouse Clinic, Institute of Experimental Genetics, Helmholtz Zentrum München, German Research Center for Environmental Health, Ingolstädter Landstraße 1, 85764, Neuherberg, Germany.,Member of German Center for Diabetes Research (DZD), Ingolstädter Landstraße 1, 85764, München-Neuherberg, Germany.,Chair of Experimental Genetics, Center of Life and Food Sciences Weihenstephan, Technische Universität München, 85350, Freising-Weihenstephan, Germany
| | - Dan Ehninger
- DZNE, German Center for Neurodegenerative Diseases, Ludwig-Erhard-Allee 2, 53175, Bonn, Germany.
| |
Collapse
|
37
|
Mice under Caloric Restriction Self-Impose a Temporal Restriction of Food Intake as Revealed by an Automated Feeder System. Cell Metab 2017; 26:267-277.e2. [PMID: 28683292 PMCID: PMC5576447 DOI: 10.1016/j.cmet.2017.06.007] [Citation(s) in RCA: 172] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/20/2017] [Revised: 05/08/2017] [Accepted: 06/13/2017] [Indexed: 12/18/2022]
Abstract
Caloric restriction (CR) extends lifespan in mammals, yet the mechanisms underlying its beneficial effects remain unknown. The manner in which CR has been implemented in longevity experiments is variable, with both timing and frequency of meals constrained by work schedules. It is commonplace to find that nocturnal rodents are fed during the daytime and meals are spaced out, introducing prolonged fasting intervals. Since implementation of feeding paradigms over the lifetime is logistically difficult, automation is critical, but existing systems are expensive and not amenable to scale. We have developed a system that controls duration, amount, and timing of food availability and records feeding and voluntary wheel-running activity in mice. Using this system, mice were exposed to temporal or caloric restriction protocols. Mice under CR self-imposed a temporal component by consolidating food intake and unexpectedly increasing wheel-running activity during the rest phase, revealing previously unrecognized relationships among feeding, metabolism, and behavior.
Collapse
|
38
|
Yang JJ, Cheng RC, Cheng PC, Wang YC, Huang RC. K ATP Channels Mediate Differential Metabolic Responses to Glucose Shortage of the Dorsomedial and Ventrolateral Oscillators in the Central Clock. Sci Rep 2017; 7:640. [PMID: 28377630 PMCID: PMC5428822 DOI: 10.1038/s41598-017-00699-3] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2016] [Accepted: 03/08/2017] [Indexed: 12/29/2022] Open
Abstract
The suprachiasmatic nucleus (SCN) central clock comprises two coupled oscillators, with light entraining the retinorecipient vasoactive intestinal peptide (VIP)-positive ventrolateral oscillator, which then entrains the arginine vasopressin (AVP)-positive dorsomedial oscillator. While glucose availability is known to alter photic entrainment, it is unclear how the SCN neurones respond to metabolic regulation and whether the two oscillators respond differently. Here we show that the ATP-sensitive K+ (KATP) channel mediates differential responses to glucose shortage of the two oscillators. RT-PCR and electrophysiological results suggested the presence of Kir6.2/SUR1 KATP channels in the SCN neurones. Immunostaining revealed preferential distribution of Kir6.2 in the dorsomedial subregion and selective colocalization with AVP. Whole cell recordings with ATP-free pipette solution indicated larger tolbutamide-induced depolarisation and tolbutamide-sensitive conductance in dorsal SCN (dSCN) than ventral SCN (vSCN) neurones. Tolbutamide-sensitive conductance was low under perforated patch conditions but markedly enhanced by cyanide inhibition of mitochondrial respiration. Glucoprivation produced a larger steady-state inhibition in dSCN than vSCN neurones, and importantly hypoglycemia via opening KATP channels selectively inhibited the KATP-expressing neurones. Our results suggest that the AVP-SCN oscillator may act as a glucose sensor to respond to glucose shortage while sparing the VIP-SCN oscillator to remain in synch with external light-dark cycle.
