1
|
Kaneko N, Loughrey CM, Smith G, Matsuda R, Hasunuma T, Mark PB, Toda M, Shinozaki M, Otani N, Kayley S, Da Silva Costa A, Martin TP, Dobi S, Saxena P, Shimamoto K, Ishikawa T, Kambayashi R, Riddell A, Elliott EB, McCarroll CS, Sakai T, Mitsuhisa Y, Hirano S, Kitai T, Kusano K, Inoue Y, Nakamura M, Kikuchi M, Toyoda S, Taguchi I, Fujiwara T, Sugiyama A, Kumagai Y, Iwata K. A novel ryanodine receptor 2 inhibitor, M201-A, enhances natriuresis, renal function and lusi-inotropic actions: Preclinical and phase I study. Br J Pharmacol 2024; 181:3401-3419. [PMID: 38773354 DOI: 10.1111/bph.16379] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2023] [Revised: 02/17/2024] [Accepted: 02/20/2024] [Indexed: 05/23/2024] Open
Abstract
BACKGROUND AND PURPOSE The ryanodine receptor 2 (RyR2) is present in both the heart and kidneys, and plays a crucial role in maintaining intracellular Ca2+ homeostasis in cells in these organs. This study aimed to investigate the impact of M201-A on RyR2, as well as studying its effects on cardiac and renal functions in preclinical and clinical studies. EXPERIMENTAL APPROACH Following the administration of M201-A (1,4-benzothiazepine-1-oxide derivative), we monitored diastolic Ca2+ leak via RyR2 and intracellular Ca2+ concentration in isolated rat cardiomyocytes and in cardiac and renal function in animals. In a clinical study, M201-A was administered intravenously at doses of 0.2 and 0.4 mg·kg-1 once daily for 20 min for four consecutive days in healthy males, with the assessment of haemodynamic responses. KEY RESULTS In rat heart cells, M201-A effectively inhibited spontaneous diastolic Ca2+ leakage through RyR2 and exhibited positive lusi-inotropic effects on the rat heart. Additionally, it enhanced natriuresis and improved renal function in dogs. In human clinical studies, when administered intravenously, M201-A demonstrated an increase in natriuresis, glomerular filtration rate and creatinine clearance, while maintaining acceptable levels of drug safety and tolerability. CONCLUSIONS AND IMPLICATIONS The novel drug M201-A inhibited diastolic Ca2+ leak via RyR2, improved cardiac lusi-inotropic effects in rats, and enhanced natriuresis and renal function in humans. These findings suggest that this drug may offer a potential new treatment option for chronic kidney disease and heart failure.
Collapse
Affiliation(s)
- Noboru Kaneko
- Department of Medicine, Dokkyo Medical University, Tochigi, Japan
- AETAS Pharma Co., Ltd., Tokyo, Japan
| | | | - Godfrey Smith
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ryuko Matsuda
- AETAS Pharma Co., Ltd., Tokyo, Japan
- Nojima Hospital, Tottori, Japan
| | | | - Patric B Mark
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | | | - Naoyuki Otani
- Dokkyo Medical University Nikko Medical Center, Tochigi, Japan
| | - Scott Kayley
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ana Da Silva Costa
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Tamara P Martin
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Sara Dobi
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Priyanka Saxena
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Ken Shimamoto
- Division of Cardiovascular Medicine, Sendai Cardiovascular Center, Miyagi, Japan
| | - Tetsuya Ishikawa
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | - Ryuichi Kambayashi
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | - Alexandra Riddell
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | - Elspeth B Elliott
- School of Cardiovascular and Metabolic Health, University of Glasgow, Glasgow, UK
| | | | | | | | - Sayuri Hirano
- Process Research & Development Laboratories Technology Research & Development Division, Sumitomo Dainippon Pharma Co. Ltd., Osaka, Japan
| | - Takeshi Kitai
- Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Kengo Kusano
- Department of Cardiovascular Medicine, National Cerebral and Cardiovascular Center, Osaka, Japan
| | - Yuko Inoue
- Department of Heart Failure and Transplantation, National Cerebral and Cardiovascular Center, Osaka, Japan
| | | | - Migaku Kikuchi
- Department of Cardiovascular Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Shigeru Toyoda
- Department of Cardiovascular Medicine, Dokkyo Medical University, Tochigi, Japan
| | - Isao Taguchi
- Department of Cardiology, Dokkyo Medical University, Saitama Medical Center, Saitama, Japan
| | | | - Atsushi Sugiyama
- Department of Pharmacology, Faculty of Medicine, Toho University, Tokyo, Japan
| | | | | |
Collapse
|
2
|
Hou J, Deng Q, Qiu X, Liu S, Li Y, Huang C, Wang X, Zhang Q, Deng X, Zhong Z, Zhong W. Proteomic analysis of plasma proteins from patients with cardiac rupture after acute myocardial infarction using TMT-based quantitative proteomics approach. Clin Proteomics 2024; 21:18. [PMID: 38429673 PMCID: PMC10908035 DOI: 10.1186/s12014-024-09474-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/15/2023] [Accepted: 02/23/2024] [Indexed: 03/03/2024] Open
Abstract
