1
|
Complex functionality of protein phosphatase 1 isoforms in the heart. Cell Signal 2021; 85:110059. [PMID: 34062239 DOI: 10.1016/j.cellsig.2021.110059] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/04/2021] [Revised: 05/21/2021] [Accepted: 05/28/2021] [Indexed: 02/04/2023]
Abstract
Protein phosphatase 1(PP1) is a key regulator of cardiac function through dephosphorylating serine/threonine residues within target proteins to oppose the function of protein kinases. Studies from failing hearts of animal models and human patients have demonstrated significant increase of PP1 activity in myocardium, while elevated PP1 activity in transgenic mice leads to cardiac dysfunction, suggesting that PP1 might be a therapeutic target to ameliorate cardiac dysfunction in failing hearts. In fact, cardiac overexpression of inhibitor 1, the endogenous inhibitor of PP1, increases cardiac contractility and suppresses heart failure progression. However, this notion of PP1 inhibition for heart failure treatment has been challenged by recent studies on the isoform-specific roles of PP1 in the heart. PP1 is a holoenzyme composed of catalytic subunits (PP1α, PP1β, or PP1γ) and regulatory proteins that target them to distinct subcellular locations for functional specificity. This review will summarize how PP1 regulates phosphorylation of some of the key cardiac proteins involved in Ca2+ handling and cardiac contraction, and the potential role of PP1 isoforms in controlling cardiac physiology and pathophysiology.
Collapse
|
2
|
Zhu Y, Gao Y, Sun X, Wang C, Rui X, Si D, Zhu J, Li W, Liu J. Discovery of novel serine/threonine protein phosphatase 1 inhibitors from traditional Chinese medicine through virtual screening and biological assays. J Biomol Struct Dyn 2019; 38:5464-5473. [PMID: 31820681 DOI: 10.1080/07391102.2019.1702588] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Protein phosphatase 1 (PP1) is a critical regulator of several processes, such as muscle contraction, neuronal signaling, glycogen synthesis, and cell proliferation. Dysregulation of PP1 has recently been found to be implicated in cardiac dysfunctions, which indicates that PP1 could be an attractive therapeutic target. However, discovery of PP1 inhibitors with satisfied safety and efficiency is still a challenge. Here, in order to discover potential PP1 inhibitors, compounds extracted from traditional Chinese medicine (TCM) were screened by a novel integrated virtual screening protocol including pharmacophore modeling and docking approaches. Combined with protein phosphatase inhibition assay, ZINC43060554 showed strongly inhibitory activity with IC50 values of 26.78 μM. Furthermore, molecular dynamics simulation and Molecular Mechanics/Generalized Born Surface Area binding free-energy analysis were performed to examine the stability of ligand binding modes. These novel scaffolds discovered in the present study can be used for rational design of PP1 inhibitors with high affinity.Communicated by Ramaswamy H. Sarma.
Collapse
Affiliation(s)
- Yehua Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Research Institute, Nanjing Tongrentang Pharmaceutical Co. Ltd, Nanjing, China
| | - Yi Gao
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xinjie Sun
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Chao Wang
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Xiyan Rui
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Dongjuan Si
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Junru Zhu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Wei Li
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| | - Jian Liu
- School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China.,Jiangsu Collaborative Innovation Center of Chinese Medicinal Resources Industrialization, Nanjing, Jiangsu, China.,Jiangsu Key Laboratory for Functional Substances of Chinese Medicine, Stake Key Laboratory Cultivation Base for TCM Quality and Efficacy, School of Pharmacy, Nanjing University of Chinese Medicine, Nanjing, China
| |
Collapse
|
3
|
Affiliation(s)
- Jake M. Kieserman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Valerie D. Myers
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Praveen Dubey
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Joseph Y. Cheung
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| | - Arthur M. Feldman
- Division of CardiologyThe Department of MedicineLewis Katz School of Medicine at Temple UniversityPhiladelphiaPA
| |
Collapse
|
4
|
Fang HY, Hung MY, Lin YM, Pandey S, Chang CC, Lin KH, Shen CY, Viswanadha VP, Kuo WW, Huang CY. 17β-Estradiol and/or estrogen receptor alpha signaling blocks protein phosphatase 1 mediated ISO induced cardiac hypertrophy. PLoS One 2018; 13:e0196569. [PMID: 29723269 PMCID: PMC5933784 DOI: 10.1371/journal.pone.0196569] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2018] [Accepted: 04/16/2018] [Indexed: 11/22/2022] Open
Abstract
Earlier studies have shown that estrogen possess protective function against the development of pathological cardiac hypertrophy. However, the molecular mechanisms of estrogens (E2) protective effect are poorly understood. Additionally, abnormal activation of β-adrenergic signaling have been implicated in the development of pathological cardiac remodeling. However, the role of serine/threonine protein phosphatase 1 (PP1) in pathological cardiac remodeling under the influence of β-adrenergic signaling have been sparsely investigated. In this study, we assessed the downstream effects of abnormal activation of PP1 upon isoproterenol (ISO) induced pathological cardiac changes. We found that pre-treatment of 17β-estradiol (E2), tet-on estrogen receptor-α, or both significantly inhibited ISO-induced increase in cell size, hypertrophy marker gene expression and cytosolic calcium accumulation in H9c2 cells. Additionally, treatment with estrogen receptor inhibitor (ICI) reversed those effects, implicating role of E2 in inhibiting pathological cardiac remodeling. However, specific inhibition of ERα using melatonin, reduced ISO-induced PP1c expression and enhanced the level of ser-16 phosphorylated phospholamban (PLB), responsible for regulation of sarcoplasmic reticulum Ca2+-ATPase (SERCA) activity. Furthermore, hypertrophic effect caused by overexpression of PP1cα was reduced by treatment with specific inhibitor of ERα. Collectively, we found that estrogen and estrogen receptor-α have protective effect against pathological cardiac changes by suppressing PP1 expression and its downstream signaling pathway, which further needs to be elucidated.