Collapse
Affiliation(s)
- Jyh-Jeen Yang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33305, Taiwan
| | - Ruo-Ciao Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33305, Taiwan
| | - Pi-Cheng Cheng
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33305, Taiwan
| | - Yi-Chi Wang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33305, Taiwan
| | - Rong-Chi Huang
- Department of Physiology and Pharmacology, College of Medicine, Chang Gung University, Tao-Yuan, 33305, Taiwan. .,Healthy Aging Research Center, Chang Gung University, Tao-Yuan, 33305, Taiwan. .,Neuroscience Research Center, Chang Gung Memorial Hospital, Linkou Medical Center, Tao-Yuan, 33305, Taiwan.
| |
Collapse
|
39
|
Abstract
Diets and feeding regimens affect many physiological systems in the organism and may contribute to the development or prevention of various pathologies including cardiovascular diseases or metabolic syndromes. Some of the dietary paradigms, such as calorie restriction, have many well-documented positive metabolic effects as well as the potential to extend longevity in different organisms. Recently, the circadian clocks were put forward as integral components of the calorie restriction mechanisms. The circadian clocks generate the circadian rhythms in behavior, physiology, and metabolism; circadian disruption is associated with reduced fitness and decreased longevity. Here we focus on recent advances in the interplay between the circadian clocks and dietary paradigms. We discuss how the regulation of the circadian clocks by feeding/nutrients and regulation of nutrient signaling pathways by the clocks may contribute to the beneficial effects of calorie restriction on metabolism and longevity, and whether the circadian system can be engaged for future medical applications.
Collapse
Affiliation(s)
- Amol Chaudhari
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| | - Richa Gupta
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| | - Kuldeep Makwana
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| | - Roman Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH, USA
| |
Collapse
|
40
|
Blancas-Velazquez A, Mendoza J, Garcia AN, la Fleur SE. Diet-Induced Obesity and Circadian Disruption of Feeding Behavior. Front Neurosci 2017; 11:23. [PMID: 28223912 PMCID: PMC5293780 DOI: 10.3389/fnins.2017.00023] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Accepted: 01/12/2017] [Indexed: 12/13/2022] Open
Abstract
Feeding behavior shows a rhythmic daily pattern, which in nocturnal rodents is observed mainly during the dark period. This rhythmicity is under the influence of the hypothalamic suprachiasmatic nucleus (SCN), the main biological clock. Nevertheless, various studies have shown that in rodent models of obesity, using high-energy diets, the general locomotor activity and feeding rhythms can be disrupted. Here, we review the data on the effects of diet-induced obesity (DIO) on locomotor activity and feeding patterns, as well as the effect on the brain sites within the neural circuitry involved in metabolic and rewarding feeding behavior. In general, DIO may alter locomotor activity by decreasing total activity. On the other hand, DIO largely alters eating patterns, producing increased overall ingestion and number of eating bouts that can extend to the resting period. Furthermore, within the hypothalamic areas, little effect has been reported on the molecular circadian mechanism in DIO animals with ad libitum hypercaloric diets and little or no data exist so far on its effects on the reward system areas. We further discuss the possibility of an uncoupling of metabolic and reward systems in DIO and highlight a gap of circadian and metabolic research that may help to better understand the implications of obesity.