BACKGROUND Cardiac rupture (CR) is a rare but catastrophic mechanical complication of acute myocardial infarction (AMI) that seriously threatens human health. However, the reliable biomarkers for clinical diagnosis and the underlying signaling pathways insights of CR has yet to be elucidated. METHODS In the present study, a quantitative approach with tandem mass tag (TMT) labeling and liquid chromatography-tandem mass spectrometry was used to characterize the differential protein expression profiles of patients with CR. Plasma samples were collected from patients with CR (n = 37), patients with AMI (n = 47), and healthy controls (n = 47). Candidate proteins were selected for validation by multiple reaction monitoring (MRM) and enzyme-linked immunosorbent assay (ELISA). RESULTS In total, 1208 proteins were quantified and 958 differentially expressed proteins (DEPs) were identified. The difference in the expression levels of the DEPs was more noticeable between the CR and Con groups than between the AMI and Con groups. Bioinformatics analysis showed most of the DEPs to be involved in numerous crucial biological processes and signaling pathways, such as RNA transport, ribosome, proteasome, and protein processing in the endoplasmic reticulum, as well as necroptosis and leukocyte transendothelial migration, which might play essential roles in the complex pathological processes associated with CR. MRM analysis confirmed the accuracy of the proteomic analysis results. Four proteins i.e., C-reactive protein (CRP), heat shock protein beta-1 (HSPB1), vinculin (VINC) and growth/differentiation factor 15 (GDF15), were further validated via ELISA. By receiver operating characteristic (ROC) analysis, combinations of these four proteins distinguished CR patients from AMI patients with a high area under the curve (AUC) value (0.895, 95% CI, 0.802-0.988, p < 0.001). CONCLUSIONS Our study highlights the value of comprehensive proteomic characterization for identifying plasma proteome changes in patients with CR. This pilot study could serve as a valid foundation and initiation point for elucidation of the mechanisms of CR, which might aid in identifying effective diagnostic biomarkers in the future.
Collapse
Affiliation(s)
- Jingyuan Hou
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
- GuangDong Engineering Technology Research Center for Molecular Diagnostics of Cardiovascular Diseases, Meizhou, Guangdong, 514031, China
| | - Qiaoting Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xiaohong Qiu
- Meizhou clinical Medical School, Guangdong Medical University, Meizhou, Guangdong, 514031, China
| | - Sudong Liu
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Youqian Li
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Changjing Huang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Xianfang Wang
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China
| | - Qunji Zhang
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Xunwei Deng
- Research Experimental Center, Meizhou Clinical Institute of Shantou University Medical College, Meizhou, Guangdong, 514031, China
| | - Zhixiong Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| | - Wei Zhong
- Center for Cardiovascular Diseases, Meizhou People's Hospital, Meizhou, Guangdong, 514031, China.
| |
Collapse
|
3
|
Martin TP, MacDonald EA, Elbassioni AAM, O'Toole D, Zaeri AAI, Nicklin SA, Gray GA, Loughrey CM. Preclinical models of myocardial infarction: from mechanism to translation. Br J Pharmacol 2021; 179:770-791. [PMID: 34131903 DOI: 10.1111/bph.15595] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Revised: 05/25/2021] [Accepted: 05/28/2021] [Indexed: 11/28/2022] Open
Abstract
Approximately 7 million people are affected by acute myocardial infarction (MI) each year, and despite significant therapeutic and diagnostic advancements, MI remains a leading cause of mortality worldwide. Preclinical animal models have significantly advanced our understanding of MI and have enabled the development of therapeutic strategies to combat this debilitating disease. Notably, some drugs currently used to treat MI and heart failure (HF) in patients had initially been studied in preclinical animal models. Despite this, preclinical models are limited in their ability to fully reproduce the complexity of MI in humans. The preclinical model must be carefully selected to maximise the translational potential of experimental findings. This review describes current experimental models of MI and considers how they have been used to understand drug mechanisms of action and support translational medicine development.
Collapse
Affiliation(s)
- Tamara P Martin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Eilidh A MacDonald
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Ali Mohamed Elbassioni
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK.,Suez Canal University, Arab Republic of Egypt
| | - Dylan O'Toole
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Ali Abdullah I Zaeri
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Stuart A Nicklin
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| | - Gillian A Gray
- Centre for Cardiovascular Science, Queen's Medical Research Institute, The University of Edinburgh, Edinburgh, UK
| | - Christopher M Loughrey
- BHF Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, Glasgow, UK
| |
Collapse
|
4
|
O'Toole D, Zaeri AAI, Nicklin SA, French AT, Loughrey CM, Martin TP. Signalling pathways linking cysteine cathepsins to adverse cardiac remodelling. Cell Signal 2020; 76:109770. [PMID: 32891693 DOI: 10.1016/j.cellsig.2020.109770] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/09/2020] [Revised: 08/27/2020] [Accepted: 08/31/2020] [Indexed: 12/12/2022]
Abstract
Adverse cardiac remodelling clinically manifests as deleterious changes to heart architecture (size, mass and geometry) and function. These changes, which include alterations to ventricular wall thickness, chamber dilation and poor contractility, are important because they progressively drive patients with cardiac disease towards heart failure and are associated with poor prognosis. Cysteine cathepsins contribute to key signalling pathways involved in adverse cardiac remodelling including synthesis and degradation of the cardiac extracellular matrix (ECM), cardiomyocyte hypertrophy, impaired cardiomyocyte contractility and apoptosis. In this review, we highlight the role of cathepsins in these signalling pathways as well as their translational potential as therapeutic targets in cardiac disease.