Collapse
Affiliation(s)
- Hsin-Yuan Fang
- Department of Thoracic Surgery, China Medical University Hospital, Taichung, Taiwan
| | - Meng-Yu Hung
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Yueh-Min Lin
- Department of Pathology, Changhua Christian Hospital, Changhua, Taiwan.,Department of Medical Technology, Jen-Teh Junior College of Medicine, Nursing and Management, Miaoli, Taiwan
| | - Sudhir Pandey
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan
| | - Chia-Chien Chang
- Department of Dermatology, Taipei City Hospital, Renai Branch, Taipei, Taiwan
| | - Kuan-Ho Lin
- Department of Emergency Medicine, China Medical University Hospital, Taichung, Taiwan
| | - Chia-Yao Shen
- Department of Nursing, Meiho University, Pingtung, Taiwan
| | | | - Wei-Wen Kuo
- Department of Biological Science and Technology, China Medical University, Taichung, Taiwan
| | - Chih-Yang Huang
- Graduate Institute of Basic Medical Science, China Medical University, Taichung, Taiwan.,Graduate Institute of Chinese Medical Science, China Medical University, Taichung, Taiwan.,Department of Health and Nutrition Biotechnology, Asia University, Taichung, Taiwan
| |
Collapse
|
5
|
Watanabe S, Ishikawa K, Fish K, Oh JG, Motloch LJ, Kohlbrenner E, Lee P, Xie C, Lee A, Liang L, Kho C, Leonardson L, McIntyre M, Wilson S, Samulski RJ, Kranias EG, Weber T, Akar FG, Hajjar RJ. Protein Phosphatase Inhibitor-1 Gene Therapy in a Swine Model of Nonischemic Heart Failure. J Am Coll Cardiol 2017; 70:1744-1756. [PMID: 28958332 DOI: 10.1016/j.jacc.2017.08.013] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/05/2017] [Revised: 08/01/2017] [Accepted: 08/07/2017] [Indexed: 01/16/2023]
Abstract
BACKGROUND Increased protein phosphatase-1 in heart failure (HF) induces molecular changes deleterious to the cardiac cell. Inhibiting protein phosphatase-1 through the overexpression of a constitutively active inhibitor-1 (I-1c) has been shown to reverse cardiac dysfunction in a model of ischemic HF. OBJECTIVES This study sought to determine the therapeutic efficacy of a re-engineered adenoassociated viral vector carrying I-1c (BNP116.I-1c) in a preclinical model of nonischemic HF, and to assess thoroughly the safety of BNP116.I-1c gene therapy. METHODS Volume-overload HF was created in Yorkshire swine by inducing severe mitral regurgitation. One month after mitral regurgitation induction, pigs were randomized to intracoronary delivery of either BNP116.I-1c (n = 6) or saline (n = 7). Therapeutic efficacy and safety were evaluated 2 months after gene delivery. Additionally, 24 naive pigs received different doses of BNP116.I-1c for safety evaluation. RESULTS At 1 month after mitral regurgitation induction, pigs developed HF as evidenced by increased left ventricular end-diastolic pressure and left ventricular volume indexes. Treatment with BNP116.I-1c resulted in improved left ventricular ejection fraction (-5.9 ± 4.2% vs. 5.5 ± 4.0%; p < 0.001) and adjusted dP/dt maximum (-3.39 ± 2.44 s-1 vs. 1.30 ± 2.39 s-1; p = 0.007). Moreover, BNP116.I-1c-treated pigs also exhibited a significant increase in left atrial ejection fraction at 2 months after gene delivery (-4.3 ± 3.1% vs. 7.5 ± 3.1%; p = 0.02). In vitro I-1c gene transfer in isolated left atrial myocytes from both pigs and rats increased calcium transient amplitude, consistent with its positive impact on left atrial contraction. We found no evidence of adverse electrical remodeling, arrhythmogenicity, activation of a cellular immune response, or off-target organ damage by BNP116.I-1c gene therapy in pigs. CONCLUSIONS Intracoronary delivery of BNP116.I-1c was safe and improved contractility of the left ventricle and atrium in a large animal model of nonischemic HF.
Collapse
Affiliation(s)
- Shin Watanabe
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Kenneth Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Jae Gyun Oh
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lukas J Motloch
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Erik Kohlbrenner
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Philyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Chaoqin Xie
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lifan Liang
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Changwon Kho
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Lauren Leonardson
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | | | | | - R Jude Samulski
- Department of Pharmacology, University of North Carolina, Chapel Hill, North Carolina
| | - Evangelia G Kranias
- Department of Pharmacology & Cell Biophysics, University of Cincinnati, Cincinnati, Ohio
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York.
| |
Collapse
|
6
|
Sun X, Han Q, Luo H, Pan X, Ji Y, Yang Y, Chen H, Wang F, Lai W, Guan X, Zhang Q, Tang Y, Chu J, Yu J, Shou W, Deng Y, Li X. Profiling analysis of long non-coding RNAs in early postnatal mouse hearts. Sci Rep 2017; 7:43485. [PMID: 28266538 PMCID: PMC5339910 DOI: 10.1038/srep43485] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2016] [Accepted: 01/24/2017] [Indexed: 01/02/2023] Open
Abstract
Mammalian cardiomyocytes undergo a critical hyperplastic-to-hypertrophic growth transition at early postnatal age, which is important in establishing normal physiological function of postnatal hearts. In the current study, we intended to explore the role of long non-coding (lnc) RNAs in this transitional stage. We analyzed lncRNA expression profiles in mouse hearts at postnatal day (P) 1, P7 and P28 via microarray. We identified 1,146 differentially expressed lncRNAs with more than 2.0-fold change when compared the expression profiles of P1 to P7, P1 to P28, and P7 to P28. The neighboring genes of these differentially expressed lncRNAs were mainly involved in DNA replication-associated biological processes. We were particularly interested in one novel cardiac-enriched lncRNA, ENSMUST00000117266, whose expression was dramatically down-regulated from P1 to P28 and was also sensitive to hypoxia, paraquat, and myocardial infarction. Knockdown ENSMUST00000117266 led to a significant increase of neonatal mouse cardiomyocytes in G0/G1 phase and reduction in G2/M phase, suggesting that ENSMUST00000117266 is involved in regulating cardiomyocyte proliferative activity and is likely associated with hyperplastic-to-hypertrophic growth transition. In conclusion, our data have identified a large group of lncRNAs presented in the early postnatal mouse heart. Some of these lncRNAs may have important functions in cardiac hyperplastic-to-hypertrophic growth transition.
