1
|
Lokau J, Agthe M, Flynn CM, Garbers C. Proteolytic control of Interleukin-11 and Interleukin-6 biology. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2017. [DOI: 10.1016/j.bbamcr.2017.06.008] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
2
|
Putoczki TL, Thiem S, Loving A, Busuttil RA, Wilson NJ, Ziegler PK, Nguyen PM, Preaudet A, Farid R, Edwards KM, Boglev Y, Luwor RB, Jarnicki A, Horst D, Boussioutas A, Heath JK, Sieber OM, Pleines I, Kile BT, Nash A, Greten FR, McKenzie BS, Ernst M. Interleukin-11 is the dominant IL-6 family cytokine during gastrointestinal tumorigenesis and can be targeted therapeutically. Cancer Cell 2013; 24:257-71. [PMID: 23948300 DOI: 10.1016/j.ccr.2013.06.017] [Citation(s) in RCA: 319] [Impact Index Per Article: 26.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/01/2013] [Revised: 05/17/2013] [Accepted: 06/27/2013] [Indexed: 02/08/2023]
Abstract
Among the cytokines linked to inflammation-associated cancer, interleukin (IL)-6 drives many of the cancer "hallmarks" through downstream activation of the gp130/STAT3 signaling pathway. However, we show that the related cytokine IL-11 has a stronger correlation with elevated STAT3 activation in human gastrointestinal cancers. Using genetic mouse models, we reveal that IL-11 has a more prominent role compared to IL-6 during the progression of sporadic and inflammation-associated colon and gastric cancers. Accordingly, in these models and in human tumor cell line xenograft models, pharmacologic inhibition of IL-11 signaling alleviated STAT3 activation, suppressed tumor cell proliferation, and reduced the invasive capacity and growth of tumors. Our results identify IL-11 signaling as a potential therapeutic target for the treatment of gastrointestinal cancers.
Collapse
Affiliation(s)
- Tracy L Putoczki
- Ludwig Institute for Cancer Research, Melbourne, VIC 3050, Australia.
| | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
3
|
Onnis B, Fer N, Rapisarda A, Perez VS, Melillo G. Autocrine production of IL-11 mediates tumorigenicity in hypoxic cancer cells. J Clin Invest 2013; 123:1615-29. [PMID: 23549086 PMCID: PMC3613900 DOI: 10.1172/jci59623] [Citation(s) in RCA: 63] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2011] [Accepted: 01/24/2013] [Indexed: 12/22/2022] Open
Abstract
IL-11 and its receptor, IL-11Ra, are expressed in human cancers; however, the functional role of IL-11 in tumor progression is not known. We found that IL11 is a hypoxia-inducible, VHL-regulated gene in human cancer cells and that expression of IL11 mRNA was dependent, at least in part, on HIF-1. A cooperative interaction between HIF-1 and AP-1 mediated transcriptional activation of the IL11 promoter. Additionally, we found that human cancer cells expressed a functional IL-11Ra subunit, which triggered signal transduction either by exogenous recombinant human IL-11 or by autocrine production of IL-11 in cells cultured under hypoxic conditions. Silencing of IL11 dramatically abrogated the ability of hypoxia to increase anchorage-independent growth and significantly reduced tumor growth in xenograft models. Notably, these results were phenocopied by partial knockdown of STAT1 in a human prostate cancer cell line (PC3), suggesting that this pathway may play an important role in mediating the effects of IL-11 under hypoxic conditions. In conclusion, these results identify IL11 as an oxygen- and VHL-regulated gene and provide evidence of a pathway "hijacked" by hypoxic cancer cells that may contribute to tumor progression.