Collapse
Affiliation(s)
- Dylan O'Toole
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Ali Abdullah I Zaeri
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK
| | - Anne T French
- Clinical Sciences Department, Ross University School of Veterinary Medicine, Basseterre, St. Kitts, West Indies, Saint Kitts and Nevis
| | - Christopher M Loughrey
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| | - Tamara P Martin
- British Heart Foundation Glasgow Cardiovascular Research Centre, Institute of Cardiovascular & Medical Sciences, University of Glasgow, UK.
| |
Collapse
|
5
|
McArthur L, Riddell A, Chilton L, Smith GL, Nicklin SA. Regulation of connexin 43 by interleukin 1β in adult rat cardiac fibroblasts and effects in an adult rat cardiac myocyte: fibroblast co-culture model. Heliyon 2019; 6:e03031. [PMID: 31909243 PMCID: PMC6940628 DOI: 10.1016/j.heliyon.2019.e03031] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2019] [Revised: 11/22/2019] [Accepted: 12/10/2019] [Indexed: 01/05/2023] Open
Abstract
Connexin 43 expression (Cx43) is increased in cardiac fibroblasts (CFs) following myocardial infarction. Here, potential mediators responsible for increasing Cx43 expression and effects of differential CF phenotype on cardiac myocyte (CM) function were investigated. Stimulating adult rat CFs with proinflammatory mediators revealed that interleukin 1β (IL-1β) significantly enhanced Cx43 levels through the IL-1β pathway. Additionally, IL-1β reduced mRNA levels of the myofibroblast (MF) markers: (i) connective tissue growth factor (CTGF) and (ii) α smooth muscle actin (αSMA), compared to control CFs. A co-culture adult rat CM:CF model was utilised to examine cell-to-cell interactions. Transfer of calcein from CMs to underlying CFs suggested functional gap junction formation. Functional analysis revealed contraction duration (CD) of CMs was shortened in co-culture with CFs, while treatment of CFs with IL-1β reduced this mechanical effect of co-culture. No effect on action potential rise time or duration of CMs cultured with control or IL-1β-treated CFs was observed. These data demonstrate that stimulating CFs with IL-1β increases Cx43 and reduces MF marker expression, suggesting altered cell phenotype. These changes may underlie the reduced mechanical effects of IL-1β treated CFs on CD of co-cultured CMs and therefore have an implication for our understanding of heterocellular interactions in cardiac disease.
Collapse
Affiliation(s)
- Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Alexandra Riddell
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Lisa Chilton
- College of Public Health, Medical and Veterinary Sciences, James Cook University, Townsville, Queensland, Australia
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, UK
| |
Collapse
|
6
|
Mohamed BA, Hartmann N, Tirilomis P, Sekeres K, Li W, Neef S, Richter C, Zeisberg EM, Kattner L, Didié M, Guan K, Schmitto JD, Lehnart SE, Luther S, Voigt N, Seidler T, Sossalla S, Hasenfuss G, Toischer K. Sarcoplasmic reticulum calcium leak contributes to arrhythmia but not to heart failure progression. Sci Transl Med 2018; 10:10/458/eaan0724. [DOI: 10.1126/scitranslmed.aan0724] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2017] [Revised: 01/30/2018] [Accepted: 08/09/2018] [Indexed: 12/30/2022]
Abstract
Increased sarcoplasmic reticulum (SR) Ca2+ leak via the cardiac ryanodine receptor (RyR2) has been suggested to play a mechanistic role in the development of heart failure (HF) and cardiac arrhythmia. Mice treated with a selective RyR2 stabilizer, rycal S36, showed normalization of SR Ca2+ leak and improved survival in pressure overload (PO) and myocardial infarction (MI) models. The development of HF, measured by echocardiography and molecular markers, showed no difference in rycal S36– versus placebo-treated mice. Reduction of SR Ca2+ leak in the PO model by the rycal-unrelated RyR2 stabilizer dantrolene did not mitigate HF progression. Development of HF was not aggravated by increased SR Ca2+ leak due to RyR2 mutation (R2474S) in volume overload, an SR Ca2+ leak–independent HF model. Arrhythmia episodes were reduced by rycal S36 treatment in PO and MI mice in vivo and ex vivo in Langendorff-perfused hearts. Isolated cardiomyocytes from murine failing hearts and human ventricular failing and atrial nonfailing myocardium showed reductions in delayed afterdepolarizations, in spontaneous and induced Ca2+ waves, and in triggered activity in rycal S36 versus placebo cells, whereas the Ca2+ transient, SR Ca2+ load, SR Ca2+ adenosine triphosphatase function, and action potential duration were not affected. Rycal S36 treatment of human induced pluripotent stem cells isolated from a patient with catecholaminergic polymorphic ventricular tachycardia could rescue the leaky RyR2 receptor. These results suggest that SR Ca2+ leak does not primarily influence contractile HF progression, whereas rycal S36 treatment markedly reduces ventricular arrhythmias, thereby improving survival in mice.