Collapse
Affiliation(s)
- Xiongshan Sun
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qi Han
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hongqin Luo
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaodong Pan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yan Ji
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yao Yang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Hanying Chen
- Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Fangjie Wang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Wenjing Lai
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiao Guan
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Qi Zhang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Yuan Tang
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Jianhong Chu
- Suzhou Institute of Blood and Marrow Transplantation, Soochow University, Suzhou, China
| | - Jianhua Yu
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, Ohio, USA
| | - Weinian Shou
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China.,Riley Heart Research Center, Wells Center for Pediatric Research, Indiana University School of Medicine, Indianapolis, IN, USA
| | - Youcai Deng
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| | - Xiaohui Li
- Institute of Materia Medica, College of Pharmacy, Third Military Medical University, Chongqing, China.,Center of Translational Medicine, College of Pharmacy, Third Military Medical University, Chongqing, China
| |
Collapse
|
7
|
Weber S, Meyer-Roxlau S, El-Armouche A. Role of protein phosphatase inhibitor-1 in cardiac beta adrenergic pathway. J Mol Cell Cardiol 2016; 101:116-126. [PMID: 27639308 DOI: 10.1016/j.yjmcc.2016.09.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/11/2016] [Revised: 09/05/2016] [Accepted: 09/13/2016] [Indexed: 01/08/2023]
Abstract
Phosphoproteomic studies have shown that about one third of all cardiac proteins are reversibly phosphorylated, affecting virtually every cellular signaling pathway. The reversibility of this process is orchestrated by the opposing enzymatic activity of kinases and phosphatases. Conversely, imbalances in subcellular protein phosphorylation patterns are a hallmark of many cardiovascular diseases including heart failure and cardiac arrhythmias. While numerous studies have revealed excessive beta-adrenergic signaling followed by deregulated kinase expression or activity as a major driver of the latter cardiac pathologies, far less is known about the beta-adrenergic regulation of their phosphatase counterparts. In fact, most of the limited knowledge stems from the detailed analysis of the endogenous inhibitor of the protein phosphatase 1 (I-1) in cellular and animal models. I-1 acts as a nodal point between adrenergic and putatively non-adrenergic cardiac signaling pathways and is able to influence widespread cellular functions of protein phosphatase 1 which are contributing to cardiac health and disease, e.g. Ca2+ handling, sarcomere contractility and glucose metabolism. Finally, nearly all of these studies agree that I-1 is a promising drug target on the one hand but the outcome of its pharmacological regulation maybe extremely context-dependent on the other hand, thus warranting for careful interpretation of past and future experimental results. In this respect we will: 1) comprehensively review the current knowledge about structural, functional and regulatory properties of I-1 within the heart 2) highlight current working hypothesis and potential I-1 mediated disease mechanisms 3) discuss state-of-the-art knowledge and future prospects of a potential therapeutic strategy targeting I-1 by restoring the balance of cardiac protein phosphorylation.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Medical Faculty, Technische Universität Dresden, Fetscherstraße 74, Dresden 01307, Germany.
| |
Collapse
|
8
|
Haghighi K, Pritchard TJ, Liu GS, Singh VP, Bidwell P, Lam CK, Vafiadaki E, Das P, Ma J, Kunduri S, Sanoudou D, Florea S, Vanderbilt E, Wang HS, Rubinstein J, Hajjar RJ, Kranias EG. Human G109E-inhibitor-1 impairs cardiac function and promotes arrhythmias. J Mol Cell Cardiol 2015; 89:349-59. [PMID: 26455482 PMCID: PMC4689614 DOI: 10.1016/j.yjmcc.2015.10.004] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/01/2015] [Revised: 09/18/2015] [Accepted: 10/04/2015] [Indexed: 01/09/2023]
Abstract
A hallmark of human and experimental heart failure is deficient sarcoplasmic reticulum (SR) Ca-uptake reflecting impaired contractile function. This is at least partially attributed to dephosphorylation of phospholamban by increased protein phosphatase 1 (PP1) activity. Indeed inhibition of PP1 by transgenic overexpression or gene-transfer of constitutively active inhibitor-1 improved Ca-cycling, preserved function and decreased fibrosis in small and large animal models of heart failure, suggesting that inhibitor-1 may represent a potential therapeutic target. We recently identified a novel human polymorphism (G109E) in the inhibitor-1 gene with a frequency of 7% in either normal or heart failure patients. Transgenic mice, harboring cardiac-specific expression of G109E inhibitor-1, exhibited decreases in contractility, Ca-kinetics and SR Ca-load. These depressive effects were relieved by isoproterenol stimulation. Furthermore, stress conditions (2Hz +/- Iso) induced increases in Ca-sparks, Ca-waves (60% of G109E versus 20% in wild types) and after-contractions (76% of G109E versus 23% of wild types) in mutant cardiomyocytes. Similar findings were obtained by acute expression of the G109E variant in adult cardiomyocytes in the absence or presence of endogenous inhibitor-1. The underlying mechanisms included reduced binding of mutant inhibitor-1 to PP1, increased PP1 activity, and dephosphorylation of phospholamban at Ser16 and Thr17. However, phosphorylation of the ryanodine receptor at Ser2808 was not altered while phosphorylation at Ser2814 was increased, consistent with increased activation of Ca/calmodulin-dependent protein kinase II (CaMKII), promoting aberrant SR Ca-release. Parallel in vivo studies revealed that mutant mice developed ventricular ectopy and complex ventricular arrhythmias (including bigeminy, trigeminy and ventricular tachycardia), when challenged with isoproterenol. Inhibition of CaMKII activity by KN-93 prevented the increased propensity to arrhythmias. These findings suggest that the human G109E inhibitor-1 variant impairs SR Ca-cycling and promotes arrhythmogenesis under stress conditions, which may present an additional insult in the compromised function of heart failure carriers.
Collapse
Affiliation(s)
- Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Tracy J Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Guan-Sheng Liu
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Vivek P Singh
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Philip Bidwell
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Chi Keung Lam
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Elizabeth Vafiadaki
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece
| | - Parthib Das
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Jianyong Ma
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Swati Kunduri
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Despina Sanoudou
- Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece; 4th Department of Internal Medicine, Medical School, University of Athens and Attikon Hospital, Greece
| | - Stela Florea
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Erica Vanderbilt
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Hong-Shang Wang
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States
| | - Jack Rubinstein
- Division of Cardiology, Internal Medicine, University of Cincinnati College of Medicine, 231 Albert Sabin Way, Cincinnati, OH 45267, United States
| | - Roger J Hajjar
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, One Gustave Levy Place, New York, NY 10029, United States
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, College of Medicine, Cincinnati, OH 45267, United States; Molecular Biology Division, Biomedical Research Foundation, Academy of Athens, Greece.
| |
Collapse
|
9
|
Weber S, Meyer-Roxlau S, Wagner M, Dobrev D, El-Armouche A. Counteracting Protein Kinase Activity in the Heart: The Multiple Roles of Protein Phosphatases. Front Pharmacol 2015; 6:270. [PMID: 26617522 PMCID: PMC4643138 DOI: 10.3389/fphar.2015.00270] [Citation(s) in RCA: 36] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2015] [Accepted: 10/28/2015] [Indexed: 12/19/2022] Open
Abstract
Decades of cardiovascular research have shown that variable and flexible levels of protein phosphorylation are necessary to maintain cardiac function. A delicate balance between phosphorylated and dephosphorylated states of proteins is guaranteed by a complex interplay of protein kinases (PKs) and phosphatases. Serine/threonine phosphatases, in particular members of the protein phosphatase (PP) family govern dephosphorylation of the majority of these cardiac proteins. Recent findings have however shown that PPs do not only dephosphorylate previously phosphorylated proteins as a passive control mechanism but are capable to actively control PK activity via different direct and indirect signaling pathways. These control mechanisms can take place on (epi-)genetic, (post-)transcriptional, and (post-)translational levels. In addition PPs themselves are targets of a plethora of proteinaceous interaction partner regulating their endogenous activity, thus adding another level of complexity and feedback control toward this system. Finally, novel approaches are underway to achieve spatiotemporal pharmacologic control of PPs which in turn can be used to fine-tune misleaded PK activity in heart disease. Taken together, this review comprehensively summarizes the major aspects of PP-mediated PK regulation and discusses the subsequent consequences of deregulated PP activity for cardiovascular diseases in depth.
