1
|
Ahmed S, Abdullah M, Khan MAA, Resham S, Qureshi BM, Mushtaq N. The trends in diagnosis, management, and care of patients with diffuse intrinsic pontine gliomas: Perspectives from a tertiary care hospital of pakistan. Childs Nerv Syst 2024; 40:3537-3544. [PMID: 39349775 DOI: 10.1007/s00381-024-06637-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/21/2024] [Accepted: 09/24/2024] [Indexed: 11/06/2024]
Abstract
BACKGROUND Diffuse intrinsic pontine glioma (DIPG) primarily affects pediatric patients. Data on the global incidence of DIPG remain sparse, especially in South Asia and low-middle-income countries like Pakistan. METHODS After exemption from the Ethics Review Committee, a retrospective study was conducted. Records of patients with DIPG at the Aga Khan Hospital in Karachi, from January 2010 to December 2022, were reviewed. RESULTS A total of 35 pediatric patients were managed for DIPG. The median age of the patients was 9, with 19 (54.3%) males and 16 (45.7%) females. Cranial nerve palsies were the most common complaint and were present in 19 (54.3%) patients, followed by headaches in 18 (51.4%), long tract signs in 14 (40%), ataxia/cerebellar symptoms in 14 (40%), and seizures in 5 (14.3%). MRI was the primary diagnostic tool, used alone or with CT in 32 (94.1%) patients; CT alone was used in only 2 (5.7%) patients. Biopsy was performed in 10 (28.6%) patients. Primary radiation therapy was administered to 14 (40%) patients with 5400 cGy in 30 fractions. All these patients received steroids while none of them received reirradiation. VP shunt surgery for hydrocephalus was performed in 9 (25.7%) patients. Over half (54.3%) refused treatment post-diagnosis, and 71.4% were lost to follow-up. CONCLUSION Providing timely, quality multi-disciplinary care to DIPG patients within resource constraints remains challenging in Pakistan. However, recent developments show promise for improving DIPG care in the country.
Collapse
Affiliation(s)
- Salaar Ahmed
- Medical College, Aga Khan University, Karachi, 74800, Pakistan
| | | | | | - Shahzadi Resham
- Department of Oncology, Aga Khan University Hospital, Karachi, 74800, Pakistan
| | | | - Naureen Mushtaq
- Department of Oncology, Aga Khan University Hospital, Karachi, 74800, Pakistan.
| |
Collapse
|
2
|
d’Amati A, Bargiacchi L, Rossi S, Carai A, Bertero L, Barresi V, Errico ME, Buccoliero AM, Asioli S, Marucci G, Del Baldo G, Mastronuzzi A, Miele E, D’Antonio F, Schiavello E, Biassoni V, Massimino M, Gessi M, Antonelli M, Gianno F. Pediatric CNS tumors and 2021 WHO classification: what do oncologists need from pathologists? Front Mol Neurosci 2024; 17:1268038. [PMID: 38544524 PMCID: PMC10966132 DOI: 10.3389/fnmol.2024.1268038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Accepted: 02/23/2024] [Indexed: 05/14/2024] Open
Abstract
The fifth edition of the WHO Classification of Tumors of the Central Nervous System (CNS), published in 2021, established new approaches to both CNS tumor nomenclature and grading, emphasizing the importance of integrated diagnoses and layered reports. This edition increased the role of molecular diagnostics in CNS tumor classification while still relying on other established approaches such as histology and immunohistochemistry. Moreover, it introduced new tumor types and subtypes based on novel diagnostic technologies such as DNA methylome profiling. Over the past decade, molecular techniques identified numerous key genetic alterations in CSN tumors, with important implications regarding the understanding of pathogenesis but also for prognosis and the development and application of effective molecularly targeted therapies. This review summarizes the major changes in the 2021 fifth edition classification of pediatric CNS tumors, highlighting for each entity the molecular alterations and other information that are relevant for diagnostic, prognostic, or therapeutic purposes and that patients' and oncologists' need from a pathology report.