Collapse
Affiliation(s)
- Belal A. Mohamed
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Department of Medical Biochemistry and Molecular Biology, Faculty of Medicine, Mansoura University, Mansoura City 35516, Egypt
| | - Nico Hartmann
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
| | - Petros Tirilomis
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
| | - Karolina Sekeres
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Wener Li
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Stefan Neef
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Claudia Richter
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
| | - Elisabeth M. Zeisberg
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Lars Kattner
- Endotherm Life Science Molecules, 66123 Saarbrücken, Germany
| | - Michael Didié
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Georg-August-University, 37075 Göttingen, Germany
| | - Kaomei Guan
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Technische Universität Dresden, 01307 Dresden, Germany
| | - Jan D. Schmitto
- Department of Cardiothoracic, Transplantation and Vascular Surgery, Hannover Medical School, 30625 Hannover, Germany
| | - Stephan E. Lehnart
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- BioMET, Center for Biomedical Engineering and Technology, University of Maryland School of Medicine, Baltimore, MD 21201, USA
| | - Stefan Luther
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Research Group Biomedical Physics, Max Planck Institute for Dynamics and Self-Organization, 37077 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Georg-August-University, 37075 Göttingen, Germany
| | - Niels Voigt
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Institute of Pharmacology and Toxicology, Georg-August-University, 37075 Göttingen, Germany
| | - Tim Seidler
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Samuel Sossalla
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
- Department of Internal Medicine II, University Hospital Regensburg, 93053 Regensburg, Germany
| | - Gerd Hasenfuss
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| | - Karl Toischer
- Department of Cardiology and Pneumology, Georg-August-University, 37075 Göttingen, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Göttingen, 37075 Göttingen, Germany
| |
Collapse
|
7
|
McCarroll CS, He W, Foote K, Bradley A, Mcglynn K, Vidler F, Nixon C, Nather K, Fattah C, Riddell A, Bowman P, Elliott EB, Bell M, Hawksby C, MacKenzie SM, Morrison LJ, Terry A, Blyth K, Smith GL, McBride MW, Kubin T, Braun T, Nicklin SA, Cameron ER, Loughrey CM. Runx1 Deficiency Protects Against Adverse Cardiac Remodeling After Myocardial Infarction. Circulation 2018; 137:57-70. [PMID: 29030345 PMCID: PMC5757664 DOI: 10.1161/circulationaha.117.028911] [Citation(s) in RCA: 62] [Impact Index Per Article: 8.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/20/2016] [Accepted: 09/21/2017] [Indexed: 11/16/2022]
Abstract
BACKGROUND Myocardial infarction (MI) is a leading cause of heart failure and death worldwide. Preservation of contractile function and protection against adverse changes in ventricular architecture (cardiac remodeling) are key factors to limiting progression of this condition to heart failure. Consequently, new therapeutic targets are urgently required to achieve this aim. Expression of the Runx1 transcription factor is increased in adult cardiomyocytes after MI; however, the functional role of Runx1 in the heart is unknown. METHODS To address this question, we have generated a novel tamoxifen-inducible cardiomyocyte-specific Runx1-deficient mouse. Mice were subjected to MI by means of coronary artery ligation. Cardiac remodeling and contractile function were assessed extensively at the whole-heart, cardiomyocyte, and molecular levels. RESULTS Runx1-deficient mice were protected against adverse cardiac remodeling after MI, maintaining ventricular wall thickness and contractile function. Furthermore, these mice lacked eccentric hypertrophy, and their cardiomyocytes exhibited markedly improved calcium handling. At the mechanistic level, these effects were achieved through increased phosphorylation of phospholamban by protein kinase A and relief of sarco/endoplasmic reticulum Ca2+-ATPase inhibition. Enhanced sarco/endoplasmic reticulum Ca2+-ATPase activity in Runx1-deficient mice increased sarcoplasmic reticulum calcium content and sarcoplasmic reticulum-mediated calcium release, preserving cardiomyocyte contraction after MI. CONCLUSIONS Our data identified Runx1 as a novel therapeutic target with translational potential to counteract the effects of adverse cardiac remodeling, thereby improving survival and quality of life among patients with MI.
Collapse
Affiliation(s)
- Charlotte S McCarroll
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Weihong He
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Kirsty Foote
- Division of Cardiovascular Medicine, Addenbrooke's Centre for Clinical Investigation, University of Cambridge, Addenbrooke's Hospital, UK (K.F.)
| | - Ashley Bradley
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Karen Mcglynn
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Francesca Vidler
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Colin Nixon
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK (C.N., K.B.)
| | - Katrin Nather
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Caroline Fattah
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Alexandra Riddell
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Peter Bowman
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Elspeth B Elliott
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | | | - Catherine Hawksby
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Scott M MacKenzie
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Liam J Morrison
- Division of Infection and Immunity, The Roslin Institute, University of Edinburgh, Easter Bush, Midlothian, UK (L.J.M.)
| | - Anne Terry
- Centre for Virus Research (A.T.), University of Glasgow, Garscube Campus, UK
| | - Karen Blyth
- Cancer Research UK Beatson Institute, Bearsden, Glasgow, UK (C.N., K.B.)
| | - Godfrey L Smith
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Martin W McBride
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | - Thomas Kubin
- Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (T.K., T.B.)