Collapse
Affiliation(s)
- Silvio Weber
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Stefanie Meyer-Roxlau
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Michael Wagner
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| | - Dobromir Dobrev
- Institute of Pharmacology, Faculty of Medicine, West German Heart and Vascular Center , Essen, Germany
| | - Ali El-Armouche
- Department of Pharmacology and Toxicology, Dresden University of Technology , Dresden, Germany
| |
Collapse
|
10
|
Cai WF, Kang K, Huang W, Liang JL, Feng YL, Liu GS, Chang DH, Wen ZL, Paul C, Xu M, Millard RW, Wang Y. CXCR4 attenuates cardiomyocytes mitochondrial dysfunction to resist ischaemia-reperfusion injury. J Cell Mol Med 2015; 19:1825-35. [PMID: 25824297 PMCID: PMC4549033 DOI: 10.1111/jcmm.12554] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2014] [Accepted: 01/08/2015] [Indexed: 12/25/2022] Open
Abstract
The chemokine (C-X-C motif) receptor 4 (CXCR4) is expressed on native cardiomyocytes and can modulate isolated cardiomyocyte contractility. This study examines the role of CXCR4 in cardiomyocyte response to ischaemia-reperfusion (I/R) injury. Isolated adult rat ventricular cardiomyocytes were subjected to hypoxia/reoxygenation (H/R) to simulate I/R injury. In response to H/R injury, the decrease in CXCR4 expression was associated with dysfunctional energy metabolism indicated by an increased adenosine diphosphate/adenosine triphosphate (ADP/ATP) ratio. CXCR4-overexpressing cardiomyocytes were used to determine whether such overexpression (OE) can prevent bio-energetic disruption-associated cell death. CXCR4 OE was performed with adenoviral infection with CXCR4 encoding-gene or non-translated nucleotide sequence (Control). The increased CXCR4 expression was observed in cardiomyocytes post CXCR4-adenovirus transduction and this OE significantly reduced the cardiomyocyte contractility under basal conditions. Although the same extent of H/R-provoked cytosolic calcium overload was measured, the hydrogen peroxide-induced decay of mitochondrial membrane potential was suppressed in CXCR4 OE group compared with control group, and the mitochondrial swelling was significantly attenuated in CXCR4 group, implicating that CXCR4 OE prevents permeability transition pore opening exposure to overload calcium. Interestingly, this CXCR4-induced mitochondrial protective effect is associated with the enhanced signal transducer and activator of transcription 3 (expression in mitochondria. Consequently, in the presence of H/R, mitochondrial dysfunction was mitigated and cardiomyocyte death was decreased to 65% in the CXCR4 OE group as compared with the control group. I/R injury leads to the reduction in CXCR4 in cardiomyocytes associated with the dysfunctional energy metabolism, and CXCR4 OE can alleviate mitochondrial dysfunction to improve cardiomyocyte survival.
Collapse
Affiliation(s)
- Wen-Feng Cai
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Kai Kang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Wei Huang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Jia-Liang Liang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yu-Liang Feng
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Guan-Sheng Liu
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - De-Hua Chang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Zhi-Li Wen
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Christian Paul
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Meifeng Xu
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Ronald W Millard
- Department of Pharmacology & Cell Biophysics, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| | - Yigang Wang
- Department of Pathology & Lab Medicine, College of Medicine, University of Cincinnati, Cincinnati, OH, USA
| |
Collapse
|
11
|
Kaneko H, Suzuki S, Goto M, Arita T, Yuzawa Y, Yagi N, Murata N, Kato Y, Kano H, Matsuno S, Otsuka T, Uejima T, Oikawa Y, Sagara K, Nagashima K, Kirigaya H, Sawada H, Aizawa T, Yajima J, Yamashita T. Incidence and Predictors of Rehospitalization of Acute Heart Failure Patients. Int Heart J 2015; 56:219-25. [DOI: 10.1536/ihj.14-290] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
Affiliation(s)
- Hidehiro Kaneko
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Shinya Suzuki
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Masato Goto
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Takuto Arita
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yasufumi Yuzawa
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Naoharu Yagi
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Nobuhiro Murata
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yuko Kato
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Hiroto Kano
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Shunsuke Matsuno
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Takayuki Otsuka
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Tokuhisa Uejima
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Yuji Oikawa
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Koichi Sagara
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | | | - Hajime Kirigaya
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Hitoshi Sawada
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Tadanori Aizawa
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | - Junji Yajima
- Department of Cardiovascular Medicine, The Cardiovascular Institute
| | | |
Collapse
|
12
|
Kiriazis H, Tugiono N, Xu Q, Gao XM, Jennings NL, Ming Z, Su Y, Klenowski P, Summers RJ, Kaumann A, Molenaar P, Du XJ. Chronic activation of the low affinity site of β1-adrenoceptors stimulates haemodynamics but exacerbates pressure-overload cardiac remodelling. Br J Pharmacol 2014; 170:352-65. [PMID: 23750586 DOI: 10.1111/bph.12272] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2012] [Revised: 04/22/2013] [Accepted: 06/07/2013] [Indexed: 12/15/2022] Open
Abstract
BACKGROUND AND PURPOSE The β1-adrenoceptor has at least two binding sites, high and low affinity sites (β1H and β1L, respectively), which mediate cardiostimulation. While β1H-adrenoceptor can be blocked by all clinically used β-blockers, β1L-adrenoceptor is relatively resistant to blockade. Thus, chronic β1L-adrenoceptor activation may mediate persistent cardiostimulation, despite the concurrent blockade of β1H-adrenoceptors. Hence, it is important to determine the potential significance of β1L-adrenoceptors in vivo, particularly in pathological situations. EXPERIMENTAL APPROACH C57Bl/6 male mice were used. Chronic (4 or 8 weeks) β1L-adrenoceptor activation was achieved by treatment, via osmotic mini pumps, with (-)-CGP12177 (10 mg·kg(-1)·day(-1)). Cardiac function was assessed by echocardiography and micromanometry. KEY RESULTS (-)-CGP12177 treatment of healthy mice increased heart rate and left ventricular (LV) contractility. (-)-CGP12177 treatment of mice subjected to transverse aorta constriction (TAC), during weeks 4-8 or 4-12 after TAC, led to a positive inotropic effect and exacerbated fibrogenic signalling while cardiac hypertrophy tended to be more severe. (-)-CGP12177 treatment of mice with TAC also exacerbated the myocardial expression of hypertrophic, fibrogenic and inflammatory genes compared to untreated TAC mice. Washout of (-)-CGP12177 revealed a more pronounced cardiac dysfunction after 12 weeks of TAC. CONCLUSIONS AND IMPLICATIONS β1L-adrenoceptor activation provides functional support to the heart, in both normal and pathological (pressure overload) situations. Sustained β1L-adrenoceptor activation in the diseased heart exacerbates LV remodelling and therefore may promote disease progression from compensatory hypertrophy to heart failure.
