1
|
Gabryel M, Zakerska-Banaszak O, Ladziak K, Hubert KA, Baturo A, Suszynska-Zajczyk J, Hryhorowicz M, Dobrowolska A, Skrzypczak-Zielinska M. Is a rare CXCL8 gene variant a new possible cause or curse factor of inflammatory bowel disease? Front Immunol 2025; 16:1562618. [PMID: 40176809 PMCID: PMC11961448 DOI: 10.3389/fimmu.2025.1562618] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2025] [Accepted: 02/26/2025] [Indexed: 04/04/2025] Open
Abstract
Introduction The pathogenesis of inflammatory bowel diseases (IBD) involves genetic, environmental, immunological, and microbial factors; however, it remains unclear. Pro-inflammatory interleukin 8 (IL-8), encoded by the CXCL8 gene, assumes a crucial chemotactic role in leukocyte migration. Methods This study aimed to investigate whether an association exists between IBD and two CXCL8 variants, namely, c.-251A>T (rs4073) and c.91G>T (rs188378669), and IL-8 concentration. We analyzed the distribution of both variants among 353 Polish IBD patients and 200 population subjects using pyrosequencing, competitive allele-specific PCR and Sanger sequencing. Results The c.91T stop-gained allele was significantly more frequent in IBD patients (2.12%) than in controls (0.25%) (p = 0.0121), while the c.-251T allele frequencies were similar (54% vs. 51.5%, p = 0.4955). Serum IL-8 concentrations, measured using ELISA, were higher in IBD patients with the c.91 GG genotype compared to healthy controls (mean, 70.02 vs. 51.5 pg/ml, p<0.01) and patients with c.91 GT (mean, 61.73 pg/ml). Moreover, clinical data indicated that carriers of the c.91T variant need more often corticosteroids and surgical treatment of the disease than GG homozygous IBD patients. Conclusion This suggest that the CXCL8 c.91T allele may influence IBD manifestation and the course of the disorders in Polish patients, potentially serving as a novel target for future studies and therapeutic approaches.
Collapse
Affiliation(s)
- Marcin Gabryel
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | | - Karolina Ladziak
- Institute of Human Genetics, Polish Academy of Sciences, Poznan, Poland
| | | | - Alina Baturo
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | - Joanna Suszynska-Zajczyk
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Magdalena Hryhorowicz
- Department of Biochemistry and Biotechnology, Poznan University of Life Sciences, Poznan, Poland
| | - Agnieszka Dobrowolska
- Department of Gastroenterology, Dietetics and Internal Medicine, Poznan University of Medical Sciences, Poznan, Poland
| | | |
Collapse
|
2
|
He G, Liu P, Xuan X, Zhang M, Zhang H, Yang K, Luan Y, Yang Q, Yang J, Li Q, Zheng H, Wang P. Transcription factor ELF-1 protects against colitis by maintaining intestinal epithelium homeostasis. Commun Biol 2025; 8:395. [PMID: 40057592 PMCID: PMC11890729 DOI: 10.1038/s42003-025-07742-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2024] [Accepted: 02/14/2025] [Indexed: 05/13/2025] Open
Abstract
Inflammatory bowel disease (IBD) is a chronic, relapsing, and remitting disease characterized by chronic inflammation in the gastrointestinal tract. The exact etiology and pathogenesis of IBD remain elusive. Although ELF-1 has been known to be highly expressed in epithelial cells for past twenty years, little is known about its function in epithelial cells and epithelial-related IBD. Here, we demonstrated that ELF-1 deficiency in mouse lead to exacerbated DSS-induced colitis, marked by inflammation dominated by neutrophil infiltration and activation of IL-17 signaling pathways in various immune cells, including Th17, ILC3, γδT and NKT cells. Bone marrow transfer experiments confirmed ELF-1 deficiency in non-hematopoietic cells intrinsically worsened DSS-induced colitis. On one hand, ELF-1 deficiency enhanced the production of pro-inflammatory chemokines in colonic epithelial cells, leading to extensive infiltration of neutrophils and other immune cells into the colonic mucosal tissue. On the other hand, ELF-1 directly regulated the expression of the Rack1 gene in colonic epithelial tissue, which has been proved to play critical roles in maintaining intestinal homeostasis. Altogether, ELF-1 plays a protective role in colitis by maintaining intestinal epithelium homeostasis.
Collapse
Affiliation(s)
- Gege He
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Pingping Liu
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Xiaoyan Xuan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Min Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Hongxia Zhang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Ka Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Yusheng Luan
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qian Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Jingyuan Yang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Qianru Li
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Huaixin Zheng
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China
| | - Peng Wang
- Department of Microbiology and Immunology, School of Basic Medical Sciences, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
3
|
Cutilli A, Jansen SA, Paolucci F, van Hoesel M, Frederiks CL, Mulder TAM, Chalkiadakis T, Mokry M, Prekovic S, Mocholi E, Lindemans CA, Coffer PJ. Interferon-gamma induces epithelial reprogramming driving CXCL11-mediated T-cell migration. J Leukoc Biol 2025; 117:qiae205. [PMID: 39302156 DOI: 10.1093/jleuko/qiae205] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2024] [Revised: 08/20/2024] [Accepted: 09/19/2024] [Indexed: 09/22/2024] Open
Abstract
The cytokine interferon-gamma plays a multifaceted role in intestinal immune responses ranging from anti- to proinflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of interferon-gamma exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. Interferon-gamma treatment of organoids led to transcriptional reprogramming, marked by a switch to a proinflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium posttreatment confirmed chemokine secretion. Interferon-gamma treatment of organoids led to enhanced T-cell migration in a CXCL11-dependent manner without affecting T-cell activation status. Taken together, our results suggest a specific role for CXCL11 in T-cell recruitment that could be targeted to prevent T-cell trafficking to the inflamed intestine.
Collapse
Affiliation(s)
- Alessandro Cutilli
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Suze A Jansen
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Francesca Paolucci
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Marliek van Hoesel
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Cynthia L Frederiks
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Tessa A M Mulder
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Theofilos Chalkiadakis
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Michal Mokry
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Department of Cardiology, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
| | - Stefan Prekovic
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Enric Mocholi
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| | - Caroline A Lindemans
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Division of Pediatrics, University Medical Center Utrecht, Heidelberglaan 100, 3584 CX Utrecht, The Netherlands
- Princess Máxima Center for Pediatric Oncology, Heidelberglaan 25, 3584 CS Utrecht, The Netherlands
| | - Paul J Coffer
- Regenerative Medicine Center, University Medical Center Utrecht, Uppsalalaan 8, 3584 CT Utrecht, The Netherlands
- Center of Molecular Medicine, University Medical Center Utrecht, Universiteitsweg 100, 3584 CG Utrecht, The Netherlands
| |
Collapse
|
4
|
Xu F, Li X, Wang X, Wu H, Chen S, Chen J, Kong X, Yang Z. Revealing therapeutic targets and drugs from Chinese medicine for ulcerative colitis using bioinformatics. J Biomol Struct Dyn 2024:1-11. [PMID: 39693490 DOI: 10.1080/07391102.2024.2440651] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2023] [Accepted: 06/03/2024] [Indexed: 12/20/2024]
Abstract
Pathogenesis and therapeutic drugs for ulcerative colitis (UC) have plagued researchers worldwide. In this study, therapeutic targets, and drugs from Chinese medicines for UC were screened using bioinformatics. We downloaded five datasets from the GEO database and three machine learning algorithms were used for screening diagnostic biomarkers of UC. Combined with the differential genes for UC, gene sets related to bile acid metabolism, short-chain fatty acids, apoptosis, pyroptosis, G-protein-coupled receptors, mitochondria, and autophagy were collected to screen the core targets, and analyze the association of therapeutic genes (diagnostic biomarkers and core targets) with immune cells. In addition, screening ingredients of Chinese medicines based on UC therapeutic targets was performed. Molecular docking, molecular dynamics simulation, and literature validation were also performed. The screening yielded 37 key therapeutic targets, including 5 diagnostic biomarkers (CCL11, CXCL1, PDZK1IP1, TIMP1, and UGT2A3) and 32 core targets based on hot gene sets. Immune cell infiltration was strongly associated with therapeutic targets in UC, especially neutrophils, macrophages, mast cells, and dendritic cells. Furthermore, a total of 33 compounds with high safety had been recognized as having potential to mitigate UC by reverse prediction from Chinese medicines, and molecular docking, molecular dynamics simulation, and literature reports preliminarily validated the screening results. Although further experimental validation is needed, this work provides some potential therapeutic targets and drugs from Chinese medicines against UC.
Collapse
Affiliation(s)
- Feng Xu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiaofen Li
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiangpei Wang
- School of Chinese Ethnic Medicine, Guizhou Minzu University, Guiyang, China
| | - Hongmei Wu
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Song Chen
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Jianyang Chen
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Xiangxi Kong
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| | - Zhenglin Yang
- Department of Pharmacy, Guizhou University of Traditional Chinese Medicine, Guiyang, China
| |
Collapse
|
5
|
Cutilli A, Jansen SA, Paolucci F, Mokry M, Mocholi E, Lindemans CA, Coffer PJ. IFNγ induces epithelial reprogramming driving CXCL11-mediated T cell migration. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.02.03.578580. [PMID: 38370633 PMCID: PMC10871214 DOI: 10.1101/2024.02.03.578580] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/20/2024]
Abstract
The cytokine interferon-gamma (IFNγ) plays a multifaceted role in intestinal immune responses ranging from anti-to pro-inflammatory depending on the setting. Here, using a 3D co-culture system based on human intestinal epithelial organoids, we explore the capacity of IFNγ-exposure to reprogram intestinal epithelia and thereby directly modulate lymphocyte responses. IFNγ treatment of organoids led to transcriptional reprogramming, marked by a switch to a pro-inflammatory gene expression profile, including transcriptional upregulation of the chemokines CXCL9, CXCL10, and CXCL11. Proteomic analysis of organoid-conditioned medium post-treatment confirmed chemokine secretion. Furthermore, IFNγ-treatment of organoids led to enhanced T cell migration in a CXCL11-dependent manner without affecting T cell activation status. Taken together, our results suggest a specific role for CXCL11 in T cell recruitment that can be targeted to prevent T cell trafficking to the inflamed intestine.
Collapse
|
6
|
Yang Y, Hua Y, Zheng H, Jia R, Ye Z, Su G, Gu Y, Zhan K, Tang K, Qi S, Wu H, Qin S, Huang S. Biomarkers prediction and immune landscape in ulcerative colitis: Findings based on bioinformatics and machine learning. Comput Biol Med 2024; 168:107778. [PMID: 38070204 DOI: 10.1016/j.compbiomed.2023.107778] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Revised: 11/02/2023] [Accepted: 11/28/2023] [Indexed: 01/10/2024]
Abstract
BACKGROUND Ulcerative colitis (UC) presents diagnostic and therapeutic difficulties. The primary objective of this study is to identify efficacious biomarkers for diagnosis and treatment, as well as acquire a deeper understanding of the immuneological characteristics associated with the disease. METHODS Datasets relating to UC were obtained from GEO database. Among these, three datasets were merged to create a metadata for bioinformatics analysis and machine learning. Additionally, one dataset specifically utilized for external validation. Least absolute shrinkage and selection operator (LASSO) and random forest (RF) were employed to screen signature genes. The artificial neural network (ANN) model and receiver operating characteristic (ROC) curve were used to assess the diagnostic performance of signature genes. The single sample gene set enrichment analysis (ssGSEA) was applied to reveal the immune landscape. Finally, the relationship between the signature genes, immune infiltration, and clinical characteristics was investigated through correlation analysis. RESULT By intersecting the result of LASSO, RF and WGCNA, 8 signature genes were identified, including S100A8, IL-1B, CXCL1, TCN1, MMP10, GREM1, DUOX2 and SLC6A14. The biological progress of this gene mostly encompasses acute inflammatory response, aggregation and chemotaxis of leukocyte, and response to lipopolysaccharide by mediating IL-17 signaling pathway, NF-kappa B signaling pathway, TNF signaling pathway, NOD-like receptor signaling pathway. Immune infiltration analysis shows 25 immune cells are significantly elevated in UC samples. Moreover, these signature genes exhibit a strong correlation with various immune cells and a mild to moderate correlation with the Mayo score. CONCLUSION S100A8, IL-1B, CXCL1, TCN1, MMP10, GREM1, DUOX2 and SLC6A14 have been identified as credible potential biomarkers for the diagnosis and therapy of UC. The immune response mediated by these signature biomarkers plays a crucial role in the occurrence and advancement of UC by means of the reciprocal interaction between the signature biomarkers and immune-infiltrated cells.