Collapse
Affiliation(s)
- Antonio d’Amati
- Unit of Anatomical Pathology, Department of Precision and Regenerative Medicine and Ionian Area, University of Bari “Aldo Moro”, Bari, Italy
- Unit of Human Anatomy and Histology, Department of Translational Biomedicine and Neuroscience (DiBraiN), University of Bari “Aldo Moro”, Bari, Italy
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Lavinia Bargiacchi
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
| | - Sabrina Rossi
- Pathology Unit, Department of Laboratories, Bambino Gesù Children’s Hospital, IRCCS, Rome, Italy
| | - Andrea Carai
- Department of Neuroscience and Neurorehabilitation, Bambino Gesù Children's Hospital, IRCCS, Rome, Italy
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Valeria Barresi
- Department of Diagnostics and Public Health, University of Verona, Verona, Italy
| | - Maria Elena Errico
- Department of Pathology, AORN Santobono Pausilipon, Pediatric Hospital, Naples, Italy
| | | | - Sofia Asioli
- Department of Biomedical and Neuromotor Sciences (DIBINEM), Alma Mater Studiorum University of Bologna, Bologna, Italy
| | - Gianluca Marucci
- Neuropathology Unit, Fondazione IRCCS Istituto Neurologico Carlo Besta, Milan, Italy
| | - Giada Del Baldo
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Angela Mastronuzzi
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Evelina Miele
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Federica D’Antonio
- Department of Paediatric Haematology/Oncology, IRCCS Bambino Gesù Children's Hospital, Rome, Italy
| | - Elisabetta Schiavello
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Veronica Biassoni
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Maura Massimino
- Pediatric Oncology Unit, Fondazione IRCCS Istituto Nazionale dei Tumori, Milan, Italy
| | - Marco Gessi
- Neuropathology Unit, Fondazione Policlinico Universitario "A. Gemelli" IRCCS, Università Cattolica S. Cuore, Roma, Italy
| | - Manila Antonelli
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| | - Francesca Gianno
- Unit of Anatomical Pathology, Department of Radiology, Oncology and Anatomical Pathology, University La Sapienza, Rome, Italy
- IRCCS Neuromed, Pozzilli, Isernia, Italy
| |
Collapse
|
3
|
Spencer D, Bonner ER, Tor-Díez C, Liu X, Bougher K, Prasad R, Gordish-Dressman H, Eze A, Packer RJ, Nazarian J, Linguraru MG, Bornhorst M. Tumor volume features predict survival outcomes for patients diagnosed with diffuse intrinsic pontine glioma. Neurooncol Adv 2024; 6:vdae151. [PMID: 39434924 PMCID: PMC11492488 DOI: 10.1093/noajnl/vdae151] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2024] Open
Abstract
Background Diffuse intrinsic pontine glioma (DIPG) is a fatal childhood central nervous system tumor. Diagnosis and monitoring of tumor response to therapy is based on magnetic resonance imaging (MRI). MRI-based analyses of tumor volume and appearance may aid in the prediction of patient overall survival (OS). Methods Contrast-enhanced T1- and FLAIR/T2-weighted MR images were retrospectively collected from children with classical DIPG diagnosed by imaging (n = 43 patients). MRI features were evaluated at diagnosis (n = 43 patients) and post-radiation (n = 40 patients) to determine OS outcome predictors. Features included 3D tumor volume (Twv), contrast-enhancing tumor core volume (Tc), Tc relative to Twv (TC/Twv), and Twv relative to whole brain volume. Support vector machine (SVM) learning was used to identify feature combinations that predicted OS outcome (defined as OS shorter or longer than 12 months from diagnosis). Results Features associated with poor OS outcome included the presence of contrast-enhancing tumor at diagnosis, >15% Tc/Twv post-radiation therapy (RT), and >20% ∆Tc/Twv post-RT. Consistently, SVM learning identified Tc/Twv at diagnosis (prediction accuracy of 74%) and ∆Tc/Twv at <2 months post-RT (accuracy = 75%) as primary features of poor survival. Conclusions This study demonstrates that tumor imaging features at diagnosis and within 4 months of RT can predict differential OS outcomes in DIPG. These findings provide a framework for incorporating tumor volume-based predictive analyses into the clinical setting, with the potential for treatment customization based on tumor risk characteristics and future applications of machine-learning-based analysis.