Collapse
Affiliation(s)
- Aurea Blancas-Velazquez
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR-3212, University of StrasbourgStrasbourg, France; Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Jorge Mendoza
- Institute of Cellular and Integrative Neurosciences, Centre National de la Recherche Scientifique UPR-3212, University of Strasbourg Strasbourg, France
| | - Alexandra N Garcia
- Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| | - Susanne E la Fleur
- Department of Endocrinology and Metabolism, Academic Medical Center, University of AmsterdamAmsterdam, Netherlands; Metabolism and Reward Group, Netherlands Institute for NeuroscienceAmsterdam, Netherlands
| |
Collapse
|
41
|
Oster H, Challet E, Ott V, Arvat E, de Kloet ER, Dijk DJ, Lightman S, Vgontzas A, Van Cauter E. The Functional and Clinical Significance of the 24-Hour Rhythm of Circulating Glucocorticoids. Endocr Rev 2017; 38:3-45. [PMID: 27749086 PMCID: PMC5563520 DOI: 10.1210/er.2015-1080] [Citation(s) in RCA: 325] [Impact Index Per Article: 40.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2015] [Accepted: 09/21/2016] [Indexed: 02/07/2023]
Abstract
Adrenal glucocorticoids are major modulators of multiple functions, including energy metabolism, stress responses, immunity, and cognition. The endogenous secretion of glucocorticoids is normally characterized by a prominent and robust circadian (around 24 hours) oscillation, with a daily peak around the time of the habitual sleep-wake transition and minimal levels in the evening and early part of the night. It has long been recognized that this 24-hour rhythm partly reflects the activity of a master circadian pacemaker located in the suprachiasmatic nucleus of the hypothalamus. In the past decade, secondary circadian clocks based on the same molecular machinery as the central master pacemaker were found in other brain areas as well as in most peripheral tissues, including the adrenal glands. Evidence is rapidly accumulating to indicate that misalignment between central and peripheral clocks has a host of adverse effects. The robust rhythm in circulating glucocorticoid levels has been recognized as a major internal synchronizer of the circadian system. The present review examines the scientific foundation of these novel advances and their implications for health and disease prevention and treatment.
Collapse
Affiliation(s)
- Henrik Oster
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Etienne Challet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Volker Ott
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Emanuela Arvat
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - E Ronald de Kloet
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Derk-Jan Dijk
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Stafford Lightman
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Alexandros Vgontzas
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| | - Eve Van Cauter
- Medical Department I (H.O., V.O.), University of Lübeck, 23562 Lübeck, Germany; Institute for Cellular and Integrative Neuroscience (E.C.), Centre National de la Recherche Scientifique (CNRS) UPR 3212, University of Strasbourg, 67084 Strasbourg, France; Division of Endocrinology, Diabetology and Metabolism (E.A.), Department of Internal Medicine, University of Turin, 10043 Turin, Italy; Department of Endocrinology and Metabolic Disease (E.R.d.K.), Leiden University Medical Center, 2333 ZA Leiden, The Netherlands; Surrey Sleep Research Center (D.-J.D.), Faculty of Health and Medical Sciences, University of Surrey, Guildford GU2 7XP, United Kingdom; Henry Wellcome Laboratories for Integrative Neuroscience and Endocrinology (S.L.), University of Bristol, Bristol BS8 1TH, United Kingdom; Sleep Research and Treatment Center (A.V.), Department of Psychiatry, Pennsylvania State University College of Medicine, Hershey, Pennsylvania 17033; and Sleep, Metabolism, and Health Center (E.V.C.), Department of Medicine, University of Chicago, Chicago, Illinois 60637
| |
Collapse
|
42
|
Jaeger C, Xu C, Sun M, Krager S, Tischkau SA. Aryl hydrocarbon receptor-deficient mice are protected from high fat diet-induced changes in metabolic rhythms. Chronobiol Int 2017; 34:318-336. [PMID: 28102700 DOI: 10.1080/07420528.2016.1256298] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Abstract
High fat diet (HFD) consumption alters the synchronized circadian timing system resulting in harmful loss, gain or shift of transcriptional oscillations. The aryl hydrocarbon receptor (AhR) shares structural homology to clock genes, containing both PAS domains and basic helix-loop helix structural motifs, allowing for interaction with components of the primary circadian feedback loop. Activation of AhR alters circadian rhythmicity, primarily through inhibition of Clock/Bmal1-mediated regulation of Per1. AhR-deficient mice are protected from diet-induced metabolic dysfunction, exhibiting enhanced insulin sensitivity and glucose tolerance. This study examined whether AhR haploinsufficiency can also protect against diet-induced alterations in rhythm. After feeding AhR+/+ and AhR+/- mice an HFD (60% fat) for 15 weeks, samples were collected every 4 hours over a 24-hour period. HFD altered the rhythm of serum glucose and the metabolic transcriptome, including hepatic nuclear receptors Rev-erbα and PPARγ in wild-type c57bl6/j mice. AhR reduction provided protection against diet-induced transcriptional oscillation changes; serum glucose and metabolic gene rhythms were protected from the disruption caused by HFD feeding. These data highlight the critical role of AhR signaling in the regulation of metabolism and provide a potential therapeutic target for diseases characterized by rhythmic desynchrony.