Collapse
Affiliation(s)
- Yuanming Yang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Yiwei Hua
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Huan Zheng
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Rui Jia
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China
| | - Zhining Ye
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Guifang Su
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Yueming Gu
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Kai Zhan
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Kairui Tang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Shuhao Qi
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China
| | - Haomeng Wu
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China
| | - Shumin Qin
- The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China.
| | - Shaogang Huang
- Dongguan Hospital of Guangzhou University of Chinese Medicine, Dongguan, 523000, China; The Second Clinical College of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; State Key Laboratory of Dampness Syndrome of Chinese Medicine, The Second Affiliated Hospital of Guangzhou University of Chinese Medicine, Guangzhou, 510120, China; Guangdong-Hong Kong-Macau Joint Lab on Chinese Medicine and Immune Disease Research, Guangzhou, 510120, China; Guangdong Provincial Key Laboratory of Clinical Research on Traditional Chinese Medicine Syndrome, Guangzhou 510120, China; Yang Chunbo academic experience inheritance studio of Guangdong provincial hospital of Chinese Medicine, Guangzhou, 510006, China.
| |
Collapse
|
7
|
Liu B, Qian Y, Li Y, Shen X, Ye D, Mao Y, Sun X. Circulating levels of cytokines and risk of inflammatory bowel disease: evidence from genetic data. Front Immunol 2023; 14:1310086. [PMID: 38149258 PMCID: PMC10750389 DOI: 10.3389/fimmu.2023.1310086] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/09/2023] [Accepted: 11/27/2023] [Indexed: 12/28/2023] Open
Abstract
Background Prior epidemiological studies have established a correlation between inflammatory cytokines and inflammatory bowel disease (IBD). However, the nature of this relationship remains uncertain. Mendelian randomization (MR) study has the advantages of avoiding confounding and reverse causality compared with traditional observational research. Objective We aimed to evaluate whether genetically determined circulating levels of cytokines are associated with the risk of IBD by using the MR approach. Materials and methods We selected genetic variants associated with circulating levels of 28 cytokines at the genome-wide significance level from a genome-wide association study (GWAS) including 8,293 individuals. Summary-level data for IBD (including Crohn's disease and ulcerative colitis) were obtained from the International Inflammatory Bowel Disease Genetics Consortium and UK Biobank. We performed the primary analysis using the inverse-variance weighted method, as well as sensitivity analyses to test the stability of our results. We subsequently replicated the results of IBD in the UK Biobank dataset. A reverse MR analysis was also conducted to evaluate the possibility of reverse causation. Results Genetically predicted elevated levels of interleukin-17 (IL-17) and monokine induced by interferon-gamma (MIG) were associated with an increased risk of IBD[odds ratio (OR): 1.52, 95% confidence interval (CI):1.10-2.08, P =0.010 for IL-17 and OR: 1.58, 95% CI: 1.24-2.00, P = 1.60×10-4 for MIG]. Moreover, we observed suggestive associations between β-NGF and MIP-1β with the risk of Crohn's disease (OR: 0.71, 95% CI: 0.52-0.98, P = 0.039) and ulcerative colitis (OR: 1.08, 95% CI: 1.01-1.15, P= 0.019). In the reverse MR study, there was no evidence of causal effects of IBD and these cytokines. Conclusion Our study suggests the potential causal associations of IL-17 and MIG with IBD. Further studies are needed to determine whether IL-17 and MIG or their downstream effectors could be useful in the management of IBD.
Collapse
Affiliation(s)
- Bin Liu
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yu Qian
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
- Diseases & Population (DaP) Geninfo Lab, School of Life Sciences, Westlake University, Hangzhou, Zhejiang, China
| | - Yanan Li
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiangting Shen
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Ding Ye
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Yingying Mao
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| | - Xiaohui Sun
- Department of Epidemiology, Zhejiang Chinese Medical University School of Public Health, Hangzhou, China
| |
Collapse
|
8
|
Jha A, Larkin J, Moore E. SOCS1-KIR Peptide in PEGDA Hydrogels Reduces Pro-Inflammatory Macrophage Activation. Macromol Biosci 2023; 23:e2300237. [PMID: 37337867 DOI: 10.1002/mabi.202300237] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/25/2023] [Indexed: 06/21/2023]
Abstract
Macrophages modulate the wound healing cascade by adopting different phenotypes such as pro-inflammatory (M1) or pro-wound healing (M2). To reduce M1 activation, the JAK/STAT pathway can be targeted by using suppressors of cytokine signaling (SOCS1) proteins. Recently a peptide mimicking the kinase inhibitory region (KIR) of SOCS1 has been utilized to manipulate the adaptive immune response. However, the utilization of SOCS1-KIR to reduce pro-inflammatory phenotype in macrophages is yet to be investigated in a biomaterial formulation. This study introduces a PEGDA hydrogel platform to investigate SOCS1-KIR as a macrophage phenotype manipulating peptide. Immunocytochemistry, cytokine secretion assays, and gene expression analysis for pro-inflammatory macrophage markers in 2D and 3D experiments demonstrate a reduction in M1 activation due to SOCS1-KIR treatment. The retention of SOCS1-KIR in the hydrogel through release assays and diffusion tests is demonstrated. The swelling ratio of the hydrogel also remains unaffected with the entrapment of SOCS1-KIR. This study elucidates how SOCS1-KIR peptide in PEGDA hydrogels can be utilized as an effective therapeutic for macrophage manipulation.
Collapse
Affiliation(s)
- Aakanksha Jha
- J. Crayton Pruitt Family Department of Biomedical Engineering, Herbert Wertheim College of Engineering, University of Florida, Gainesville, FL, 32611, USA
| | - Joseph Larkin
- Department of Microbiology and Cell Science, University of Florida, Gainesville, FL, 32603, USA
| | - Erika Moore
- Fischell Department of Bioengineering, A. James Clark School of Engineering, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
9
|
Lanki M, Mustonen H, Salmi M, Jalkanen S, Haglund C, Seppänen H. Serum cytokine profiles in patients with pancreatic cancer and chronic pancreatitis. Pancreatology 2023; 23:657-662. [PMID: 37468364 DOI: 10.1016/j.pan.2023.07.004] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 06/22/2023] [Accepted: 07/12/2023] [Indexed: 07/21/2023]
Abstract
BACKGROUND Chronic pancreatitis (CP) may cause tumor-like lesions, creating a challenge in distinguishing between CP and pancreatic ductal adenocarcinoma (PDAC) in a patient. Given that invasive surgery is a standard cancer treatment, we aimed to examine whether a noninvasive diagnostic tool utilizing serum cytokines could safely differentiate between PDAC and CP. METHODS A pre-operative serum panel comprising 48 inflammatory cytokines, CA19-9, and C-reactive protein (CRP) was analyzed, consisting of 231 patients, 186 with stage I-III PDAC and 45 with CP. We excluded PDAC patients who underwent neoadjuvant therapy and those CP patients with other active malignancies. The laboratory variables most associated with PDAC diagnosis were assessed using logistic regression and selected using the lasso method. RESULTS The cytokines CTACK, GRO-α, and β-NGF were selected alongside CA19-9 and CRP for our differential diagnostic model. The area under the curve (AUC) for our differential diagnostic model was 0.809 (95% confidence interval [CI] 0.738-0.880), compared with 0.791 (95% CI 0.728-0.854) for CA19-9 alone (not significant). CONCLUSIONS We found that inflammatory cytokines CTACK, GRO-α, and β-NGF alongside CA19-9 and CRP may help distinguish PDAC from CP.
Collapse
Affiliation(s)
- Mira Lanki
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland.
| | - Harri Mustonen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland.
| | - Marko Salmi
- MediCity Research Laboratory, University of Turku, Turku, Finland.
| | - Sirpa Jalkanen
- MediCity Research Laboratory, University of Turku, Turku, Finland.
| | - Caj Haglund
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland.
| | - Hanna Seppänen
- Department of Surgery, University of Helsinki and Helsinki University Hospital, Helsinki, Finland; Translational Cancer Medicine Research Program, Faculty of Medicine, University of Helsinki, Finland.
| |
Collapse
|
10
|
de Brabander J, Boers LS, Kullberg RFJ, Zhang S, Nossent EJ, Heunks LMA, Vlaar APJ, Bonta PI, Schultz MJ, van der Poll T, Duitman J, Bos LDJ. Persistent alveolar inflammatory response in critically ill patients with COVID-19 is associated with mortality. Thorax 2023; 78:912-921. [PMID: 37142421 DOI: 10.1136/thorax-2023-219989] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Accepted: 03/29/2023] [Indexed: 05/06/2023]
Abstract
INTRODUCTION Patients with COVID-19-related acute respiratory distress syndrome (ARDS) show limited systemic hyperinflammation, but immunomodulatory treatments are effective. Little is known about the inflammatory response in the lungs and if this could be targeted using high-dose steroids (HDS). We aimed to characterise the alveolar immune response in patients with COVID-19-related ARDS, to determine its association with mortality, and to explore the association between HDS treatment and the alveolar immune response. METHODS In this observational cohort study, a comprehensive panel of 63 biomarkers was measured in repeated bronchoalveolar lavage (BAL) fluid and plasma samples of patients with COVID-19 ARDS. Differences in alveolar-plasma concentrations were determined to characterise the alveolar inflammatory response. Joint modelling was performed to assess the longitudinal changes in alveolar biomarker concentrations, and the association between changes in alveolar biomarker concentrations and mortality. Changes in alveolar biomarker concentrations were compared between HDS-treated and matched untreated patients. RESULTS 284 BAL fluid and paired plasma samples of 154 patients with COVID-19 were analysed. 13 biomarkers indicative of innate immune activation showed alveolar rather than systemic inflammation. A longitudinal increase in the alveolar concentration of several innate immune markers, including CC motif ligand (CCL)20 and CXC motif ligand (CXCL)1, was associated with increased mortality. Treatment with HDS was associated with a subsequent decrease in alveolar CCL20 and CXCL1 levels. CONCLUSIONS Patients with COVID-19-related ARDS showed an alveolar inflammatory state related to the innate host response, which was associated with a higher mortality. HDS treatment was associated with decreasing alveolar concentrations of CCL20 and CXCL1.
Collapse
Affiliation(s)
- Justin de Brabander
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Leonoor S Boers
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Robert F J Kullberg
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Shiqi Zhang
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Esther J Nossent
- Pulmonary Medicine, Amsterdam UMC location Vrije Universiteit Amsterdam, Amsterdam, The Netherlands
| | - Leo M A Heunks
- Intensive Care Medicine, Erasmus MC, Rotterdam, The Netherlands
| | - Alexander P J Vlaar
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Peter I Bonta
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Marcus J Schultz
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Tom van der Poll
- Center for Experimental and Molecular Medicine (CEMM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - JanWillem Duitman
- Pulmonary Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Infection & Immunity, Inflammatory Diseases, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Experimental Immunology (EXIM), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| | - Lieuwe D J Bos
- Intensive Care Medicine, Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
- Laboratory of Experimental Intensive Care and Anesthesiology (LEICA), Amsterdam UMC location University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
11
|
Naschberger E, Flierl C, Huang J, Erkert L, Gamez-Belmonte R, Gonzalez-Acera M, Bober M, Mehnert M, Becker C, Schellerer VS, Britzen-Laurent N, Stürzl M. Analysis of the interferon-γ-induced secretome of intestinal endothelial cells: putative impact on epithelial barrier dysfunction in IBD. Front Cell Dev Biol 2023; 11:1213383. [PMID: 37645250 PMCID: PMC10460912 DOI: 10.3389/fcell.2023.1213383] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Accepted: 07/31/2023] [Indexed: 08/31/2023] Open
Abstract
The development of inflammatory bowel diseases (IBD) involves the breakdown of two barriers: the epithelial barrier and the gut-vascular barrier (GVB). The destabilization of each barrier can promote initiation and progression of the disease. Interestingly, first evidence is available that both barriers are communicating through secreted factors that may accordingly serve as targets for therapeutic modulation of barrier functions. Interferon (IFN)-γ is among the major pathogenesis factors in IBD and can severely impair both barriers. In order to identify factors transmitting signals from the GVB to the epithelial cell barrier, we analyzed the secretome of IFN-γ-treated human intestinal endothelial cells (HIEC). To this goal, HIEC were isolated in high purity from normal colon tissues. HIEC were either untreated or stimulated with IFN-γ (10 U/mL). After 48 h, conditioned media (CM) were harvested and subjected to comparative hyper reaction monitoring mass spectrometry (HRM™ MS). In total, 1,084 human proteins were detected in the HIEC-CM. Among these, 43 proteins were present in significantly different concentrations between the CM of IFN-γ- and control-stimulated HIEC. Several of these proteins were also differentially expressed in various murine colitis models as compared to healthy animals supporting the relevance of these proteins secreted by inflammatory activated HIEC in the inter-barrier communication in IBD. The angiocrine pathogenic impact of these differentially secreted HIEC proteins on the epithelial cell barrier and their perspectives as targets to treat IBD by modulation of trans-barrier communication is discussed in detail.
Collapse
Affiliation(s)
- Elisabeth Naschberger
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Christian Flierl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Jinghao Huang
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Lena Erkert
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Reyes Gamez-Belmonte
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Miguel Gonzalez-Acera
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | | | | | - Christoph Becker
- Department of Medicine I, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Vera S. Schellerer
- Department of Pediatric Surgery, University Medicine Greifswald, Greifswald, Germany
| | - Nathalie Britzen-Laurent
- Division of Surgical Research, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
| | - Michael Stürzl
- Division of Molecular and Experimental Surgery, Department of Surgery, Universitätsklinikum Erlangen, Friedrich-Alexander-Universität Erlangen-Nürnberg (FAU), Erlangen, Germany
- Comprehensive Cancer Center Erlangen-EMN, Universitätsklinikum Erlangen, Erlangen, Germany
| |
Collapse
|
12
|
Singh R, Srivastava P, Manna PP. Chemokine-targeted nanoparticles: stimulation of the immune system in cancer immunotherapy. EXPLORATION OF IMMUNOLOGY 2023:123-147. [DOI: 10.37349/ei.2023.00093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Accepted: 01/24/2023] [Indexed: 01/06/2025]
Abstract
Surgery, chemotherapy, radiation therapy, and immunotherapy are potential therapeutic choices for many malignant and metastatic cancers. Despite adverse side effects and pain, surgery and chemotherapy continue to be the most common cancer treatments. However, patients treated with immunotherapy had better cancer control than those who got other treatments. There are two methods to activate immunological pathways: systemically and locally. To modify the tumor microenvironment (TME), the former uses systemic cytokine/chemokine (CK) delivery, whilst the latter uses immunological checkpoints or small molecule inhibitors. Organic and inorganic nanomaterials (NMs) enhanced the efficacy of cancer immunotherapy. NMs can transmit drugs, peptides, antigens, antibodies, whole cell membranes, etc. Surface-modified NMs precisely target and enter the tissues. The inner core of surface-modified NMs is composed of chemicals with limited bioavailability and biocompatibility, resulting in prolonged blood retention and decreased renal clearance. These platforms hinder or prevent many immune cell activities and modify the TME, enhancing the efficiency of cancer immunotherapy. By inhibiting CK/CK receptor signaling, cell migration and other immune responses could be controlled. Developing CK-targeted nanoparticles (NPs) that inhibit CK signaling or take advantage of the ligand-receptor connection is possible. Surface chemical modification of NMs with CKs or specific peptides has several medicinal applications, including tissue-specific drug delivery and limited cell migration in cancer-afflicted conditions. This review covers current developments in the role of different groups of CK-loaded NP in tumor therapy targeting immune cells and cancer. It also covers the role of NP targeting CK signaling which aids in immunogenic cell death (ICD) and induction of antitumor immunity. In addition, CK gene silencing and its capacity to prevent cancer metastasis as well as inhibition of immune cell migration to modulate the TME are discussed.