Collapse
Affiliation(s)
- Barbara Onnis
- Developmental Therapeutics Program and
SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Nicole Fer
- Developmental Therapeutics Program and
SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Annamaria Rapisarda
- Developmental Therapeutics Program and
SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Victor S. Perez
- Developmental Therapeutics Program and
SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| | - Giovanni Melillo
- Developmental Therapeutics Program and
SAIC-Frederick Inc., Frederick National Laboratory for Cancer Research, Frederick, Maryland, USA
| |
Collapse
|
4
|
Kumar P, Thakar MS, Ouyang W, Malarkannan S. IL-22 from conventional NK cells is epithelial regenerative and inflammation protective during influenza infection. Mucosal Immunol 2013; 6:69-82. [PMID: 22739232 PMCID: PMC3835350 DOI: 10.1038/mi.2012.49] [Citation(s) in RCA: 150] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
Influenza infection primarily targets the upper respiratory system, leading to a severe destruction of the epithelial cell layer. The role of immune cells in the regeneration of tracheal and bronchial epithelial cells is not well defined. Here, we investigated the production of pro-constructive cytokine, Interleukin-22 (IL-22), in the bronchoalveolar lavage (BAL), trachea, lung tissue, and spleen during influenza infection. We found that conventional natural killer (NK) cells (NCR1(+)NK1.1(+)CD127(-)RORγt(-)) were the predominant IL-22-producers in the BAL, trachea, and lung tissues. Tracheal epithelial cells constitutively expressed high levels of IL-22R and underwent active proliferation in response to IL-22 in the wild-type mice. Infection of IL-22(-/-) mice with influenza virus resulted in a severe impairment in the regeneration of tracheal epithelial cells. In addition, IL-22(-/-) mice continued to lose body weight even after 10 days post infection without any recovery. Tracheal epithelial cell proliferation was significantly reduced in IL-22(-/-) mice during influenza infection. Adoptive transfer of IL-22-sufficient but not IL-22-deficient NK cells into IL-22(-/-) mice restored the tracheal/bronchial epithelial cell regeneration and conferred protection against inflammation. Our findings strongly suggest that conventional NK cells have evolved to both kill virus-infected cells and also to provide vital cytokines for tissue regeneration.
Collapse
Affiliation(s)
- Pawan Kumar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
| | - Monica S Thakar
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
- Department of Pediatrics, Medical College of Wisconsin, Milwaukee, WI 53226
| | | | - Subramaniam Malarkannan
- Laboratory of Molecular Immunology and Immunotherapy, Blood Research Institute, 8727 Watertown Plank Road, Milwaukee, WI 53226
- Department of Medicine, Medical College of Wisconsin, Milwaukee, WI 53226
- Department of Microbiology and Molecular Genetics, Medical College of Wisconsin, Milwaukee, WI 53226
| |
Collapse
|
5
|
Naugler KM, Baer KA, Ropeleski MJ. Interleukin-11 antagonizes Fas ligand-mediated apoptosis in IEC-18 intestinal epithelial crypt cells: role of MEK and Akt-dependent signaling. Am J Physiol Gastrointest Liver Physiol 2008; 294:G728-37. [PMID: 18202115 DOI: 10.1152/ajpgi.00002.2007] [Citation(s) in RCA: 14] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Interleukin-11 (IL-11) displays epithelial cytoprotective effects during intestinal injury. Antiapoptotic effects of IL-11 have been described, yet mechanisms remain unclear. Fas/CD95 death receptor signaling is upregulated in ulcerative colitis, leading to mucosal breakdown. We hypothesized that IL-11 inhibits Fas ligand (FasL)-mediated apoptosis in intestinal