Collapse
Affiliation(s)
- Cassie Jaeger
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Canxin Xu
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Mingwei Sun
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Stacey Krager
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| | - Shelley A Tischkau
- a Department of Pharmacology , Southern Illinois University School of Medicine , Springfield , IL , USA
| |
Collapse
|
43
|
De Ita-Pérez DL, Díaz-Muñoz M. Synchronization by Daytime Restricted Food Access Modulates the Presence and Subcellular Distribution of β-Catenin and Its Phosphorylated Forms in the Rat Liver. Front Endocrinol (Lausanne) 2017; 8:14. [PMID: 28220106 PMCID: PMC5292920 DOI: 10.3389/fendo.2017.00014] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/30/2016] [Accepted: 01/16/2017] [Indexed: 12/31/2022] Open
Abstract
β-catenin, the principal effector of the Wnt pathway, is also one of the cadherin cell adhesion molecules; therefore, it fulfills signaling and structural roles in most of the tissues and organs. It has been reported that β-catenin in the liver regulates metabolic responses such as gluconeogenesis and histological changes in response to obesity-promoting diets. The function and cellular location of β-catenin is finely modulated by coordinated sequences of phosphorylation-dephosphorylation events. In this article, we evaluated the levels and cellular localization of liver β-catenin variants, more specifically β-catenin phosphorylated in serine 33 (this phosphorylation provides recognizing sites for β-TrCP, which results in ubiquitination and posterior proteasomal degradation of β-catenin) and β-catenin phosphorylated in serine 675 (phosphorylation that enhances signaling and transcriptional activity of β-catenin through recruitment of different transcriptional coactivators). β-catenin phosphorylated in serine 33 in the nucleus shows day-night fluctuations in their expression level in the Ad Libitum group. In addition, we used a daytime restricted feeding (DRF) protocol to show that the above effects are sensitive to food access-dependent circadian synchronization. We found through western blot and immunohistochemical analyses that DRF protocol promoted (1) higher total β-catenins levels mainly associated with the plasma membrane, (2) reduced the presence of cytoplasmic β-catenin phosphorylated in serine 33, (3) an increase in nuclear β-catenin phosphorylated in serine 675, (4) differential co-localization of total β-catenins/β-catenin phosphorylated in serine 33 and total β-catenins/β-catenin phosphorylated in serine 675 at different temporal points along day and in fasting and refeeding conditions, and (5) differential liver zonation of β-catenin variants studied along hepatic acinus. In conclusion, the present data comprehensively characterize the effect food synchronization has on the presence, subcellular distribution, and liver zonation of β-catenin variants. These results are relevant to understand the set of metabolic and structural liver adaptations that are associated with the expression of the food entrained oscillator (FEO).