Collapse
Affiliation(s)
- Ranjeet Singh
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| | - Prateek Srivastava
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India;Current address: Postdoctoral Fellow, Ben-Gurion University of the Negev, Beersheba 8410501, Israel
| | - Partha Pratim Manna
- Immunobiology Laboratory, Department of Zoology, Institute of Science, Banaras Hindu University, Varanasi 221005, India
| |
Collapse
|
13
|
Chen Q, Bei S, Zhang Z, Wang X, Zhu Y. Identification of diagnostic biomarks and immune cell infiltration in ulcerative colitis. Sci Rep 2023; 13:6081. [PMID: 37055577 PMCID: PMC10102327 DOI: 10.1038/s41598-023-33388-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2023] [Accepted: 04/12/2023] [Indexed: 04/15/2023] Open
Abstract
We aimed to explore diagnostic biomarks and immune cell infiltration characteristics in ulcerative colitis (UC). We used the dataset GSE38713 as the training set and dataset GSE94648 as the test set. A total of 402 differentially expressed genes (DEGs) were obtained from GSE38713. Annotating, visualizing, and integrating discovery of these differential genes was performed using Gene Ontology (GO), Kyoto Gene and Genome Encyclopedia Pathway (KEGG), and Gene Set Enrichment Analysis (GSEA). Protein-protein interaction networks were constructed from the STRING database, and protein functional modules were identified using the CytoHubba plugin of Cytoscape. Random forest and LASSO regression were used to screen for UC-related diagnostic markers, and ROC curves were generated to validate their diagnostic value. The composition of 22 immune cells was analyzed, and the immune cell infiltration in UC was analyzed using CIBERSORT. Results: Seven diagnostic markers associated with UC were identified: TLCD3A, KLF9, EFNA1, NAAA,WDR4, CKAP4, and CHRNA1. Immune cell infiltration assessment revealed that macrophages M1, activated dendritic cells, and neutrophil cells infiltrated relatively more compared to normal control samples. Our results suggest a new functional feature of UC and suggest potential biomarkers for UC through comprehensive analysis of integrated gene expression data.
Collapse
Affiliation(s)
- Qin Chen
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China.
| | - Shaosheng Bei
- Department of Anorectal, Xiyuan Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Zhiyun Zhang
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China
| | - Xiaofeng Wang
- Department of Colorectal Surgery, Guang'an Men Hospital, China Academy of Chinese Medical Sciences, Beijing, China
| | - Yunying Zhu
- Department of Anorectal, Kunming Municipal Hospital of Traditional Chinese Medicine, The Third Affiliated Hospital of Yunnan University of Chinese Medicine, No. 25 Dongfeng East Road, Panlong District, Kunming, 650011, Yunnan Province, China
| |
Collapse
|
14
|
Wei J, Zhang C, Gao Y, Li Y, Zhang Q, Qi H, Jin M, Yang X, Su X, Zhang Y, Yang R. Gut Epithelial-derived CXCL9 Maintains Gut Homeostasis Through Preventing Overgrown E. coli. J Crohns Colitis 2022; 16:963-977. [PMID: 34964882 DOI: 10.1093/ecco-jcc/jjab234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Revised: 11/25/2021] [Accepted: 12/25/2021] [Indexed: 02/08/2023]
Abstract
BACKGROUND AND AIMS Increased E. coli in the colon are related to the occurrence and development of multiple diseases. Chemokines are shown to possess potential antimicrobial activity, including against Gram-positive and -negative bacterial pathogens. We here investigated function[s] of chemokine CXCL9 expressed in the gut epithelial cells, and mechanism[s] of CXCL9 by which to kill E. coli. METHODS We generated CXCL9fl/flpvillin-creT mice [pvillin-cre positive mice] and their control CXCL9fl/flpvillin-crewmice [pvillin-cre negative mice], and then employed a dextran sulphate sodium [DSS]-mediated colitis model to determine the sensitivity of CXCL9fl/flpvillin-creT mice. We analysed the composition of the gut microbiota by using 16S ribosomal RNA [V3-V4 variable region] sequencing and shotgun metagenomic analyses. We generated E. coli ΔFtsX [FtsX-depleted E. coli] and E. coli ΔaceE [aceE-depleted E. coli] by using a bacterium red recombining system to investigate the mechanism[s] of CXCL9 by which to kill E. coli. RESULTS CXCL9 fl/flpvillin-creTmice were more sensitive to chemically induced colitis than their control littermates, CXCL9fl/flpvillin-crewmice. After DSS treatment, there were markedly increased gut E. coli [Escherichia-Shigella] in the colonic contents of CXCL9fl/flpvillin-creT mice as compared with control CXCL9fl/flpvillin-crew mice. The increased E. coli could promote colitis through NLRC4 and caspase 1/11-mediated IL-18, which was derived from gut epithelial cells. We finally demonstrated that CXCL9 expressed in gut epithelial cells could kill the overgrown E. coli. E. coli expressed Ftsx and PDHc subunits aceE. E.coliΔaceE but not E. coliΔFtsX were resistant to CXCL9-mediated killing. CONCLUSIONS Gut epithelial cells-derived CXCL9 can kill the expanded E. coli through aceE, to remain gut homeostasis.
Collapse
Affiliation(s)
- Jianmei Wei
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Chunze Zhang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Colorectal Surgery, Tianjin Union Medical Center, Tianjin,China
| | - Yunhuan Gao
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuanyuan Li
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Qianjing Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Houbao Qi
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Mengli Jin
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaorong Yang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Xiaomin Su
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Yuan Zhang
- Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China
| | - Rongcun Yang
- Translational Medicine Institute, Tianjin Union Medical Center of Nankai University, Tianjin,China.,Department of Immunology, Nankai University School of Medicine, Nankai University, Tianjin, China.,State Key Laboratory of Medicinal Chemical Biology, Nankai University, Tianjin, China.,Key Laboratory of Bioactive Materials Ministry of Education, Nankai University, Tianjin, China
| |
Collapse
|
15
|
Lartey NL, Vargas-Robles H, Guerrero-Fonseca IM, Nava P, Kumatia EK, Ocloo A, Schnoor M. Annickia polycarpa extract attenuates inflammation, neutrophil recruitment, and colon damage during colitis. Immunol Lett 2022; 248:99-108. [PMID: 35841974 DOI: 10.1016/j.imlet.2022.07.006] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2022] [Revised: 06/08/2022] [Accepted: 07/11/2022] [Indexed: 11/09/2022]
Abstract
Inflammatory bowel diseases (IBD) including Crohn's disease (CD) and ulcerative colitis (UC) are complex inflammatory disorders of the digestive tract. Dysfunctional intestinal epithelial barrier, uncontrolled neutrophil recruitment into the colon, and oxidative stress are major features of IBD. IBD cannot be cured, but symptoms can be alleviated with anti-inflammatory drugs, which often show adverse effects. Thus, safer alternative treatment options are needed. Given the known anti-inflammatory properties of Annickia polycarpa extract (APE), we hypothesized that APE improves the outcome of the inflammatory response during colitis. We assessed APE effects on colon histology, epithelial barrier function and neutrophil recruitment during DSS-induced colitis in mice treated with APE. APE treatment significantly reduced the disease activity index and prevented DSS-induced colon damage as evidenced by reduced colon shortening, ulcerations, crypt dysplasia, edema formation, and leukocyte infiltration. Expression of the pro-inflammatory cytokines TNF-α, IL-6, and IL-1β were significantly diminished in APE-treated mice. Importantly, APE administration reduced neutrophil infiltration into the lamina propria leading to reduced oxidative stress, tight junction disruption and epithelial permeability in the colon. Thus, we propose APE as additional treatment strategy to attenuate colitis symptoms and enhance life quality of individuals with IBD.
Collapse
Affiliation(s)
- Nathaniel L Lartey
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico; Department of Health and Allied Sciences, Baldwin University College, Osu-Accra, Ghana
| | - Hilda Vargas-Robles
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | | | - Porfirio Nava
- Department of Physiology, Biophysics and Neurosciences, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico
| | - Emmanuel K Kumatia
- Department of Phytochemistry, Centre for Plant Medicine Research. Akuapem-Mampong, Ghana
| | - Augustine Ocloo
- Department of Biochemistry, Cell, and Molecular Biology, University of Ghana, LG 54, Legon, Ghana
| | - Michael Schnoor
- Department of Molecular Biomedicine, CINVESTAV-IPN, Avenida IPN 2508, 07360 Mexico-City, Mexico.
| |
Collapse
|
16
|
The Importance of CXCL1 in the Physiological State and in Noncancer Diseases of the Oral Cavity and Abdominal Organs. Int J Mol Sci 2022; 23:ijms23137151. [PMID: 35806156 PMCID: PMC9266754 DOI: 10.3390/ijms23137151] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2022] [Revised: 06/23/2022] [Accepted: 06/25/2022] [Indexed: 02/06/2023] Open
Abstract
CXCL1 is a CXC chemokine, CXCR2 ligand and chemotactic factor for neutrophils. In this paper, we present a review of the role of the chemokine CXCL1 in physiology and in selected major non-cancer diseases of the oral cavity and abdominal organs (gingiva, salivary glands, stomach, liver, pancreas, intestines, and kidneys). We focus on the importance of CXCL1 on implantation and placentation as well as on human pluripotent stem cells. We also show the significance of CXCL1 in selected diseases of the abdominal organs, including the gastrointestinal tract and oral cavity (periodontal diseases, periodontitis, Sjögren syndrome, Helicobacter pylori infection, diabetes, liver cirrhosis, alcoholic liver disease (ALD), non-alcoholic fatty liver disease (NAFLD), HBV and HCV infection, liver ischemia and reperfusion injury, inflammatory bowel disease (Crohn’s disease and ulcerative colitis), obesity and overweight, kidney transplantation and ischemic-reperfusion injury, endometriosis and adenomyosis).
Collapse
|
17
|
Gazouli M, Dovrolis N, Bourdakou MM, Gizis M, Kokkotis G, Kolios G, Michalopoulos G, Michopoulos S, Papaconstantinou I, Tzouvala M, Viazis N, Xourafas V, Zacharopoulou E, Zampeli E, Mantzaris G, Papatheodoridis G, Bamias G. Response to Anti-α4β7 Blockade in Patients With Ulcerative Colitis Is Associated With Distinct Mucosal Gene Expression Profiles at Baseline. Inflamm Bowel Dis 2022; 28:87-95. [PMID: 34042157 DOI: 10.1093/ibd/izab117] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 02/13/2021] [Indexed: 12/11/2022]
Abstract
BACKGROUND Improving treatment outcomes with biological therapy is a demanding current need for patients with inflammatory bowel disease. Discovery of pretreatment prognostic indicators of response may facilitate patient selection and increase long-term remission rates. We aimed to identify baseline mucosal gene expression profiles with predictive value for subsequent response to or failure of treatment with the monoclonal antibody against integrin α4β7, vedolizumab, in patients with active ulcerative colitis (UC). METHODS Mucosal expression of 84 immunological and inflammatory genes was quantified in RNA extracted from colonic biopsies before vedolizumab commencement and compared between patients with or without response to treatment. Significantly differentiated genes were further validated in a larger patient cohort and within available public data sets, and their functional profiles were studied accordingly. RESULTS In the discovery cohort, we identified 21 genes with a statistically significant differential expression between 54-week responders and nonresponders to vedolizumab. Our validation study allowed us to recognize a "core" mucosal profile that was preserved in both discovery and validation cohorts and in the public database. The applied functional annotation and analysis revealed candidate dysregulated pathways in nonresponders to vedolizumab, including immune cell trafficking, TNF receptor superfamily members mediating noncanonical NF-kB pathway, in addition to interleukin signaling, MyD88 signaling, and toll-like receptors (TLRs) cascade. CONCLUSIONS Nonresponse to vedolizumab in UC is associated with specific pretreatment gene-expression mucosal signatures and dysregulation of particular immunological and inflammatory pathways. Baseline mucosal and/or systemic molecular profiling may help in the optimal stratification of patients to receive vedolizumab for active UC.