Collapse
Affiliation(s)
- Helen Kiriazis
- Experimental Cardiology Laboratory, Baker IDI Heart and Diabetes Institute, Melbourne, Vic., Australia
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
13
|
Shukla SK, Sharma SB, Singh UR. Pre-treatment with α-tocopherol and Terminalia arjuna ameliorates, pro-inflammatory cytokines, cardiac and apoptotic markers in myocardial infracted rats. Redox Rep 2014; 20:49-59. [PMID: 25180938 DOI: 10.1179/1351000214y.0000000104] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/31/2022] Open
Abstract
OBJECTIVE This study was aimed to evaluate the cardioprotective potential of combination of T. arjuna and α-tocopherol in isoproterenol induced myocardial injury. METHODS Wistar albino rats were pre-treated with hydroalcoholic extract of T. arjuna (HETA) and α-tocopherol (100 mg/kg b. w) daily for 30 days. Isoproterenol (ISP, 85 mg/kg b.w) was administered on 28th and 29th days at an interval of 24 hr. RESULTS ISP treated rats showed significant increase in lipid peroxidation (MDA), cardiac markers (CK-MB, SGOT, Trop I and LDH), pro-inflammatory cytokine (IL-6, CRP, TNF-α) levels and apoptotic markers (Bcl-2/Bax) as compared to healthy group. Pre-treatment with HETA 100 mg/kg b. w, reduced the elevated levels of these markers and significant effect (p<0.05) were observed with the combination of HETA and α-tocopherol at a dose of 100 mg/kg b. w, which was further confirmed by histopathological studies. CONCLUSION The present study concluded that the combination of α-tocopherol (100 mg/kg b. w) and hydroalcoholic extract of T. arjuna (100 mg/kg b. w) augments endogenous antioxidant compounds of rat heart and also prevents the myocardium from ISP-induced myocardial injury and it may have therapeutic and prophylactic value in the treatment of ischemic heart disease.
Collapse
|
14
|
Ishikawa K, Fish KM, Tilemann L, Rapti K, Aguero J, Santos-Gallego CG, Lee A, Karakikes I, Xie C, Akar FG, Shimada YJ, Gwathmey JK, Asokan A, McPhee S, Samulski J, Samulski RJ, Sigg DC, Weber T, Kranias EG, Hajjar RJ. Cardiac I-1c overexpression with reengineered AAV improves cardiac function in swine ischemic heart failure. Mol Ther 2014; 22:2038-2045. [PMID: 25023328 DOI: 10.1038/mt.2014.127] [Citation(s) in RCA: 58] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/01/2014] [Accepted: 07/03/2014] [Indexed: 02/07/2023] Open
Abstract
Cardiac gene therapy has emerged as a promising option to treat advanced heart failure (HF). Advances in molecular biology and gene targeting approaches are offering further novel options for genetic manipulation of the cardiovascular system. The aim of this study was to improve cardiac function in chronic HF by overexpressing constitutively active inhibitor-1 (I-1c) using a novel cardiotropic vector generated by capsid reengineering of adeno-associated virus (BNP116). One month after a large anterior myocardial infarction, 20 Yorkshire pigs randomly received intracoronary injection of either high-dose BNP116.I-1c (1.0 × 10(13) vector genomes (vg), n = 7), low-dose BNP116.I-1c (3.0 × 10(12) vg, n = 7), or saline (n = 6). Compared to baseline, mean left ventricular ejection fraction increased by 5.7% in the high-dose group, and by 5.2% in the low-dose group, whereas it decreased by 7% in the saline group. Additionally, preload-recruitable stroke work obtained from pressure-volume analysis demonstrated significantly higher cardiac performance in the high-dose group. Likewise, other hemodynamic parameters, including stroke volume and contractility index indicated improved cardiac function after the I-1c gene transfer. Furthermore, BNP116 showed a favorable gene expression pattern for targeting the heart. In summary, I-1c overexpression using BNP116 improves cardiac function in a clinically relevant model of ischemic HF.
Collapse
Affiliation(s)
- Kiyotake Ishikawa
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kenneth M Fish
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Lisa Tilemann
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Kleopatra Rapti
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Jaume Aguero
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Carlos G Santos-Gallego
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ahyoung Lee
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Ioannis Karakikes
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Chaoqin Xie
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Fadi G Akar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Yuichi J Shimada
- Department of Medicine, Beth Israel Medical Center, University Hospital and Manhattan Campus for the Albert Einstein College of Medicine, New York, New York, USA
| | | | - Aravind Asokan
- Gene Therapy Center, University of North Carolina, Chapel Hill, North Carolina, USA
| | | | | | | | - Daniel C Sigg
- Department of Integrative Biology and Physiology, University of Minnesota Twin Cities, Minneapolis, Minnesota, USA
| | - Thomas Weber
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA
| | - Evangelia G Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati, Cincinnati, Ohio, USA
| | - Roger J Hajjar
- Cardiovascular Research Center, Icahn School of Medicine at Mount Sinai, New York, New York, USA.
| |
Collapse
|
15
|
Liu N, Xing R, Yang C, Tian A, Lv Z, Sun N, Gao X, Zhang Y, Li Z. HIP-55/DBNL-dependent regulation of adrenergic receptor mediates the ERK1/2 proliferative pathway. MOLECULAR BIOSYSTEMS 2014; 10:1932-9. [PMID: 24802081 DOI: 10.1039/c3mb70525k] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
The activation of β-adrenergic receptors (β-ARs) plays a key role in regulating cardiac function. However, the detailed regulatory mechanisms of β-AR-induced fibrosis are still unclear. We used a proteomics approach to analyze the changes in protein expression patterns in cardiac fibrosis with β-AR stimulation. HIP-55 (also called debrin-like; DBNL) was revealed as a novel regulator in the signaling regulatory network with β-AR activation. Further studies of both HIP-55-overexpressed and -deficient cardiac fibroblasts indicated that HIP-55 negatively regulated β-AR-activated cardiac fibroblast proliferation and the proliferative signaling pathway may be associated with the extracellular signal-regulated protein kinase (ERK) activation. Our data provide a new mechanistic insight into the role of HIP-55 in β-AR-induced cardiac fibroblast proliferation and suggest a new treatment strategy for proliferative disorders.