Collapse
Affiliation(s)
- D’Andre Spencer
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
- Institute for Clinical and Translational Science, University of California, Irvine, California, USA
| | - Erin R Bonner
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Carlos Tor-Díez
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
| | - Xinyang Liu
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
| | - Kristen Bougher
- School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
| | - Rachna Prasad
- Department of Oncology, University Children’s Hospital Zürich, Zürich, Switzerland
| | - Heather Gordish-Dressman
- Department of Biostatistics, Children’s National Hospital, Washington, District of Columbia, USA
| | - Augustine Eze
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Roger J Packer
- Brain Tumor Institute, Children’s National Hospital, Washington, District of Columbia, USA
| | - Javad Nazarian
- Brain Tumor Institute, Children’s National Hospital, Washington, District of Columbia, USA
- School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| | - Marius George Linguraru
- Sheikh Zayed Institute for Pediatric Surgical Innovation, Children’s National Hospital, Washington, District of Columbia, USA
| | - Miriam Bornhorst
- Stanley Manne Children’s Research Institute at Lurie Children’s, Chicago, Illinois, USA
- Department of Hematology, Oncology, Neuro-oncology and Stem Cell Transplant, Ann & Robert H. Lurie Children’s Hospital of Chicago, Illinois, USA
- Brain Tumor Institute, Children’s National Hospital, Washington, District of Columbia, USA
- School of Medicine and Health Sciences, The George Washington University, Washington, District of Columbia, USA
- Center for Genetic Medicine Research, Children’s National Hospital, Washington, District of Columbia, USA
| |
Collapse
|
4
|
Rameh V, Vajapeyam S, Ziaei A, Kao P, London WB, Baker SJ, Chiang J, Lucas J, Tinkle CL, Wright KD, Poussaint TY. Correlation between Multiparametric MR Imaging and Molecular Genetics in Pontine Pediatric High-Grade Glioma. AJNR Am J Neuroradiol 2023; 44:833-840. [PMID: 37321859 PMCID: PMC10337620 DOI: 10.3174/ajnr.a7910] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/09/2023] [Accepted: 05/22/2023] [Indexed: 06/17/2023]
Abstract
BACKGROUND AND PURPOSE Molecular profiling is a crucial feature in the "integrated diagnosis" of CNS tumors. We aimed to determine whether radiomics could distinguish molecular types of pontine pediatric high-grade gliomas that have similar/overlapping phenotypes on conventional anatomic MR images. MATERIALS AND METHODS Baseline MR images from children with pontine pediatric high-grade gliomas were analyzed. Retrospective imaging studies included standard precontrast and postcontrast sequences and DTI. Imaging analyses included median, mean, mode, skewness, and kurtosis of the ADC histogram of the tumor volume based on T2 FLAIR and enhancement at baseline. Histone H3 mutations were identified through immunohistochemistry and/or Sanger or next-generation DNA sequencing. The log-rank test identified imaging factors prognostic of survival from the time of diagnosis. Wilcoxon rank-sum and Fisher exact tests compared imaging predictors among groups. RESULTS Eighty-three patients had pretreatment MR imaging and evaluable tissue sampling. The median age was 6 years (range, 0.7-17 years); 50 tumors had a K27M mutation in H3-3A, and 11, in H3C2/3. Seven tumors had histone H3 K27 alteration, but the specific gene was unknown. Fifteen were H3 wild-type. Overall survival was significantly higher in H3C2/3- compared with H3-3A-mutant tumors (P = .003) and in wild-type tumors compared with any histone mutation (P = .001). Lower overall survival was observed in patients with enhancing tumors (P = .02) compared with those without enhancement. H3C2/3-mutant tumors showed higher mean, median, and mode ADC_total values (P < .001) and ADC_enhancement (P < .004), with lower ADC_total skewness and kurtosis (P < .003) relative to H3-3A-mutant tumors. CONCLUSIONS ADC histogram parameters are correlated with histone H3 mutation status in pontine pediatric high-grade glioma.
Collapse
Affiliation(s)
- V Rameh
- From the Department of Radiology (V.R., S.V., A.Z., T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - S Vajapeyam
- From the Department of Radiology (V.R., S.V., A.Z., T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - A Ziaei
- From the Department of Radiology (V.R., S.V., A.Z., T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| | - P Kao
- Department of Pediatric Oncology (P.K., W.B.L., K.D.W.), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - W B London
- Department of Pediatric Oncology (P.K., W.B.L., K.D.W.), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - S J Baker
- Departments of Developmental Neurobiology (S.J.B.)