Collapse
Affiliation(s)
- Maria Gazouli
- Laboratory of Biology, Medical School, National and Kapodistrian University of Athens, Athens, Greece
| | - Nikolas Dovrolis
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Marilena M Bourdakou
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | - Michalis Gizis
- GI Unit, 3rd Department of Internal Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Georgios Kokkotis
- GI Unit, 3rd Department of Internal Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - George Kolios
- Laboratory of Pharmacology, Department of Medicine, Democritus University of Thrace, Alexandroupolis, Greece
| | | | | | - Ioannis Papaconstantinou
- Second Department of Surgery, National and Kapodistrian University of Athens, Medical School, Aretaieion University Hospital, Athens, Greece
| | - Maria Tzouvala
- Department of Gastroenterology, General Hospital Nikaias, Piraeus "Agios Panteleimon", Athens, Greece
| | - Nikos Viazis
- Department of Gastroenterology, GHA Evaggelismos, Opthalmiatreion Athinon-Polykliniki, Athens, Greece
| | - Vasilleios Xourafas
- GI Unit, 3rd Department of Internal Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| | - Eirini Zacharopoulou
- Department of Gastroenterology, General Hospital Nikaias, Piraeus "Agios Panteleimon", Athens, Greece
| | - Evanthia Zampeli
- Department of Gastroenterology, Alexandra General Hospital, Athens, Greece
| | - Gerasimos Mantzaris
- Department of Gastroenterology, GHA Evaggelismos, Opthalmiatreion Athinon-Polykliniki, Athens, Greece
| | - George Papatheodoridis
- Department of Gastroenterology, Laiko General Hospital, Medical School of National and Kapodistrian University of Athens, Athens, Greece
| | - Giorgos Bamias
- GI Unit, 3rd Department of Internal Medicine, Sotiria General Hospital, National and Kapodistrian University of Athens, Athens, Greece
| |
Collapse
|
18
|
Kneusels J, Kaehler M, Cascorbi I, Wedel T, Neunlist M, Lucius R, Cossais F. Limited Impact of 6-Mercaptopurine on Inflammation-Induced Chemokines Expression Profile in Primary Cultures of Enteric Nervous System. Neurochem Res 2021; 46:1781-1793. [PMID: 33864170 PMCID: PMC8187225 DOI: 10.1007/s11064-021-03324-y] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2020] [Revised: 04/04/2021] [Accepted: 04/09/2021] [Indexed: 01/09/2023]
Abstract
Increasing evidences indicate that the enteric nervous system (ENS) and enteric glial cells (EGC) play important regulatory roles in intestinal inflammation. Mercaptopurine (6-MP) is a cytostatic compound clinically used for the treatment of inflammatory bowel diseases (IBD), such as ulcerative colitis and Crohn's disease. However, potential impacts of 6-MP on ENS response to inflammation have not been evaluated yet. In this study, we aimed to gain deeper insights into the profile of inflammatory mediators expressed by the ENS and on the potential anti-inflammatory impact of 6-MP in this context. Genome-wide expression analyses were performed on ENS primary cultures exposed to lipopolysaccharide (LPS) and 6-MP alone or in combination. Differential expression of main hits was validated by quantitative real-time PCR (qPCR) using a cell line for EGC. ENS cells expressed a broad spectrum of cytokines and chemokines of the C-X-C motif ligand (CXCL) family under inflammatory stress. Induction of Cxcl5 and Cxcl10 by inflammatory stimuli was confirmed in EGC. Inflammation-induced protein secretion of TNF-α and Cxcl5 was partly inhibited by 6-MP in ENS primary cultures but not in EGC. Further work is required to identify the cellular mechanisms involved in this regulation. These findings extend our knowledge of the anti-inflammatory properties of 6-MP related to the ENS and in particular of the EGC-response to inflammatory stimuli.
Collapse
Affiliation(s)
- Jan Kneusels
- Institute of Anatomy, Kiel University, Kiel, Germany.
| | - Meike Kaehler
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Ingolf Cascorbi
- Institute of Experimental and Clinical Pharmacology, University Hospital Schleswig-Holstein, Kiel University, Kiel, Germany
| | - Thilo Wedel
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | | - Ralph Lucius
- Institute of Anatomy, Kiel University, Kiel, Germany
| | | |
Collapse
|
19
|
Zhu Y, Yang S, Zhao N, Liu C, Zhang F, Guo Y, Liu H. CXCL8 chemokine in ulcerative colitis. Biomed Pharmacother 2021; 138:111427. [PMID: 33706134 DOI: 10.1016/j.biopha.2021.111427] [Citation(s) in RCA: 45] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2020] [Revised: 02/06/2021] [Accepted: 02/21/2021] [Indexed: 02/06/2023] Open
Abstract
Ulcerative colitis (UC) is a major type of inflammatory bowel disease (IBD), which is characterized by diffuse inflammation of the mucosa of the colon and rectum. Abdominal pain, diarrhea, and hematochezia are UC's main clinical manifestations. Pathogenesis of UC has not yet been clearly elucidated, but it is considered to result from dysregulated expressions of molecules engaged in proinflammatory and anti-inflammatory processes. CXCL8 is one of the most important proinflammatory factors which play a vital role in many inflammatory diseases including UC. The CXCL8-CXCR1/2 axis participates in the pathogenesis of UC through multiple signaling pathways, including PI3k/Akt, MAPKs and NF-κB signaling pathways. Meanwhile, more and more studies in recent years have shown that UC patients have specific non-coding RNA (ncRNA) expression profiles, which may be involved in the occurrence and development of inflammation. In this article, we analyzed the CXCL8-CXCR1/2 axis related signaling pathways and ncRNAs in UC, as well as recent advances in our understanding of the CXCL8-CXCR1/2 axis inhibition as a therapeutic strategy against UC.
Collapse
Affiliation(s)
- Yunfei Zhu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Shihua Yang
- Department of Oncology, The Fifth People's Hospital of Jinan, Jinan 250022, PR China.
| | - Nan Zhao
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Chuanguo Liu
- Experimental Center, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Fayan Zhang
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Yuting Guo
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| | - Huimin Liu
- College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan 250355, PR China.
| |
Collapse
|
20
|
Pectin in diet: Interactions with the human microbiome, role in gut homeostasis, and nutrient-drug interactions. Carbohydr Polym 2021; 255:117388. [DOI: 10.1016/j.carbpol.2020.117388] [Citation(s) in RCA: 96] [Impact Index Per Article: 24.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2020] [Revised: 11/05/2020] [Accepted: 11/05/2020] [Indexed: 12/18/2022]
|
21
|
Xiao X, Zhu W, Zhang Y, Liao Z, Wu C, Yang C, Zhang Y, Xiao S, Su J. Broad-Spectrum Robust Direct Bactericidal Activity of Fish IFNφ1 Reveals an Antimicrobial Peptide-like Function for Type I IFNs in Vertebrates. THE JOURNAL OF IMMUNOLOGY 2021; 206:1337-1347. [PMID: 33568398 DOI: 10.4049/jimmunol.2000680] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Accepted: 01/11/2021] [Indexed: 12/13/2022]
Abstract
Type I IFNs (IFN-Is) play pivotal roles in host defense against viral infections but remain enigmatic against bacterial pathogens. In this study, we recombinantly expressed and purified intact grass carp (Ctenopharyngodon idella) IFNφ1 (gcIFNφ1), a teleost IFN-I. gcIFNφ1 widely powerfully directly kills both Gram-negative and Gram-positive bacteria in a dose-dependent manner. gcIFNφ1 binds to LPS or peptidoglycan and provokes bacterial membrane depolarization and disruption, resulting in bacterial death. Furthermore, gcIFNφ1 can efficiently protect zebrafish against Aeromonas hydrophila infection and significantly reduce the bacterial loads in tissues by an infection model. In addition, we wonder whether antibacterial IFN-I members exist in other vertebrates. The amino acid compositions of representative IFN-Is with strong positive charges from Pisces, Amphibia, reptiles, Aves, and Mammalia demonstrate high similarities with those of 2237 reported cationic antimicrobial peptides in antimicrobial peptide database. Recombinant intact representative IFN-I members from the nonmammalian sect exhibit potent broad-spectrum robust bactericidal activity through bacterial membrane depolarization; in contrast, the bactericidal activity is very weak from mammalian IFN-Is. The findings display a broad-spectrum potent direct antimicrobial function for IFN-Is, to our knowledge previously unknown. The results highlight that IFN-Is are important and robust in host defense against bacterial pathogens, and unify direct antibacterial and indirect antiviral bifunction in nonmammalian jawed vertebrates.
Collapse
Affiliation(s)
- Xun Xiao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China.,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and.,College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Wentao Zhu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Yanqi Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Zhiwei Liao
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Changsong Wu
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Chunrong Yang
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Yongan Zhang
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China
| | - Shaobo Xiao
- College of Veterinary Medicine, Huazhong Agricultural University, Wuhan 430070, China
| | - Jianguo Su
- Department of Aquatic Animal Medicine, College of Fisheries, Huazhong Agricultural University, Wuhan 430070, China; .,Laboratory for Marine Biology and Biotechnology, Pilot National Laboratory for Marine Science and Technology, Qingdao 266237, China; and
| |
Collapse
|
22
|
Lambertini C, Zannoni A, Romagnoli N, Bombardi C, Morini M, Dondi F, Bernardini C, Forni M, Rinnovati R, Spadari A. Expression of Proteinase-Activated Receptor 2 During Colon Volvulus in the Horse. Front Vet Sci 2020; 7:589367. [PMID: 33330716 PMCID: PMC7728609 DOI: 10.3389/fvets.2020.589367] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Accepted: 10/27/2020] [Indexed: 11/16/2022] Open
Abstract
Large colon volvulus in horses is associated with a poor prognosis, especially when ischemic-reperfusion injury of the affected intestinal tract develops. Proteinase-activated receptor 2 (PAR2) plays an important role in the pathogenesis of inflammation in the gastrointestinal tract. The aim of this study was to evaluate the distribution and expression of PAR2 in colonic pelvic flexure of horses spontaneously affected by large colon volvulus (CVH group). Eight horses admitted for severe abdominal colon volvolus and which underwent surgery were included. Colon samples were collected after enterotomy. Data previously obtained from healthy horses were used as a control group. Histologic evaluation was carried out to grade the severity of the colon lesions. Immunofluorescence, western blot and quantitative polymerase chain reaction (RT-qPCR) were carried out on colon samples to evaluate PAR2 expression. In addition, the transcriptional profile of cytokines and chemokines was evaluated using RT2 Profiler™ PCR Array Horse Cytokines & Chemokines. Three out of the eight patients were euthanised due to clinical deterioration. Immunostaining for PAR2 was observed in the enterocytes, intestinal glands and neurons of the submucosal and myenteric plexi. In the CVH horses, the expression of PAR2 mesenger RNA (mRNA) did not differ significantly from that of the healthy animals; western blots of the mucosa of the colon tracts showed a clear band of the expected molecular weight for PAR2 (~44 kDa) and a band smaller than the expected molecular weight for PAR2 (25kDa), suggesting its activation. The gene expressions for C-X-C motif ligand 1 (CXCL1); interleukin 8 (IL8), macrophage inflammatory protein 2 beta (MIP-2BETA) were upregulated in the colic horses as compared with the colons of the healthy horses. Therefore, in the present study, the expression and activation of PAR2 in the colons of horses in the presence of an inflammatory reaction like that occurring in those with spontaneous colon volvulus was confirmed.
Collapse
Affiliation(s)
- Carlotta Lambertini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Augusta Zannoni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Noemi Romagnoli
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Cristiano Bombardi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Maria Morini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Francesco Dondi
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Chiara Bernardini
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Monica Forni
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Riccardo Rinnovati
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| | - Alessandro Spadari
- Department of Veterinary Medical Sciences, University of Bologna, Bologna, Italy
| |
Collapse
|
23
|
Dawson HD, Chen C, Li RW, Bell LN, Shea-Donohue T, Kringel H, Beshah E, Hill DE, Urban JF. Molecular and metabolomic changes in the proximal colon of pigs infected with Trichuris suis. Sci Rep 2020; 10:12853. [PMID: 32732949 PMCID: PMC7393168 DOI: 10.1038/s41598-020-69462-5] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/08/2019] [Accepted: 07/06/2020] [Indexed: 12/14/2022] Open
Abstract
The pig whipworm Trichuris suis is important in swine production because of its negative effects on pig performance and, notably, to some humans with inflammatory bowel disease as a therapeutic agent that modulates inflammation. The proximal colon of T. suis-infected pigs exhibited general inflammation around day 21 after inoculation with infective eggs that is transcriptionally characterized by markers of type-2 immune activation, inflammation, cellular infiltration, tissue repair enzymes, pathways of oxidative stress, and altered intestinal barrier function. Prominent gene pathways involved the Th2-response, de novo cholesterol synthesis, fructose and glucose metabolism, basic amino acid metabolism, and bile acid transport. Upstream regulatory factor analysis implicated the bile acid/farnesoid X receptor in some of these processes. Metabolic analysis indicated changes in fatty acids, antioxidant capacity, biochemicals related to methylation, protein glycosylation, extracellular matrix structure, sugars, Krebs cycle intermediates, microbe-derived metabolites and altered metabolite transport. Close to 1,200 differentially expressed genes were modulated in the proximal colon of pigs with a persistent adult worm infection that was nearly 90% lower in pigs that had expelled worms. The results support a model to test diets that favorably alter the microbiome and improve host intestinal health in both pigs and humans exposed to Trichuris.
Collapse
Affiliation(s)
- Harry D Dawson
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Celine Chen
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Robert W Li
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | | | | | - Helene Kringel
- Department of Veterinary Disease Biology, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Ethiopia Beshah
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA
| | - Dolores E Hill
- Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA
| | - Joseph F Urban
- United States Department of Agriculture, Agricultural Research Service, Beltsville Human Nutrition Research Center, Diet, Genomics, and Immunology Laboratory, Beltsville, USA. .,Beltsville Agricultural Research Center, Animal Parasitic Diseases Laboratory, Beltsville, MD, USA.
| |
Collapse
|
24
|
Jones GR, Brown SL, Phythian-Adams AT, Ivens AC, Cook PC, MacDonald AS. The Methyl-CpG-Binding Protein Mbd2 Regulates Susceptibility to Experimental Colitis via Control of CD11c + Cells and Colonic Epithelium. Front Immunol 2020; 11:183. [PMID: 32117307 PMCID: PMC7033935 DOI: 10.3389/fimmu.2020.00183] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2019] [Accepted: 01/23/2020] [Indexed: 01/16/2023] Open
Abstract
Methyl-CpG-binding domain-2 (Mbd2) acts as an epigenetic regulator of gene expression, by linking DNA methylation to repressive chromatin structure. Although Mbd2 is widely expressed in gastrointestinal immune cells and is implicated in regulating intestinal cancer, anti-helminth responses and colonic inflammation, the Mbd2-expressing cell types that control these responses are incompletely defined. Indeed, epigenetic control of gene expression in cells that regulate intestinal immunity is generally poorly understood, even though such mechanisms may explain the inability of standard genetic approaches to pinpoint the causes of conditions like inflammatory bowel disease. In this study we demonstrate a vital role for Mbd2 in regulating murine colonic inflammation. Mbd2−/− mice displayed dramatically worse pathology than wild type controls during dextran sulfate sodium (DSS) induced colitis, with increased inflammatory (IL-1β+) monocytes. Profiling of mRNA from innate immune and epithelial cell (EC) populations suggested that Mbd2 suppresses inflammation and pathology via control of innate-epithelial cell crosstalk and T cell recruitment. Consequently, restriction of Mbd2 deficiency to CD11c+ dendritic cells and macrophages, or to ECs, resulted in increased DSS colitis severity. Our identification of this dual role for Mbd2 in regulating the inflammatory capacity of both CD11c+ cells and ECs highlights how epigenetic control mechanisms may limit intestinal inflammatory responses.