Collapse
Affiliation(s)
- Dalia Luz De Ita-Pérez
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
| | - Mauricio Díaz-Muñoz
- Departamento de Neurobiología Celular y Molecular, Instituto de Neurobiología, Universidad Nacional Autónoma de México, Querétaro, Querétaro, México
- *Correspondence: Mauricio Díaz-Muñoz,
| |
Collapse
|
44
|
Abstract
The biological clocks of the circadian timing system coordinate cellular and physiological processes and synchronizes these with daily cycles, feeding patterns also regulates circadian clocks. The clock genes and adipocytokines show circadian rhythmicity. Dysfunction of these genes are involved in the alteration of these adipokines during the development of obesity. Food availability promotes the stimuli associated with food intake which is a circadian oscillator outside of the suprachiasmatic nucleus (SCN). Its circadian rhythm is arranged with the predictable daily mealtimes. Food anticipatory activity is mediated by a self-sustained circadian timing and its principal component is food entrained oscillator. However, the hypothalamus has a crucial role in the regulation of energy balance rather than food intake. Fatty acids or their metabolites can modulate neuronal activity by brain nutrient-sensing neurons involved in the regulation of energy and glucose homeostasis. The timing of three-meal schedules indicates close association with the plasma levels of insulin and preceding food availability. Desynchronization between the central and peripheral clocks by altered timing of food intake and diet composition can lead to uncoupling of peripheral clocks from the central pacemaker and to the development of metabolic disorders. Metabolic dysfunction is associated with circadian disturbances at both central and peripheral levels and, eventual disruption of circadian clock functioning can lead to obesity. While CLOCK expression levels are increased with high fat diet-induced obesity, peroxisome proliferator-activated receptor (PPAR) alpha increases the transcriptional level of brain and muscle ARNT-like 1 (BMAL1) in obese subjects. Consequently, disruption of clock genes results in dyslipidemia, insulin resistance and obesity. Modifying the time of feeding alone can greatly affect body weight. Changes in the circadian clock are associated with temporal alterations in feeding behavior and increased weight gain. Thus, shift work is associated with increased risk for obesity, diabetes and cardio-vascular diseases as a result of unusual eating time and disruption of circadian rhythm.
Collapse
Affiliation(s)
- Atilla Engin
- Faculty of Medicine, Department of General Surgery, Gazi University, Besevler, Ankara, Turkey.
- , Mustafa Kemal Mah. 2137. Sok. 8/14, 06520, Cankaya, Ankara, Turkey.
| |
Collapse
|
45
|
|
46
|
Sen S, Raingard H, Dumont S, Kalsbeek A, Vuillez P, Challet E. Ultradian feeding in mice not only affects the peripheral clock in the liver, but also the master clock in the brain. Chronobiol Int 2016; 34:17-36. [DOI: 10.1080/07420528.2016.1231689] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
Affiliation(s)
- Satish Sen
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, Strasbourg, France and Amsterdam, The Netherlands
| | - Hélène Raingard
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Stéphanie Dumont
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
| | - Andries Kalsbeek
- Hypothalamic Integration Mechanisms, Netherlands Institute for Neuroscience (NIN), Amsterdam, The Netherlands
- International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, Strasbourg, France and Amsterdam, The Netherlands
- Department of Endocrinology and Metabolism, Academic Medical Center (AMC), University of Amsterdam, Amsterdam, The Netherlands
| | - Patrick Vuillez
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
- International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, Strasbourg, France and Amsterdam, The Netherlands
| | - Etienne Challet
- Regulation of Circadian Clocks team, Institute of Cellular and Integrative Neurosciences, UPR3212, Centre National de la Recherche Scientifique (CNRS), University of Strasbourg, Strasbourg, France
- International Associated Laboratory LIA1061 Understanding the Neural Basis of Diurnality, CNRS, Strasbourg, France and Amsterdam, The Netherlands
| |
Collapse
|
47
|
Patel SA, Velingkaar N, Makwana K, Chaudhari A, Kondratov R. Calorie restriction regulates circadian clock gene expression through BMAL1 dependent and independent mechanisms. Sci Rep 2016; 6:25970. [PMID: 27170536 PMCID: PMC4864379 DOI: 10.1038/srep25970] [Citation(s) in RCA: 68] [Impact Index Per Article: 7.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/08/2015] [Accepted: 04/26/2016] [Indexed: 12/19/2022] Open
Abstract
Feeding behavior, metabolism and circadian clocks are interlinked. Calorie restriction (CR) is a feeding paradigm known to extend longevity. We found that CR significantly affected the rhythms in the expression of circadian clock genes in mice on the mRNA and protein levels, suggesting that CR reprograms the clocks both transcriptionally and post-transcriptionally. The effect of CR on gene expression was distinct from the effects of time-restricted feeding or fasting. Furthermore, CR affected the circadian output through up- or down-regulation of the expression of several clock-controlled transcriptional factors and the longevity candidate genes. CR-dependent effects on some clock gene expression were impaired in the liver of mice deficient for BMAL1, suggesting importance of this transcriptional factor for the transcriptional reprogramming of the clock, however, BMAL1- independent mechanisms also exist. We propose that CR recruits biological clocks as a natural mechanism of metabolic optimization under conditions of limited energy resources.