epithelia. Cell death was monitored in IEC-18 cells by microscopy, caspase and poly(ADP-ribose) polymerase cleavage, mitochondrial release of cytochrome c, and abundance of cytoplasmic oligonucleosomal DNA. RT-PCR was used to monitor Fas, cIAP1, cIAP2, XIAP, cFLIP, survivin, and Bcl-2 family members. Fas membrane expression was detected by immunoblot. Inhibitors of JAK2, phosphatidylinositol 3-kinase (PI3-kinase), Akt 1, MEK1 and MEK2, and p38 MAPK were used to delineate IL-11's antiapoptotic mechanisms. IL-11 did not alter Fas expression. Pretreatment with IL-11 for 24 h before FasL reduced cytoplasmic oligonucleosomal DNA by 63.2%. IL-11 also attenuated caspase-3, caspase-9, and poly(ADP-ribose) polymerase cleavage without affecting expression of activated caspase-8 p20 or cytochrome c release. IL-11 did not affect mRNA expression of the candidate antiapoptotic genes. The MEK1 and MEK2 inhibitors U-0126 and PD-98059 significantly attenuated the protection of IL-11 against caspase-3 and caspase-9 cleavage and cytoplasmic oligonucleosomal DNA accumulation. Although Akt inhibition reversed IL-11-mediated effects on caspase cleavage, it did not reverse the protective effects of IL-11 by DNA ELISA. We conclude that IL-11-dependent MEK1 and MEK2 signaling inhibits FasL-induced apoptosis. The lack of reversal of the IL-11 effect on DNA cleavage by Akt inhibition, despite antagonism of caspase cleavage, suggests that IL-11 inhibits caspase-independent cell death signaling by FasL in a MEK-dependent manner.
Collapse
Affiliation(s)
- Kaitlin M Naugler
- Department of Medicine, Gastrointestinal Diseases Research Unit, Queen's University, Kingston, Ontario, Canada
| | | | | |
Collapse
|
6
|
Boerma M, Wang J, Burnett AF, Santin AD, Roman JJ, Hauer-Jensen M. Local administration of interleukin-11 ameliorates intestinal radiation injury in rats. Cancer Res 2007; 67:9501-6. [PMID: 17909060 DOI: 10.1158/0008-5472.can-07-0810] [Citation(s) in RCA: 37] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Intestinal radiation injury is dose limiting during abdominal and pelvic radiotherapy and critical for the outcome after accidental whole-body radiation exposure. The multifunctional cytokine, interleukin-11 (IL-11), ameliorates the intestinal radiation response, but its clinical use is hampered by severe toxicity after systemic administration. This study addressed whether protection against intestinal radiation injury can be achieved by intraluminal administration of IL-11. Male rats underwent surgical transposition of a 4-cm small bowel loop to the scrotum. For repeated intraluminal drug administration, an ileostomy, proximal to the bowel loop in the scrotum, was created. The transposed intestinal loop was exposed to 5 Gy fractions on 9 consecutive days. Recombinant human IL-11 (rhIL-11; 2 mg/kg/d) or vehicle was given through the ileostomy from 2 days before until 2 weeks after irradiation. At 2 weeks, structural, cellular, and molecular aspects of intestinal radiation injury were assessed. rhIL-11 ameliorated structural manifestations of radiation enteropathy, including radiation injury score (6.5 +/- 0.6 in the vehicle group versus 4.0 +/- 0.3 in the IL-11 group; P = 0.001), mucosal surface area loss (0.2 +/- 0.1 versus 0.5 +/- 0.03; P < 0.0001), and intestinal wall thickening (842 +/- 66 microm versus 643 +/- 54 microm; P = 0.02), reduced postradiation transforming growth factor-beta overexpression, and reduced numbers of ED2-positive cells. Postirradiation mucosal mast cell numbers were partially restored by rhIL-11. These data show that local administration of rhIL-11 ameliorates early intestinal radiation injury and support further development of rhIL-11 to reduce manifestations of intestinal radiation injury in the clinic.