Collapse
Affiliation(s)
- Ning Liu
- Central Laboratory, Jilin University Second Hospital, Changchun 130041, China
| | | | | | | | | | | | | | | | | |
Collapse
|
16
|
Lorenz K, Stathopoulou K, Schmid E, Eder P, Cuello F. Heart failure-specific changes in protein kinase signalling. Pflugers Arch 2014; 466:1151-62. [DOI: 10.1007/s00424-014-1462-x] [Citation(s) in RCA: 17] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2014] [Revised: 01/19/2014] [Accepted: 01/22/2014] [Indexed: 01/14/2023]
|
17
|
Zhang Y, Zhang XF, Gao L, Liu Y, Jiang DS, Chen K, Yang Q, Fan GC, Zhang XD, Huang C. Growth/differentiation factor 1 alleviates pressure overload-induced cardiac hypertrophy and dysfunction. BIOCHIMICA ET BIOPHYSICA ACTA 2014; 1842:232-244. [PMID: 24275554 DOI: 10.1016/j.bbadis.2013.11.018] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2013] [Revised: 11/15/2013] [Accepted: 11/17/2013] [Indexed: 11/26/2022]
Abstract
Pathological cardiac hypertrophy is a major risk factor for developing heart failure, the leading cause of death in the world. Growth/differentiation factor 1 (GDF1), a transforming growth factor-β family member, is a regulator of cell growth and differentiation in both embryonic and adult tissues. Evidence from human and animal studies suggests that GDF1 may play an important role in cardiac physiology and pathology. However, a critical role for GDF1 in cardiac remodelling has not been investigated. Here, we performed gain-of-function and loss-of-function studies using cardiac-specific GDF1 knockout mice and transgenic mice to determine the role of GDF1 in pathological cardiac hypertrophy, which was induced by aortic banding (AB). The extent of cardiac hypertrophy was evaluated by echocardiographic, hemodynamic, pathological, and molecular analyses. Our results demonstrated that cardiac specific GDF1 overexpression in the heart markedly attenuated cardiac hypertrophy, fibrosis, and cardiac dysfunction, whereas loss of GDF1 in cardiomyocytes exaggerated the pathological cardiac hypertrophy and dysfunction in response to pressure overload. Mechanistically, we revealed that the cardioprotective effect of GDF1 on cardiac remodeling was associated with the inhibition of the MEK-ERK1/2 and Smad signaling cascades. Collectively, our data suggest that GDF1 plays a protective role in cardiac remodeling via the negative regulation of the MEK-ERK1/2 and Smad signaling pathways.
Collapse
Affiliation(s)
- Yan Zhang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Xiao-Fei Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Lu Gao
- Department of Cardiology, Institute of Cardiovascular Disease, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan, China
| | - Yu Liu
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Ding-Sheng Jiang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China
| | - Ke Chen
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Qinglin Yang
- Department of Nutrition Sciences, University of Alabama at Birmingham, Birmingham, AL 35294-3360, USA
| | - Guo-Chang Fan
- College of Life Sciences, Wuhan University, Wuhan 430072, China; Departments of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, OH 45267, USA
| | - Xiao-Dong Zhang
- College of Life Sciences, Wuhan University, Wuhan 430072, China
| | - Congxin Huang
- Department of Cardiology, Renmin Hospital of Wuhan University, Wuhan 430060, China; Cardiovascular Research Institute of Wuhan University, Wuhan 430060, China.
| |
Collapse
|
18
|
Shukla SK, Sharma SB, Singh UR, Ahmad S, Maheshwari A, Misro M, Dwivedi S. Eugenia jambolana pretreatment prevents isoproterenol-induced myocardial damage in rats: evidence from biochemical, molecular, and histopathological studies. J Med Food 2013; 17:244-53. [PMID: 24325453 DOI: 10.1089/jmf.2013.2795] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2022] Open
Abstract
Preventive effects of hydroalcoholic extract of fruit pulp of Eugenia jambolana (HEEJ) on isoproterenol (ISP)-induced myocardial damage in rats were evaluated. Rats were pre-treated with HEEJ (100, 200, and 400 mg/kg) daily for 30 days. ISP (85 mg/kg bw) was administered on the 28th and 29th days at an interval of 24 h. Ischemic control group exhibited significant increases in oxidative stress parameters, markers of inflammation, cardiac damage markers, and apoptotic markers. Oral pre-treatment with HEEJ (100, 200, and 400 mg/kg bw) provided cardioprotective activity by decreasing levels of malondialdehyde, cardiac markers (serum glutamate oxaloacetate transaminase, creatine kinase-myocardial band, cardiac troponin I), and markers of inflammation (interleukin-6, C-reactive protein, and tumor necrosis factor alpha); and increased levels of superoxide dismutase and reduced glutathione. HEEJ (400 mg/kg bw) was found to exert significantly greater effects in comparison to HEEJ (100 and 200 mg/kg bw). Apoptotic marker Bcl-2 was increased, while Bax was decreased in pre-treated rats, which was further confirmed by terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling assay. The present study provides evidence that pre-treatment with HEEJ attenuates oxidative stress, apoptosis and improves cardiac architecture in ISP-induced rats and, hence, is cardioprotective.
Collapse
Affiliation(s)
- Santosh Kumar Shukla
- 1 Department of Biochemistry, University College of Medical Sciences, University of Delhi , Delhi, India
| | | | | | | | | | | | | |
Collapse
|
19
|
Pritchard TJ, Kawase Y, Haghighi K, Anjak A, Cai W, Jiang M, Nicolaou P, Pylar G, Karakikes I, Rapti K, Rubinstein J, Hajjar RJ, Kranias EG. Active inhibitor-1 maintains protein hyper-phosphorylation in aging hearts and halts remodeling in failing hearts. PLoS One 2013; 8:e80717. [PMID: 24312496 PMCID: PMC3846572 DOI: 10.1371/journal.pone.0080717] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2013] [Accepted: 10/16/2013] [Indexed: 01/14/2023] Open
Abstract
Impaired sarcoplasmic reticulum calcium cycling and depressed contractility are key characteristics in heart failure. Defects in sarcoplasmic reticulum function are characterized by decreased SERCA2a Ca-transport that is partially attributable to dephosphorylation of its regulator phospholamban by increased protein phosphatase 1 activity. Inhibition of protein phosphatase 1 through activation of its endogenous inhibitor-1 has been shown to enhance cardiac Ca-handling and contractility as well as protect from pathological stress remodeling in young mice. In this study, we assessed the long-term effects of inducible expression of constitutively active inhibitor-1 in the adult heart and followed function and remodeling through the aging process, up to 20 months. Mice with inhibitor-1 had normal survival and similar function to WTs. There was no overt remodeling as evidenced by measures of left ventricular end-systolic and diastolic diameters and posterior wall dimensions, heart weight to tibia length ratio, and histology. Higher phosphorylation of phospholamban at both Ser16 and Thr17 was maintained in aged hearts with active inhibitor-1, potentially offsetting the effects of elevated Ser2815-phosphorylation in ryanodine receptor, as there were no increases in arrhythmias under stress conditions in 20-month old mice. Furthermore, long-term expression of active inhibitor-1 via recombinant adeno-associated virus type 9 gene transfer in rats with pressure-overload induced heart failure improved function and prevented remodeling, associated with increased phosphorylation of phospholamban at Ser16 and Thr17. Thus, chronic inhibition of protein phosphatase 1, through increases in active inhibitor-1, does not accelerate age-related cardiomyopathy and gene transfer of this molecule in vivo improves function and halts remodeling in the long term.