Collapse
Affiliation(s)
- Gareth-Rhys Jones
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom.,Centre for Inflammation Research, The Queen's Medical Research Institute, University of Edinburgh, Edinburgh, United Kingdom
| | - Sheila L Brown
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alexander T Phythian-Adams
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Alasdair C Ivens
- Centre for Immunity, Infection and Evolution, School of Biological Sciences, Institute of Immunology and Infection Research, University of Edinburgh, Edinburgh, United Kingdom
| | - Peter C Cook
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| | - Andrew S MacDonald
- Faculty of Biology, Medicine and Health, Manchester Collaborative Centre for Inflammation Research, Lydia Becker Institute of Immunology and Inflammation, University of Manchester, Manchester, United Kingdom.,Manchester Academic Health Science Centre, Manchester, United Kingdom
| |
Collapse
|
25
|
Li W, He C, Wu J, Yang D, Yi W. Epstein barr virus encodes miRNAs to assist host immune escape. J Cancer 2020; 11:2091-2100. [PMID: 32127936 PMCID: PMC7052931 DOI: 10.7150/jca.42498] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Accepted: 01/10/2020] [Indexed: 12/12/2022] Open
Abstract
Epstein-barr virus (EBV) is a definite tumorigenic virus, which can form life-long latency in the host, which is difficult to be recognized and completely eliminated by the immune system. It is closely related to the occurrence and development of nasopharyngeal cancer, gastric cancer and various types of lymphoma. At present, a total of 44 Epstein-barr virus-encoded microRNAs (EBV miRNAs) have been found. In response to the immune system of the body, EBV miRNAs can inhibit the expression and presentation of viral antigens, inhibit immune activation and immunotoxicity, assisting host cells to escape from immunity, and providing conditions for further immortalized tumorigenesis of the host cells.
Collapse
Affiliation(s)
- Weiming Li
- Department of orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Cong He
- Department of orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China
| | - Jiayi Wu
- Department of orthopedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Dazhi Yang
- Department of orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China.,Department of orthopedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| | - Weihong Yi
- Department of orthopedics, Union Shenzhen Hospital, Huazhong University of Science and Technology, Shenzhen, Guangdong, China.,Department of orthopedics, The 6th Affiliated Hospital of Shenzhen University Health Science Center, Shenzhen, Guangdong, China
| |
Collapse
|
26
|
Li X, Lee EJ, Gawel DR, Lilja S, Schäfer S, Zhang H, Benson M. Meta-Analysis of Expression Profiling Data Indicates Need for Combinatorial Biomarkers in Pediatric Ulcerative Colitis. J Immunol Res 2020; 2020:8279619. [PMID: 32411805 PMCID: PMC7204128 DOI: 10.1155/2020/8279619] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 01/02/2020] [Indexed: 12/30/2022] Open
Abstract
BACKGROUND Unbiased studies using different genome-wide methods have identified a great number of candidate biomarkers for diagnosis and treatment response in pediatric ulcerative colitis (UC). However, clinical translation has been proven difficult. Here, we hypothesized that one reason could be differences between inflammatory responses in an inflamed gut and in peripheral blood cells. METHODS We performed meta-analysis of gene expression microarray data from intestinal biopsies and whole blood cells (WBC) from pediatric patients with UC and healthy controls in order to identify overlapping pathways, predicted upstream regulators, and potential biomarkers. RESULTS Analyses of profiling datasets from colonic biopsies showed good agreement between different studies regarding pathways and predicted upstream regulators. The most activated predicted upstream regulators included TNF, which is known to have a key pathogenic and therapeutic role in pediatric UC. Despite this, the expression levels of TNF were increased in neither colonic biopsies nor WBC. A potential explanation was increased expression of TNFR2, one of the membrane-bound receptors of TNF in the inflamed colon. Further analyses showed a similar pattern of complex relations between the expression levels of the regulators and their receptors. We also found limited overlap between pathways and predicted upstream regulators in colonic biopsies and WBC. An extended search including all differentially expressed genes that overlapped between colonic biopsies and WBC only resulted in identification of three potential biomarkers involved in the regulation of intestinal inflammation. However, two had been previously proposed in adult inflammatory bowel diseases (IBD), namely, MMP9 and PROK2. CONCLUSIONS Our findings indicate that biomarker identification in pediatric UC is complicated by the involvement of multiple pathways, each of which includes many different types of genes in the blood or inflamed intestine. Therefore, further studies for identification of combinatorial biomarkers are warranted. Our study may provide candidate biomarkers for such studies.
Collapse
Affiliation(s)
- Xinxiu Li
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Eun Jung Lee
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Department of Otorhinolaryngology, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Danuta R. Gawel
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Sandra Lilja
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Samuel Schäfer
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
| | - Huan Zhang
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Sweden
| | - Mikael Benson
- Centre for Personalized Medicine, Linköping University, Linköping, Sweden
- Crown Princess Victoria Children's Hospital, Linköping University Hospital, Sweden
| |
Collapse
|
27
|
RIPK1 inhibitor ameliorates colitis by directly maintaining intestinal barrier homeostasis and regulating following IECs-immuno crosstalk. Biochem Pharmacol 2019; 172:113751. [PMID: 31837309 DOI: 10.1016/j.bcp.2019.113751] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2019] [Accepted: 12/09/2019] [Indexed: 12/25/2022]
Abstract
BACKGROUND The receptor-interacting protein kinase 1 (RIPK1) has emerged as a key upstream regulator that controls the inflammatory response via its kinase-dependent and independent functions, which makes it an attractive target for developing new drugs against inflammation-related diseases. Growing evidences illustrate that RIPK1 is certainly associated with pathogenesis of multiple tissue-damage diseases. However, what are intricate regulatory codes of RIPK1 inhibitor in diseases is still obscure. METHODS We used DSS-induced colitis model in vivo to study the therapeutic effects and the mechanisms of RIPK1 inhibitor. We next characterized the barrier function and the interaction between intestinal epithelial cells (IECs) and immunocytes both in vivo and in vitro. As a candidate in clinical study, GSK2982772 is the most well-developed drug of RIPK1 inhibitors, and we chose it as our study object. RESULTS We demonstrated that RIPK1 inhibitor could ameliorate the intestinal barrier injury by reducing tight junctions' disruption and accompanying oxidative stress. Moreover, the release of chemokines and adhesion molecules from damaged IECs was suppressed by RIPK1 inhibitor treatment. And these protective effects were not only dependent on the suppression of necroptosis but also on the compromised activity of NF-κB. Taken together, RIPK1 inhibitor exerts suppressive function in intestinal inflammatory response possibly via protecting the intestinal epithelial barrier and maintaining the homeostasis of immune microenvironments. Eventually, the positive feedback immune response which triggered progressive epithelial cells injury could be restrained.
Collapse
|
28
|
Nunes NS, Chandran P, Sundby M, Visioli F, da Costa Gonçalves F, Burks SR, Paz AH, Frank JA. Therapeutic ultrasound attenuates DSS-induced colitis through the cholinergic anti-inflammatory pathway. EBioMedicine 2019; 45:495-510. [PMID: 31253515 PMCID: PMC6642284 DOI: 10.1016/j.ebiom.2019.06.033] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 06/05/2019] [Accepted: 06/18/2019] [Indexed: 02/07/2023] Open
Abstract
BACKGROUND Ulcerative Colitis (UC) is an Inflammatory Bowel Disease (IBD) characterized by uncontrolled immune response, diarrhoea, weight loss and bloody stools, where sustained remission is not currently achievable. Dextran Sulphate Sodium (DSS)-induced colitis is an animal model that closely mimics human UC. Ultrasound (US) has been shown to prevent experimental acute kidney injury through vagus nerve (VN) stimulation and activation of the cholinergic anti-inflammatory pathway (CAIP). Since IBD patients may present dysfunctional VN activity, our aim was to determine the effects of therapeutic ultrasound (TUS) in DSS-induced colitis. METHODS Acute colitis was induced by 2% DSS in drinking water for 7 days and TUS was administered to the abdominal area for 7 min/day from days 4-10. Clinical symptoms were analysed, and biological samples were collected for proteomics, macroscopic and microscopic analysis, flow cytometry and immunohistochemistry. FINDINGS TUS attenuated colitis by reducing clinical scores, colon shortening and histological damage, inducing proteomic tolerogenic response in the gut during the injury phase and early recovery of experimental colitis. TUS did not improve clinical and pathological outcomes in splenectomised mice, while α7nAChR (α7 nicotinic acetylcholine receptor - indicator of CAIP involvement) knockout animals presented with disease worsening. Increased levels of colonic F4/80+α7nAChR+ macrophages in wild type mice suggest CAIP activation. INTERPRETATION These results indicate TUS improved DSS-induced colitis through stimulation of the splenic nerve along with possible contribution by VN with CAIP activation. FUND: Intramural Research Programs of the Clinical Centre, the National Institute of Biomedical Imaging and Bioengineering at the NIH and CAPES/Brazil.
Collapse
Affiliation(s)
- Natalia Schneider Nunes
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States; Gastroenterology and Hepatology Sciences Graduate Program, UFRGS, Porto Alegre, RS, Brazil.
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Fernanda Visioli
- Faculty of Dentistry, Oral Pathology, UFRGS, Porto Alegre, RS, Brazil
| | | | - Scott Robert Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States
| | - Ana Helena Paz
- Gastroenterology and Hepatology Sciences Graduate Program, UFRGS, Porto Alegre, RS, Brazil
| | - Joseph Alan Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Centre, NIH, Bethesda, MD, United States; National Institute of Biomedical Imaging and Bioengineering, NIH, Bethesda, MD, United States
| |
Collapse
|
29
|
Boshagh MA, Foroutan P, Moloudi MR, Fakhari S, Malakouti P, Nikkhoo B, Jalili A. ELR positive CXCL chemokines are highly expressed in an animal model of ulcerative colitis. J Inflamm Res 2019; 12:167-174. [PMID: 31417300 PMCID: PMC6599894 DOI: 10.2147/jir.s203714] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2019] [Accepted: 05/16/2019] [Indexed: 12/21/2022] Open
Abstract
Background: The presence of neutrophil-rich inflammation in colon tissues of patients with ulcerative colitis (UC) is one of the most important histological characteristics of this disease. However, the expression of CXCL chemokines governing the infiltration of neutrophils in UC has not been well elucidated. Materials and methods: In this experimental study, the UC model was induced in Wistar rats by administration of 2 mL 4% acetic acid into the large colon through the rectum. Animals were anesthetized after 48 hrs; their colon tissue samples were isolated for macroscopic and histopathological examinations. The expression of CXCL family was assessed by reverse transcription polymerase chain reaction (qRT-PCR) technique. Results: Heavy infiltration of neutrophils, coagulation necrosis, and ulcers were observed in H&E staining, which pathologically proved the UC model. qRT-PCR results showed that ELR+ CXC chemokines such as CXCL6 and CXCL3 had the highest expression in the UC group, which was 49 and 28 times higher than that of the control group, respectively. In addition, other chemokines of this group including CXCL1, CXCL2, and CXCL7 had a significant increase compared to the control group (P≤0.05). However, ELR− CXC chemokines such as CXCL4, CXCL13, and CXCL16 showed a smaller upregulation, while CXCL14 chemokine showed a significant decrease compared to the control group (P≤0.05). However, the expression of CXCL9-12 and CXCL17 did not change. Conclusion: The results showed that the ELR+ CXC chemokines, especially CXCL6 and CXCL3, many involved in the pathogenesis of UC; therefore, CXCL6 and CXCL3 chemokines can be used as therapeutic targets for UC, although more studies using human samples are required.
Collapse
Affiliation(s)
- Mohammad Amin Boshagh
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology & Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Poorya Foroutan
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology & Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Mohammad Raman Moloudi
- Liver and Digestive Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Shohreh Fakhari
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Parisa Malakouti
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Bahram Nikkhoo
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran
| | - Ali Jalili
- Cancer and Immunology Research Center, Kurdistan University of Medical Sciences, Sanandaj, Iran.,Department of Immunology & Hematology, Faculty of Medicine, Kurdistan University of Medical Sciences, Sanandaj, Iran
| |
Collapse
|
30
|
Fischer J, Walter C, Tönges A, Aleth H, Jordão MJC, Leddin M, Gröning V, Erdmann T, Lenz G, Roth J, Vogl T, Prinz M, Dugas M, Jacobsen ID, Rosenbauer F. Safeguard function of PU.1 shapes the inflammatory epigenome of neutrophils. Nat Immunol 2019; 20:546-558. [DOI: 10.1038/s41590-019-0343-z] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/21/2018] [Accepted: 02/08/2019] [Indexed: 12/16/2022]
|
31
|
Nunes NS, Kim S, Sundby M, Chandran P, Burks SR, Paz AH, Frank JA. Temporal clinical, proteomic, histological and cellular immune responses of dextran sulfate sodium-induced acute colitis. World J Gastroenterol 2018; 24:4341-4355. [PMID: 30344419 PMCID: PMC6189848 DOI: 10.3748/wjg.v24.i38.4341] [Citation(s) in RCA: 32] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/20/2018] [Revised: 08/06/2018] [Accepted: 08/24/2018] [Indexed: 02/06/2023] Open
Abstract
AIM To investigate the temporal clinical, proteomic, histological and cellular immune profiles of dextran sulfate sodium (DSS)-induced acute colitis.
METHODS Acute colitis was induced in C57Bl/6 female mice by administration of 1%, 2% or 3% DSS in drinking water for 7 d. Animals were monitored daily for weight loss, stool consistency and blood in the stool, while spleens and colons were harvested on day 8. A time course analysis was performed in mice ingesting 3% DSS, which included colon proteomics through multiplex assay, colon histological scoring by a blinded investigator, and immune response through flow cytometry or immunohistochemistry of the spleen, mesenteric lymph node and colon.