| | - Thomas Braun
- Cardiac Development and Remodeling, Max-Planck-Institute for Heart and Lung Research, Bad Nauheim, Germany (T.K., T.B.)
| | - Stuart A Nicklin
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| | | | - Christopher M Loughrey
- Glasgow Cardiovascular Research Centre, Institute of Cardiovascular and Medical Sciences, University of Glasgow, University Place, UK (C.S.M., W.H., A.B., K.M., F.V., K.N., C.F., A.R., P.B., E.B.E., C.H., S.M.M., G.L.S., M.W.M., S.A.N., C.M.L.)
| |
Collapse
|
8
|
Fattah C, Nather K, McCarroll CS, Hortigon-Vinagre MP, Zamora V, Flores-Munoz M, McArthur L, Zentilin L, Giacca M, Touyz RM, Smith GL, Loughrey CM, Nicklin SA. Gene Therapy With Angiotensin-(1-9) Preserves Left Ventricular Systolic Function After Myocardial Infarction. J Am Coll Cardiol 2017; 68:2652-2666. [PMID: 27978950 PMCID: PMC5158000 DOI: 10.1016/j.jacc.2016.09.946] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/22/2016] [Revised: 09/08/2016] [Accepted: 09/29/2016] [Indexed: 01/16/2023]
Abstract
Background Angiotensin-(1-9) [Ang-(1-9)] is a novel peptide of the counter-regulatory axis of the renin-angiotensin-aldosterone system previously demonstrated to have therapeutic potential in hypertensive cardiomyopathy when administered via osmotic mini-pump. Here, we investigate whether gene transfer of Ang-(1-9) is cardioprotective in a murine model of myocardial infarction (MI). Objectives The authors evaluated effects of Ang-(1-9) gene therapy on myocardial structural and functional remodeling post-infarction. Methods C57BL/6 mice underwent permanent left anterior descending coronary artery ligation and cardiac function was assessed using echocardiography for 8 weeks followed by a terminal measurement of left ventricular pressure volume loops. Ang-(1-9) was delivered by adeno-associated viral vector via single tail vein injection immediately following induction of MI. Direct effects of Ang-(1-9) on cardiomyocyte excitation/contraction coupling and cardiac contraction were evaluated in isolated mouse and human cardiomyocytes and in an ex vivo Langendorff-perfused whole-heart model. Results Gene delivery of Ang-(1-9) reduced sudden cardiac death post-MI. Pressure volume measurements revealed complete restoration of end-systolic pressure, ejection fraction, end-systolic volume, and the end-diastolic pressure volume relationship by Ang-(1-9) treatment. Stroke volume and cardiac output were significantly increased versus sham. Histological analysis revealed only mild effects on cardiac hypertrophy and fibrosis, but a significant increase in scar thickness. Direct assessment of Ang-(1-9) on isolated cardiomyocytes demonstrated a positive inotropic effect via increasing calcium transient amplitude and contractility. Ang-(1-9) increased contraction in the Langendorff model through a protein kinase A–dependent mechanism. Conclusions Our novel findings showed that Ang-(1-9) gene therapy preserved left ventricular systolic function post-MI, restoring cardiac function. Furthermore, Ang-(1-9) directly affected cardiomyocyte calcium handling through a protein kinase A–dependent mechanism. These data emphasized Ang-(1-9) gene therapy as a potential new strategy in the context of MI.
Collapse
Affiliation(s)
- Caroline Fattah
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Katrin Nather
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte S McCarroll
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Maria P Hortigon-Vinagre
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Victor Zamora
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Monica Flores-Munoz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom; Universidad Veracruzana, Xalapa, Mexico
| | - Lisa McArthur
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Lorena Zentilin
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Mauro Giacca
- International Centre for Genetic Engineering and Biotechnology, Trieste, Italy
| | - Rhian M Touyz
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Godfrey L Smith
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Christopher M Loughrey
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Stuart A Nicklin
- Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow, United Kingdom.