| | | | - J Lucas
- Radiation Oncology (J.L., C.L.T.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - C L Tinkle
- Radiation Oncology (J.L., C.L.T.), St. Jude Children's Research Hospital, Memphis, Tennessee
| | - K D Wright
- Department of Pediatric Oncology (P.K., W.B.L., K.D.W.), Dana-Farber Cancer Institute, Harvard Medical School, Boston, Massachusetts
| | - T Y Poussaint
- From the Department of Radiology (V.R., S.V., A.Z., T.Y.P.), Boston Children's Hospital, Harvard Medical School, Boston, Massachusetts
| |
Collapse
|
5
|
Yang X, Xu L, Yang L. Recent advances in EZH2-based dual inhibitors in the treatment of cancers. Eur J Med Chem 2023; 256:115461. [PMID: 37156182 DOI: 10.1016/j.ejmech.2023.115461] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Revised: 05/04/2023] [Accepted: 05/04/2023] [Indexed: 05/10/2023]
Abstract
The enhancer of zeste homolog 2 (EZH2) protein is the catalytic subunit of one of the histone methyltransferases. EZH2 catalyzes the trimethylation of lysine 27 of histone H3 (H3K27me3) and further alters downstream target levels. EZH2 is upregulated in cancer tissues, wherein its levels correlate strongly with cancer genesis, progression, metastasis, and invasion. Consequently, it has emerged as a novel anticancer therapeutic target. Nonetheless, developing EZH2 inhibitors (EZH2i) has encountered numerous difficulties, such as pre-clinical drug resistance and poor therapeutic effect. The EZH2i synergistically suppresses cancers when used in combination with additional antitumor drugs, such as PARP inhibitors, HDAC inhibitors, BRD4 inhibitors, EZH1 inhibitors, and EHMT2 inhibitors. Typically, the use of dual inhibitors of two different targets mediated by one individual molecule has been recognized as the preferred approach for overcoming the limitations of EZH2 monotherapy. The present review discusses the theoretical basis for designing EZH2-based dual-target inhibitors, and also describes some in vitro and in vivo analysis results.
Collapse
Affiliation(s)
- Xiaojuan Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China.
| | - Lu Xu
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| | - Li Yang
- School of Pharmacy, Xinxiang University, Xinxiang, 453003, China
| |
Collapse
|
6
|
Vallero SG, Bertero L, Morana G, Sciortino P, Bertin D, Mussano A, Ricci FS, Peretta P, Fagioli F. Pediatric diffuse midline glioma H3K27- altered: A complex clinical and biological landscape behind a neatly defined tumor type. Front Oncol 2023; 12:1082062. [PMID: 36727064 PMCID: PMC9885151 DOI: 10.3389/fonc.2022.1082062] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/02/2022] [Accepted: 12/23/2022] [Indexed: 01/18/2023] Open
Abstract
The 2021 World Health Organization Classification of Tumors of the Central Nervous System, Fifth Edition (WHO-CNS5), has strengthened the concept of tumor grade as a combination of histologic features and molecular alterations. The WHO-CNS5 tumor type "Diffuse midline glioma, H3K27-altered," classified within the family of "Pediatric-type diffuse high-grade gliomas," incarnates an ideally perfect integrated diagnosis in which location, histology, and genetics clearly define a specific tumor entity. It tries to evenly characterize a group of neoplasms that occur primarily in children and midline structures and that have a dismal prognosis. Such a well-defined pathological categorization has strongly influenced the pediatric oncology community, leading to the uniform treatment of most cases of H3K27-altered diffuse midline gliomas (DMG), based on the simplification that the mutation overrides the histological, radiological, and clinical characteristics of such tumors. Indeed, multiple studies have described pediatric H3K27-altered DMG as incurable tumors. However, in biology and clinical practice, exceptions are frequent and complexity is the rule. First of all, H3K27 mutations have also been found in non-diffuse gliomas. On the other hand, a minority of DMGs are H3K27 wild-type but have a similarly poor prognosis. Furthermore, adult-type tumors may rarely occur in children, and differences in prognosis have emerged between adult and pediatric H3K27-altered DMGs. As well, tumor location can determine differences in the outcome: patients with thalamic and spinal DMG have significantly better survival. Finally, other concomitant molecular alterations in H3K27 gliomas have been shown to influence prognosis. So, when such additional mutations are found, which one should we focus on in order to make the correct clinical decision? Our review of the current literature on pediatric diffuse midline H3K27-altered DMG tries to address such questions. Indeed, H3K27 status has become a fundamental supplement to the histological grading of pediatric gliomas; however, it might not be sufficient alone to exhaustively define the complex biological behavior of DMG in children and might not represent an indication for a unique treatment strategy across all patients, irrespective of age, additional molecular alterations, and tumor location.