Collapse
Affiliation(s)
- Sonal A. Patel
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Nikkhil Velingkaar
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Kuldeep Makwana
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Amol Chaudhari
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| | - Roman Kondratov
- Department of Biological, Geological, and Environmental Sciences and Center for Gene Regulation in Health and Diseases, Cleveland State University, Cleveland, OH 44115, USA
| |
Collapse
|
48
|
Interdependence of nutrient metabolism and the circadian clock system: Importance for metabolic health. Mol Metab 2016; 5:133-152. [PMID: 26977390 PMCID: PMC4770266 DOI: 10.1016/j.molmet.2015.12.006] [Citation(s) in RCA: 88] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/04/2015] [Revised: 12/15/2015] [Accepted: 12/29/2015] [Indexed: 12/18/2022] Open
Abstract
BACKGROUND While additional research is needed, a number of large epidemiological studies show an association between circadian disruption and metabolic disorders. Specifically, obesity, insulin resistance, cardiovascular disease, and other signs of metabolic syndrome all have been linked to circadian disruption in humans. Studies in other species support this association and generally reveal that feeding that is not in phase with the external light/dark cycle, as often occurs with night or rotating shift workers, is disadvantageous in terms of energy balance. As food is a strong driver of circadian rhythms in the periphery, understanding how nutrient metabolism drives clocks across the body is important for dissecting out why circadian misalignment may produce such metabolic effects. A number of circadian clock proteins as well as their accessory proteins (such as nuclear receptors) are highly sensitive to nutrient metabolism. Macronutrients and micronutrients can function as zeitgebers for the clock in a tissue-specific way and can thus impair synchrony between clocks across the body, or potentially restore synchrony in the case of circadian misalignment. Circadian nuclear receptors are particularly sensitive to nutrient metabolism and can alter tissue-specific rhythms in response to changes in the diet. Finally, SNPs in human clock genes appear to be correlated with diet-specific responses and along with chronotype eventually may provide valuable information from a clinical perspective on how to use diet and nutrition to treat metabolic disorders. SCOPE OF REVIEW This article presents a background of the circadian clock components and their interrelated metabolic and transcriptional feedback loops, followed by a review of some recent studies in humans and rodents that address the effects of nutrient metabolism on the circadian clock and vice versa. We focus on studies in which results suggest that nutrients provide an opportunity to restore or, alternatively, can destroy synchrony between peripheral clocks and the central pacemaker in the brain as well as between peripheral clocks themselves. In addition, we review several studies looking at clock gene SNPs in humans and the metabolic phenotypes or tendencies associated with particular clock gene mutations. MAJOR CONCLUSIONS Targeted use of specific nutrients based on chronotype has the potential for immense clinical utility in the future. Macronutrients and micronutrients have the ability to function as zeitgebers for the clock by activating or modulating specific clock proteins or accessory proteins (such as nuclear receptors). Circadian clock control by nutrients can be tissue-specific. With a better understanding of the mechanisms that support nutrient-induced circadian control in specific tissues, human chronotype and SNP information might eventually be used to tailor nutritional regimens for metabolic disease treatment and thus be an important part of personalized medicine's future.