RESULTS Progressive worsening of clinical colitis was observed with increasing DSS from 1% to 3%. In mice ingesting 3% DSS, colon shortening and increase in pro-inflammatory factors starting at day 3 was observed, with increased spleen weights at day 6 and day 8. This coincided with cellular infiltration in the colon from day 2 to day 8, with progressive accumulation of macrophages F4/80+, T helper CD4+ (Th), T cytotoxic CD8+ (Tcyt) and T regulatory CD25+ (Treg) cells, and progressive changes in colonic pathology including destruction of crypts, loss of goblet cells and depletion of the epithelial barrier. Starting on day 4, mesenteric lymph node and/or spleen presented with lower levels of Treg, Th and Tcyt cells, suggesting an immune cell tropism to the gut.
CONCLUSION These results demonstrate that the severity of experimental colitis is dependent on DSS concentration, correlated with clinical, proteomic, histological and cellular immune response on 3% DSS.
Collapse
Affiliation(s)
- Natalia Schneider Nunes
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- Gastroenterology and Hepatology Sciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-093, Brazil
| | - Saejeong Kim
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Maggie Sundby
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Parwathy Chandran
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Scott Robert Burks
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
| | - Ana Helena Paz
- Gastroenterology and Hepatology Sciences Graduate Program, Universidade Federal do Rio Grande do Sul, Porto Alegre 90035-093, Brazil
| | - Joseph Alan Frank
- Frank Laboratory, Radiology and Imaging Sciences, Clinical Center, National Institutes of Health, Bethesda, MD 20892, United States
- National Institute of Biomedical Imaging and Bioengineering, National Institutes of Health, Bethesda, MD 20892, United States
| |
Collapse
|
32
|
Acovic A, Simovic Markovic B, Gazdic M, Arsenijevic A, Jovicic N, Gajovic N, Jovanovic M, Zdravkovic N, Kanjevac T, Harrell CR, Fellabaum C, Dolicanin Z, Djonov V, Arsenijevic N, Lukic ML, Volarevic V. Indoleamine 2,3-dioxygenase-dependent expansion of T-regulatory cells maintains mucosal healing in ulcerative colitis. Therap Adv Gastroenterol 2018; 11:1756284818793558. [PMID: 30159037 PMCID: PMC6109841 DOI: 10.1177/1756284818793558] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/31/2018] [Accepted: 06/21/2018] [Indexed: 02/04/2023] Open
Abstract
BACKGROUND Dendritic cell (DC)-derived indolamine 2,3-dioxygenase (IDO) degrades tryptophan to kynurenine, which promotes conversion of inflammatory T cells in immunosuppressive regulatory T cells (Tregs). We analyzed the significance of the IDO:Treg axis for inducing and maintaining mucosal healing in ulcerative colitis (UC). METHODS Dextran sodium sulphate (DSS)-induced colitis in BALB/c mice (model for mucosal healing) and C57BL/6 mice (model for persistent disease) was used. Serum, fecal samples and colon-infiltrating immune cells of 65 patients with UC with mucosal healing or persistent colitis were analyzed. RESULTS Significantly higher serum levels of kynurenine and downregulated inflammatory cytokines were noticed in DSS-treated BALB/c mice compared with C57BL/6 mice. Increased IDO activity and attenuated capacity for antigen presentation and production of inflammatory cytokines, observed in BALB/c DCs, was followed by a significantly lower number of inflammatory T helper 1 (Th1) and Th17 cells and a notably increased number of Tregs in the colons of DSS-treated BALB/c mice. DCs and Tregs were crucially important for the maintenance of mucosal healing since their depletion aggravated colitis. Mucosal healing, followed by an increase in kynurenine and intestinal Tregs, was re-established when BALB/c DCs were transferred into DC-depleted or Treg-depleted DSS-treated BALB/c mice. This phenomenon was completely abrogated by the IDO inhibitor. Significantly higher serum and fecal levels of kynurenine, accompanied by an increased presence of intestinal Tregs, were noticed in patients with UC with mucosal healing and negatively correlated with disease severity, fecal calprotectin, colon-infiltrating interferon γ and interleukin-17-producing cells, serum and fecal levels of inflammatory cytokines. CONCLUSION IDO-dependent expansion of endogenous Tregs should be further explored as a new approach for the induction and maintenance of mucosal healing in patients with UC.
Collapse
Affiliation(s)
- Aleksandar Acovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia,Department of Dentistry, University of Kragujevac, Kragujevac, Serbia
| | - Bojana Simovic Markovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marina Gazdic
- Department of Genetics, University of Kragujevac, Kragujevac, Serbia
| | - Aleksandar Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Nemanja Jovicic
- Department of Histology and Embryology, University of Kragujevac, Kragujevac, Serbia
| | - Nevena Gajovic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Marina Jovanovic
- Center for Gastroenterology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Natasa Zdravkovic
- Center for Gastroenterology, Clinical Center Kragujevac, Kragujevac, Serbia
| | - Tatjana Kanjevac
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia,Department of Dentistry, University of Kragujevac, Kragujevac, Serbia
| | | | | | - Zana Dolicanin
- State University of Novi Pazar, Department of Biomedical Sciences, Novi Pazar, Serbia
| | - Valentin Djonov
- Institute of Anatomy, University of Bern, Baltzerstrasse, Switzerland
| | - Nebojsa Arsenijevic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | - Miodrag L. Lukic
- Center for Molecular Medicine and Stem Cell Research, University of Kragujevac, Kragujevac, Serbia
| | | |
Collapse
|
33
|
Wang M, Yu F, Wu W, Wang Y, Ding H, Qian L. Epstein-Barr virus-encoded microRNAs as regulators in host immune responses. Int J Biol Sci 2018; 14:565-576. [PMID: 29805308 PMCID: PMC5968849 DOI: 10.7150/ijbs.24562] [Citation(s) in RCA: 68] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2017] [Accepted: 03/06/2018] [Indexed: 12/12/2022] Open
Abstract
Epstein-Barr virus (EBV) is an oncogenic virus that infects over 90% of the world's adult population. EBV can establish life-long latent infection in host due to the balance between EBV and host immune system. EBV latency is associated with various malignancies such as nasopharyngeal carcinoma, gastric carcinoma and Burkitt's lymphoma. EBV is the first human virus that has the capability to encode microRNAs (miRNAs). Remarkably, EBV-encoded miRNAs are abundantly expressed in latently-infected cells and serve important function in viral infection and pathogenesis. Increasing evidence indicates that EBV miRNAs target the host mRNAs involved in cell proliferation, apoptosis and transformation. EBV miRNAs also inhibit the expression of viral antigens, thereby enabling infected cells to escape immune recognition. Intriguingly, EBV miRNAs directly suppress host antiviral immunity by interfering with antigen presentation and immune cell activation. This review will update the current knowledge about EBV miRNAs implicated in host immune responses. An in-depth understanding of the functions of EBV miRNAs in host antiviral immunity will shed light on the EBV-host interactions and provide potential therapeutic targets for the treatment of EBV-associated malignancies.
Collapse
Affiliation(s)
- Man Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Fei Yu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Wei Wu
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Yu Wang
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Han Ding
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| | - Lili Qian
- Institute for Translational Medicine, Medical College of Qingdao University, Dengzhou Road 38, Qingdao 266021, China
| |
Collapse
|
34
|
Günaltay S, Ghiboub M, Hultgren O, Hörnquist EH. Reduced IL-37 Production Increases Spontaneous Chemokine Expressions in Colon Epithelial Cells. Dig Dis Sci 2017; 62:1204-1215. [PMID: 28044228 PMCID: PMC5397456 DOI: 10.1007/s10620-016-4422-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/27/2016] [Accepted: 12/16/2016] [Indexed: 12/22/2022]
Abstract
BACKGROUND AND AIM Microscopic colitis, comprising collagenous colitis and lymphocytic colitis, is a common cause of chronic diarrhea. Previously, we showed enhanced chemokine productions in microscopic colitis patients, indicating dysregulated immune cell chemotaxis in the immunopathogenesis. We also showed decreased mRNA of IL-37, mainly regarded as an anti-inflammatory cytokine, in the colonic mucosa of these patients, potentially an important factor for the chronicity of the colitis. Our aim in this study was to understand the possible role of IL-37 in chemokine production using a cell line model. METHODS A colon epithelial cell line, T84, was stimulated with the TLR5 ligand flagellin. IL-37 protein production was reduced 20% using the CRISPR/Cas9 system, and the changes in chemokine mRNA and protein expressions were compared to cells transfected with empty plasmid. RESULTS The 20% reduction in IL-37 protein levels spontaneously increased CCL5, CXCL8, CXCL10, and CXCL11 mRNA and protein expressions. CCL2 mRNA and protein levels were enhanced upon TLR5 stimulation. CCL3, CCL20, and CX3CL1 mRNA expressions were increased either spontaneously or following TLR5 stimulation, whereas CCL4 and CCL22 mRNA expressions were significantly decreased. CONCLUSIONS Even a minor decrease in the ability of colon epithelial cells to produce IL-37 results in altered chemokine expression, mainly an increase in the production of several chemokines. Our results indicate that a decreased IL-37 expression by colon epithelial cells may be an important factor for increasing the recruitment of immune cells and subsequently developing microscopic colitis.
Collapse
Affiliation(s)
- Sezin Günaltay
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | - Mohammed Ghiboub
- School of Medical Sciences, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden ,Academic Medical Center, Tytgat Institute for Liver and Intestinal Research, Amsterdam University, 1105 BK Amsterdam, The Netherlands
| | - Olof Hultgren
- Department of Microbiology and Immunology, Faculty of Medicine and Health, Örebro University, 70182 Örebro, Sweden
| | | |
Collapse
|
35
|
The Dual Role of Neutrophils in Inflammatory Bowel Diseases. J Clin Med 2016; 5:jcm5120118. [PMID: 27999328 PMCID: PMC5184791 DOI: 10.3390/jcm5120118] [Citation(s) in RCA: 211] [Impact Index Per Article: 23.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2016] [Revised: 12/06/2016] [Accepted: 12/13/2016] [Indexed: 12/21/2022] Open
Abstract
Inflammatory bowel diseases (IBD), including Crohn’s disease and ulcerative colitis, are characterised by aberrant immunological responses leading to chronic inflammation without tissue regeneration. These two diseases are considered distinct entities, and there is some evidence that neutrophil behaviour, above all other aspects of immunity, clearly separate them. Neutrophils are the first immune cells recruited to the site of inflammation, and their action is crucial to limit invasion by microorganisms. Furthermore, they play an essential role in proper resolution of inflammation. When these processes are not tightly regulated, they can trigger positive feedback amplification loops that promote neutrophil activation, leading to significant tissue damage and evolution toward chronic disease. Defective chemotaxis, as observed in Crohn’s disease, can also contribute to the disease through impaired microbe elimination. In addition, through NET production, neutrophils may be involved in thrombo-embolic events frequently observed in IBD patients. While the role of neutrophils has been studied in different animal models of IBD for many years, their contribution to the pathogenesis of IBD remains poorly understood, and no molecules targeting neutrophils are used and validated for the treatment of these pathologies. Therefore, it is crucial to improve our understanding of their mode of action in these particular conditions in order to provide new therapeutic avenues for IBD.
Collapse
|
36
|
Interleukin-8, CXCL1, and MicroRNA miR-146a Responses to Probiotic Escherichia coli Nissle 1917 and Enteropathogenic E. coli in Human Intestinal Epithelial T84 and Monocytic THP-1 Cells after Apical or Basolateral Infection. Infect Immun 2016; 84:2482-92. [PMID: 27297392 DOI: 10.1128/iai.00402-16] [Citation(s) in RCA: 24] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/11/2016] [Accepted: 06/09/2016] [Indexed: 02/08/2023] Open
Abstract
Bacterium-host interactions in the gut proceed via directly contacted epithelial cells, the host's immune system, and a plethora of bacterial factors. Here we characterized and compared exemplary cytokine and microRNA (miRNA) responses of human epithelial and THP-1 cells toward the prototype enteropathogenic Escherichia coli (EPEC) strain E2348/69 (O127:H6) and the probiotic strain Escherichia coli Nissle 1917 (EcN) (O6:K5:H1). Human T84 and THP-1 cells were used as cell culture-based model systems for epithelial and monocytic cells. Polarized T84 monolayers were infected apically or basolaterally. Bacterial challenges from the basolateral side resulted in more pronounced cytokine and miRNA responses than those observed for apical side infections. Interestingly, the probiotic EcN also caused a pronounced transcriptional increase of proinflammatory CXCL1 and interleukin-8 (IL-8) levels when human T84 epithelial cells were infected from the basolateral side. miR-146a, which is known to regulate adaptor molecules in Toll-like receptor (TLR)/NF-κB signaling, was found to be differentially regulated in THP-1 cells between probiotic and pathogenic bacteria. To assess the roles of flagella and flagellin, we employed several flagellin mutants of EcN. EcN flagellin mutants induced reduced IL-8 as well as CXCL1 responses in T84 cells, suggesting that flagellin is an inducer of this cytokine response. Following infection with an EPEC type 3 secretion system (T3SS) mutant, we observed increased IL-8 and CXCL1 transcription in T84 and THP-1 cells compared to that in wild-type EPEC. This study emphasizes the differential induction of miR-146a by pathogenic and probiotic E. coli strains in epithelial and immune cells as well as a loss of probiotic properties in EcN interacting with cells from the basolateral side.
Collapse
|
37
|
Mora-Buch R, Dotti I, Planell N, Calderón-Gómez E, Jung P, Masamunt MC, Llach J, Ricart E, Batlle E, Panés J, Salas A. Epithelial IL-1R2 acts as a homeostatic regulator during remission of ulcerative colitis. Mucosal Immunol 2016; 9:950-9. [PMID: 26530134 PMCID: PMC4917674 DOI: 10.1038/mi.2015.108] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2014] [Accepted: 09/24/2015] [Indexed: 02/07/2023]
Abstract
Ulcerative colitis (UC) is a chronic intestinal inflammatory disease that may undergo periods of activity followed by remission. We aimed to identify the endogenous regulatory mechanisms that may promote disease remission. Transcriptional and protein analysis of the intestinal mucosa revealed that the IL-1 decoy receptor, interleukin-1 receptor type 2 (IL1R2), was upregulated in remission compared with active UC and controls. We identified epithelial cells as being responsible for increased IL-1R2 production during remission. Expression of IL1R2 was negatively regulated by Wnt/beta-catenin signals in colonic crypts or epithelial stem cell cultures; accordingly, epithelial stem cells upregulated IL-1R2 upon differentiation. Blocking IL-1R2 in isolated colonic crypt cultures of UC patients in remission and T-cell cultures stimulated with biopsy supernatant from UC patients in remission boosted IL-1β-dependent production of inflammation-related cytokines. Finally, IL1R2 transcription was significantly lower in patients that relapsed during a 1-year follow-up period compared with those in endoscopic remission. Collectively, our results reveal that the IL-1/IL-1R2 axis is differentially regulated in the remitting intestinal mucosa of UC patients. We hypothesize that IL-1R2 in the presence of low concentrations of IL-1β may act locally as a regulator of intestinal homeostasis.