Collapse
Affiliation(s)
- Stefano Gabriele Vallero
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,*Correspondence: Stefano Gabriele Vallero,
| | - Luca Bertero
- Pathology Unit, Department of Medical Sciences, University of Turin, Turin, Italy
| | - Giovanni Morana
- Neuroradiology Unit, Department of Neuroscience, University of Turin, Turin, Italy
| | - Paola Sciortino
- Department of Neuroradiology, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Daniele Bertin
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Anna Mussano
- Radiotherapy Unit, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Federica Silvia Ricci
- Child and Adolescent Neuropsychiatry Division, Department of Public Health and Pediatric Sciences, University of Turin, Turin, Italy
| | - Paola Peretta
- Pediatric Neurosurgery Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy
| | - Franca Fagioli
- Pediatric Oncohematology Division, Regina Margherita Children’s Hospital, Azienda Ospedaliera Universitaria (AOU) Città della Salute e della Scienza, Turin, Italy,Department of Public Health and Pediatrics, University of Turin, Turin, Italy
| |
Collapse
|
7
|
Lasocki A, Abdalla G, Chow G, Thust SC. Imaging features associated with H3 K27-altered and H3 G34-mutant gliomas: a narrative systematic review. Cancer Imaging 2022; 22:63. [DOI: 10.1186/s40644-022-00500-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 10/23/2022] [Indexed: 11/18/2022] Open
Abstract
Abstract
Background
Advances in molecular diagnostics accomplished the discovery of two malignant glioma entities harboring alterations in the H3 histone: diffuse midline glioma, H3 K27-altered and diffuse hemispheric glioma, H3 G34-mutant. Radiogenomics research, which aims to correlate tumor imaging features with genotypes, has not comprehensively examined histone-altered gliomas (HAG). The aim of this research was to synthesize the current published data on imaging features associated with HAG.
Methods
A systematic search was performed in March 2022 using PubMed and the Cochrane Library, identifying studies on the imaging features associated with H3 K27-altered and/or H3 G34-mutant gliomas.
Results
Forty-seven studies fulfilled the inclusion criteria, the majority on H3 K27-altered gliomas. Just under half (21/47) were case reports or short series, the remainder being diagnostic accuracy studies. Despite heterogeneous methodology, some themes emerged. In particular, enhancement of H3 K27M-altered gliomas is variable and can be less than expected given their highly malignant behavior. Low apparent diffusion coefficient values have been suggested as a biomarker of H3 K27-alteration, but high values do not exclude this genotype. Promising correlations between high relative cerebral blood volume values and H3 K27-alteration require further validation. Limited data on H3 G34-mutant gliomas suggest some morphologic overlap with 1p/19q-codeleted oligodendrogliomas.
Conclusions
The existing data are limited, especially for H3 G34-mutant gliomas and artificial intelligence techniques. Current evidence indicates that imaging-based predictions of HAG are insufficient to replace histological assessment. In particular, H3 K27-altered gliomas should be considered when occurring in typical midline locations irrespective of enhancement characteristics.
Collapse
|
8
|
Di Ruscio V, Del Baldo G, Fabozzi F, Vinci M, Cacchione A, de Billy E, Megaro G, Carai A, Mastronuzzi A. Pediatric Diffuse Midline Gliomas: An Unfinished Puzzle. Diagnostics (Basel) 2022; 12:2064. [PMID: 36140466 PMCID: PMC9497626 DOI: 10.3390/diagnostics12092064] [Citation(s) in RCA: 25] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 08/22/2022] [Indexed: 11/15/2022] Open
Abstract
Diffuse midline glioma (DMG) is a heterogeneous group of aggressive pediatric brain tumors with a fatal prognosis. The biological hallmark in the major part of the cases is H3K27 alteration. Prognosis remains poor, with median survival ranging from 9 to 12 months from diagnosis. Clinical and radiological prognostic factors only partially change the progression-free survival but they do not improve the overall survival. Despite efforts, there is currently no curative therapy for DMG. Radiotherapy remains the standard treatment with only transitory benefits. No chemotherapeutic regimens were found to significantly improve the prognosis. In the new era of a deeper integration between histological and molecular findings, potential new approaches are currently under investigation. The entire international scientific community is trying to target DMG on different aspects. The therapeutic strategies involve targeting epigenetic alterations, such as methylation and acetylation status, as well as identifying new molecular pathways that regulate oncogenic proliferation; immunotherapy approaches too are an interesting point of research in the oncology field, and the possibility of driving the immune system against tumor cells has currently been evaluated in several clinical trials, with promising preliminary results. Moreover, thanks to nanotechnology amelioration, the development of innovative delivery approaches to overcross a hostile tumor microenvironment and an almost intact blood-brain barrier could potentially change tumor responses to different treatments. In this review, we provide a comprehensive overview of available and potential new treatments that are worldwide under investigation, with the intent that patient- and tumor-specific treatment could change the biological inauspicious history of this disease.