| |
Collapse
|
9
|
McCarroll CS, Rossor CL, Morrison LR, Morrison LJ, Loughrey CM. A Pre-clinical Animal Model of Trypanosoma brucei Infection Demonstrating Cardiac Dysfunction. PLoS Negl Trop Dis 2015; 9:e0003811. [PMID: 26023927 PMCID: PMC4449042 DOI: 10.1371/journal.pntd.0003811] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2015] [Accepted: 05/04/2015] [Indexed: 11/19/2022] Open
Abstract
African trypanosomiasis (AT), caused by Trypanosoma brucei species, results in both neurological and cardiac dysfunction and can be fatal if untreated. Research on the pathogenesis and treatment of the disease has centred to date on the characteristic neurological symptoms, whereas cardiac dysfunction (e.g. ventricular arrhythmias) in AT remains largely unstudied. Animal models of AT demonstrating cardiac dysfunction similar to that described in field cases of AT are critically required to transform our understanding of AT-induced cardiac pathophysiology and identify future treatment strategies. We have previously shown that T. brucei can interact with heart muscle cells (cardiomyocytes) to induce ventricular arrhythmias in ex vivo adult rat hearts. However, it is unknown whether the arrhythmias observed ex vivo are also present during in vivo infection in experimental animal models. Here we show for the first time the characterisation of ventricular arrhythmias in vivo in two animal models of AT infection using electrocardiographic (ECG) monitoring. The first model utilised a commonly used monomorphic laboratory strain, Trypanosoma brucei brucei Lister 427, whilst the second model used a pleomorphic laboratory strain, T. b. brucei TREU 927, which demonstrates a similar chronic infection profile to clinical cases. The frequency of ventricular arrhythmias and heart rate (HR) was significantly increased at the endpoint of infection in the TREU 927 infection model, but not in the Lister 427 infection model. At the end of infection, hearts from both models were isolated and Langendorff perfused ex vivo with increasing concentrations of the β-adrenergic agonist isoproterenol (ISO). Interestingly, the increased frequency of arrhythmias observed in vivo in the TREU 927 infection model was lost upon isolation of the heart ex vivo, but re-emerged with the addition of ISO. Our results demonstrate that TREU 927 infection modifies the substrate of the myocardium in such a way as to increase the propensity for ventricular arrhythmias in response to a circulating factor in vivo or β-adrenergic stimulation ex vivo. The TREU 927 infection model provides a new opportunity to accelerate our understanding of AT-related cardiac pathophysiology and importantly has the required sensitivity to monitor adverse cardiac-related electrical dysfunction when testing new therapeutic treatments for AT.
Collapse
Affiliation(s)
- Charlotte S. McCarroll
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Charlotte L. Rossor
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
| | - Linda R. Morrison
- Easter Bush Pathology, Royal (Dick) School of Veterinary Studies and The Roslin Institute, Easter Bush Campus, University of Edinburgh, Midlothian, United Kingdom
| | - Liam J. Morrison
- Wellcome Trust Centre for Molecular Parasitology, Institute of Infection, Immunity and Inflammation, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- Roslin Institute, Royal (Dick) School of Veterinary Studies, University of Edinburgh, Easter Bush, Midlothian, United Kingdom
| | - Christopher M. Loughrey
- Institute of Cardiovascular and Medical Sciences, College of Medical, Veterinary and Life Sciences, University of Glasgow, Glasgow, United Kingdom
- * E-mail:
| |
Collapse
|
10
|
Crocini C, Coppini R, Ferrantini C, Pavone FS, Sacconi L. Functional cardiac imaging by random access microscopy. Front Physiol 2014; 5:403. [PMID: 25368580 PMCID: PMC4202699 DOI: 10.3389/fphys.2014.00403] [Citation(s) in RCA: 10] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/21/2014] [Accepted: 09/29/2014] [Indexed: 11/22/2022] Open
Abstract
Advances in the development of voltage sensitive dyes and Ca2+ sensors in combination with innovative microscopy techniques allowed researchers to perform functional measurements with an unprecedented spatial and temporal resolution. At the moment, one of the shortcomings of available technologies is their incapability of imaging multiple fast phenomena while controlling the biological determinants involved. In the near future, ultrafast deflectors can be used to rapidly scan laser beams across the sample, performing optical measurements of action potential and Ca2+ release from multiple sites within cardiac cells and tissues. The same scanning modality could also be used to control local Ca2+ release and membrane electrical activity by activation of caged compounds and light-gated ion channels. With this approach, local Ca2+ or voltage perturbations could be induced, simulating arrhythmogenic events, and their impact on physiological cell activity could be explored. The development of this optical methodology will provide fundamental insights in cardiac disease, boosting new therapeutic strategies, and, more generally, it will represent a new approach for the investigation of the physiology of excitable cells.
Collapse
Affiliation(s)
- Claudia Crocini
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy
| | - Raffaele Coppini
- Division of Pharmacology, Department "NeuroFarBa," University of Florence Florence, Italy
| | - Cecilia Ferrantini
- Division of Physiology, Department of Experimental and Clinical Medicine, University of Florence Florence, Italy
| | - Francesco S Pavone
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy ; Department of Physics and Astronomy, University of Florence Sesto Fiorentino, Italy ; National Research Council, National Institute of Optics Florence, Italy
| | - Leonardo Sacconi
- European Laboratory for Non-Linear Spectroscopy (LENS) Florence, Italy ; National Research Council, National Institute of Optics Florence, Italy
| |
Collapse
|
11
|
Elliott EB, McCarroll D, Hasumi H, Welsh CE, Panissidi AA, Jones NG, Rossor CL, Tait A, Smith GL, Mottram JC, Morrison LJ, Loughrey CM. Trypanosoma brucei cathepsin-L increases arrhythmogenic sarcoplasmic reticulum-mediated calcium release in rat cardiomyocytes. Cardiovasc Res 2013; 100:325-35. [PMID: 23892734 PMCID: PMC3797627 DOI: 10.1093/cvr/cvt187] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/14/2022] Open
Abstract
Aims African trypanosomiasis, caused by Trypanosoma brucei species, leads to both neurological and cardiac dysfunction and can be fatal if untreated. While the neurological-related pathogenesis is well studied, the cardiac pathogenesis remains unknown. The current study exposed isolated ventricular cardiomyocytes and adult rat hearts to T. brucei to test whether trypanosomes can alter cardiac function independent of a systemic inflammatory/immune response. Methods and results Using confocal imaging, T. brucei and T. brucei culture media (supernatant) caused an increased frequency of arrhythmogenic spontaneous diastolic sarcoplasmic reticulum (SR)-mediated Ca2+ release (Ca2+ waves) in isolated adult rat ventricular cardiomyocytes. Studies utilising inhibitors, recombinant protein and RNAi all demonstrated that this altered SR function was due to T. brucei cathepsin-L (TbCatL). Separate experiments revealed that TbCatL induced a 10–15% increase of SERCA activity but reduced SR Ca2+ content, suggesting a concomitant increased SR-mediated Ca2+ leak. This conclusion was supported by data demonstrating that TbCatL increased Ca2+ wave frequency. These effects were abolished by autocamtide-2-related inhibitory peptide, highlighting a role for CaMKII in the TbCatL action on SR function. Isolated Langendorff perfused whole heart experiments confirmed that supernatant caused an increased number of arrhythmic events. Conclusion These data demonstrate for the first time that African trypanosomes alter cardiac function independent of a systemic immune response, via a mechanism involving extracellular cathepsin-L-mediated changes in SR function.