Collapse
Affiliation(s)
- Marjan Boerma
- Department of Pharmaceutical Sciences, University of Arkansas for Medical Sciences, Little Rock, AR 72205, USA.
| | | | | | | | | | | |
Collapse
|
7
|
Hoang B, Trinh A, Birnbaumer L, Edwards RA. Decreased MAPK- and PGE2-dependent IL-11 production in Gialpha2-/- colonic myofibroblasts. Am J Physiol Gastrointest Liver Physiol 2007; 292:G1511-9. [PMID: 17332478 DOI: 10.1152/ajpgi.00307.2006] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Mice deficient in the G-protein alpha subunit G(i)alpha(2) spontaneously develop colitis and colon cancer. IL-11 is a pleiotropic cytokine known to protect the intestinal epithelium from injury in animal models of colitis and is produced by subepithelial myofibroblasts in response to inflammatory mediators including TGF-beta, IL-1beta, and PGE(2). Arachidonic acid release and subsequent PGE(2) production is significantly decreased in the colonic mucosa of G(i)alpha(2)-/- mice, and we hypothesized that this would affect mucosal IL-11 production. Mucosal levels of IL-11 were found to be significantly decreased in G(i)alpha(2)-/- mice despite the presence of mild colitis. Primary cultures of G(i)alpha(2)-/- intestinal and colonic myofibroblasts (IMF and CMF, respectively) produced less basal and TGF-beta or IL-1beta-stimulated IL-11 mRNA and protein than wild-type cells. Inhibitors of ERK or p38 MAPK activation dose dependently inhibited IMF and CMF IL-11 production in response to TGF-beta stimulation, whereas 16,16 dimethyl-PGE(2) and prostanoid receptor subtype-selective agonists induced IL-11 production. Treatment of animals with the EP4-specific agonist ONO-AE1-329 resulted in enhanced mucosal levels of IL-11, and increased IL-11 production by ex vivo cultured CMF. Modulation of cAMP levels produced diverging results, with enhancement of TGF-beta-induced IL-11 release in IMF pretreated with 8-Br-cAMP and inhibition in cells treated either with pertussis toxin or the PKA inhibitor H-89. These data suggest a physiological role for prostaglandins, MAPK signaling, and cAMP signaling for the production of myofibroblast-derived IL-11 in the mouse intestinal mucosa.
Collapse
MESH Headings
- 16,16-Dimethylprostaglandin E2/pharmacology
- Alprostadil/analogs & derivatives
- Alprostadil/pharmacology
- Animals
- Cells, Cultured
- Colon/cytology
- Colon/drug effects
- Colon/enzymology
- Colon/metabolism
- Cyclic AMP/metabolism
- Dinoprostone/metabolism
- Dose-Response Relationship, Drug
- Enzyme Activation
- Extracellular Signal-Regulated MAP Kinases/metabolism
- Fibroblasts/drug effects
- Fibroblasts/enzymology
- Fibroblasts/metabolism
- Flavonoids/pharmacology
- GTP-Binding Protein alpha Subunit, Gi2/deficiency
- GTP-Binding Protein alpha Subunit, Gi2/genetics
- GTP-Binding Protein alpha Subunit, Gi2/metabolism
- Imidazoles/pharmacology
- Interleukin-11/genetics
- Interleukin-11/metabolism
- Interleukin-1beta/metabolism
- Intestine, Small/cytology
- Intestine, Small/drug effects
- Intestine, Small/enzymology
- Intestine, Small/metabolism
- Methyl Ethers/pharmacology
- Mice
- Mice, Inbred C57BL
- Mice, Knockout
- Mitogen-Activated Protein Kinases/antagonists & inhibitors
- Mitogen-Activated Protein Kinases/metabolism
- Protein Kinase Inhibitors/pharmacology
- Pyridines/pharmacology
- RNA, Messenger/metabolism
- Receptors, Prostaglandin E/metabolism
- Receptors, Prostaglandin E, EP4 Subtype
- Signal Transduction/drug effects
- Transforming Growth Factor beta/metabolism
- p38 Mitogen-Activated Protein Kinases/metabolism
Collapse
Affiliation(s)
- Brian Hoang
- Dept. of Pathology, D449 Med Sci I, Univ. of California Irvine, Irvine, CA 92697-4800, USA
| | | | | | | |
Collapse
|