Collapse
Affiliation(s)
- Valentina Di Ruscio
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giada Del Baldo
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Francesco Fabozzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Department of Pediatrics, University of Rome Tor Vergata, 00165 Rome, Italy
| | - Maria Vinci
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Antonella Cacchione
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Emmanuel de Billy
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Giacomina Megaro
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Andrea Carai
- Neurosurgery Unit, Department of Neurosciences, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
| | - Angela Mastronuzzi
- Department of Onco-Hematology, Cell and Gene Therapies, Bambino Gesù Children’s Hospital, IRCCS, 00165 Rome, Italy
- Faculty of Medicine and Surgery, Saint Camillus International University of Health Sciences, 00131 Rome, Italy
| |
Collapse
|
9
|
Vuong HG, Le HT, Jea A, McNall-Knapp R, Dunn IF. Risk stratification of H3 K27M-mutant diffuse midline gliomas based on anatomical locations: an integrated systematic review of individual participant data. J Neurosurg Pediatr 2022; 30:99-106. [PMID: 35535848 PMCID: PMC10193490 DOI: 10.3171/2022.3.peds2250] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/09/2022] [Accepted: 03/24/2022] [Indexed: 12/31/2022]
Abstract
OBJECTIVE The prognostic significance and genetic characteristics of H3 K27M-mutant diffuse midline gliomas (DMGs) in different anatomical locations requires further clarification. In this study, the authors integrated published data to investigate the differences between brainstem, thalamic, and spinal cord tumors. METHODS PubMed and Web of Science databases were used to search for eligible articles. Studies were included if they provided individual patient data of H3 K27M-mutant DMGs with available tumor locations. Hazard ratios (HRs) and 95% confidence intervals (CIs) were computed to investigate the survival of each subgroup. RESULTS Eight hundred four tumors were identified, including 467, 228, and 109 in the brainstem, thalamus, and spine, respectively. Brainstem tumors were primarily observed in young children, while patients with thalamic and spinal cord tumors afflicted older patients. The Ki-67 labeling index was highest in brainstem tumors. Compared to patients with brainstem tumors, those with thalamic (HR 0.573, 95% CI 0.463-0.709; p < 0.001) and spinal cord lesions (HR 0.460, 95% CI 0.341-0.621; p < 0.001) had a significantly better survival. When patients were stratified by age groups, superior overall survival (OS) of thalamic tumors was observed in comparison to brainstem tumors in young children and adolescents, whereas adult tumors had uniform OS regardless of anatomical sites. Genetically, mutations in HIST1H3B/C (H3.1) and ACVR1 genes were mostly detected in brainstem tumors, whereas spinal cord tumors were characterized by a higher incidence of mutations in the TERT promoter. CONCLUSIONS This study demonstrated that H3 K27M-mutant DMGs have distinct clinical characteristics, prognoses, and molecular profiles in different anatomical locations.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma
| | - Hieu Trong Le
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Vietnam; and
| | - Andrew Jea
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma
| | - Rene McNall-Knapp
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma
| | - Ian F. Dunn
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, Oklahoma
| |
Collapse
|
10
|
Vuong HG, Ngo TNM, Le HT, Dunn IF. The prognostic significance of HIST1H3B/C and H3F3A K27M mutations in diffuse midline gliomas is influenced by patient age. J Neurooncol 2022; 158:405-412. [PMID: 35606633 DOI: 10.1007/s11060-022-04027-2] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Accepted: 05/05/2022] [Indexed: 10/18/2022]
Abstract