Collapse
Affiliation(s)
- Elspeth B Elliott
- College of Medical, Veterinary and Life Sciences, Institute of Cardiovascular and Medical Sciences, University of Glasgow, Glasgow Cardiovascular Research Centre, University Place, Glasgow G12 8TA, UK
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
12
|
Targeted ablation of the histidine-rich Ca(2+)-binding protein (HRC) gene is associated with abnormal SR Ca(2+)-cycling and severe pathology under pressure-overload stress. Basic Res Cardiol 2013; 108:344. [PMID: 23553082 DOI: 10.1007/s00395-013-0344-2] [Citation(s) in RCA: 21] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/12/2012] [Revised: 02/15/2013] [Accepted: 03/05/2013] [Indexed: 10/27/2022]
Abstract
The histidine-rich Ca(2+)-binding protein (HRC) is located in the lumen of the sarcoplasmic reticulum (SR) and exhibits high-capacity Ca(2+)-binding properties. Overexpression of HRC in the heart resulted in impaired SR Ca(2+) uptake and depressed relaxation through its interaction with SERCA2a. However, the functional significance of HRC in overall regulation of calcium cycling and contractility is not currently well defined. To further elucidate the role of HRC in vivo under physiological and pathophysiological conditions, we generated and characterized HRC-knockout (KO) mice. The KO mice were morphologically and histologically normal compared to wild-type (WT) mice. At the cellular level, ablation of HRC resulted in significantly enhanced contractility, Ca(2+) transients, and maximal SR Ca(2+) uptake rates in the heart. However, after-contractions were developed in 50 % of HRC-KO cardiomyocytes, compared to 11 % in WT mice under stress conditions of high-frequency stimulation (5 Hz) and isoproterenol application. A parallel examination of the electrical activity revealed significant increases in the occurrence of Ca(2+) spontaneous SR Ca(2+) release and delayed afterdepolarizations with ISO in HRC-KO, compared to WT cells. The frequency of Ca(2+) sparks was also significantly higher in HRC-KO cells with ISO, consistent with the elevated SR Ca(2+) load in the KO cells. Furthermore, HRC-KO cardiomyocytes showed significantly deteriorated cell contractility and Ca(2+)-cycling caused possibly by depressed SERCA2a expression after transverse-aortic constriction (TAC). Also HRC-null mice exhibited severe cardiac hypertrophy, fibrosis, pulmonary edema and decreased survival after TAC. Our results indicate that ablation of HRC is associated with poorly regulated SR Ca(2+)-cycling, and severe pathology under pressure-overload stress, suggesting an essential role of HRC in maintaining the integrity of cardiac function.
Collapse
|
13
|
Rienzo M, Bizé A, Pongas D, Michineau S, Melka J, Chan HL, Sambin L, Su JB, Dubois-Randé JL, Hittinger L, Berdeaux A, Ghaleh B. Impaired left ventricular function in the presence of preserved ejection in chronic hypertensive conscious pigs. Basic Res Cardiol 2012; 107:298. [PMID: 22961595 DOI: 10.1007/s00395-012-0298-9] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/16/2012] [Revised: 07/23/2012] [Accepted: 08/24/2012] [Indexed: 12/28/2022]
Abstract
Systolic function is often evaluated by measuring ejection fraction and its preservation is often assimilated with the lack of impairment of systolic left ventricular (LV) function. Considering the left ventricle as a muscular pump, we explored LV function during chronic hypertension independently of increased afterload conditions. Fourteen conscious and chronically instrumented pigs received continuous infusion of either angiotensin II (n = 8) or saline (n = 6) during 28 days. Hemodynamic recordings were regularly performed in the presence and 1 h after stopping angiotensin II infusion to evaluate intrinsic LV function. Throughout the protocol, the mean arterial pressure steadily increased by 55 ± 4 mmHg in angiotensin II-treated animals. There were no significant changes in stroke volume, LV fractional shortening or LV wall thickening, indicating the lack of alterations in LV ejection. In contrast, we observed maladaptive changes with (1) the lack of reduction in isovolumic contraction and relaxation durations with heart rate increases, (2) abnormally blunted isovolumic contraction and relaxation responses to dobutamine and (3) a linear correlation between isovolumic contraction and relaxation durations. None of these changes were observed in saline-infused animals. In conclusion, we provide evidence of impaired LV function with concomitant isovolumic contraction and relaxation abnormalities during chronic hypertension while ejection remains preserved and no sign of heart failure is present. The evaluation under unloaded conditions shows intrinsic LV abnormalities.