Collapse
Affiliation(s)
- R Mora-Buch
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - I Dotti
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - N Planell
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain,Bioinformatics Platform, CIBERehd, Barcelona, Spain
| | - E Calderón-Gómez
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - P Jung
- Oncology Program, Institute for Research in Biomedicine Barcelona (IRB Barcelona), Barcelona, Spain
| | - M C Masamunt
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - J Llach
- Endoscopy Unit, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - E Ricart
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - E Batlle
- Oncology Program, Institute for Research in Biomedicine Barcelona (IRB Barcelona), Barcelona, Spain,Institució Catalana de Recerca i Estudis Avançats (ICREA), Barcelona, Spain
| | - J Panés
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain
| | - A Salas
- Department of Gastroenterology, IDIBAPS, Hospital Clínic, CIBERehd, Barcelona, Spain,()
| |
Collapse
|
38
|
Tecchio C, Cassatella MA. Neutrophil-derived chemokines on the road to immunity. Semin Immunol 2016; 28:119-28. [PMID: 27151246 PMCID: PMC7129466 DOI: 10.1016/j.smim.2016.04.003] [Citation(s) in RCA: 175] [Impact Index Per Article: 19.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Revised: 04/04/2016] [Accepted: 04/05/2016] [Indexed: 12/12/2022]
Abstract
During recent years, it has become clear that polymorphonuclear neutrophils are remarkably versatile cells, whose functions go far beyond phagocytosis and killing. In fact, besides being involved in primary defense against infections-mainly through phagocytosis, generation of toxic molecules, release of toxic enzymes and formation of extracellular traps-neutrophils have been shown to play a role in finely regulating the development and the evolution of inflammatory and immune responses. These latter neutrophil-mediated functions occur by a variety of mechanisms, including the production of newly manufactured cytokines. Herein, we provide a general overview of the chemotactic cytokines/chemokines that neutrophils can potentially produce, either under inflammatory/immune reactions or during their activation in more prolonged processes, such as in tumors. We highlight recent observations generated from studying human or rodent neutrophils in vitro and in vivo models. We also discuss the biological significance of neutrophil-derived chemokines in the context of infectious, neoplastic and immune-mediated diseases. The picture that is emerging is that, given their capacity to produce and release chemokines, neutrophils exert essential functions in recruiting, activating and modulating the activities of different leukocyte populations.
Collapse
Affiliation(s)
- Cristina Tecchio
- Department of Medicine, Section of Hematology and Bone Marrow Transplant Unit, University of Verona, Verona, Italy.
| | - Marco A Cassatella
- Department of Medicine, Section of General Pathology, University of Verona, Verona, Italy.
| |
Collapse
|
39
|
Frede A, Neuhaus B, Klopfleisch R, Walker C, Buer J, Müller W, Epple M, Westendorf AM. Colonic gene silencing using siRNA-loaded calcium phosphate/PLGA nanoparticles ameliorates intestinal inflammation in vivo. J Control Release 2016; 222:86-96. [DOI: 10.1016/j.jconrel.2015.12.021] [Citation(s) in RCA: 75] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2015] [Revised: 12/03/2015] [Accepted: 12/12/2015] [Indexed: 02/07/2023]
|
40
|
Profiles of microRNA networks in intestinal epithelial cells in a mouse model of colitis. Sci Rep 2015; 5:18174. [PMID: 26647826 PMCID: PMC4673535 DOI: 10.1038/srep18174] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2015] [Accepted: 11/13/2015] [Indexed: 02/06/2023] Open
Abstract
Inflammatory bowel diseases (IBDs) accompany a critical loss of the frontline barrier function that is achieved primarily by intestinal epithelial cells (IECs). Although the gene-regulation pathways underlying these host-defense roles of IECs presumably are deranged during IBD pathogenesis, the quantitative and qualitative alterations of posttranscriptional regulators such as microRNAs (miRNAs) within the cells largely remain to be defined. We aimed to uncover the regulatory miRNA–target gene relationships that arise differentially in inflamed small- compared with large-IECs. Whereas IBD significantly increased the expression of only a few miRNA candidates in small-IECs, numerous miRNAs were upregulated in inflamed large-IECs. These marked alterations might explain why the large, as compared with small, intestine is more sensitive to colitis and shows more severe pathology in this experimental model of IBD. Our in-depth assessment of the miRNA–mRNA expression profiles and the resulting networks prompts us to suggest that miRNAs such as miR-1224, miR-3473a, and miR-5128 represent biomarkers that appear in large-IECs upon IBD development and co-operatively repress the expression of key anti-inflammatory factors. The current study provides insight into gene-regulatory networks in IECs through which dynamic rearrangement of the involved miRNAs modulates the gene expression–regulation machinery between maintaining and disrupting gastrointestinal homeostasis.
Collapse
|
41
|
Fang K, Grisham MB, Kevil CG. Application of Comparative Transcriptional Genomics to Identify Molecular Targets for Pediatric IBD. Front Immunol 2015; 6:165. [PMID: 26085826 PMCID: PMC4457140 DOI: 10.3389/fimmu.2015.00165] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2014] [Accepted: 03/26/2015] [Indexed: 12/13/2022] Open
Abstract
Experimental models of colitis in mice have been used extensively for analyzing the molecular events that occur during inflammatory bowel disease (IBD) development. However, it is uncertain to what extent the experimental models reproduce features of human IBD. This is largely due to the lack of precise methods for direct and comprehensive comparison of mouse and human inflamed colon tissue at the molecular level. Here, we use global gene expression patterns of two sets of pediatric IBD and two mouse models of colitis to obtain a direct comparison of the genome signatures of mouse and human IBD. By comparing the two sets of pediatric IBD microarray data, we found 83 genes were differentially expressed in a similar manner between pediatric Crohn’s disease and ulcerative colitis. Up-regulation of the chemokine (C–C motif) ligand 2 (CCL2) gene that maps to 17q12, a confirmed IBD susceptibility loci, indicates that our comparison study can reveal known genetic associations with IBD. In comparing pediatric IBD and experimental colitis microarray data, we found common signatures amongst them including: (1) up-regulation of CXCL9 and S100A8; (2) cytokine–cytokine receptor pathway dysregulation; and (3) over-represented IRF1 and IRF2 transcription binding sites in the promoter region of up-regulated genes, and HNF1A and Lhx3 binding sites were over-represented in the promoter region of the down-regulated genes. In summary, this study provides a comprehensive view of transcriptome changes between different pediatric IBD populations in comparison with different colitis models. These findings reveal several new molecular targets for further study in the regulation of colitis.
Collapse
Affiliation(s)
- Kai Fang
- Division of Digestive Diseases, Inflammatory Bowel Disease Center, David Geffen School of Medicine at UCLA , Los Angeles, CA , USA
| | - Matthew B Grisham
- Department of Immunology and Molecular Microbiology, Texas Tech University Health Sciences Center , Lubbock, TX , USA
| | - Christopher G Kevil
- Department of Pathology, Louisiana State University Health Sciences Center , Shreveport, LA , USA ; Department of Molecular and Cellular Physiology, Louisiana State University Health Sciences Center , Shreveport, LA , USA
| |
Collapse
|
42
|
Intestinal anti-inflammatory activity of apigenin K in two rat colitis models induced by trinitrobenzenesulfonic acid and dextran sulphate sodium. Br J Nutr 2015; 113:618-26. [PMID: 25654996 DOI: 10.1017/s0007114514004292] [Citation(s) in RCA: 42] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Flavonoids are polyphenolic compounds that are widespread in nature, and consumed as part of the human diet in significant amounts. The aim of the present study was to test the intestinal anti-inflammatory activity of apigenin K, a soluble form of apigenin, in two models of rat colitis, namely the trinitrobenzenesulfonic acid (TNBS) model and the dextran sulphate sodium (DSS) model. Apigenin K (1, 3 and 10 mg/kg; by the oral route; n 4-6 per group) was administered as a pre-treatment to rats with TNBS and DSS colitis, and colonic status was checked by macroscopic and biochemical examination. Apigenin K pre-treatment resulted in the amelioration of morphological signs and biochemical markers in the TNBS model. The results demonstrated a reduction in the inflamed area, as well as lower values of score and colonic weight:length ratio compared with the TNBS group. Myeloperoxidase (MPO) activity was reduced by 30 % (P< 0·05). Moreover, apigenin K pre-treatment ameliorated morphological signs and biochemical markers in the DSS model. Thus, macroscopic damage was significantly reduced and the colonic weight:length ratio was lowered by approximately 10 %, while colonic MPO and alkaline phosphatase activities were decreased by 35 and 21 %, respectively (P< 0·05). Apigenin K pre-treatment also tended to normalise the expression of a number of colonic inflammatory markers (e.g. TNF-α, transforming growth factor-β, IL-6, intercellular adhesion molecule 1 or chemokine (C-C motif) ligand 2). In conclusion, apigenin K is found to have anti-inflammatory effects in two preclinical models of inflammatory bowel disease.
Collapse
|
43
|
Reid-Yu SA, Tuinema BR, Small CN, Xing L, Coombes BK. CXCL9 contributes to antimicrobial protection of the gut during citrobacter rodentium infection independent of chemokine-receptor signaling. PLoS Pathog 2015; 11:e1004648. [PMID: 25643352 PMCID: PMC4333760 DOI: 10.1371/journal.ppat.1004648] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/25/2014] [Accepted: 12/30/2014] [Indexed: 12/20/2022] Open
Abstract
Chemokines have been shown to be effective bactericidal molecules against a variety of bacteria and fungi in vitro. These direct antimicrobial effects are independent of their chemotactic activities involving immunological receptors. However, the direct biological role that these proteins may play in host defense, particularly against intestinal pathogens, is poorly understood. Here, we show that CXCL9, an ELR- chemokine, exhibits direct antimicrobial activity against Citrobacter rodentium, an attaching/effacing pathogen that infects the gut mucosa. Inhibition of this antimicrobial activity in vivo using anti-CXCL9 antibodies increases host susceptibility to C. rodentium infection with pronounced bacterial penetration into crypts, increased bacterial load, and worsened tissue pathology. Using Rag1-/- mice and CXCR3-/- mice, we demonstrate that the role for CXCL9 in protecting the gut mucosa is independent of an adaptive response or its immunological receptor, CXCR3. Finally, we provide evidence that phagocytes function in tandem with NK cells for robust CXCL9 responses to C. rodentium. These findings identify a novel role for the immune cell-derived CXCL9 chemokine in directing a protective antimicrobial response in the intestinal mucosa. Host defense peptides are an essential part of the innate immune response to pathogens, particularly at mucosal surfaces. Some chemokines, previously known for their ability to recruit immune cells to a site of inflammation, have been identified to have direct antimicrobial activity in vitro against a variety of pathogens. Despite this, it was unknown whether chemokines play a role in protecting the gut mucosa against enteric pathogens, independent of their immunological receptors. Using a mouse model of enteric pathogen infection with both wild type mice and genetic knockouts, we showed that the chemokine CXCL9 has direct antimicrobial activity against pathogen infection. This antimicrobial activity prevented the invasion of bacteria into intestinal crypts, thus protecting the host from immunopathology. Neutralization of this CXCL9-dependent antimicrobial activity increased host susceptibility to infection, leading to bacterial penetration into intestinal crypts and increased tissue pathology. These data support the importance of a receptor-independent role for chemokines in host defense at mucosal surfaces and may offer alternative treatment strategies for infections, particularly in regards to organisms that are resistant to conventional antibiotics.
Collapse
Affiliation(s)
- Sarah A. Reid-Yu
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian R. Tuinema
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Cherrie N. Small
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Lydia Xing
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
| | - Brian K. Coombes
- Michael G. DeGroote Institute for Infectious Disease Research, Hamilton, Ontario, Canada
- Department of Biochemistry and Biomedical Sciences, McMaster University, Hamilton, Ontario, Canada
- Farncombe Family Digestive Health Research Institute, Hamilton, Ontario, Canada
- * E-mail:
| |
Collapse
|
44
|
Kasaian MT, Page KM, Fish S, Brennan A, Cook TA, Moreira K, Zhang M, Jesson M, Marquette K, Agostinelli R, Lee J, Williams CMM, Tchistiakova L, Thakker P. Therapeutic activity of an interleukin-4/interleukin-13 dual antagonist on oxazolone-induced colitis in mice. Immunology 2014; 143:416-27. [PMID: 24831554 DOI: 10.1111/imm.12319] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2013] [Revised: 05/08/2014] [Accepted: 05/12/2014] [Indexed: 02/06/2023] Open
Abstract
Interleukin-4 (IL-4) and IL-13 are critical drivers of immune activation and inflammation in ulcerative colitis, asthma and other diseases. Because these cytokines may have redundant function, dual targeting holds promise for achieving greater efficacy. We have recently described a bifunctional therapeutic targeting IL-4 and IL-13 developed on a novel protein scaffold, generated by combining specific binding domains in an optimal configuration using appropriate linker regions. In the current study, the bifunctional IL-4/IL-13 antagonist was evaluated in the murine oxazolone-induced colitis model, which produces disease with features of ulcerative colitis. The bifunctional IL-4/IL-13 antagonist reduced body weight loss throughout the 7-day course of the model, and ameliorated the increased colon weight and decreased colon length that accompany disease. Colon tissue gene expression was modulated in accordance with the treatment effect. Concentrations of serum amyloid P were elevated in proportion to disease severity, making it an effective biomarker. Serum concentrations of the bifunctional IL-4/IL-13 antagonist were inversely proportional to disease severity, colon tissue expression of pro-inflammatory genes, and serum amyloid P concentration. Taken together, these results define a panel of biomarkers signifying engagement of the IL-4/IL-13 pathway, confirm the T helper type 2 nature of disease in this model, and demonstrate the effectiveness of dual cytokine blockade.