INTRODUCTION Diffuse midline gliomas (DMGs) are infiltrative midline gliomas harboring H3K27M mutations and are generally associated with poor outcomes. H3K27M mutations include mutations in HIST1H3B/C (H3.1), HIST2H3B/D (H3.2), or H3F3A (H3.3) genes. It is still unclear whether these mutations each portend a universally poor prognosis, or if there are any factors which modulate outcome. The main objective of this study was to study overall survival (OS) of H3.1 versus H3.3 K27M-mutant DMGs in pediatric and adult patients. METHODS PubMed and Web of Science were searched, and we included studies if they have individual patient data of DMGs with available H3K27M genotype. Kaplan-Meier analysis and Cox regression models were used to analyze the survival of H3.1 and H3.3 mutations in each subgroup. RESULTS We included 26 studies with 102 and 529 H3.1 and H3.3-mutant DMGs, respectively. The H3.1 mutation was more commonly seen in younger age. In pediatric population, H3.3 mutation conferred a shorter survival (median OS of 10.1 vs 14.2 months; p < 0.001) in comparison to H3.1-positive patients, which was further confirmed in the multivariate Cox analysis. Conversely, H3.3 was associated with a prolonged survival in adult patients as compared with H3.1 mutation (median OS of 14.4 vs 1.7 months; p = 0.019). CONCLUSION We demonstrated that the prognosis of H3.1 and H3.3 K27M mutation in DMG patients is modulated by patient age. Routine H3K27M mutation genotyping in newly diagnosed DMGs may further stratify patients with these difficult tumors.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA
| | - Tam N M Ngo
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, 700-000, Vietnam
| | - Hieu Trong Le
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, 700-000, Vietnam
| | - Ian F Dunn
- Department of Neurosurgery, Oklahoma University Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
11
|
Xia J, Li J, Tian L, Ren X, Liu C, Liang C. Targeting Enhancer of Zeste Homolog 2 for the Treatment of Hematological Malignancies and Solid Tumors: Candidate Structure–Activity Relationships Insights and Evolution Prospects. J Med Chem 2022; 65:7016-7043. [DOI: 10.1021/acs.jmedchem.2c00047] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
Affiliation(s)
- Juan Xia
- Laboratory of Hematologic Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang 524001, P. R. China
| | - Jingyi Li
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Lei Tian
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
- College of Bioresources Chemical and Materials Engineering, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| | - Xiaodong Ren
- Medical College, Guizhou University, Guiyang 550025, P. R. China
| | - Chang Liu
- Zhuhai Jinan Selenium Source Nanotechnology Co., Ltd., Zhuhai 519030, P. R. China
| | - Chengyuan Liang
- Faculty of Pharmacy, Shaanxi University of Science & Technology, Xi’an 710021, P. R. China
| |
Collapse
|
12
|
Rechberger JS, Porath KA, Zhang L, Nesvick CL, Schrecengost RS, Sarkaria JN, Daniels DJ. IL-13Rα2 Status Predicts GB-13 (IL13.E13K-PE4E) Efficacy in High-Grade Glioma. Pharmaceutics 2022; 14:922. [PMID: 35631512 PMCID: PMC9143740 DOI: 10.3390/pharmaceutics14050922] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2022] [Revised: 04/14/2022] [Accepted: 04/22/2022] [Indexed: 02/05/2023] Open
Abstract
High-grade gliomas (HGG) are devastating diseases in children and adults. In the pediatric population, diffuse midline gliomas (DMG) harboring H3K27 alterations are the most aggressive primary malignant brain tumors. With no effective therapies available, children typically succumb to disease within one year of diagnosis. In adults, glioblastoma (GBM) remains largely intractable, with a median survival of approximately 14 months despite standard clinical care of radiation and temozolomide. Therefore, effective therapies for these tumors remain one of the most urgent and unmet needs in modern medicine. Interleukin 13 receptor subunit alpha 2 (IL-13Rα2) is a cell-surface transmembrane protein upregulated in many HGGs, including DMG and adult GBM, posing a potentially promising therapeutic target for these tumors. In this study, we investigated the pharmacological effects of GB-13 (also known as IL13.E13K-PE4E), a novel peptide-toxin conjugate that contains a targeting moiety designed to bind IL-13Rα2 with high specificity and a point-mutant cytotoxic domain derived from Pseudomonas exotoxin A. Glioma cell lines demonstrated a spectrum of IL-13Rα2 expression at both the transcript and protein level. Anti-tumor effects of GB-13 strongly correlated with IL-13Rα2 expression and were reflected in apoptosis induction and decreased cell proliferation in vitro. Direct intratumoral administration of GB-13 via convection-enhanced delivery (CED) significantly decreased tumor burden and resulted in prolonged survival in IL-13Rα2-upregulated orthotopic xenograft models of HGG. In summary, administration of GB-13 demonstrated a promising pharmacological response in HGG models both in vitro and in vivo in a manner strongly associated with IL-13Rα2 expression, underscoring the potential of this IL-13Rα2-targeted therapy in a subset of HGG with increased IL-13Rα2 levels.