Collapse
Affiliation(s)
- Mario Rienzo
- Faculté de Médecine, INSERM Unité U, Créteil, France
| | | | | | | | | | | | | | | | | | | | | | | |
Collapse
|
14
|
Elliott EB, Kelly A, Smith GL, Loughrey CM. Isolated rabbit working heart function during progressive inhibition of myocardial SERCA activity. Circ Res 2012; 110:1618-27. [PMID: 22556337 DOI: 10.1161/circresaha.111.262337] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
RATIONALE The extent to which sarcoplasmic reticulum Ca(2+)ATPase (SERCA) activity alone determines left ventricular (LV) pump function is unknown. OBJECTIVE To correlate SERCA activity with hemodynamic function of rabbit LV during thapsigargin perfusion. METHODS AND RESULTS Isolated rabbit hearts were perfused in working heart configuration, and LV pump function was assessed using a pressure-volume catheter. Rapid and complete (>95%) inhibition of SERCA was associated with a moderate decrease in cardiac function (to 70%-85% of control). Further decrease in cardiac function to 50%-75% of control occurred over the next ≈ 30 minutes despite no detectable further inhibition of SERCA activity. Analysis of the 20 seconds prior to pump failure revealed a rapid decrease in end diastolic volume. Intermediate levels of SERCA function (≈ 50% of control) had only minor hemodynamic effects. Parallel experiments in field-stimulated isolated ventricular cardiomyocytes monitored intracellular Ca(2+) and cell shortening. On perfusion with thapsigargin, Ca(2+) transient amplitude and cell shortening fell to ≈ 70% of control followed by increased diastolic Ca(2+) concentration and diastolic cell shortening to achieve a new steady state. CONCLUSIONS The relationship between SERCA activity and LV function in the rabbit is highly nonlinear. In the short term, only moderate effects on LV pump function were observed despite almost complete (>95%) reduction in SERCA activity. The terminal decline of function was associated with sudden sustained increase in diastolic tone comparable to the sustained contraction observed in isolated cardiomyocytes. Secondary increases of intracellular Ca(2+) and Na(+) following complete SERCA inhibition eventually limit contractile function and precipitate LV pump failure.
Collapse
Affiliation(s)
- Elspeth B Elliott
- Institute of Cardiovascular & Medical Sciences, West Medical Building, University of Glasgow, G12 8QQ, UK
| | | | | | | |
Collapse
|
15
|
Abstract
Metabolic syndrome is characterized by a combination of obesity, hypertension, insulin resistance, dyslipidemia, and impaired glucose tolerance. This multifaceted syndrome is often accompanied by a hyperdynamic circulatory state characterized by increased blood pressure, total blood volume, cardiac output, and metabolic tissue demand. Experimental, epidemiological, and clinical studies have demonstrated that patients with metabolic syndrome have significantly elevated cardiovascular morbidity and mortality rates. One of the main and frequent complications seen in metabolic syndrome is cardiovascular disease. The primary endpoints of cardiometabolic risk are coronary and peripheral arterial disease, myocardial infarction, congestive heart failure, arrhythmia, and stroke. Alterations in expression and/or functioning of several key proteins involved in regulating and maintaining ionic homeostasis can cause cardiac disturbances. One such group of proteins is known as ryanodine receptors (intracellular calcium release channels), which are the major channels through which Ca(2+) ions leave the sarcoplasmic reticulum, leading to cardiac muscle contraction. The economic cost of metabolic syndrome and its associated complications has a significant effect on health care budgets. Improvements in body weight, blood lipid profile, and hyperglycemia can reduce cardiometabolic risk. However, constant hyperadrenergic stimulation still contributes to the burden of disease. Normalization of the hyperdynamic circulatory state with conventional therapies is the most reasonable therapeutic strategy to date. JTV519 (K201) is a newly developed 1,4-benzothiazepine drug with antiarrhythmic and cardioprotective properties. It appears to be very effective in not only preventing but also in reversing the characteristic myocardial changes and preventing lethal arrhythmias. It is also a unique candidate to improve diastolic heart failure in metabolic syndrome.
Collapse
Affiliation(s)
- U Deniz Dincer
- Department of Pharmacology, Ufuk University School of Medicine. Mevlana Bulvari, Balgat, Ankara, Turkey
| |
Collapse
|
16
|
Vinet L, Pezet M, Bito V, Briec F, Biesmans L, Rouet-Benzineb P, Gellen B, Prévilon M, Chimenti S, Vilaine JP, Charpentier F, Sipido KR, Mercadier JJ. Cardiac FKBP12.6 overexpression protects against triggered ventricular tachycardia in pressure overloaded mouse hearts. Basic Res Cardiol 2012; 107:246. [DOI: 10.1007/s00395-012-0246-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/13/2011] [Revised: 12/23/2011] [Accepted: 01/19/2012] [Indexed: 10/14/2022]
|