Collapse
|
45
|
Jakobsson T, Vedin LL, Hassan T, Venteclef N, Greco D, D'Amato M, Treuter E, Gustafsson JÅ, Steffensen KR. The oxysterol receptor LXRβ protects against DSS- and TNBS-induced colitis in mice. Mucosal Immunol 2014; 7:1416-28. [PMID: 24803164 DOI: 10.1038/mi.2014.31] [Citation(s) in RCA: 32] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2013] [Accepted: 04/01/2014] [Indexed: 02/04/2023]
Abstract
We examined the function of the oxysterol receptors (LXRs) in inflammatory bowel disease (IBD) through studying dextran sodium sulfate (DSS)- and 2,4,6-trinitrobenzene sulfonic acid (TNBS)-induced colitis in mice and by elucidating molecular mechanisms underlying their anti-inflammatory action. We observed that Lxr-deficient mice are more susceptible to colitis. Clinical indicators of colitis including weight loss, diarrhea and blood in feces appeared earlier and were more severe in Lxr-deficient mice and particularly LXRβ protected against symptoms of colitis. Addition of an LXR agonist led to faster recovery and increased survival. In contrast, Lxr-deficient mice showed slower recovery and decreased survival. In Lxr-deficient mice, inflammatory cytokines and chemokines were increased together with increased infiltration of immune cells in the colon epithelium. Activation of LXRs strongly suppressed expression of inflammatory mediators including TNFα. While LXRα had anti-inflammatory effects in CD11b(+) immune cell populations, LXRβ in addition had anti-inflammatory effects in colon epithelial cells. Lack of LXRβ also induced CD4(+)/CD3(+) immune cell recruitment to the inflamed colon. Expression of both LXRA and LXRB was significantly suppressed in inflamed colon from subjects with IBD compared with non-inflamed colon. Taken together, our observations suggest that the LXRs could provide interesting targets to reduce the inflammatory responses in IBD.
Collapse
Affiliation(s)
- T Jakobsson
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - L-L Vedin
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - T Hassan
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| | - N Venteclef
- Institute of Cardiometabolism and Nutrition, INSERM, Université Pierre et Marie Curie-Paris 6, Cordeliers Research Center, Paris, France
| | - D Greco
- Finnish Institute of Occupational Health, Helsinki, Finland
| | - M D'Amato
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - E Treuter
- Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden
| | - J-Å Gustafsson
- 1] Department of Biosciences and Nutrition, Karolinska Institutet, Stockholm, Sweden [2] Center for Nuclear Receptors and Cell Signaling, Department of Biology and Biochemistry, University of Houston, Houston, Texas, USA
| | - K R Steffensen
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Karolinska University Hospital Huddinge, Stockholm, Sweden
| |
Collapse
|
46
|
Host defense peptide resistance contributes to colonization and maximal intestinal pathology by Crohn's disease-associated adherent-invasive Escherichia coli. Infect Immun 2014; 82:3383-93. [PMID: 24866805 DOI: 10.1128/iai.01888-14] [Citation(s) in RCA: 39] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Host defense peptides secreted by colonocytes and Paneth cells play a key role in innate host defenses in the gut. In Crohn's disease, the burden of tissue-associated Escherichia coli commonly increases at epithelial surfaces where host defense peptides concentrate, suggesting that this bacterial population might actively resist this mechanism of bacterial killing. Adherent-invasive E. coli (AIEC) is associated with Crohn's disease; however, the colonization determinants of AIEC in the inflamed gut are undefined. Here, we establish that host defense peptide resistance contributes to host colonization by Crohn's-associated AIEC. We identified a plasmid-encoded genomic island (called PI-6) in AIEC strain NRG857c that confers high-level resistance to α-helical cationic peptides and α- and β-defensins. Deletion of PI-6 sensitized strain NRG857c to these host defense molecules, reduced its competitive fitness in a mouse model of infection, and attenuated its ability to induce cecal pathology. This phenotype is due to two genes in PI-6, arlA, which encodes a Mig-14 family protein implicated in defensin resistance, and arlC, an OmpT family outer membrane protease. Implicit in these findings are new bacterial targets whose inhibition might limit AIEC burden and disease in the gut.
Collapse
|
47
|
Bjerrum JT, Nyberg C, Olsen J, Nielsen OH. Assessment of the validity of a multigene analysis in the diagnostics of inflammatory bowel disease. J Intern Med 2014; 275:484-93. [PMID: 24206446 DOI: 10.1111/joim.12160] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
OBJECTIVES The findings of a previous multigene study indicated that the expression of a panel of seven specific genes had strong differential power regarding inflammatory bowel disease (IBD) versus non-IBD, as well as ulcerative colitis (UC) versus Crohn's disease (CD). This prospective confirmatory study based on an independent patient cohort from a national Danish IBD centre was conducted in an attempt to verify these earlier observations. DESIGN, SETTING AND PARTICIPANTS A total of 119 patients were included in the study (CD, UC and controls). Three mucosal biopsies were retrieved from the left side of the colon of each patient. RNA was extracted, and RT-PCR was performed to retain expression profiles from the seven selected genes. Expression data from the training set (18 CD, 20 UC and 20 controls) were used to build a classification model, using quadratic discriminant analysis, and data from the test set (20 CD, 21 UC and 20 controls) were used to test the validity of the model. RESULTS The present investigation did not confirm the previous observation that a panel of seven specific genes is able to distinguish between patients with CD and UC, whereas the discriminative power for IBD versus control subjects was substantiated. CONCLUSION Our results fail to demonstrate that the previously identified seven-gene classification model is able to discriminate between CD and UC but suggest that the gene panel merely discriminates between inflamed and noninflamed colonic tissue. Thus, a reliable and simple diagnostic tool is still warranted for optimal diagnosis and treatment of patients with IBD, especially the subgroup with unclassified disease.
Collapse
Affiliation(s)
- J T Bjerrum
- Department of Gastroenterology, Medical Section, Herlev Hospital, University of Copenhagen, Copenhagen, Denmark; Department of Cellular & Molecular Medicine, The Panum Institute, University of Copenhagen, Copenhagen, Denmark
| | | | | | | |
Collapse
|
48
|
Kuznetsov NV, Zargari A, Gielen AW, von Stein OD, Musch E, Befrits R, Lofberg R, von Stein P. Biomarkers can predict potential clinical responders to DIMS0150 a toll-like receptor 9 agonist in ulcerative colitis patients. BMC Gastroenterol 2014; 14:79. [PMID: 24758565 PMCID: PMC4005617 DOI: 10.1186/1471-230x-14-79] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/15/2013] [Accepted: 04/10/2014] [Indexed: 12/17/2022] Open
Abstract
BACKGROUND Glucocorticoids (GCS) remain one of the mainstay treatments in the management of ulcerative colitis (UC) but up to a third of patients will ultimately fail to respond and progress to a more severe and difficult to manage disease state. Previous clinical studies suggest that the Toll-Like Receptor 9 (TLR9) agonist DIMS0150 not only induces production of key anti-inflammatory cytokines as IL-10 but interestingly also enhances steroid sensitivity in steroid refractory UC patients. We investigated, in the context of a clinical study, whether a pre-selection of steroid response genes could identify steroid refractory UC subjects most likely to respond to DIMS0150 treatment. METHODS In a non-interventional pilot study, blood from steroid refractory UC patients and healthy volunteers was taken and thirty-four previously described steroid response genes were analysed by real time PCR analysis. To establish clinical utility of the identified biomarkers, a placebo controlled, randomized, double blinded study in active steroid dependent and steroid resistant UC patients on concomitant steroid therapies was used (EudraCT number: 2006-001846-15). RESULTS We identified three potential biomarkers CD163, TSP-1 and IL-1RII whose response to steroids was significantly enhanced when DIMS0150 was applied. Thirty-four subjects were randomized to receive a single rectal administration of placebo or 30 mg of DIMS0150. Blood derived PBMCs were obtained prior to dosing and assayed for evidence of a steroid enhancing effect following steroid incubation in the presence of DIMS0150. Comparison to established steroid sensitivity marker IL-6 confirmed that clinical responders are steroid refractory UC patients. Upon study completion and un-blinding, the biomarker assay correctly predicted a clinical response in over 90% of the patients. CONCLUSION Using specific steroid response biomarkers, GCS refractory UC patients most likely to benefit from DIMS0150 treatment could be identified and illustrates the usefulness of a personalized treatment approach.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Petra von Stein
- InDex Pharmaceuticals, Tomtebodavägen 23a, 171 77 Stockholm, Sweden.
| |
Collapse
|
49
|
Turgeon N, Gagné JM, Blais M, Gendron FP, Boudreau F, Asselin C. The acetylome regulators Hdac1 and Hdac2 differently modulate intestinal epithelial cell dependent homeostatic responses in experimental colitis. Am J Physiol Gastrointest Liver Physiol 2014; 306:G594-605. [PMID: 24525021 DOI: 10.1152/ajpgi.00393.2013] [Citation(s) in RCA: 35] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/31/2023]
Abstract
Histone deacetylases (Hdac) remove acetyl groups from proteins, influencing global and specific gene expression. Hdacs control inflammation, as shown by Hdac inhibitor-dependent protection from dextran sulfate sodium (DSS)-induced murine colitis. Although tissue-specific Hdac knockouts show redundant and specific functions, little is known of their intestinal epithelial cell (IEC) role. We have shown previously that dual Hdac1/Hdac2 IEC-specific loss disrupts cell proliferation and determination, with decreased secretory cell numbers and altered barrier function. We thus investigated how compound Hdac1/Hdac2 or Hdac2 IEC-specific deficiency alters the inflammatory response. Floxed Hdac1 and Hdac2 and villin-Cre mice were interbred. Compound Hdac1/Hdac2 IEC-deficient mice showed chronic basal inflammation, with increased basal disease activity index (DAI) and deregulated Reg gene colonic expression. DSS-treated dual Hdac1/Hdac2 IEC-deficient mice displayed increased DAI, histological score, intestinal permeability, and inflammatory gene expression. In contrast to double knockouts, Hdac2 IEC-specific loss did not affect IEC determination and growth, nor result in chronic inflammation. However, Hdac2 disruption protected against DSS colitis, as shown by decreased DAI, intestinal permeability and caspase-3 cleavage. Hdac2 IEC-specific deficient mice displayed increased expression of IEC gene subsets, such as colonic antimicrobial Reg3b and Reg3g mRNAs, and decreased expression of immune cell function-related genes. Our data show that Hdac1 and Hdac2 are essential IEC homeostasis regulators. IEC-specific Hdac1 and Hdac2 may act as epigenetic sensors and transmitters of environmental cues and regulate IEC-mediated mucosal homeostatic and inflammatory responses. Different levels of IEC Hdac activity may lead to positive or negative outcomes on intestinal homeostasis during inflammation.
Collapse
Affiliation(s)
- Naomie Turgeon
- Département d'anatomie et biologie cellulaire, Faculté de médecine et des sciences de la santé, Pavillon de recherche appliquée sur le cancer, Université de Sherbrooke, Sherbrooke, Québec, Canada
| | | | | | | | | | | |
Collapse
|
50
|
Hong S, Zhang X, Chen J, Zhou J, Zheng Y, Xu C. Targeted gene silencing using a follicle-stimulating hormone peptide-conjugated nanoparticle system improves its specificity and efficacy in ovarian clear cell carcinoma in vitro. J Ovarian Res 2013; 6:80. [PMID: 24252539 PMCID: PMC3843555 DOI: 10.1186/1757-2215-6-80] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2013] [Accepted: 11/18/2013] [Indexed: 02/06/2023] Open
Abstract
BACKGROUND RNA interference technology has shown high therapeutic potential for cancer treatment. However, serum instability, poor tissue permeability and non-specific uptake of short interfering RNA (siRNA) limit its administration in vivo. To overcome these limitations and improve the specificity for ovarian cancer, we developed a targeted nanoparticle delivery system for siRNA. This system included follicle-stimulating hormone (FSH) β 33-53 peptide as a targeting moiety that specifically recognized FSH receptor (FSHR) expressed on ovarian cancer cells. Growth regulated oncogene α (gro-α) has been reported to be involved in ovarian cancer development and progression. Thus, siRNA targeted to gro-α was used as an antitumor drug in this delivery system. METHODS FSH β 33-53 peptide-conjugated gro-α siRNA-loaded polyethylene glycol (PEG)-polyethylenimine (PEI) nanoparticles (FSH33-G-NP) were prepared and characterized by gel retardation assay and transmission electron microscopy. Particle size and zeta potential were determined. Expression of gro-α mRNA and protein was detected by real-time quantitative RT-PCR, immunocytochemistry and enzyme-linked immunosorbent assay. The proliferation, migration and invasion of the ovarian clear cell carcinoma cell line ES-2 were evaluated by cell counting kit-8 assay, cell scratch assay and transwell migration assay. RESULTS A siRNA sequence that is effective in silencing gro-α expression was obtained and loaded into the targeted delivery system. Compared with gro-α siRNA-loaded nanoparticles without FSH peptide modification (G-NP), FSH33-G-NP significantly down-regulated gro-α expression in ES-2 cells at mRNA and protein levels. Consequently, the aggressive biological behaviors of ES-2 cells, including proliferation, migration and invasion, were suppressed after silencing gro-α expression, and the addition of the FSH β 33-53 peptide enhanced the suppressive effects. CONCLUSIONS This study indicated that a FSHR-mediated delivery system could mediate the highly selective delivery of siRNA into ovarian cancer cells and that silencing gro-α expression could be a potential choice for ovarian cancer treatment.
Collapse
Affiliation(s)
| | - Xiaoyan Zhang
- Obstetrics and Gynecology Hospital, Fudan University, Shanghai 200011, People's Republic of China.
| | | | | | | | | |
Collapse
|