Collapse
Affiliation(s)
- Tracy J. Pritchard
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Yoshiaki Kawase
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kobra Haghighi
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ahmad Anjak
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Wenfeng Cai
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Min Jiang
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Persoulla Nicolaou
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - George Pylar
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
| | - Ioannis Karakikes
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Kleopatra Rapti
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Jack Rubinstein
- Department of Internal Medicine, Division of Cardiovascular Diseases, University of Cincinnati, Cincinnati, Ohio, United States of America
| | - Roger J. Hajjar
- Cardiovascular Research Center, Ichan School of Medicine at Mount Sinai, New York, New York, United States of America
| | - Evangelia G. Kranias
- Department of Pharmacology and Cell Biophysics, University of Cincinnati College of Medicine, Cincinnati, Ohio, United States of America
- * E-mail:
| |
Collapse
|
20
|
Picard N, Trompf K, Yang CL, Miller RL, Carrel M, Loffing-Cueni D, Fenton RA, Ellison DH, Loffing J. Protein phosphatase 1 inhibitor-1 deficiency reduces phosphorylation of renal NaCl cotransporter and causes arterial hypotension. J Am Soc Nephrol 2013; 25:511-22. [PMID: 24231659 DOI: 10.1681/asn.2012121202] [Citation(s) in RCA: 57] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The thiazide-sensitive NaCl cotransporter (NCC) of the renal distal convoluted tubule (DCT) controls ion homeostasis and arterial BP. Loss-of-function mutations of NCC cause renal salt wasting with arterial hypotension (Gitelman syndrome). Conversely, mutations in the NCC-regulating WNK kinases or kelch-like 3 protein cause familial hyperkalemic hypertension. Here, we performed automated sorting of mouse DCTs and microarray analysis for comprehensive identification of novel DCT-enriched gene products, which may potentially regulate DCT and NCC function. This approach identified protein phosphatase 1 inhibitor-1 (I-1) as a DCT-enriched transcript, and immunohistochemistry revealed I-1 expression in mouse and human DCTs and thick ascending limbs. In heterologous expression systems, coexpression of NCC with I-1 increased thiazide-dependent Na(+) uptake, whereas RNAi-mediated knockdown of endogenous I-1 reduced NCC phosphorylation. Likewise, levels of phosphorylated NCC decreased by approximately 50% in I-1 (I-1(-/-)) knockout mice without changes in total NCC expression. The abundance and phosphorylation of other renal sodium-transporting proteins, including NaPi-IIa, NKCC2, and ENaC, did not change, although the abundance of pendrin increased in these mice. The abundance, phosphorylation, and subcellular localization of SPAK were similar in wild-type (WT) and I-1(-/-) mice. Compared with WT mice, I-1(-/-) mice exhibited significantly lower arterial BP but did not display other metabolic features of NCC dysregulation. Thus, I-1 is a DCT-enriched gene product that controls arterial BP, possibly through regulation of NCC activity.
Collapse
Affiliation(s)
- Nicolas Picard
- Institute of Anatomy, University of Zurich, Zurich, Switzerland
| | | | | | | | | | | | | | | | | |
Collapse
|
21
|
Fish KM, Ladage D, Kawase Y, Karakikes I, Jeong D, Ly H, Ishikawa K, Hadri L, Tilemann L, Muller-Ehmsen J, Samulski RJ, Kranias EG, Hajjar RJ. AAV9.I-1c delivered via direct coronary infusion in a porcine model of heart failure improves contractility and mitigates adverse remodeling. Circ Heart Fail 2012; 6:310-7. [PMID: 23271792 DOI: 10.1161/circheartfailure.112.971325] [Citation(s) in RCA: 61] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
BACKGROUND Heart failure is characterized by impaired function and disturbed Ca2+ homeostasis. Transgenic increases in inhibitor-1 activity have been shown to improve Ca2 cycling and preserve cardiac performance in the failing heart. The aim of this study was to evaluate the effect of activating the inhibitor (I-1c) of protein phosphatase 1 (I-1) through gene transfer on cardiac function in a porcine model of heart failure induced by myocardial infarction. METHODS AND RESULTS Myocardial infarction was created by a percutaneous, permanent left anterior descending artery occlusion in Yorkshire Landrace swine (n=16). One month after myocardial infarction, pigs underwent intracoronary delivery of either recombinant adeno-associated virus type 9 carrying I-1c (n=8) or saline (n=6) as control. One month after myocardial infarction was created, animals exhibited severe heart failure demonstrated by decreased ejection fraction (46.4±7.0% versus sham 69.7±8.5%) and impaired (dP/dt)max and (dP/dt)min. Intracoronary injection of AAV9.I-1c prevented further deterioration of cardiac function and led to a decrease in scar size. CONCLUSIONS In this preclinical model of heart failure, overexpression of I-1c by intracoronary in vivo gene transfer preserved cardiac function and reduced the scar size.
Collapse
Affiliation(s)
- Kenneth M Fish
- Department of Cardiology, Cardiovascular Research Center, Mount Sinai School of Medicine, One Gustave L. Levy Place, New York, NY 10029, USA
| | | | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
22
|
Rietz A, Spiers J. The relationship between the MMP system, adrenoceptors and phosphoprotein phosphatases. Br J Pharmacol 2012; 166:1225-43. [PMID: 22364165 DOI: 10.1111/j.1476-5381.2012.01917.x] [Citation(s) in RCA: 25] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022] Open
Abstract
The MMPs and their inhibitors [tissue inhibitor of MMPs (TIMPs)] form the mainstay of extracellular matrix homeostasis. They are expressed in response to numerous stimuli including cytokines and GPCR activation. This review highlights the importance of adrenoceptors and phosphoprotein phosphatases (PPP) in regulating MMPs in the cardiovascular system, which may help explain some of the beneficial effects of targeting the adrenoceptor system in tissue remodelling and will establish emerging crosstalk between these three systems. Although α- and β-adrenoceptor activation increases MMP but decreases TIMP expression, MMPs are implicated in the growth stimulatory effects of adrenoceptor activation through transactivation of epidermal growth factor receptor. Furthermore, they have recently been found to catalyse the proteolysis of β-adrenoceptors and modulate vascular tone. While the mechanisms underpinning these effects are not well defined, reversible protein phosphorylation by kinases and phosphatases may be key. In particular, PPP (Ser/Thr phosphatases) are not only critical in resensitization and internalization of adrenoceptors but also modulate MMP expression. The interrelationship is complex as isoprenaline (ISO) inhibits okadaic acid [phosphoprotein phosphatase type 1/phosphoprotein phosphatase type 2A (PP2A) inhibitor]-mediated MMP expression. While this may be simply due to its ability to transiently increase PP2A activity, there is evidence for MMP-9 that ISO prevents okadaic acid-mediated expression of MMP-9 through a β-arrestin, NF-κB-dependent pathway, which is abolished by knock-down of PP2A. It is essential that crosstalk between MMPs, adrenoceptors and PPP are investigated further as it will provide important insight into how adrenoceptors modulate cardiovascular remodelling, and may identify new targets for pharmacological manipulation of the MMP system.