Collapse
|
49
|
Hannibal J, Georg B, Fahrenkrug J. Altered Circadian Food Anticipatory Activity Rhythms in PACAP Receptor 1 (PAC1) Deficient Mice. PLoS One 2016; 11:e0146981. [PMID: 26757053 PMCID: PMC4710526 DOI: 10.1371/journal.pone.0146981] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2015] [Accepted: 12/23/2015] [Indexed: 11/19/2022] Open
Abstract
Light signals from intrinsically photosensitive retinal ganglion cells (ipRGCs) entrain the circadian clock and regulate negative masking. Two neurotransmitters, glutamate and Pituitary Adenylate Cyclase Activating Polypeptide (PACAP), found in the ipRGCs transmit light signals to the brain via glutamate receptors and the specific PACAP type 1 (PAC1) receptor. Light entrainment occurs during the twilight zones and has little effect on clock phase during daytime. When nocturnal animals have access to food only for a few hours during the resting phase at daytime, they adapt behavior to the restricted feeding (RF) paradigm and show food anticipatory activity (FAA). A recent study in mice and rats demonstrating that light regulates FAA prompted us to investigate the role of PACAP/PAC1 signaling in the light mediated regulation of FAA. PAC1 receptor knock out (PAC1-/-) and wild type (PAC1+/+) mice placed in running wheels were examined in a full photoperiod (FPP) of 12:12 h light/dark (LD) and a skeleton photoperiod (SPP) 1:11:1:11 h L:DD:L:DD at 300 and 10 lux light intensity. Both PAC1-/- mice and PAC1+/+ littermates entrained to FPP and SPP at both light intensities. However, when placed in RF with access to food for 4–5 h during the subjective day, a significant change in behavior was observed in PAC1-/- mice compared to PAC1+/+ mice. While PAC1-/- mice showed similar FAA as PAC1+/+ animals in FPP at 300 lux, PAC1-/- mice demonstrated an advanced onset of FAA with a nearly 3-fold increase in amplitude compared to PAC1+/+ mice when placed in SPP at 300 lux. The same pattern of FAA was observed at 10 lux during both FPP and SPP. The present study indicates a role of PACAP/PAC1 signaling during light regulated FAA. Most likely, PACAP found in ipRGCs mediating non-image forming light information to the brain is involved.
Collapse
Affiliation(s)
- Jens Hannibal
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
- * E-mail:
| | - Birgitte Georg
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| | - Jan Fahrenkrug
- Department of Clinical Biochemistry, Faculty of Health Sciences, Bispebjerg Hospital, University of Copenhagen, Copenhagen, Denmark
| |
Collapse
|
50
|
Tong X, Zhang D, Arthurs B, Li P, Durudogan L, Gupta N, Yin L. Palmitate Inhibits SIRT1-Dependent BMAL1/CLOCK Interaction and Disrupts Circadian Gene Oscillations in Hepatocytes. PLoS One 2015; 10:e0130047. [PMID: 26075729 PMCID: PMC4468094 DOI: 10.1371/journal.pone.0130047] [Citation(s) in RCA: 34] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/25/2015] [Accepted: 05/15/2015] [Indexed: 12/12/2022] Open
Abstract
Elevated levels of serum saturated fatty acid palmitate have been shown to promote insulin resistance, increase cellular ROS production, and trigger cell apoptosis in hepatocytes during the development of obesity. However, it remains unclear whether palmitate directly impacts the circadian clock in hepatocytes, which coordinates nutritional inputs and hormonal signaling with downstream metabolic outputs. Here we presented evidence that the molecular clock is a novel target of palmitate in hepatocytes. Palmitate exposure at low dose inhibits the molecular clock activity and suppresses the cyclic expression of circadian targets including Dbp, Nr1d1 and Per2 in hepatocytes. Palmitate treatment does not seem to alter localization or reduce protein expression of BMAL1 and CLOCK, the two core components of the molecular clock in hepatocytes. Instead, palmitate destabilizes the protein-protein interaction between BMAL1-CLOCK in a dose and time-dependent manner. Furthermore, we showed that SIRT1 activators could reverse the inhibitory action of palmitate on BMAL1-CLOCK interaction and the clock gene expression, whereas inhibitors of NAD synthesis mimic the palmitate effects on the clock function. In summary, our findings demonstrated that palmitate inhibits the clock function by suppressing SIRT1 function in hepatocytes.
Collapse
Affiliation(s)
- Xin Tong
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Deqiang Zhang
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Blake Arthurs
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Pei Li
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Leigh Durudogan
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Neil Gupta
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| | - Lei Yin
- Department of Molecular & Integrative Physiology, University of Michigan Medical School, Ann Arbor, Michigan, United States of America
| |
Collapse
|