Collapse
Affiliation(s)
- Julian S. Rechberger
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| | - Kendra A. Porath
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - Liang Zhang
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | - Cody L. Nesvick
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
| | | | - Jann N. Sarkaria
- Department of Radiation Oncology, Mayo Clinic, Rochester, MN 55905, USA; (K.A.P.); (J.N.S.)
| | - David J. Daniels
- Department of Neurologic Surgery, Mayo Clinic, Rochester, MN 55905, USA; (J.S.R.); (L.Z.); (C.L.N.)
- Department of Molecular Pharmacology and Experimental Therapeutics, Mayo Clinic Graduate School of Biomedical Sciences, Rochester, MN 55905, USA
| |
Collapse
|
13
|
Vuong HG, Ngo TNM, Le HT, Jea A, Hrachova M, Battiste J, McNall-Knapp R, Dunn IF. Prognostic Implication of Patient Age in H3K27M-Mutant Midline Gliomas. Front Oncol 2022; 12:858148. [PMID: 35371982 PMCID: PMC8971724 DOI: 10.3389/fonc.2022.858148] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2022] [Accepted: 02/28/2022] [Indexed: 01/02/2023] Open
Abstract
IntroductionPediatric and adult H3K27M-mutant midline gliomas have variable clinical presentations, prognoses, and molecular backgrounds. In this study, we integrated data from published studies to investigate the differences between these two groups.MethodsPubMed and Web of Science were searched for potential data. Studies were included if they had available individual participant data on patients age of H3K27M-mutant midline gliomas. For time-to-event analyses, Kaplan-Meier analysis and Cox regression models were carried out; corresponding hazard ratios (HR) and 95% confidence intervals (CI) were computed to analyze the impact of age and clinical covariates on progression-free survival (PFS) and overall survival (OS).ResultsWe included 43 studies comprising 272 adults and 657 pediatric midline gliomas with H3K27M mutation for analyses. In adults, there was a male predilection whereas females were slightly more common than males in the pediatric group. Spinal cord tumors were more frequent in adults. The prevalence of H3.1 K27M mutation was significantly higher in the pediatric cohort. Compared to adult patients, pediatric H3K27M-mutant midline gliomas exhibited more aggressive features including higher rates of pathologic features of high-grade tumors and Ki67 proliferation index, and had a shorter PFS and OS. Genetically, ACVR1 mutations were more common whereas MGMT methylation, FGFR1, and NF1 mutations were less prevalent in the pediatric cohort.ConclusionPediatric H3K27M-mutant midline gliomas were demographically, clinically, and molecularly distinct from adult patients, highlighting an opportunity to refine the risk stratification for these neoplasms.
Collapse
Affiliation(s)
- Huy Gia Vuong
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
| | - Tam N. M. Ngo
- Faculty of Medicine, Pham Ngoc Thach University of Medicine, Ho Chi Minh City, Vietnam
| | - Hieu Trong Le
- Department of Pathology, University of Medicine and Pharmacy at Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Andrew Jea
- Department of Neurosurgery, Division of Pediatric Neurosurgery, Oklahoma Children’s Hospital, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
| | - Maya Hrachova
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
| | - James Battiste
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
| | - Rene McNall-Knapp
- Department of Pediatrics, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
| | - Ian F. Dunn
- Department of Neurosurgery, The University of Oklahoma Health Sciences Center, Oklahoma University, Oklahoma City, OK, United States
- *Correspondence: Ian F. Dunn,
| |
Collapse
|