Collapse
Affiliation(s)
- A Rietz
- Department of Pharmacology and Therapeutics, Trinity College Dublin, Dublin, Ireland
| | | |
Collapse
|
23
|
Louridas GE, Lourida KG. A conceptual paradigm of heart failure and systems biology approach. Int J Cardiol 2012; 159:5-13. [DOI: 10.1016/j.ijcard.2011.07.014] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/09/2011] [Accepted: 07/03/2011] [Indexed: 10/17/2022]
|
24
|
Florea S, Anjak A, Cai WF, Qian J, Vafiadaki E, Figueria S, Haghighi K, Rubinstein J, Lorenz J, Kranias EG. Constitutive phosphorylation of inhibitor-1 at Ser67 and Thr75 depresses calcium cycling in cardiomyocytes and leads to remodeling upon aging. Basic Res Cardiol 2012; 107:279. [PMID: 22777184 DOI: 10.1007/s00395-012-0279-z] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/26/2012] [Revised: 06/08/2012] [Accepted: 06/25/2012] [Indexed: 12/15/2022]
Abstract
The activity of protein phosphatase-1 (PP1) inhibitor-1 (I-1) is antithetically modulated by the cAMP-protein kinase A (PKA) and Ca(2+)-protein kinase C (PKC) signaling axes. β-adrenergic (β-AR) stimulation results in PKA-phosphorylation of I-1 at threonine 35 (Thr35) and depressed PP1 activity, while PKC phosphorylation at serine 67 (Ser67) and/or Thr75 increases PP1 activity. In heart failure, pThr35 is decreased while pSer67 and pThr75 are elevated. However, the role of Ser67/Thr75 phosphorylation in vivo and its effects on Ca(2+)-cycling are not known. Thus, our aim was to investigate the functional significance of Ser67 and Thr75 phosphorylation in intact hearts. We generated transgenic mice (TG) with cardiac-specific overexpression of constitutively phosphorylated I-1 at Ser67 and Thr75 (S67D/T75D) and evaluated cardiac function. The S67D/T75D cardiomyocytes exhibited significantly depressed Ca(2+)-kinetics and contractile parameters, compared with wild-type (WT) cells. The decreased Ca(2+)-cycling was associated with a 27 % increase in PP1 activity, no alterations in PP2 activity and impaired phosphorylation of myosin-binding protein-C (MyBPC). Upon aging, there was cardiac remodeling associated with increases in systolic and diastolic left ventricular internal diameter dimensions (at 16 months), compared with WTs. The results indicate that phosphorylation of I-1 at Ser67 and Thr75 is associated with increased PP1 activity and depressed cardiomyocyte Ca(2+)-cycling, which manifests in geometrical alterations over the long term. Thus, hyperphosphorylation of these sites in failing hearts may contribute to deteriorative remodeling.
Collapse
Affiliation(s)
- Stela Florea
- Department of Pharmacology and Cell Biophysics, College of Medicine, University of Cincinnati, 231 Albert Sabin Way, Cincinnati, OH 45267, USA
| | | | | | | | | | | | | | | | | | | |
Collapse
|
25
|
Booysen HL, Norton GR, Opie LH, Woodiwiss AJ. Reverse chamber remodelling following adrenergic-induced advanced cardiac dilatation and pump dysfunction. Basic Res Cardiol 2011; 107:238. [DOI: 10.1007/s00395-011-0238-0] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/22/2011] [Revised: 11/09/2011] [Accepted: 12/05/2011] [Indexed: 11/24/2022]
|
26
|
Wittköpper K, Dobrev D, Eschenhagen T, El-Armouche A. Phosphatase-1 inhibitor-1 in physiological and pathological β-adrenoceptor signalling. Cardiovasc Res 2011; 91:392-401. [PMID: 21354993 DOI: 10.1093/cvr/cvr058] [Citation(s) in RCA: 43] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023] Open
Abstract
Control of protein phosphorylation-dephosphorylation events occurs through regulation of protein kinases and phosphatases. Phosphatase type 1 (PP-1) provides the main activity of serine/threonine protein phosphatases in the heart. Inhibitor-1 (I-1) was the first endogenous molecule found to inhibit PP-1 specifically. Notably, I-1 is activated by cAMP-dependent protein kinase A (PKA), and the subsequent prevention of target dephosphorylation by PP-1 provides distal amplification of β-adrenoceptor (β-AR) signalling. I-1 was found to be down-regulated and hypo-phosphorylated in human and experimental heart failure but hyperactive in human atrial fibrillation, implicating I-1 in the pathogenesis of heart failure and arrhythmias. Consequently, the therapeutic potential of I-1 in heart failure and arrhythmias has recently been addressed by the generation and analysis of several I-1 genetic mouse models. This review summarizes and discusses these data, highlights partially controversial issues on whether I-1 should be therapeutically reinforced or inhibited and suggests future directions to better understand the functional role of I-1 in physiological and pathological β-AR signalling.
Collapse
Affiliation(s)
- Katrin Wittköpper
- Department of Pharmacology, University Medical Center Göttingen, Georg August University Göttingen, Göttingen, Germany
| | | | | | | |
Collapse
|
27
|
Affiliation(s)
- Gerd Heusch
- Institut für Pathophysiologie, Universitätsklinikum Essen
| |
Collapse
|
28
|
Wittköpper K, Eschenhagen T, El-Armouche A. Phosphatase-1-inhibitor-1: amplifier or attenuator of catecholaminergic stress? Basic Res Cardiol 2010; 105:569-71. [PMID: 20526608 PMCID: PMC2916120 DOI: 10.1007/s00395-010-0107-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/18/2010] [Revised: 05/19/2010] [Accepted: 05/20/2010] [Indexed: 11/26/2022]
Affiliation(s)
- Katrin Wittköpper
- Department of Pharmacology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| | - Thomas Eschenhagen
- Department of Experimental and Clinical Pharmacology, University Medical Center Hamburg Eppendorf, Hamburg, Germany
| | - Ali El-Armouche
- Department of Pharmacology, University Medical Center Göttingen, Georg August University Göttingen, Robert-Koch-Str. 40, 37075 Göttingen, Germany
| |
Collapse
|